
Noname manuscript No.
(will be inserted by the editor)

Learning Control Lyapunov Functions from Counterexamples
and Demonstrations

Hadi Ravanbakhsh · Sriram Sankaranarayanan

Received: date / Accepted: date

Abstract We present a technique for learning control
Lyapunov-like functions, which are used in turn to syn-

thesize controllers for nonlinear dynamical systems that
can stabilize the system, or satisfy specifications such
as remaining inside a safe set, or eventually reaching a

target set while remaining inside a safe set. The learn-

ing framework uses a demonstrator that implements

a black-box, untrusted strategy presumed to solve the

problem of interest, a learner that poses finitely many

queries to the demonstrator to infer a candidate func-

tion, and a verifier that checks whether the current can-

didate is a valid control Lyapunov function. The over-

all learning framework is iterative, eliminating a set of

candidates on each iteration using the counterexamples

discovered by the verifier and the demonstrations over

these counterexamples. We prove its convergence using

ellipsoidal approximation techniques from convex op-

timization. We also implement this scheme using non-

linear MPC controllers to serve as demonstrators for

a set of state and trajectory stabilization problems for

nonlinear dynamical systems. We show how the veri-

fier can be constructed efficiently using convex relax-

ations of the verification problem for polynomial sys-
tems to semi-definite programming (SDP) problem in-
stances. Our approach is able to synthesize relatively
simple polynomial control Lyapunov functions, and in

that process replace the MPC using a guaranteed and

computationally less expensive controller.

H. Ravanbakhsh
University of Colorado, Boulder
E-mail: hadi.ravanbakhsh@colorado.edu

S. Sankaranarayanan
University of Colorado, Boulder
E-mail: sriram.sankaranarayanan@colorado.edu

Keywords Lyapunov Functions · Controller Syn-

thesis · Learning from Demonstrations · Concept

Learning.

1 Introduction

We propose a novel learning from demonstration scheme

for inferring control Lyapunov functions (potential func-

tions) for stabilizing nonlinear dynamical systems to

reference states/trajectories, and implementing control

laws for specifications such as maintaining a system in-

side a set of safe states, reaching a target set while re-

maining inside a safe set and tracking a given trajectory

while not deviating too far away. Control Lyapunov

functions (CLFs) have wide applications to autonomous

systems [37,30,3,63,83]. They extend the classic notion

of Lyapunov functions to systems involving control in-

puts [87,88,6]. Finding a CLF also leads us to an as-

sociated feedback control law that can be used to solve

the stabilization problem. Additionally, they can be ex-

tended for feedback motion planning using extensions

to time-varying or sequential CLFs [19,96]. Likewise,

they have been investigated in the robotics community
in many forms including artificial potential functions to

solve path planning problems involving obstacles [55].

However, synthesizing CLFs for nonlinear systems

remains a challenge [73]. Standard approaches to find-
ing CLFs include the use of dynamic programming,

wherein the value function satisfies the conditions of a
CLF [12], or using non-convex bilinear matrix inequal-
ities (BMI) [35].

In this article, we investigate the problem of learning

a CLF using a black-box Demonstrator that imple-

ments an unknown state feedback law to stabilize the
system to a given equilibrium. This Demonstrator

2 Hadi Ravanbakhsh, Sriram Sankaranarayanan

can be queried at a given system state, and returns

a demonstration in the form of a control input gener-
ated at that state by its feedback law. Such a Demon-

strator can be realized using an expensive nonlin-

ear model predictive controller (MPC) that uses a lo-

cal optimization scheme, or even a human operator un-

der certain assumptions 1. Additionally, the framework

has a Learner which selects a candidate CLF and a
Verifier that tests whether this CLF is valid. If the

CLF is invalid, the Verifier returns a state at which

the current candidate fails. The Learner queries the

Demonstrator to obtain a control input correspond-

ing to this state. It subsequently eliminates the current

candidate along with a set of related functions from

further consideration. The framework continues to ex-

haust the space of candidate CLFs until no CLFs re-

main or a valid CLF is found in this process. We prove

the process can converge in finitely many steps provided

the Learner chooses the candidate function appropri-
ately at each step. We also provide efficient SDP-based

approximations to the verification problem that can

be used to drive the framework. Finally, we test this

approach on a variety of examples, by solving stabi-

lization problems for nonlinear dynamical systems. We

show that our approach can successfully find CLFs us-

ing finite horizon nonlinear MPC schemes with appro-

priately chosen cost functions to serve as demonstra-

tors. In these instances, the CLFs yield control laws
that are computationally inexpensive, and guaranteed
against the original dynamical model.

This paper is an extended version of our earlier

work [80]. When compared to the earlier work, we have
thoroughly expanded the technical sections to provide
detailed proofs of the various results and a detailed

exposition of each component of our learning frame-
work. Additionally, we have included a new section that
discusses specifications other than stability properties.
We have also extended our experimental results and

compare different options for implementing the overall

learning loop as well as comparisons with other meth-

ods. We also provide a detailed discussion of various

extensions to the approach presented in this paper.

1.1 Illustrative Example: TORA System

Figure 1(a) shows a mechanical system, called transla-

tional oscillations with a rotational actuator (TORA).

The system consists of a cart attached to a wall using

a spring. Inside the cart, there is an arm with a weight
which can rotate. The cart itself can oscillate freely and

1 However, we do not handle noisy or erroneous demonstra-
tors in this paper.

there are no friction forces. The system has two degrees

of freedom, including the position of the cart x, and the
rotational position of the arm θ. The controller can ro-

tate the arm through input u. The goal is to stabilize

the cart to x = 0, with its velocity, angle, and angular

velocity ẋ = θ = θ̇ = 0. We refer the reader to Jankovic
et al. [38] for a derivation of the dynamics, shown be-

low in terms of state variables (x1, . . . , x4), collectively
written as a vector x, and a single control input (u1),

written as a vector u, after a basis transformation:

ẋ1 = x2, ẋ2 = −x1 + ǫ sin(x3), ẋ3 = x4, ẋ4 = u1 . (1)

sin(x3) is approximated using a degree three polynomial
approximation which is quite accurate over the range

x3 ∈ [−2, 2]. The equilibrium x = ẋ = θ = θ̇ = 0
now corresponds to x1 = x2 = x3 = x4 = 0. The

system has a single control input u1 that is bounded

u1 ∈ [−1.5, 1.5]. Further, we define a “safe set” S :

[−1, 1] × [−1, 1] × [−2, 2] × [−1, 1], so that if x(0) ∈ S
then x(t) ∈ S for all time t ≥ 0.

MPC Scheme: A first approach to solve the prob-

lem uses a nonlinear model-predictive control (MPC)

scheme using a discretization of the system dynam-

ics with time step τ = 1. The time t belongs to set

{0, τ, 2τ, . . . , Nτ = H} and:

x(t+ τ) = x(t) + τf(x(t),u(t)) , (2)

with f(x,u) representing the vector field of the ODE in

(1). Fixing the time horizon H = 30, we use a simple

cost function J(x(0),u(0),u(τ), . . . ,u(H− τ)}):

∑

t∈{0,τ,...,H−τ}

(
||x(t)||22 + ||u(t)||22

)
+N ||x(H)||22 . (3)

Here, we constrain u(t) ∈ [−1.5, 1.5] for all t and define

x(t+ τ) in terms of x(t) using the discretization in (2).

Such a control is implemented using a first/second order

numerical gradient descent method to minimize the cost

function [64]. The stabilization of the system was infor-

mally confirmed through hundreds of simulations from

different initial states. However, the MPC scheme is ex-

pensive, requiring repeated solutions to (constrained)

nonlinear optimization problems in real-time. Further-

more, in general, the closed loop lacks formal guaran-

tees despite the high confidence gained from numerous
simulations.

Learning a Control Lyapunov Function: In this

article, we introduce an approach which uses the MPC

scheme as a demonstrator, and attempts to learn

a control Lyapunov function. Then, a control law (in a
closed form) is obtained from the CLF. The overall idea,

depicted in Fig. 2, is to pose queries to the offline MPC
at finitely many witness states {x(1), . . . ,x(j)}. Then,

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 3

x

θ

0

u

x3

x1 x2

x4

t

t t

t
(b)(a)

−1

1

0

20 400 60 80 100

20 400 60 80 100

20 400 60 80 100

20 400 60 80 100

−1

1

0

−1

1

0

2

−1

1

0

Fig. 1 TORA System. (a) A schematic diagram of the TORA system. (b) Execution traces of the system using MPC control
(blue traces) and Lyapunov based control (red traces) starting from same initial point.

Learner

Verifier Demonstrator

V (x)?

Yes or
No(xj+1)

xj

uj

(x1,u1), . . . , (xj ,uj)

Fig. 2 Overview of the learning framework for learning a
control Lyapunov function.

for each witness state x(i), the MPC is applied to gen-

erate a sequence of control inputs u(i)(0),u(i)(τ), · · · ,

u(i)(H−τ) with x(i) as the initial state, in order to drive

the system into the equilibrium starting from x(i). The
MPC then retains the first control input u(i) : u(i)(0),

and discards the remaining (as is standard in MPC).
This yields the so called observation pairs (x(i),u(i))

that are used by the learner.

The learner attempts to find a candidate func-
tion V (x) that is positive definite and which decreases

at each witness state x(i) through the control input u(i).

This function V is potentially a CLF function for the

system. This function is fed to the verifier, which

checks whether V (x) is indeed a CLF, or discovers a
state x(j+1) which refutes V . This new state is added

to the witness set and the process is iterated. The pro-
cedure described in this paper synthesizes the control
Lyapunov function V (x) below:

V =1.22x2
2 + 0.31x2x3 + 0.44x2

3 − 0.28x4x2

+ 0.80x4x3 + 1.69x2
4 + 0.07x1x2 − 0.66x1x3

− 1.85x4x1 + 1.6x2
1 .

Next, this function is used to design a associated

control law that guarantees the stabilization of the model

described in Eq. (1). Figure 1(b) shows a closed loop

trajectory for this control law vs control law extracted

by the MPC. At each step, given a current state x, we

compute an input u ∈ [−1.5, 1.5] such that:

(∇V) · f(x,u) < 0 . (4)

First, the definition of a CLF guarantees that any state

x ∈ S, a control input u ∈ [−1.5, 1.5] that satisfies

Eq. (4) exists. Such a u may be chosen directly by

means of a formula involving x [53,91] unlike the MPC

which solves a nonlinear problem in Eq. (3). Further-

more, the resulting control law guarantees the stability
of the resulting closed loop.

2 Background

We recall preliminary notions, including the stabiliza-

tion problem for nonlinear dynamical systems.

2.1 Problem Statement

We will first define the system model studied through-

out this paper.

Definition 1 (Control System) A state feedback

control system Ψ(X,U, f,K) consists of a plant, a con-

troller over X ⊆ R
n and U ⊆ R

m.

1. X ⊆ R
n is the state space of the system. The control

inputs belong to a set U defined as a polyhedron:

U = {u | Au ≥ b} . (5)

2. The plant consists of a vector field defined by a con-

tinuous and differentiable function f : X×U 7→ R
n.

4 Hadi Ravanbakhsh, Sriram Sankaranarayanan

ẋ = f(x,u)

xu

K

Fig. 3 Closed-loop state feedback system.

3. The controller measures the state of the plant x ∈
X and provides feedback u ∈ U . The controller is

defined by a feedback function K : X 7→ U (Fig. 3).

For now, we assume K is a smooth (continuous and
differentiable) function. For a given feedback law K, an

execution trace of the system, starting from an initial
state x0 is a function: x : [0, T (x0)) 7→ X, which maps

time t ∈ [0, T (x0)) to a state x(t), such that

ẋ(t) = f(x(t),K(x(t))) ,

where ẋ(·) is the right derivative of x(·) w.r.t. time over
[0, T (x0)). Since f and K are assumed to be smooth,

there exists a unique trajectory for any x0, defined over
some time interval [0, T (x0)). Here T (x0) is ∞ if tra-

jectory starting from x0 exists for all time. Otherwise,

T (x0) is finite if the trajectory “escapes” in finite time.

For most of the systems we study, the closed loop dy-
namics are such that a compact set S will be positive
invariant. In fact, this set will be a sublevel set of a Lya-

punov function for the closed loop dynamics. This fact
along with the smoothness of f,K suffices to establish

that T (x0) = ∞ for all x0 ∈ S. Unless otherwise noted,

we will consider control laws K that will guarantee ex-

istence of trajectories for all time.

A specification describes the desired behavior of all

possible execution traces x(·). In this article, we study

a variety of specifications, including stability, trajectory
tracking, and safety. For simplicity, we first focus on sta-
bility. Extensions to other specifications are presented

in Section 6. Also, without loss of generality, we assume

x = 0 is the desired equilibrium. Moreover, f(0,0) = 0.

Problem 1 (Synthesis for Asymptotic Stability)

Given a plant, the control synthesis problem is to de-

sign a controller (a feedback law K) s.t. all traces x(·)
of the closed loop system Ψ(X,U, f,K) are asymptoti-
cally stable. We require two properties for asymptotic

stability. First, the system is Lyapunov stable:

(∀ǫ > 0)

(∃δ > 0)
(

∀x(·)
x(0) ∈ Bδ(0)

)

(∀t ≥ 0) x(t) ∈ Bǫ(0) ,

wherein Bδ(x) ⊆ R
n is the ball of radius δ centered at

x. In other words, for any chosen ǫ > 0, we may ensure

that the trajectories will stay inside a ball of ǫ radius

by choosing the initial conditions to lie inside a ball of

δ radius.

Furthermore, all the trajectories converge asymp-

totically towards the origin:

(∀ǫ > 0) (∀x(·)) (∃T > 0) (∀t ≥ T) x(t) ∈ Bǫ(0) .

I.e., For any chosen ǫ > 0, all trajectories will eventually

reach a ball of radius ǫ around the origin and stay inside

forever.

Stability in our method is addressed through Lya-

punov analysis. More specifically, our solution is based

on control Lyapunov functions (CLF). CLFs were first

introduced by Sontag [87,88], and studied at the same

time by Artstein [6]. Sontag’s work shows that if a sys-
tem is asymptotically stablizable, then there exists a
CLF even if the dynamics are not smooth [88]. Now,

let us recall the definition of a positive and negative

definite functions.

Definition 2 (Positive Definite) A function V : Rn

7→ R is positive definite over a set X containing 0, iff

V (0) = 0 and V (x) > 0 for all x ∈ X \ {0}.
Likewise, V is negative definite iff −V is positive

definite.

Definition 3 (Control Lyapunov Function(CLF))
A smooth, radially unbounded function V is a control

Lyapunov function (CLF) over X, if the following con-

ditions hold [6]:

V is positive definite over X

minu∈U (∇V) · f(x,u) is negative definite overX ,
(6)

where ∇V is the gradient of V . Note that (∇V) · f is

the Lie derivative of V according to the vector field f .

Another way of interpreting the second condition is that

for each x ∈ X, a control u ∈ U can be chosen to

ensure an instantaneous decrease in the value of V , as

illustrated in Fig. 4.

Solving Stabilization using CLFs: Finding a CLF

V guarantees the existence of a feedback law that can

stabilize all trajectories to the equilibrium [6]. However,

constructing such a feedback law is not trivial and po-

tentially expensive. Further results can be obtained by

restricting the vector field f to be control affine:

f(x,u) : f0(x) +
m∑

i=1

fi(x)ui , (7)

wherein fi : X 7→ R[X]n. Assuming U : Rm, Sontag

provides a method for extracting a feedback law K, for

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 5

Fig. 4 Control Lyapunov Function (CLF): Level-sets of a
CLF V are shown using the green lines. For each state (blue
dot), the vector field f(x,u) for u = K(x) is the blue arrow,
and it points to a direction which decreases V .

control affine systems from a control Lyapunov func-

tion [89]. More specifically, if a CLF V is available, the

following feedback law stabilizes the system:

Ki(x) =







0 β(x) = 0

−bi(x)
a(x)+

√
a(x)2+β(x)2

β(x) β(x) 6= 0 ,
(8)

where a(x) = ∇V.f0(x), bi(x) = ∇V.fi(x), and β(x) =
∑m

i=1 b
2
i (x).

Remark 1 Feedback law K provided by the Sontag for-

mula is not necessarily continuous at the origin. Nev-

ertheless, such a feedback law still guarantees stabiliza-

tion. See [89] for more details.

Sontag formula can be extended to systems with satu-

rated inputs where U is an n-ball [53] or a polytope [91].

Also switching-based feedback is possible, under some

mild assumptions (to avoid Zeno behavior) [22,77]. We

assume dynamics are affine in control and use these re-

sults which reduce Problem 1 to that of finding a control

Lyapunov function V .

2.2 Discovering CLFs

We briefly summarize approaches for discovering CLFs

for a given plant model in order to stabilize it to a

given equilibrium state. Efficient methods for discover-

ing CLFs are available only for specific classes of sys-

tems such as feedback linearizable systems, or for so-

called strict feedback systems, wherein a procedure called

backstepping can be used [28]. However, finding CLFs
for general nonlinear systems is challenging [73].

One class of solutions uses optimal control theory

by setting up the problem of stabilization as one of

minimizing a cost function over the trajectories of the

system. If the cost function is set up appropriately, then

the value function for the resulting dynamic program-

ming problem is a a CLF [73,12]. To do so, however,

one needs to solve a Hamilton-Jacobi-Bellman (HJB)

partial differential equation to discover the value func-

tion, which can be quite hard in practice[18]. In fact,
rather than solve HJB equations to obtain CLFs, it is
more common to derive a CLF using a procedure such

as backstepping and apply inverse optimality results to

derive cost functions [28].

A second class of solution is based on parameteriza-
tion. More specifically, a class of function Vc(x) is pa-

rameterized by a set of unknown parameters c. This pa-

rameterization is commonly specified as a linear combi-

nation of basis functions of the form Vc(x) :
∑

cigi(x).
Furthermore, the functions gi commonly range over all

possible monomials up to some prespecified degree limit

D. Next, an instantiation of the parameters c is discov-

ered so that the resulting function V is a CLF. Un-

fortunately, discovering such parameters requires the

solution to a quantifier elimination problem, in gen-
eral. This is quite computationally expensive for nonlin-
ear systems. Previously, authors proposed a framework
which uses sampling to avoiding expensive quantifier

eliminations [78]. Despite the use of sampling, scala-

bility remains an issue. Another solution is based on

sum-of-squares relaxations [84,47,66], along the lines

of approaches used to discover Lyapunov functions [65].
However, discovering CLFs using this approach entails
solving a system of bilinear matrix inequalities [94,35].

In contrast to LMIs, the set of solutions to a BMIs form

a nonconvex set, and solving BMIs is well-known to

be computationally expensive, in practice. Rather than

solving a BMI to find a CLF, and then extracting the

feedback law from the CLF, an alternative approach is
to simultaneously search for a Lyapunov function V and

an unknown feedback law at the same time [25,94,56].

The latter approach also yields bilinear matrix inequal-

ities of comparable sizes. Rather than seek algorithms

that are guaranteed to solve BMIs, a simpler approach

is to attempt to solve the BMIs using alternating min-

imization: a form of coordinate descent that fixes one
set of variables in BMI, obtaining an LMI over the re-

maining variables. However, these approaches usually

stuck in a local “saddle point”, and fail as a result [33].

Approaches that parameterize a family of functions

Vc(x) face the issue of choosing a family such that a

CLF belonging to that family is known to exist when-

ever the system is asymptotically stabilizable in the first

place. There is a rich literature on the existence of CLFs

for a given class of plant models. As mentioned earlier,

if a system is asymptotically stablizable, then there ex-

ists a CLF even if the dynamics are not smooth [88].

However, the CLF does not have to be smooth. Re-

cent results, have shown some light on the existence

of polynomial Lyapunov functions for certain classes of

systems. Peet showed that an exponentially stable sys-

6 Hadi Ravanbakhsh, Sriram Sankaranarayanan

tem has a polynomial local Lyapunov function over a

bounded region [67]. Thus, if there exists some feed-

back law that exponentially stabilizes a given plant, we

may conclude the existence of a polynomial CLF for

that system. This was recently extended to rationally

stable systems i.e., the distance to equilibrium decays

as o(t−k) for trajectories starting from some set Ω, by

Leth et al. [51]. These results do not guarantee that a

search for a polynomial CLF will be successful due to

the lack of a bound on the degree D. This can be ad-

dressed by increasing the degree of the monomials until

a CLF is found, but the process can be prohibitively ex-

pensive. Another drawback is that most approaches use

SOS relaxations over polynomial systems to check the

CLF conditions, although there is no guarantee as yet

that polynomial CLFs that are also verifiable through

SOS relaxations exist.

Another class of solutions involves approximate dy-

namic programming to find approximations to value

functions [13]. The solutions obtained through these ap-

proaches are not guaranteed to be CLFs and thus may

need to be discarded, if the final result does not satisfy

the conditions for a CLF. Approximate solutions are

also investigated through learning from demonstrations

[106]. Khansari-Zadeh et al. learn a CLF from demon-

strations through a combination of sampling states and

corresponding feedback provided by the demonstrator.

A likely CLF is learned through parameterizing a class

of functions Vc(x), and finding conditions on c by en-
forcing the conditions for the CLFs at the sampled

states [83]. The conditions for being a CLF should be

checked on the solution obtained by solving these con-

straints.

Compared to the techniques described above, the

approach presented in this paper is based on param-

eterization by choosing a class of functions Vc(x) and
attempting to find a suitable c ∈ C so that the result is

a CLF. Our approach avoids having to solve BMIs by

instead choosing finitely many sample states, and using

demonstrator’s feedback to provide corresponding sam-

ple controls for the state samples. However, instead of

choosing these samples at random, we use a verifier to
select samples. Furthermore, our approach can also sys-
tematically explore the space of possible parameters C

in a manner that guarantees termination in number of
iterations polynomial in the dimensionality of C and x.

The result upon termination can be a guaranteed CLF

V or failure to find a CLF among the class of functions

provided.

3 Formal Learning Framework

As mentioned earlier, finding a control Lyapunov func-
tion is computationally expensive, requiring the solu-
tion to BMIs [94] or hard non-linear constraints [77].

The goal is to search for a solution (CLF) over a hy-

pothesis space. More specifically, a CLF is parameter-

ized by a set of unknown parameters c ∈ C (C ⊆ R
r).

The parameterized CLF is shown by Vc. And the goal

is to find c ∈ C s.t.

Vc is positive definite

minu∈U ∇Vc.f(x,u) is negative definite .
(9)

A standard approach is to choose a set of basis func-

tions g1, . . . , gr (gi : X 7→ R) and search for a function

of the form

Vc(x) =

r∑

j=1

cjgj(x) . (10)

Remark 2 The basis functions are chosen s.t. Vc is ra-

dially unbounded and smooth, independent of the co-
efficients.

As mentioned earlier, the learning framework has

three components: a demonstrator, a learner, and a ver-
ifier (see Fig. 2). The demonstrator inputs a state x and

returns a control input u ∈ U , that is an appropriate
“instantaneous” feedback for x. Formally, demonstrator

is a function D : X 7→ U .

Remark 3 (Demonstrator) The demonstrator is treated

as a black box. This allows to use a variety of ap-
proaches ranging from trajectory optimization [105],
human expert demonstrations [83], and sample-based
methods [50,45], which can be probabilistically com-

plete. While the demonstrator is presumed to stabilize

the system, our method can work even if the demon-
strator is faulty. Specifically, a faulty demonstrator in

worst case, may cause our method to terminate without
having found a CLF. However, if a CLF is found by our
approach, it is guaranteed to be correct.

The formal learning procedure receives inputs:

1. A plant described by f

2. A “black-box” demonstrator function D : X 7→ U

3. A set of basis functions g1, . . . , gr to form the hy-
pothesis space Vc(x) :

∑r
j=1 cjgj(x),

and either (a) outputs a c ∈ C s.t. Vc(x) : c
t · g(x) is a

CLF (Eq. (9)); or (b) declares Failure: no CLF could

be discovered.

The goal of this framework is to find a CLF from a

finite set of queries to a demonstrator.

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 7

Definition 4 (Observations) We define a set of ob-

servations O as

O : {(x1,u1), . . . , (xj ,uj)} ⊂ X × U ,

where ui is the demonstrated feedback for state xi, i.e.,

ui : D(xi). Further, we will assume that xi 6= 0.

Definition 5 (Observation Compatibility) A func-

tion V is said to be compatible with a set of observa-

tions O iff V respects the CLF conditions (Eq. (6)) for

every observation in O:

V (0) = 0 ∧
∧

(xi,ui)∈Oj

(
V (xi) > 0 ∧

∇V · f(xi,ui) < 0

)

.

We note that observation compatible functions need
not necessarily be a CLF, since they may violate the

CLF condition for some state x that is not part of an

observation in O. On the flip side, not every CLF (sat-

isfying the conditions in Eq. (6)) will necessarily be

compatible with a given observation set O.

Definition 6 (Demonstrator Compatibility) A
function V is said to be compatible with a demonstrator

D iff V respects the CLF conditions (Eq. (6)) for every
observation that can be generated by the demonstrator:

V (0) = 0 ∧ ∀x 6= 0

(
V (x) > 0 ∧

∇V · f(x,D(x)) < 0

)

.

In other words, V is a Lyapunov function for the closed
loop system Ψ(X,U, f,D).

Now, we describe the learning framework. The frame-

work consists of a learner and a verifier. The learner

interacts with the verifier and the demonstrator. The

framework works iteratively and at each iteration j the

learner maintains a set of observations

Oj : {(x1,u1), . . . , (xj ,uj)} ⊂ X × U .

Corresponding to Oj , Cj ⊆ C is defined as a set of

candidate unknowns for function Vc(x). Formally, Cj is

a set of all c s.t. Vc is compatible with Oj :

Cj :






c ∈ C

∣
∣
∣
∣
∣
∣

Vc(0) = 0 ∧
∧

(xi,ui)∈Oj

(
Vc(xi) > 0 ∧

∇Vc · f(xi,ui) < 0

)






.

(11)

The overall procedure is shown in Fig. 5. The pro-

cedure starts with an empty set O0 = ∅ and the cor-

responding set of compatible function parameters C0 :
{c ∈ C | Vc(0) = 0}. Each iteration j (starting from

j = 1) involves the following steps:

No Candidate

Correct

Output: success

Output: fail

D : D(xj)

xj

uj

findCandidate(Oj−1)

Vcj

verify(Vcj
)

Oj ← Oj−1 ∪ {(xj ,uj)}

Fig. 5 Visualization of the learning framework

1. findCandidate: The learner checks if there exists
a Vc compatible with Oj−1.

(a) If no such c exists, the learner declares failure
(Cj−1 = ∅).

(b) Otherwise, a candidate cj ∈ Cj−1 is chosen and

the corresponding function Vcj
(x) : cj .g(x) is

considered for verification.

2. verify: The verifier oracle tests whether Vcj
is a

CLF (Eq. (9))

(a) If yes, the process terminates successfully (Vcj

is a CLF)

(b) Otherwise, the oracle provides a witness xj 6= 0

for the negation of Eq. (9).

3. update: Using the demonstrator uj : D(xj), a new

observation (xj ,uj) is added to the training set:

Oj : Oj−1 ∪ {(xj ,uj)} (12)

Cj : Cj−1 ∩
{

c | Vc(xj) > 0 ∧
∇Vc · f(xj ,uj) < 0

}

. (13)

Theorem 1 The learning framework as described above

has the following property:

1. cj 6∈ Cj. I.e., the candidate found at the jth step is

eliminated from further consideration.

2. If the algorithm succeeds at iteration j, then the out-

put function Vcj
is a valid CLF for stabilization.

3. The algorithm declares failure at iteration j if and

only if no linear combination of the basis functions

is a CLF compatible with the demonstrator.

Proof 1) Suppose that cj ∈ Cj . Then, cj satisfies the
following conditions (Eq. (13)):

Vcj
(xj) > 0 ∧ ∇Vcj

· f(xj ,uj) < 0 .

However, the verifier guarantees that cj is a counterex-

ample for Eq. (6). I.e.,

Vcj
(xj) ≤ 0 ∨ ∇Vcj

· f(xj ,uj) ≥ 0 ,

which is a contradiction. Therefore, cj 6∈ Cj .

8 Hadi Ravanbakhsh, Sriram Sankaranarayanan

2) The algorithm declares success if the verifier could

not find a counterexample. In other words, Vcj
satisfies

conditions of Eq. (6) and therefore a CLF.
3) The algorithm declares failure if Cj = ∅. On the

other hand, by definition, Cj yields the set of all c s.t. Vc

(which is linear combination of basis functions) is com-
patible with the observations Oj . Therefore, Cj = ∅
implies that that no linear combination of the basis
functions is compatible with the Oj and therefore com-

patible with the demonstrator.

One possible choice of basis functions involves mono-

mials gj(x) : xαj wherein |αj |1 ≤ DV for some degree
bound DV for the learning concept (CLF). Inverse re-

sults suggest polynomial basis for Lyapunov functions
are expressive enough for verification of exponentially

stable, smooth nonlinear systems over a bounded re-

gion [68]. This, justifies using polynomial basis for CLF.
In the next two section we present implementations

of each of the modules involved, namely the learner and

the verifier.

4 Learner

Recall that the learner needs to check if there exists
a c s.t. Vc is compatible with the observation set O

(Definition 5). In other words, we wish to check

(∃c ∈ C) Vc(0) = 0 ∧
∧

(xi,ui)∈O

(
Vc(xi) > 0 ∧

∇Vc · f(xi,ui) < 0

)

.

Note that each function Vc(xi) : c
t ·g(xi) in our hypoth-

esis space, is linear in c. Also, ∇Vc.f(xi,ui) is linear in

c:

∇Vc.f(xi,ui) =
r∑

k=1

ck∇gk(xi).f(xi,ui) .

The (initial) space of all candidates C is assumed to

be a hyper-rectangular box, and therefore a polytope.

Let Cj represent the topological closure of the set Cj

obtained at the jth iteration (see Eq. (11)).

Lemma 1 For each j ≥ 0, Cj is a polytope.

Proof We prove by induction. Initially C is an hyper-

rectangular box. Also, C0 : C ∩H0, where

H0 = {c | Vc(0) =

r∑

k=1

ckgk(0) = 0} .

As Vc is linear in c,H0 : {c | at0.c = b0} is a hyper-plane,
where a0 and b0 depend on the values of, gk(0) (k =

1, . . . , r). And C0 would be intersection of a polytope

and a hyper-plane, which is a polytope. Now, assume

Cj−1 is a polytope. Recall that Cj is defined as Cj :

Cj−1 ∩Hj (Eq. (13)), where

Hj :

{

c |

∑r
k=1(ck gk(xj)) > 0 ∧

∑r
k=1(ck ∇gk(xj) · f(xj ,uj)) < 0

}

.

Notice that f(xj ,uj), gk(xi), and∇gk(xi) are constants

and

Hj :Hj1 ∩Hj2

Hj1 :{c | atj1.c > bj1}

= {c|
r∑

k=1

(ck gk(xj)) > 0}

Hj2 :{c | atj2.c > bj2}

= {c|
r∑

k=1

(ck ∇gk(xj) · f(xj ,uj)) < 0} .

Therefore, Cj is intersection of a polytope (Cj−1) and
two half-spaces (Hj) which yields another polytope.

The learner should sample a point cj ∈ Cj−1 at jth

iteration, which is equivalent to checking emptiness of

a polytope with some strict inequalities. This is solved

using slight modification of simplex method, using in-

finitesimals for strict inequalities, or using interior point
methods [100]. We will now demonstrate that by choos-
ing cj carefully, we can guarantee the polynomial time

termination of our learning framework.

4.1 Termination

Recall that in the framework, the learner provides a
candidate and the verifier refutes the candidate by a
counterexample and a new observation is generated by

the demonstrator. The following lemma relates the sam-

ple cj ∈ Cj−1 at the jth iteration and the set Cj in the

subsequent iteration.

Lemma 2 There exists a half-space H∗
j : atc ≥ b such

that (a) cj lies on boundary of hyperplane H∗
j , and (b)

Cj ⊆ Cj−1 ∩H∗
j .

Proof Recall that we have cj ∈ Cj−1 but cj 6∈ Cj by
Theorem 1. Let Ĥj : atc = b̂ be a separating hyper-

plane between the (convex) set Cj and the point cj ,

such that Cj ⊆ {c | atc ≥ b̂}. By setting the offset

b : atcj , we note that b ≤ b̂. Therefore, by defining

H∗
j as atc ≥ b, we obtain the required half-space that

satisfies conditions (a) and (b).

While sampling a point from Cj−1 is solved by solv-

ing a linear programming problem, Lemma. 2 suggests

that the choice of cj governs the convergence of the al-

gorithm. Figure. 6 demonstrates the importance of this

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 9

choice by showing candidate cj , hyperplanes Hj1 and

Hj2 and Cj .

For a faster termination, we wish to remove a “large

portion” of Cj−1 to obtain a “smaller” Cj . There are
two important factors which affect this: (i) counterex-

ample xj selection and (ii) candidate cj selection. Coun-

terexample xj , would affect uj : D(xj), g(xj), and

f(xj ,uj) and therefore defines the hyper-planes Hj1

and Hj2. On the other hand, candidate cj 6∈ Cj . We
postpone discussion on the counterexample selection to

the next section, and for the rest of this section we

focus on different techniques to generate a candidate

cj ∈ Cj−1.

The goal is to find a cj s.t.

Vol(Cj) ≤ αVol(Cj−1) , (14)

for each iteration j and a fixed constant 0 ≤ α <

1, independent of the hyperplanes Hj1 and Hj2. Here
Vol(Cj) represents the volume of the (closure) of the set

Cj . Since closure of Cj is contained in C which happens

to be compact, this volume will always be finite. Note

that if we can guarantee Eq. (14), it immediately fol-

lows that Vol(Cj) ≤ αjVol(C0). This implies that the
volume of the remaining candidates “vanishes” rapidly.

Remark 4 By referring to Vol(Cj), we are implicitly as-

suming that Cj is not embedded inside a subspace of

R
r, i.e., it is full-dimensional. However, this assumption

is not strictly true. Specifically, C0 : C ∩H0, where H0

is a hyper-plane. Thus, strictly speaking, the volume of
C0 in R

r is 0. This issue is easily addressed by first fac-

toring out the linearity space of C0, i.e., the affine hull of

C0. This is performed by using the equality constraints

that describe the affine hull to eliminate variables from
C0. Subsequently, C0 can be treated as a full dimen-

sional polytope in R
r−dj , wherein dj is the dimension

of its linearity space.

Furthermore, since Cj ⊆ C0, we can continue to

express Cj inside R
r−dj using the same basis vectors

as C0. A further complication arises if Cj is embedded
inside a smaller subspace. We do not treat this case in

our analysis. However, note that this can happen for at

most r iterations and thus, does not pose a problem for

the termination analysis.

Intuitively, it is clear from Figure 6 that a candidate

at the center of Cj−1 would be a good one. We now

relate the choice of cj to an appropriate definition of

center, so that Eq. (14) is satisfied.

Center of Maximum Volume Ellipsoid Maximum

volume ellipsoid (MVE) inscribed inside a polytope is

unique with many useful characteristics.

cj

Cj−1

Cj

Hj1

Hj2

Fig. 6 Search space: Original candidate region Cj (green) at
the start of the jth iteration, the candidate cj , and the new
region Cj+1 (hatched region with blue lines).

cj

Ej−1

Cj−1

Cj

Ej

cj+1

Fig. 7 Search Space: Original candidate region Cj−1 (Cj)
is shown in blue (green) polygon. The maximum volume el-
lipsoid Ej−1 (Ej) is inscribed in Cj−1 (Cj) and its center is
the candidate cj (cj+1).

Theorem 2 (Tarasov et al.[95]) Let cj be chosen as

the center of the MVE inscribed in Cj−1. Then,

Vol (Cj) ≤

(

1−
1

r

)

Vol (Cj−1) .

Recall, here that r is the number of basis func-
tions such that Cj−1 ⊆ R

r. This leads us to a scheme

that guarantees termination of the overall procedure in

finitely many steps under some assumptions. The idea

is simple. Select the center of the MVE inscribed in

Cj−1 at each iteration (Fig. 7).

Let C ⊆ (−∆,∆)r for ∆ > 0. Furthermore, let us

additionally terminate the procedure as having failed

whenever the Vol(Cj) < (2δ)r for some arbitrarily small
δ > 0. This additional termination condition is easily

justified when one considers the precision limits of float-

ing point numbers and sets of small volumes. Clearly,

as the volume of the sets Cj decreases exponentially,

each point inside the set will be quite close to one that

is outside, requiring high precision arithmetic to repre-

sent and sample from the sets Cj .

Theorem 3 If at each step cj is chosen as the center

of the MVE in Cj−1, the learning loop terminates in at

most

r(log(∆)− log(δ))

− log
(
1− 1

r

) = O(r2) iterations .

10 Hadi Ravanbakhsh, Sriram Sankaranarayanan

Proof Initially, Vol(C0) < (2∆)r. Then by Theorem 2

Vol(Cj) ≤ (1−
1

r
)j Vol(C0) < (1−

1

r
)j(2∆)r

=⇒ log

(
Vol(Cj)

(2∆)r

)

< j log(1−
1

r
) .

After k = r(log(∆)−log(δ))

− log(1− 1
r
)

iterations:

log

(
Vol(Cj)

(2∆)r

)

<
r(log(∆)− log(δ))

− log(1− 1
r
)

log(1−
1

r
) ,

and

=⇒ log

(
Vol(Cj)

(2∆)r

)

< r log

(
δ

∆

)

=⇒ log

(
Vol(Cj)

(2∆)r

)

< r log

(
2δ

2∆

)

=⇒ log(Vol(Ck)) < log((2δ)r) .

And it is concluded that Vol(Ck) < (2δ)r, which is the

termination condition. And asymptotically − log(1− 1
r
)

is Ω(1
r
) (can be shown using Taylor expansion as r →

∞) and therefore, the maximum number of iterations

would be O(r2).

However, checking the termination condition is com-

putationally expensive as calculating the volume of a
polytope is ♯P hard, i.e., as hard as counting the num-

ber of solutions to a SAT problem. One solution is to

first calculate an upper bound on the number of it-

erations using Theorem 3, and stop if the number of

iterations has exceeded the upper-bound.
A better approach is to consider some robustness

for the candidate.

Definition 7 (Robust Compatibility) A candidate
c is δ-robust for δ > 0 w.r.t. observations (demonstra-
tor), iff for each ĉ ∈ Bδ(c), Vĉ : ĉt · g(x) is compatible

with observations (demonstrator) as well.

Let Ej be the MVE inscribed inside Cj (Fig. 7).
Following the robustness assumption, it is sufficient to

terminate the procedure whenever:

Vol(Ej) < γδr , (15)

where γ is the volume of r-ball with radius 1.

Theorem 4 ([95,42]) Let cj be chosen as the center

of Ej−1. Then,

Vol(Ej) ≤
(
8

9

)

Vol (Ej−1) .

Theorem 5 If at each step cj is chosen as the center
of Ej−1, the learning loop condition defined by Eq. (15)
is violated in at most

r(log(∆)− log(δ))

− log
(
8
9

) = O(r) iterations .

Proof Initially, B∆(0) is the MVE inside box [−∆,∆]r

and therefore, Vol(E0) < γ∆r. Then by Theorem 2

Vol(Ej) ≤ (
8

9
)j Vol(E0) < (

8

9
)jγ∆r

=⇒ log(Vol(Ej))− log(γ∆r) < j log(
8

9
) .

After k = r(log(∆)−log(δ))

− log(8
9
)

iterations:

log(Vol(Ek))− log(γ∆r) <
r(log(∆)− log(δ))

− log(89)
log(

8

9
) ,

and

=⇒ log(Vol(Ek))− log(γ∆r) < r(log(δ)− log(∆))

=⇒ log(Vol(Ek))− log(γ∆r) < log(γδr)− log(γ∆r)

=⇒ log(Vol(Ek)) < log(γδr) .

It is concluded that Vol(Ek) < γδr, which is the ter-
mination condition. And asymptotically the maximum

number of iterations would be O(r).

Volume of an ellipsoid is effectively computable and

thus, such termination condition can be checked easily.

Also, the convergence rate is linear in r as opposed to
r2, when the robustness is not guaranteed.

Theorem 6 The learning framework either finds a con-

trol Lyapunov functions or proves that no linear combi-

nation of the basis function would yield a function with

robust compatibility with the demonstrator.

Proof By Theorem 1, if verifier certifies correctness of
a solution V , then V is a CLF. Assume that the frame-

work terminates after k iterations and no solution is

found. Then, by Theorem 3, Vol(Ek) < γδr. This means

that a ball with radius δ would not fit in Ck as Ek is
the MVE inscribed inside Ck. In other words

(∀c ∈ Ck) (∃ĉ ∈ Bδ(c)) ĉ 6∈ Ck .

On the other hand, for all c 6∈ Ck, Vc is not compatible
with the observations Oj . Therefore, even if there is

a CLF Vc s.t. c ∈ Ck, the CLF is not robust in its
compatibility with the demonstrator.

The MVE itself can be computed by solving a convex

optimization problem[95,99].

Other Definitions for Center of Polytope: Beside
the center of MVE inscribed inside a polytope, there are

other notions for defining center of a polytope. These in-

clude the center of gravity and Chebyshev center. Cen-

ter of gravity provides the following inequality [14]

Vol (Cj) ≤
(

1− 1

e

)

Vol (Cj) < 0.64 Vol(Cj−1) ,

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 11

meaning that the volume of candidate set is reduced

by at least 36% at each iteration. Unfortunately, cal-

culating center of gravity is very expensive. Chebyshev

center [26] of a polytope is the center of the largest

Euclidean ball that lies inside the polytope. Finding a

Chebyshev center for a polytope is equivalent to solving

a linear program, and while it yields a good heuristic, it

would not provide an inequality in the form of Eq. (14).

There are also notions for defining center for a set
of constraints, including analytic center, and volumetric

center. Assuming C : {c |
∧

i a
t
i.c < bi}, then analytic

center for
∧

i a
t
i.c < bi is defined as

ac(
∧

i

ati.c < bi) = argmin
c

−
∑

i

log(bi − ati.c) .

Notice that infinitely many inequalities can represent

C and any point inside C can be an analytic center

depending on the inequalities. Atkinson et al. [8] and

Vaidya [98] provide candidate generation techniques,

based on these centers , along with appropriate termi-
nation conditions and convergence analysis.

5 Verifier

The verifier checks the CLF conditions in Eq. (9) for
a candidate Vcj

(x) : ctj · g(x). Since the CLF is gener-

ated by the learner, it is guaranteed that Vcj
(0) = 0

(Eq. (11)). Accordingly, verification is split into two

separate checks:

(A) Check if Vcj
(x) is a positive polynomial for x 6= 0,

or equivalently:

(∃ x 6= 0) Vcj
(x) ≤ 0 . (16)

(B) Check if the Lie derivative of Vcj
can be made

negative for each x 6= 0 by a choice u ∈ U :

(∃x 6= 0) (∀u ∈ U) (∇Vcj
) · f(x,u) ≥ 0 . (17)

This problem seems harder due to the presence of a

quantifier alternation.

Lemma 3 Eq. (17) holds for some x 6= 0 iff

(∃ x 6= 0, λ) λ ≥ 0, λtb ≥ −∇Vcj
.f0(x)

At
iλ = ∇Vcj

.fi(x)(i ∈ {1 . . .m}).
(18)

Proof Suppose Eq. (17) holds. Then, for the given V ,

there exists a x 6= 0 s.t.

(∀u ∈ U) ∇V ·f(x,u) =





∇V · f0(x)+
m∑

i=1

∇V · fi(x)ui



≥ 0, (19)

which is equivalent to:

(6 ∃u)Au ≥ b ∧∇V · f0(x) +
m∑

i=1

∇V · fi(x)ui < 0 .

This yields a set of linear inequalities (w.r.t. u). Using
Farkas lemma, this is equivalent to

(∃λ ≥ 0)At
iλ = ∇V · fi(x)(i ∈ {1...m})

λtb ≥ −∇V · f0(x).

Thus, for a given V , Eq. (17) is equivalent to Eq. (18).

The verifier needs to check Eq. (16) and Eq. (18).

This problem is in general undecidable if the basis func-
tions include trigonometric and exponential functions.

However, δ-decision procedures can solve these prob-

lems approximately [31]. In our experience, δ-decision

procedures do not scale as verifiers for the range of

benchmarks we wish to tackle. Nevertheless, these solvers

allow us to conveniently implement a verifier for small
but hard problems involving rational and trigonometric
functions.

Assuming that the dynamics and chosen bases are

polynomials in x, the verification problem reduces to

checking if a given semi-algebraic set defined by poly-
nomial inequalities is empty. The verification problem

for polynomial dynamics and polynomial CLFs is decid-
able with a high complexity (NP hard) [9]. Exact ap-
proaches using semi-algebraic geometry [17] or branch-
and-bound solvers (including the dReal approach cited

above) can tackle this problem precisely. However, for

scalability, we consent to a relaxation using SDP solvers.

We now present a relaxation using semidefinite pro-

gramming (SDP) solvers.

5.1 SDP Relaxation

Let w : [x, λ] collect the state variables x and the dual

variables λ involved in the conditions stated in (18).
The core idea behind the SDP relaxation is to consider

a vector collecting all monomials of degree up to D:

m :









1

w1

w2

. . .
wD









,

wherein D is chosen to be at least half of the maximum

degree in x among all monomials in gj(x) and ∇gj ·
fi(x):

D ≥
1

2
max




⋃

j

(

{deg(gj)} ∪ {
⋃

i

deg(∇gj · fi)}

)

 .

12 Hadi Ravanbakhsh, Sriram Sankaranarayanan

Let us define Z(w) : mmt, which is a symmetric matrix

of monomial terms of degree at most 2D. Each polyno-
mial of degree up to 2D may now be written as a trace
inner product

p(x, λ) : 〈P,Z(w)〉 = trace(PZ(w)) ,

wherein the matrix P has real-valued entries that de-
fine the coefficients in p corresponding to the various

monomials. Although, Z is a function of x and λ, we

will write Z(x) as a function of just x to denote the

matrix Z([x,0]) (i.e., set λ = 0).

Checking Eq. (16) is equivalent to solving the fol-
lowing optimization problem over x

maxx 〈I, Z(x)〉
s.t.

〈
Vcj

, Z(x)
〉
≤ 0 ,

(20)

wherein I is the identity matrix, and Vcj
(x) is written in

the inner product form as
〈
Vcj

, Z(x)
〉
. Let 〈Λk, Z(w)〉

represent the variable λk. λ is represented as vector
Λ(Z(w)), wherein the kth element is 〈Λk, Z(w)〉. Then,
the conditions in (18) are now written as

maxw 〈I, Z(w)〉
s.t.

〈
Fcj ,i, Z(w)

〉
= At

iΛ(Z(w)), i ∈ {1, . . . ,m}
〈
−Fcj ,0, Z(w)

〉
≤ btΛ(Z(w))

Λ(Z(w)) ≥ 0 ,

(21)

wherein the components ∇Vcj
· fi(x) defining the Lie

derivatives of Vcj
are now written in terms of Z(w)

as
〈
Fcj ,i, Z(w)

〉
. Notice that Z(0) is a square matrix

where the first element (Z(0)1,1) is 1 and the rest of

the entries are zero. Let Z0 = Z(0) . Then 〈I, Z0〉 = 1,

and (∀w) Z(w) � Z0.

The SDP relaxation is used to solve these prob-

lems and provide an upper bound of the solution and

D defines the degree of relaxation [34]. The relaxation
treats Z(w) as a fresh matrix variable Z that is no

longer a function of w. The constraint Z � Z0 is added.

Z(w) : mmt is a rank one matrix and ideally, Z should

be constrained to be rank one as well. However, such a

constraint is non-convex, and therefore, will be dropped

from our relaxation. Also, constraints involving Z(w)

in Eqs. (20) and (21) are added as support constraints
(cf. [47,48,34]). Both optimization problems (Eqs.(20)
and (21)) are feasible by setting Z to be Z0. Further-

more, if the optimal solution for each problem is 1 in the
SDP relaxation, then we will conclude that the given
candidate is a CLF. Unfortunately, the converse is not

necessarily true: the relaxation may fail to recognize

that a given candidate is in fact a CLF.

Lemma 4 Whenever the relaxed optimization problems

in Eqs. (20) and (21) yield 1 as a solution, then the
given candidate Vcj

(x) is in fact a CLF.

Proof Suppose that Vcj
is not a CLF but both opti-

mization problems yield an optimal value of 1. Then,

one of Eq. (16) or Eq. (17) is satisfied. I.e. (∃x∗ 6=
0, λ∗ ≥ 0) s.t. Vcj

(x∗) ≤ 0 or At
iλ

∗ = ∇Vcj
.fi(x

∗)(i ∈
{1 . . .m}), λ∗tb ≥ −∇Vcj

.f0(x
∗). Let w∗ = [x∗, λ∗]

and therefore Z(w∗) � Z0 is a solution for Eq. (20)
or Eq. (21). Let Z ′ = Z(x∗) − Z0. As w∗ 6= 0, Z ′ has

a non-zero diagonal element, and since Z ′ � 0, we may

also conclude that one of the eigenvalues of Z ′ must be

positive. Therefore, 〈I, Z ′〉 > 0 as the trace of Z ′ is the
sum of eigenvalues of Z ′. Thus, 〈I, Z(w)〉 > 〈I, Z0〉 = 1.

Thus, the optimal solution of at least one of the two
problems has to be greater than one. This contradicts
our original assumption.

However, the converse is not true. It is possible for

Z � Z0 to be optimal for either relaxed condition, but
Z 6= Z(w) for any w. This happens because (as men-

tioned earlier) the relaxation drops two key constraints

to convexify the conditions: (1) Z has to be a rank one

matrix written as Z : mmt and (2) there is a w such

that m is the vector of monomials corresponding to w.

Lemma 5 Suppose Eq. (21) has a solution Z 6= Z0,

then

(∀u ∈ U)
〈
Fcj ,0, Z

〉
+

m∑

i=1

〈
Fcj ,i, Z

〉
ui ≥ 0 .

Proof While in the relaxed problem, the relation be-

tween monomials are lost, each inequality in Eq. (21)

holds. Let λ̂ = Λ(Z). Then, we have:

〈
Fcj ,i, Z

〉
= At

iλ̂, i ∈ {1, . . . ,m}
〈
−Fcj ,0, Z

〉
≤ btλ̂, λ̂ ≥ 0 .

Similar to Lemma. 3 (using Farkas Lemma) this is equiv-

alent to

(∀u ∈ U)
〈
Fcj ,0, Z

〉
+

m∑

i=1

〈
Fcj ,i, Z

〉
ui ≥ 0 .

5.2 Lifting the Counterexamples

Thus far, we have observed that the relaxed optimiza-

tion problems (Eqs. (20) and (21)) yield matrices Z as
counterexamples, rather than vectors x. Furthermore,

given a solution Z, there is no way for us to extract a
corresponding x for reasons mentioned above. We solve

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 13

this issue by “lifting” our entire learning loop to work

with observations of the form:

Oj : {(Z1,u1), . . . , (Zj ,uj)} ,

effectively replacing states xi by matrices Zi.

Also, each basis function gk(x) in g is now writ-

ten instead as 〈Gk, Z〉. The candidates are therefore,
∑r

k=1 ck 〈Gk, Z〉. Likewise, we write the components of
its Lie derivative∇gk·fi in terms of Z (〈Gki, Z〉). There-
fore

Vc =

r∑

k=1

ckGk , Fc,i =
r∑

k=1

ckGki . (22)

Definition 8 (Relaxed CLF) A polynomial function
Vc(x) =

∑r
k=1 ckgk(x), s.t. 〈Vc, Z0〉 = 0 is a D-relaxed

CLF iff for all Z 6= Z0:

〈Vc, Z〉 > 0 ∧
(∃u ∈ U) 〈Fc,0, Z〉+

∑m
i=1 〈Fc,i, Z〉 < 0 .

(23)

Theorem 7 A relaxed CLF is a CLF.

Proof Suppose that Vc is not a CLF. The proof is com-

plete by showing that Vc is not a relaxed CLF. If Vc(0) 6=
0, then 〈Vc, Z0〉 6= 0 and Vc is not a relaxed CLF. Oth-

erwise, according to Eq. (6) there exists a x 6= 0 s.t.

Vc(x) ≤ 0 ∨ (∀u ∈ U) ∇Vc.f(x,u) ≥ 0 .

Therefore, there exists x 6= 0 s.t.

〈Vc, Z(x)〉 ≤ 0 ∨

(∀u ∈ U) 〈Fc,0, Z(x)〉+
m∑

i=1

〈Fc,i, Z(x)〉ui ≥ 0 .

Setting Z : Z(x) shows that Vc is not a relaxed CLF,

since the negation of Eq. (23) holds.

We lift the overall formal learning framework to

work with matrices Z as counterexamples using the fol-

lowing modifications to various parts of the framework:

1. First, for each (Zj ,uj) in the observation set, Zj

is the feasible solution returned by the SDP solver
while solving Eqs. (21) and (20).

2. However, the demonstrator D requires its input to

be a state x ∈ X. We define a projection operator

π : ζ 7→ X mapping each Z to a state x : π(Z), such

that the demonstrator operates over π(Zj) at each
step. Note that the vector of monomials m used

to define Z from x includes the degree one terms
x1, . . . , xn. The projection operator simply selects

the entries from Z corresponding to these variables.

Other more sophisticated projections are also pos-
sible, but not considered in this work.

3. The space of all candidates C remains unaltered ex-

cept that each basis polynomial is now interpreted
as gj : 〈Gj , Z〉 and similarly for the Lie derivative
(∇gj) · f(x,u). Thus, the learner is effectively unal-

tered.

Definition 9 (Relaxed Observation Compatibil-
ity) A polynomial function Vc is said to be compatible
with a set of D-relaxed-observations O iff Vc respects

the D-relaxed CLF conditions (Eq. (6)) for every point

in O:

〈Vc, Z0〉 = 0 ∧
∧

(Zk,uk)∈Oj

(
〈Vc, Zk〉 > 0 ∧

〈Fc,0, Zk〉+
∑m

i=1 〈Fc,i, Zk〉uki < 0

)

.

Definition 10 (Relaxed Demonstrator Compat-

ibility) A polynomial function Vc is said to be com-

patible with a relaxed-demonstrator D ◦ π iff Vc re-

spects the D-relaxed CLF conditions (Eq. (6)) for ev-

ery observation that can be generated by the relaxed-

demonstrator:

〈Vc, Z0〉 = 0 ∧
(∀Z � Z0, Z 6= Z0)

(
〈Vc, Z〉 > 0 ∧

〈Fc,0, Z〉+∑m
i=1 〈Fc,i, Z〉D(π(Z))i < 0

)

.

In other words, Vc is a relaxed Lyapunov function for

the closed loop system Ψ(X,U, f,D ◦ π).
Theorem 8 The adapted formal learning framework

terminates and either finds a CLF V , or proves that

no linear combination of basis functions would yield

a CLF, with robust compatibility w.r.t. the (relaxed)

demonstrator.

Proof Cj−1 represents all c s.t. Vc is compatible with

relaxed-observation Oj−1. Still Vc and Fc,i are linear in

c (Eq. (22)), and therefore Cj−1 which is the set of all
c ∈ C s.t.

〈Vc, Z0〉 = 0 ∧
∧

(Zk,uk)∈Oj−1

(
〈Vc, Zk〉 > 0 ∧

∑m
i=1 〈Fc,i, Zk〉uki + 〈Fc,0, Zk〉 < 0

)

,

is a polytope (similar to Lemma 1). Suppose, at jth

iteration, Vcj
: ctj .g is generated by the learner. The

relaxed verifier solves Eqs. (20) and (21). If the optimal

solution for these problems are 1, by Lemma 4, Vcj
is

a CLF. Otherwise, it returns a counterexample Zj �
Z0 and Zj 6= Z0. More over, according to Eqs. (20)

and (21) and Lemma 5:
〈
Vcj

, Zj

〉
≤ 0 ∨

(∀u ∈ U)
〈
Fcj ,0, Zj

〉
+

m∑

i=1

〈
Fcj ,i, Zj

〉
ui ≥ 0 .

14 Hadi Ravanbakhsh, Sriram Sankaranarayanan

In other words, Vcj
is not a D-relaxed CLF. Next, the

demonstrator generates a proper feedback for π(Zj) and
observation (Zj ,D(π(Zj))) is added to the set of obser-
vations. Notice that Vcj

does not respect the D-relaxed

CLF conditions for (Zj ,D(π(Zj))). I.e.

〈
Vcj

, Zj

〉
≤ 0 ∨

〈
Fcj ,0, Zj

〉
+

m∑

i=1

〈
Fcj ,i, Zj

〉
D(π(Zj))i ≥ 0 .

Therefore, the new set Cj does not contain cj . Now, the

learner uses the center of maximum volume ellipsoid, to

generate the next candidate. This process repeats and

the learning procedure terminates in finite iterations.

When the algorithm returns with no solution, it means

that Vol(Cj) ≤ γδr. Similar to Theorem 6, this guaran-

tees that no ball of radius δ fits inside Cj , which repre-

sents the set of all linear combination of basis functions,

compatible with the relaxed observations. Therefore, no

linear combination of basis functions would yield a CLF

with robust compatibility with the relaxed observation

and therefore with the relaxed-demonstrator.

In the rest of this paper, we use CLF for discussions.

Nevertheless, the same results can be applied to relaxed

CLF as well.

5.3 Counterexamples Selection

As discussed earlier, in Section 4, there are two impor-

tant factors that affect the overall convergence rate of

the learning framework: (a) the choice of a candidate

cj ∈ Cj−1 and (b) the choice of a counterexample xj

that shows that the current candidate Vcj
is not a CLF.

We will now discuss the choice of a “good” counterex-

ample.

As mentioned, when there is a counterexample xj

for Vcj
, there are two half spacesHj1 : {c | atj1.c > bj1},

and Hj2 : {c | atj2.c > bj2} such that Cj : Cj−1 ∩
Hj1 ∩Hj2. In particular, cj 6∈ Cj , yields the following

constraints over cj :

atj1.cj ≤ bj1 ∨ atj2.cj ≤ bj2 . (24)

In general, the counterexample affects the coefficients

of the half-spaces ajl, bjl for l ∈ {1, 2}. To wit, the
counterexample xj defines values for uj : D(xj), gi(xj),

fi(xj ,uj), which in turn, define Hj1 and Hj2. Thus, a

good counterexample should “remove” as large a set as

possible from Cj−1. Looking at Eq. (24), it is clear that
atjl.cj − bjl would measure how “far away” the coun-

terexample is from the boundary of the half-space Hjl,

assuming that ||ajl|| is kept constant. As proposed in

our earlier work [77], one could find a counterexam-

ple that maximizes these quantities, so that a “good”
counterexample can be selected. For checking (16), the
verifier finds a counterexample x that maximizes a slack

variable γ s.t.

Vcj
(x) ≤ −γ ,

and for the second check (18), the slack variable γ is

introduced and maximized as follows:

λ ≥ γ ∧
m∧

i=1

At
iλ = ∇Vcj

· fi(x) ∧

λt.b ≥ −∇Vcj
· f0(x) + γ .

As such, we cannot prove improved bounds on the

number of iterations to terminate using this approach.

However, we do, in fact, see a significant decrease in the
number of iterations by adding an objective function to
the selection of the counterexample.

6 Specifications

In previous sections, the problem of finding a CLF was
discussed. However, the concept can be extend to other

Lyapunov-like arguments that are useful for specifica-
tions such as reach-while-stay, and safety. In this sec-
tion, some of these specifications are addressed.

6.1 Local Lyapunov Function

Many nonlinear systems are only locally stabilizable,

especially in presence of input saturation. Therefore, we

wish to study stabilization inside a compact set S. Let
int(R) be the interior of set R. We consider a compact

and connected set S ⊂ X where the origin 0 ∈ int(S)

is the state we seek to stabilize to. Furthermore, we

restrict the set S to be a basic semi-algebraic set defined

by a conjunction of polynomial inequalities:

S : {x ∈ R
n | pS,1(x) ≤ 0, . . . , pS,k(x) ≤ 0} .

The stabilization problem can be reduced to the

problem of finding a local CLF V which respect the

following constraints

V (0) = 0
(∀x ∈ S \ {0}) V (x) > 0

(∀x ∈ S \ {0}) (∃u ∈ U) ∇V · f(x,u) < 0 .

(25)

Given a function V and a comparison predicate ⋊⋉∈ {=
,≤, <,≥, >}, we define V ⋊⋉β as the set:

V ⋊⋉β = {x|V (x) ⋊⋉ β} .

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 15

Let β∗ be maximum β s.t. V ≤β ⊆ S. Having a CLF V ,

it guarantees that there is a strategy to keep the state
inside V <β , and stabilize to the origin (Fig. 4).

Theorem 9 Given a control affine system Ψ , where

U : R
m and a polynomial control Lyapunov function

V satisfying Eq. (25), there is a feedback function K
for which if x0 ∈ V <β∗

, then:

1. (∀t ≥ 0) x(t) ∈ S

2. (∀ǫ > 0) (∃T ≥ 0) ‖x(T)− 0‖ < ǫ .

Proof First, using Sontag results, there exists a feed-

back function K∗ s.t. while x ∈ S, then dV
dt

= ∇V ·
f(x,u) < 0 [89]. Assuming x(0) = x0 ∈ V <β∗

⊂ S,

then initially V (x(0)) < β∗. Now, assume the state

reaches ∂S at time t2. By continuity, there is a time

t1 ≤ t2 s.t. x(t1) ∈ ∂(V <β∗

) and (∀t ∈ [0, t1]) x(t) ∈ S.
Thus, V (x(t1)) = β∗ and

V (x(t1)) =

(

V (x(0)) +

∫ t1

0

dV

dt
dt

)

< V (x(0)) .

This means V (x(t1)) < β∗, which is a contradiction.

Therefore, the state never reaches ∂S and remains in
int(S) forever.

V would be a Lyapunov function for the closed loop

system when the control unit is replaced with the feed-

back function K∗ and using standard results in Lya-

punov theory (∀ǫ > 0) (∃T ≥ 0) ||x(T)− 0|| < ǫ.

Finding a local CLF is similar to finding a global one.

One only needs to consider set S in the formulation.
The observation set would consists of (xi,ui)

j
i=1 where

xi is inside S and the verifier would check the following

conditions:

(∃x 6= 0)
k∧

i=1

pS,i(x) ≤ 0 ∧ V (x) ≥ 0

(∃x 6= 0)

k∧

i=1

pS,i(x) ≤ 0 ∧ (∀u ∈ U) ∇V · f(x,u) ≥ 0 ,

which is as hard as the one solved in Section. 5.

Lemma 6 Assuming (i) the demonstrator function D
is smooth, (ii) the closed loop system with feedback law

D is exponentially stable over a bounded region S, then

there exists a local polynomial CLF, compatible with D.

Proof Under assumption (i) and (ii), one can show that

a polynomial local Lyapunov function V (not control

Lyapunov function) exists for the closed loop system

Ψ(X,U, f,D) [68]:

V (0) = 0 ∧ (∀x ∈ S \ 0)

(
V (x) > 0

∇V · f(x,D(x)) < 0

)

.

This means that V is compatible with the demonstra-

tor. V is also a local CLF as it satisfies Eq. (25).

As mentioned, the learning framework fails when

the basis functions are not expressive to capture a CLF

compatible with the demonstrator and one needs to up-

date the demonstrator and/or the set of basis functions.

However, if one believes that the demonstrator satisfies

the conditions in Lemma 6, then, success of the learn-

ing procedure is guaranteed, provided the set of basis

functions is rich enough.

6.2 Barrier Certificate

Barrier certificates are used to guarantee safety prop-

erties for the system. More specifically, given compact

and connected semi-algebraic sets S (safe) and I (ini-

tial) s.t. I ⊂ int(S), the overall goal is to ensure that

whenever x(0) ∈ I, we have x(t) ∈ S for all time t ≥ 0.
The sets S, I are expressed as semi-algebraic sets of the

following form:

S : {x ∈ R
n | pS,1(x) ≤ 0, . . . , pS,k(x) ≤ 0}

I : {x ∈ R
n | pI,1(x) ≤ 0, . . . , pI,l(x) ≤ 0} .

The safety problem can be reduced to the problem

of finding a (relaxed [69]) control barrier certificate B

which respect the following constraints [102]:

(∀x ∈ I) B(x) < 0

(∀x 6∈ int(S)) B(x) > 0

(∀x ∈ S \ int(I)) (∃u ∈ U) ∇B · f(x,u) < 0 .

(26)

To find such a barrier certificate, one needs to define

B as a linear combination of basis functions and use

the framework to find a correct B. The verifier would
check the following conditions that negate each of the

conditions in Eq. (26). First we check if there is a x ∈ I
such that B(x) ≥ 0.

(∃x)
l∧

j=1

pI,j(x) ≤ 0 ∧ B(x) ≥ 0 .

Next, we check if there exists a x 6∈ int(S) such that
B(x) ≤ 0. Clearly, if x 6∈ int(S), we have pS,i(x) ≥ 0

for at least one i ∈ {1, . . . , k}. This yields k conditions

of the form:

(∃x) pS,i(x) ≥ 0 ∧B(x) ≤ 0, i ∈ {1, . . . , k} .

Finally, we ask if ∃x ∈ S \ int(I) that violates the de-

crease condition. Doing so, we obtain l conditions. For

each i ∈ {1, . . . , l}, we solve

(∃x) pI,i(x) ≥ 0
︸ ︷︷ ︸

x 6∈int(I)

∧
k∧

j=1

pS,j(x) ≤ 0

︸ ︷︷ ︸

x∈S

∧ (∀u ∈ U) ∇B · f(x,u) ≥ 0 ,

16 Hadi Ravanbakhsh, Sriram Sankaranarayanan

Overall, we have 1+ k+ l different checks. If any of

these checks result in x, it serves as a counterexample
to the conditions for a barrier function (26).

As before, we choose basis functions g1, . . . , gr for

the barrier set Bc :
∑r

k=1 ckgk(x). Given observations

set Oj : {(x1,u1), . . . , (xj ,uj)}, the corresponding can-
didate set Cj of observation compatible barrier func-

tions is defined as the following:

Cj :







c|
∧

(xi,ui)∈Oj







xi ∈ I → Bc(xi) < 0 ∧
xi 6∈ int(S) → Bc(xi) > 0 ∧
xi ∈ S \ int(I)

→ ∇Bc .f(xi,ui) < 0













.

The LHS of the implication for each observation (xi,ui)

is evaluated and the RHS constraint is added only when

the LHS holds. Nevertheless, Cj remains a polytope

similar to Lemma. 1.

Remark 5 For the original control barrier certificates, it

is sufficient to check whether B can be decreased on the

boundary (B=0). The relaxed version of control barrier
certificates is introduced by Prajna et al. [69] using sum

of squares (SOS) relaxation. Here we use this relaxation
to simplify the candidate generation process. However,
for the verification process this relaxation is not needed
and without any complication, one could verify the orig-

inal conditions as opposed to the relaxed ones. This

trick will improve the precision of the method.

6.3 Reach-While-Stay

In this problem, the goal is to reach a target set T from

an initial set I, while staying in a safe set S, wherein
I ⊆ S. The set S is assumed to be compact. By com-

bining the local Lyapunov function and a barrier certifi-

cate, one can define a smooth, Lyapunov-like function

V , that satisfies the following conditions (see [79]):

C1 : (∀x ∈ I) V (x) < 0
C2 : (∀x 6∈ int(S)) V (x) > 0

C3 : (∀x ∈ S \ int(T))(∃u ∈ U) ∇V · f(x,u)<0.

(27)

We briefly sketch the argument as to why such a

Lyapunov-like function satisfies the reach-while-stay, re-

ferring the reader to our earlier work on control certifi-

cates for a detailed proof [79]. Suppose we have found

a function V satisfying (27). V is strictly negative over

the initial set I and strictly positive outside the safe

set S. Furthermore, as long as the flow remains inside

the set S without reaching the interior of the target

T , there exists a control input at each state to strictly

decrease the value of V . Combining these observations,

we conclude either (a) the flow remains forever inside

set S \ int(T) or (b) must visit the interior of set T (be-

fore possibly leaving S). However, option (a) is ruled
out because S \ int(T) is a compact set and V is a

continuous function. Therefore, if the flow were to re-

main within S \ int(T) forever then V (x(t)) → −∞
as t → ∞, which directly contradicts the fact that V

must be lower bounded on a compact set S \ int(T).

We therefore, conclude that the flow must stay inside
S and eventually visit the interior of the target T .

The learning framework extends easily to search for

a function V that satisfies the constraints in Eq. (27).

6.4 Finite-time Reachability

The idea of funnels has been developed to use the Lya-

punov argument for finite-time reachability [59]. Then,

following Majumdar et al., a library of control funnels

can provide building blocks for motion planning [57].

Likewise, control funnels are used to reduce reach-avoid

problem to timed automata [15].

In this section, we consider Lyapunov-like functions
for establishing control funnels. Let I be a set of initial

states for the plant (x(0) ∈ I), and T be the target set

that the system should reach at time H > 0 (x(H) ∈
int(T)). Let S be the safe set, such that I, T ⊆ S and

x(t) ∈ S for time t ∈ [0,H]. The goal is to find a con-
troller that guarantees that whenever x(0) ∈ I, we have

x(t) ∈ S for all t ∈ [0,H] and x(H) ∈ int(T). To solve
this, we search instead for a control Lyapunov-like func-

tion V (x, t) that is a function of the state and time, with

the following properties:

C1 : (∀x ∈ I) V (x, 0) < 0
C2 : (∀x 6∈ int(T)) V (x,H) > 0

C3 :

(

∀ t ∈ [0,H]

x 6∈ int(S)

)

V (x, t) > 0

C4 :

(
∀t ∈ [0,H]

∀x ∈ S

)

(∃u ∈ U) V̇ (t,x,u) < 0 ,

(28)

where V̇ (t,x,u) = ∂V
∂t

+∇V ·f(x,u). First of all, when
initialized to x(0) ∈ I, we have V (x, 0) < 0 by con-
dition C1. Next, the controller’s action through condi-
tion C4 guarantees that dV

dt
< 0 over the trajectory for

t ∈ [0,H], as long as x ∈ S. Through C3, we can guar-

antee that x(t) ∈ S for t ∈ [0,H]. Finally, it follows

that V (x(H),H) < 0. Through C2, we conclude that
x ∈ int(T). As depicted in Fig. 8, the set V =0 forms a

barrier, and set V <0 forms the required funnel, while
t ≤ H.

Theorem 10 Given compact semi-algebraic sets I, S,

T , a time horizon H, and a smooth function V satisfy-

ing Eq. (28), there exists a control strategy s.t. for all

traces of the closed loop system, if x(0) ∈ I, then

18 Hadi Ravanbakhsh, Sriram Sankaranarayanan

v
γ

y

θ

Fig. 9 A schematic view of the bicycle model.

U : [−10, 10]× [−10, 10], and the specification is reach-
while-stay, provided by the following sets

S : [−2, 2]× [3, 7]× [−1, 1]× [−1, 1]

I : B0.4(0)

T : B0.1(0) .

The method finds the following CLF:

V =0.37y2 + 0.52yθ + 3.11θ2 + 0.98yσ + 2.23σθ+

4.46σ2 − 0.36vy − 0.29vθ + 0.95vσ + 3.86v2 .

This CLF is used to design a controller. Fig. 10

shows the projection of trajectories on to x-y plane
for the synthesized controller in red. The blue trajecto-

ries are generated using the MPC controller that served

as the demonstrator. The behavior of the system for

both controllers are similar but not identical. Notice

that the initial state in Fig. 10(c) is not in the re-

gion of attraction (guaranteed region). Nevertheless,

the CLF-based controller can still stabilize the system
while keeping the system in the safe region. On the
other hand, the MPC violates the safety constraints
even when the safety constraints are imposed in the

MPC scheme. The safety is violated because in the be-
ginning θ gets larger than 1 and it gets close to π/2

(the robots moves almost vertically).

7.2 Case Study II:

The problem of keeping the inverted pendulum in a ver-

tical position is considered. This case study has applica-

tions in balancing two-wheeled robots [20]. The system

has two degrees of freedom: the position of the cart x,

and the degree of the inverted pendulum θ. The goal is

to keep the pendulum in a vertical position by moving

the cart with input u (Fig. 11).

0 5 10 15 20 25 30 35 40
-2

0

2

4

0 5 10 15 20 25 30 35 40
-2

-1

0

1

0 5 10 15 20 25 30 35 40
-1

0

1

2

(a) Initial state: [0.25, 0.25, 0.25, 0.25]
x

(b) Initial state: [0, -0.25, -0.5, 0]
x

(c) Initial state: [-1, 1, 0.6, 1]
x

y

y

y

Fig. 10 Simulation for the bicycle robot - Projected on x-y
plane. Simulation traces are plotted for three different initial
states. Blue (red) traces corresponds to trajectories of the
system for MPC controller (CLF-based controller).

The system has four state variables [x, ẋ, θ, θ̇] with

the following dynamics [46]:

[
ẍ

θ̈

]

=





4u−4ǫẋ+4mlθ̇2 sin(θ)−3mg sin(θ) cos(θ)
4(M+m)−3m cos2(θ)

(M+m)g sin(θ)−(u−ǫẋ) cos(θ)−mlθ̇2 sin(θ) cos(θ)

l(4
3
(M+m)−m cos(θ)2)



 ,

where m = 0.21 and M = 0.815 are masses of the pen-

dulum and the cart respectively, g = 9.8 is the gravita-

tional acceleration, and l = 0.305 is distance of center
of mass of the pendulum from the cart. After partial

linearization, the dynamics have the following form:

[
ẍ

θ̈

]

=

[

4u+ 4(M+m)g tan(θ)−3mg sin(θ) cos(θ)
4(M+m)−3m cos2(θ)

−3u cos(θ)
l

]

.

The trigonometric and rational functions are ap-

proximated with polynomials of degree three. The input
is saturated U : [−20, 20] and sets for a safety specifi-

cation are S : [−1, 1]4, I : B0.1(0).

Fig. 12 shows the some of the traces of the closed

loop system for the CLF-based controller as well as
the MPC controller. Notice that the trajectories of the

CLF based controller are quite distinct from the MPC,

especially in regions where the demonstration is not

provided during the CLF synthesis process. For exam-

ple, in Figure. 12(b), the behaviors of these controllers

are similar outside the initial set I. However, inside I
(near the equilibrium) the behavior is different, since

the demonstrations are only generated for states out-

side I. The CLF-based controller is designed using the

following CLF generated by the learning framework:

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 19

x

u

Fig. 11 A schematic view of the “inverted pendulum on a
cart”.

V =16.37θ̇2 + 50.37θ̇θ + 75.16θ2 + 13.51xθ̇ + 43.26xθ+

10.44x2 + 23.30θ̇ẋ+ 38.09ẋθ + 11.13ẋx+ 9.55ẋ2 .

7.3 Case Study III:

Caltech ducted fan has been used to study the aero-
dynamics of a single wing of a thrust vectored, fixed
wing aircraft [37]. In this case study, we wish to de-

sign forward flight control in which the angle of attack

needs to be set for a stable forward flight. The model of

the system is carefully calibrated through wind tunnel

experiments. The system has four states: v is the veloc-

ity, γ is the moving direction the ducted fan, θ is the
rotational position, and q is the angular velocity. The
control inputs are the thrust u and the angle at which

the thrust is applied δu (Fig. 13). Also, the inputs are

saturated: U : [0, 13.5] × [−0.45, 0.45]. The dynamics

are:







mv̇

mvγ̇

θ̇
Jq̇






=







−D(v, α)−W sin(γ) + u cos(α+ δu)
L(v, α)−W cos(γ) + u sin(α+ δu)
q

M(v, α)− ulT sin(δu)






,

where the angle of attack α = θ− γ, and D, L, and M
are polynomials in v and α. For full list of parameters,

see [37]. According to the dynamics, x∗ : [6, 0, 0.1771, 0]

is a stable equilibrium (for u∗ : [3.2,−0.138]) where the

ducted fan can move forward with velocity 6. Thus, the

goal is to reach near x∗. The system is not affine in
control. We replace u and δu with us = u sin(δu) and

uc = u cos(δu):







v̇

γ̇

θ̇

q̇






=








−D(v,α)−W sin(γ)+uc cos(α)−us sin(α)
m

L(v,α)−W cos(γ)+uc sin(α)+us cos(α)
mv

q
M(v,α)−lTus

J







.

Projection of U into the new coordinate will yield a sec-
tor of a circle. Then, set U is safely under-approximated

by a polytope Û as shown in Fig. 14. Next, we perform

a translation so that the x∗ (u∗) is the origin of the

state (input) space in the new coordinate system. In or-

der to obtain a polynomial dynamics, we approximate

v−1, sin and cos with polynomials of degree one, three

and three, respectively. These changes yield a polyno-

mial control affine dynamics, which fits the description

of our model. For the reach-while-stay specification, the

sets are defined as the following:

S : [3, 9]× [−0.75, 0.75]× [−0.75, 0.75]× [−2, 2]

I : {[v, γ, θ, q]t|(0.4v)2 + γ2 + θ2 + q2 < 0.42}

T : {[v, γ, θ, q]t|(0.4v)2 + γ2 + θ2 + q2 < 0.052} .

The projection of some of the traces of the system in

x-y plane is shown in Fig. 15. We set x0 = y0 = 0 and

ẋ = v cos(γ), ẏ = v sin(γ) .

The CLF-based controller is designed using the follow-

ing generated CLF:

V =+ 3.23q2 + 2.17qθ + 3.90θ2 − 0.2qv − 0.45vθ

+ 0.53v2 + 1.66qγ − 1.33γθ + 0.48vγ + 3.90γ2 .

The traces show that the CLF-based controller stabi-

lizes faster, however, the MPC controller uses the aero-

dynamics to achieve the same goal with a better per-

formance.

7.4 Case Study IV:

This case study addresses another problem for the pla-

nar Caltech ducted fan [37]. The goal is to keep the

planar ducted fan in a hover mode. The system has

three degrees of freedom, x, y, and θ, which define the

position and orientation of the ducted fan. There are six

state variables x, y, θ, ẋ, ẏ, θ̇ and two control inputs
u1, u2 (U ∈ [−10, 10]× [0, 10]). The dynamics are





mẍ
mÿ

Jθ̈



 =





−dcẋ+ u1 cos(θ)− u2 sin(θ)

−dcẏ + u2 cos(θ) + u1 sin(θ)−mg
ru1



 ,

where m = 11.2, g = 0.28, J = 0.0462, r = 0.156 and

dc = 0.1. The system is stable at origin for u∗ : [0,mg].

Therefore, we set u∗ as the origin for the input space.

The specification is a reach-while-stay property with

the following sets:

S : [−1, 1]× [−1, 1]× [−0.7, 0.7]× [−1, 1]3

I : B0.25(0), T : B0.1(0) .

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 21

-1 -0.5 0 0.5 1 1.5
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.1

-0.05

0

0.05

0.1

x

y

y

y

(a) Initial state: [-1, 0, -0.7, 1, 0, 0]

(b) Initial state: [-0.5, 0.5, -0.5, 0, 0, 0]

(c) Initial state: [0.25, 0, 0.25, 0, 0, 0]

Fig. 16 Simulation for Case Study IV - Projected on x-
y plane. The trajectories corresponding to the CLF-based
(MPC) controller are shown in red (blue) lines. The boundary
of the target set is shown in yellow.

7.5 Case Study V:

In this case study, a unicycle model [52] is considered.

It is known that no continuous feedback can stabilize

the unicycle, and therefore no continuous CLF exists.

However, considering a reference trajectory for a mov-

ing unicycle, one can keep the system near the reference

trajectory, using control funnels. The unicycle model

has the dynamics:

ẋ = u1 cos(θ) , ẏ = u1 sin(θ) , θ̇ = u2 .

By a change of basis, a simpler dynamic model is used

here (see. [52]):

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1 .

We consider a planning problem, in which starting

near [θ, x, y] = [π2 ,−1,−1], the goal is to reach near
[θ, x, y] = [0, 2, 0]. In the first step, a feasible trajectory

x∗(t) is generated as shown in Fig. 17(a). Then x∗(t)

is approximated with piecewise polynomials. More pre-

cisely, trajectory consists of two segments. The first seg-

ment brings the car to the origin and the second seg-

ment moves the car to the destination. Each segment is
approximated using polynomials in t with degree up to

three:

seg. 2 :







θ(t)∗ = 0

x∗(t) = t

y∗(t) = 0

seg. 1 :







θ∗(t) = π − t

x∗(t) = −(1− 0.64t)(1 + 0.64t)

y∗(t) = −(1− 0.64t)(1− 0.2t− 0.25t2) .

Let Tr(θ, x, y) represent the transformation of the state
in terms of (θ, x, y) coordinate system to the (x1, x2, x3)

coordinates. Also, for two set A, and B, let A ⊕ B be

the Minkowski sum of A and B. For example, we write
{Tr(θ, x, y)} ⊕ Bδ(0) to denote a state and a ball of

radius δ around it. Moreover, let S1 (S2) be the min-

imal box which contains the trajectory x∗(·) for the

first (second) segment in the (x1, x2, x3) coordinates.

For the first segment, the goal is to reach from the ini-

tial set I : {Tr(π/2,−1,−1)} ⊕ B1(0) to the target set

T : {Tr(0, 0, 0)}⊕B1(0). Also, the safe set is defined as
S : S1 ⊕ [−1.5, 1.5]3. That is, an enlarged box around

S1. And in the next segment, the goal is to reach from

initial set I : Tr(0, 0, 0)⊕B1(0) to T : Tr(0, 2, 0)⊕B1(0)

as the target, while staying in S : S2 ⊕ [−2, 2]3.

For each segment, we search for a Lyapunov-like
function V as a time varying function, quadratic in the

states. Our method is applied to this problem, and we
are able to find a strategy to implement the plan with
guarantees. The boundary of the funnels is shown in

Fig. 17(a). Also, some simulation traces are shown in

Fig. 17(b), where the CLF controller is implemented us-

ing the generated funnels. As simulations suggest, the

funnels can effectively stabilize the traces to the trajec-

tory, when the unicycle is moving forward.

7.6 Performance

As mentioned earlier, the inputs to the learning frame-

work are the plant, monomial basis functions, and the
demonstrator. Also, the degree of relaxation D is also
considered as input. At each iteration, first a MVE in-
scribed inside a polytope is calculated. This task is per-

formed quite efficiently. The MPC scheme used inside

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 23

Table 1 Results on the benchmark. τ : MPC time step, N : number of horizon steps, Q′: defines MPC state cost, R′: defines
MPC input cost, D: SDP relaxation degree bound, #Dem : number of demonstrations, #Itr: number of iterations, V. Time:
total computation time for verification (minutes), Time: total computation time (minutes)

Problem Demonstrator Verifier Performance
System Name τ N Q′ R′ D #Dem # Itr V. Time Time Status

Unicycle-Segment 2 0.1 10 [1 1 1] [1 1]
3 2 74 3 3 Fail
4 2 57 4 4 Succ

Unicycle-Segment 1 0.1 20 [1 1 1] [1 1]
3 27 86 9 10 Fail
4 23 71 11 12 Succ

TORA 1 30 [1 1 1 1] [1]
3 52 118 7 14 Fail
4 19 76 5 8 Succ

Inverted Pendulum 0.04 50 [10 1 1 1] [10]
3 56 85 7 27 Fail
4 53 69 9 25 Succ
5 34 50 7 19 Succ

Bicycle 0.4 20 [1 1 1 1] [1 1]
2 14 32 2 2 Fail
3 7 25 1 1 Succ

Bicycle × 2 0.4 20 [1 1 1 1 1 1 1 1] [1 1 1 1]
2 119 225 77 90 Fail
3 30 81 43 46 Succ

Forward Flight 0.4 40 [1 1 1 1] [1 1]
4 14 77 16 18 Fail
5 4 64 10 10 Succ

Hover Flight 0.4 40 [1 1 1 1 1 1] [1 1]
2 57 147 12 40 Fail
3 57 124 21 47 Succ
4 51 116 30 54 Succ

two different cases: (i) a random counterexample is gen-
erated, (ii) the generated counterexample maximizes

constraint violations (see Sec. 5.3). Table 2 shows the

performance for each of these cases, applied to the same

set of problems. The results demonstrate that selecting

good counterexamples would increase the convergence

rate (fewer iterations). Nevertheless, the time it takes

to generate these counterexamples increases, and there-

fore, the overall performance degrades. In conclusion,

while generating good counterexamples provides better

reduction in the space of candidates, it is computation-

ally expensive, and thus, it seems to be beneficial to

just rely on candidate selection for fast termination.

Table. 2 also suggests that Chebyshev center has the

worst performance. Also, the MVE-based method per-

forms better (fewer iterations) compared to the method

which is based on the analytic center.

7.7 Comparison with Other Approaches

We now compare our method against other techniques

used to automatically construct provably correct con-

trollers.

Comparison with CEGIS: We have claimed that
the use of demonstrator helps our approach deal with

a computationally expensive quantifier alternation in

the CLF condition. To understand the impact of this

aspect of our approach, we first we compare the pro-

posed method with our previous work, namely coun-

terexample guided inductive synthesis (CEGIS) that is

designed to solve constraints with quantifier alterna-

tion, and applied to the synthesis of CLFs [78]. In this

framework, the learning process only relies on coun-

terexamples provided by a verifier component, without

involving demonstrations. Despite a timeout that is set

to two hours, our CEGIS method timed out for all the

problem instances discussed in this article, without dis-

covering a CLF. As a result, we exclude this approach

from further comparisons. These results suggest that

demonstrations are essential for fast convergence.

Learning CLFs from Data: On the other hand,

Khansari-Zadeh et al. [83] learn likely CLFs from demon-
strations from sets of states that are sampled without

(a) the use of a verifier to check, and (b) counterexam-
ples as new samples, both of which are features of our
approach. Therefore, the correctness of the controller
thus derived is not formally guaranteed. To this end,

we verify if the solution is in fact a CLF.

The methodology of Khansari-Zadeh et al. is imple-
mented using the following steps:

1. Choose a parameterization of the desired CLF Vc(x)
(identical to our approach).

2. Generate samples in batches, wherein for each batch:

(a) Sample N1 = 50 states uniformly at random,

and for each state xi, add the constraint Vc(xi) ≥
0, for i ∈ [1, N1].

(b) Sample N2 = 5 States at random, and for each

state xj (j ∈ [1, N2]), simulate the MPC demon-
strator for N3 = 10 time steps to obtain state

control samples

{(xj,1,uj,1), . . . , (xj,N3
,uj,N3

)} .

24 Hadi Ravanbakhsh, Sriram Sankaranarayanan

Table 2 Results on different variations. I: number of iterations, VT: computation time for verification (minutes), T: total
computation time (minutes), Simple CE: any counterexample, Max CE: counterexample with maximum violation

Problem
Chebyshev Center Analytic Center MVE Center

Simple CE Max CE Simple CE Max CE Simple CE Max CE
I VT T I VT T I VT T I VT T I VT T I VT T

Unicycle - Seg. 2 83 4 4 22 9 9 76 5 6 23 9 10 57 4 4 15 6 6
Unicycle - Seg. 1 81 6 7 34 17 17 85 10 10 35 15 16 71 11 12 36 18 18
TORA 185 7 10 52 12 15 95 5 9 36 9 11 76 5 8 36 12 14
Inverted Pend. 163 10 23 85 22 30 57 8 20 51 22 32 50 7 19 35 18 25
Bicycle 99 3 3 40 5 5 31 2 2 20 3 3 25 1 2 15 3 3
Bicycle × 2 759 121 127 438 244 246 96 47 50 77 141 143 81 43 46 66 132 133
Forward Flight 676 20 21 34 30 31 113 15 16 21 18 19 64 10 10 16 16 16
Hover Flight 499 65 90 196 113 127 146 36 67 90 92 109 116 30 54 75 69 82

(c) Add the constraints ∇Vc ·f |x=xj,k,u=uj,k
< 0 for

j = 1, . . . , N2 and k = 1, . . . , N3 to enforce the

negative definiteness of the CLF.
3. At the end of batch k, solve the system of linear

constraints thus far to check if there is a feasible
solution.

4. If there is no feasible solution, then exit, since no

function in Vc(x) is compatible with the data.

5. If there is a feasible solution, check this solution

using the verifier.
6. If the verifier succeeds, then exit successfully with

the CLF discovered.
7. Otherwise, continue to generate another batch of

samples.

We enforce the constraint V (x) > 0 and ∇V ·f < 0 over

different sets of samples, since simulating the demon-
strator is much more expensive for each point. The ap-

proach iterates between generating successive batches

of data until a preset timeout of two hours as long as (a)

there are CLFs remaining to consider and (b) no CLF

has been discovered thus far. The time taken to learn
and verify the solution is not considered against the to-
tal time limit, and also not added to the overall time
reported. Besides stability, the approach is also adapted

for other properties, which are used in our benchmarks.

The results are reported in Table. 3. Since the gen-

eration of random samples are involved, we run the pro-

cedure 10 times on each benchmark, and report the per-

centage of trials that succeeded in finding a CLF, the

number of timeouts and the number of trials that ended
in an infeasible set of constraints. We note that the suc-
cess rate is 100% for just one problem instance. For four
other problem instances, the method is successful for a

fraction of the trials. The remaining benchmarks fail on

all trials. Next, the minimum and maximum number of

demonstrations needed in the trials to find a CLF is

reported as the “best-case” and “worst-case” respec-

tively. We note that our approach requires much fewer

demonstrations even when compared the best case sce-

nario. Thus, we conclude from this data that the time

spent by our approach for finding counterexamples is

justified by the significant decrease in the number of

demonstrations, and thus, faster convergence. This is

beneficial especially for cases where generating demon-

strations is expensive.

For one of the benchmarks (the forward flight prob-
lem of the Caltech ducted fan), the method stops for all

cases because a function compatible with the data does

not exist. As such, this suggests that no CLF compat-

ible with the demonstrator exists. On the other hand,

our approach successfully finds a CLF while considering

just four demonstrations.

Finally, for two of the larger problem instances, we

continue to obtain feasible solutions at the end of the
time limit, although the verifier cannot prove the learned
function is a CLF. In other words, there are values of c

left, that have not been considered by the verifier. Our
approach uses counterexamples, along with a judicious
choice of candidate CLFs to eliminate all but a bounded

volume of candidates.

Comparison with Bilinear Solvers: We now com-
pare our method against approaches based on bilin-

ear formulations found in related work [25,56,94]. We

wish to find a Lyapunov function V and a correspond-

ing feedback law K : X 7→ U , simultaneously. There-

fore, we assume K is a linear combination of basis

functions K :
∑r′

k=1 θkhk(x). Likewise, we parameter-
ize V as a linear combination of basis functions, as well:

V :
∑r

k=1 ckgk(x). Then, we wish to find c and θ that
satisfy the constraints corresponding to the property at

hand. To synthesize a CLF, we wish to find Vc,Kθ, so
that Vc(x) and its Lie derivative under the feedback

u = Kθ(x) is negative definite. This is relaxed as an

optimization problem:

min
c,θ,γ

γ

s.t. Vc is positive definite

(∀ x 6= 0) ∇Vc(x) · f(x,Kθ(x)) ≤ γ||x||22
The decision variables include c, θ that parameter-

ize V and K, respectively. In fact, if a feasible solu-

tion is obtained such that γ < 0 then we may stop the

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 25

Table 3 Results for “demonstration-only” method. #Sam.: number of samples, #Dem: number of demonstrations, Case:
best-case or worst-case, Time: total computation time (minutes), TO: time out (> 2 hours).

Problem Stats Performance Proposed Method
System Name Succ. % TO % Case #Sam. #Dem. Time Status #Sam. #Dem. Time

Unicycle-Segment 2 60 0
best 400 40 1 Succ

65 2 4
worst 600 72 1 Fail

Unicycle-Segment 1 45 0
best 600 35 2 Succ

79 23 12
worst 800 70 3 Fail

TORA 60 30
best 6300 535 43 Succ

84 19 8
worst 17100 1580 TO Fail

Inverted Pendulum 30 70
best 2250 137 84 Succ

58 34 19
worst 15750 300 TO Fail

Bicycle 100 0
best 2700 55 2 Succ

33 7 1
worst 54000 1883 48 Succ

Bicycle × 2 0 100
best 81600 1736 TO Fail

89 30 46
worst - - - -

Forward Flight 0 0
best 900 35 4 Fail

72 4 10
worst 2700 254 31 Fail

Hover Flight 0 100
best 7150 227 TO Fail

132 57 47
worst - - - -

optimization and declare that a CLF has been found.

To solve this bilinear problem, we use alternative min-

imization approach described below. First, V is initial-

ized to be a positive definite function (by initializing

c to some fixed value). Then, the approach repeatedly
alternates between the following steps:

1. c is fixed, and we search for a θ that minimizes γ.

2. θ is fixed, and we search for a c that minimizes γ.

Each of these problems can be relaxed using Sum of

Squares (SOS) programming [70]. The approach is iter-

ated and results in a sequence of values γ0 ≥ γ1 ≥ γ2 ≥
· · · ≥ γi, wherein γi is the value of the objective af-
ter i optimization instances have been solved. Since the

solution of one optimization instance forms a feasible

solution for the subsequent instance, it follows that γi
are monotonically nondecreasing. The iterations stop

whenever γ does not decrease sufficiently between it-

erations. After termination, the approach succeeds in

finding Vc, Kθ only if γ < 0. Otherwise the approach
fails.

Finding a suitable initial value for c is an important

factor for success. As proposed by Majumdar et al, we

pose and solve a linear feedback controller by applying

the LQR method to the linearization of the dynam-

ics [56]. In this case, we initialize V using the optimal

cost function provided by the LQR. We also note that
the linearization for the dynamics is not controllable for

all cases and we can not always use this initialization
trick. In these cases, we start from a initial candidate
such as ||x||22.

Additionally, Majumdar et al. (ibid) discuss solu-

tions to handle input saturation for control inputs that

must lie between two bounds. A precise approach con-

siders 3m different cases, where m is the number of
control inputs to distinguish between each control in-

put ui being saturated at either limits or unsaturated.

Furthermore, they provide a less expensive but conser-

vative solution wherein they requireKθ(x) ∈ U to avoid

input saturation, which yields fewer constraints. Here,

we consider three different variations of this method: (i)
inputs are not saturated, (ii) inputs are saturated and
the conservative solution is used, and (iii) inputs are

saturated and the original/expensive solution is used.

We consider variation (ii) only if the method is suc-

cessful without forcing the input saturation, and we

consider variation (iii) only if the conservative solution

(variation (ii)) fails. For the Lyapunov function V we
consider quadratic monomials as our basis functions,

and for the feedback law K, we consider both linear

and quadratic basis functions as separate problem in-

stances. Similar to the SDP relaxation considered in

this work, the SOS programming approach uses a de-

gree limit D for the multiplier polynomials used in the

positivstellensatz (cf. [48]). The limits used for the bilin-
ear optimization approach are identical to those used in
our method for each benchmark. The bilinear method

is adapted to other properties used in our benchmarks

and the results are shown in Table 4.

For the first two problem instances, the linearized

dynamics are not controllable, and thus, we can not

use the LQR trick for initialization. Instead, we use

the solution obtained using our method as the starting

point. Despite this, the bilinear optimization approach
fails to find a feedback law. This suggests that the fixed
structure of the feedback lawK is more restrictive when

compared to fixing a CLF and using Sontag’s formula

for synthesizing a feedback law K.

26 Hadi Ravanbakhsh, Sriram Sankaranarayanan

Table 4 Results for “bilinear formulation” method. K: ba-
sis functions used to parameterize K, L: basis functions are
monomials with maximum degree 1 (linear), Q: basis func-
tions are monomials with maximum degree 2 (quadratic),
LQR: if LQR is used for initialization, ST.: saturation type,
NP: numerical problem, St.: status.

Problem Param. Status
System Name K LQR ST.(i) ST.(ii) ST.(iii)

Unicycle-Seg. 2
L ✖ ✖ - -
Q ✖ ✖ - -

Unicycle-Seg. 1
L ✖ ✖ - -
Q ✖ ✖ - -

TORA L ✓ ✓ ✓ -
Inverted Pend. L ✓ ✓ ✓ -
Bicycle L ✓ ✓ ✓ -
Bicycle∗ L ✓ ✓ ✖ ✓

Bicycle × 2 L ✓ NP - -
Forward Flight L ✓ NP - -

Hover Flight
L ✓ ✖ - -
Q ✓ ✖ - -

Bicycle∗: The bicycle case-study where U is [−5, 5]2 instead
of [−10, 10]2 (Our method could solve this problem instance
as well).

For the remaining instances, we were able to use the

LQR trick successfully to find an initial solution. Start-

ing from this solution, the bilinear approach is success-

ful on four problem instances, but fails for the hover

flight problem. This suggests that even the LQR trick

may not always provide a good initialization. For two of

the larger problem instances, the bilinear method fails

because of numerical errors, when dealing with large

SDP problems. While the SOS programming has similar

complexity compared to our method, it encounters nu-

merical problems when solving large problems. We be-

lieve two factors are important here. First, our method

solves different smaller verification problems and veri-

fies each condition separately, while in a SOS formula-

tion all conditions on V and ∇V are formulated into

one big SDP problem. Moreover, in our method when

we encounter a numerical error, we simply use the (po-

tentially wrong) solution as a spurious counterexample

without losing the soundness. Then, using demonstra-

tions we continue the search. On the other hand, when
the bilinear optimization procedure encounters a nu-
merical error, it is unable to make further progress to-

wards an optimal solution.

In conclusion, our method has several benefits when

compared to the bilinear formulation. First, our method

does not assume any specific parameterization for the

feedback law. Instead it assumes a form for the CLF but
uses Sontag’s formula to obtain a feedback law. This is
advantageous since we do not have to fix the struc-

ture of the feedback law in our approach. Second, our

method uses demonstrations to generate a candidate in-

stead of a local search, and we provide an upper-bound

on the number of iterations. And finally, our method

can sometimes recover from numerically ill-posed SDPs,

and thus scales better as demonstrated through experi-

ments. On the flip side, unlike the bilinear formulation,
our method relies on a demonstrator that may not be
easy to implement.

8 Related Work

In this section, we review the related work from the

robotics, control, and formal verification communities.

Synthesis of Lyapunov Functions from Data:

The problem of synthesizing Lyapunov functions for a

control system by observing the states of the system in

simulation has been investigated in the past by Topcu et

al. to learn Lyapunov functions along with the resulting

basin of attraction [97]. Whereas the original problem

is bilinear, the use of simulation data makes it easier to

postulate states that belong to the region of attraction,

and therefore find Lyapunov functions that belong to

this region by solving LMIs in each case. The applica-

tion of this idea to larger black-box systems is demon-
strated by Kapinski et al. [41], where the counterex-
amples are used to generate data iteratively. Our ap-
proach focuses on controller synthesis through learning

a control Lyapunov function to replace an existing con-

troller. A key difference lies in the fact that we do not
attempt to prove that the original demonstrator is nec-

essarily correct, but find a control Lyapunov function
by assuming that the demonstrator is able to stabilize

the system for the specific states that we query on. An-

other important contribution lies in our analysis of the

convergence of the learning with a bound on the max-

imum number of queries needed. In fact, these results

can also be applied to the Lyapunov function synthe-

sis approaches mentioned earlier. Similar to our work,
Khansari-Zadeh et al. [83] uses human demonstrations
to generate data and enforce CLF conditions for the

data points, to learn a CLF candidate. Their work does

not include a verifier and therefore, the CLF candidate

may not, in fact, be a CLF. However, the method can

handle errors in the demonstrations by finding a max-

imal set of observations for which a compatible CLF
exists, whereas our method does not address erroneous
demonstrations.

Counter-Example Guided Inductive Synthesis:

Our approach of alternating between a learning mod-

ule that proposes a candidate and a verification module

that checks the proposed candidate is identical to the

counter-example guided inductive synthesis (CEGIS)

framework originally proposed in verification commu-

nity by Solar-Lezama et al. [86,85]. As such, the CEGIS

approach does not include a demonstrator that can be

queried. The extension of this approach Oracle-guided

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 27

inductive synthesis [39], generalizes CEGIS using an in-

put/output oracle that serves a similar role as a demon-
strator in this paper. However, the goal here is not to

mimic the demonstrator, but to satisfy the specifica-

tions. Also, Jha et al. [40] prove bounds on the number

of queries for discrete concept classes using results on

exact concept learning in discrete spaces [32]. In this

article, we consider searching over continuous concept
class, and prove bounds on the number of queries under
a robustness assumption.

The CEGIS procedure has been used for the syn-

thesis of CLFs recently by authors [77,79], combining
it with SDP solvers for verifying CLFs. The key differ-
ence here lies in the use of the demonstrator module

that simplifies the learning module. In the absence of

a demonstrator module, the problem of finding a can-

didate reduces to solving linear constraints with dis-

junctions, an NP-hard problem [77]. Likewise, the con-

vergence results are quite weak [78]. In the setting of

this paper, however, the use of a MPC scheme as a

demonstrator allows us to use faster LP solvers and pro-

vide convergence guarantees. Empirically, we are able

to demonstrate the successful inference of CLFs on sys-

tems with up to eight state variables, whereas previous

work in this space has been restricted to much smaller

problems [77].

Learning from Demonstration: The idea of learn-

ing from demonstrations has a long history [5]. The
overall framework uses a demonstrator that can, in fact,

be a human operator [83,43] or a complex MPC-based
control law [90,7,81,106,60,105]. The approaches differ
on the nature of the interactions between the learner
and the demonstrator; as well as how the policy is in-

ferred. Our approach stands out in many ways: (a) We
represent our policies by CLFs which are polynomial.
On one hand, these are much less powerful than ap-

proaches that use neural networks [105], for instance.
However, the advantage lies in our ability to solve ver-
ification problems to ensure that the resulting policy

learned through the CLF is correct with respect to the

underlying dynamical model. (b) Our framework is ad-

versarial. The choice of the counterexample to query
the demonstrator comes from a failed attempt to vali-

date the current candidate. (c) Finally, we use simple
yet powerful ideas from convex optimization to place
bounds on the number of queries, paralleling some re-

sults on concept learning in discrete spaces [32].

Lyapunov Analysis for Controller Synthesis Son-

tag originally introduced Control Lyapunov functions

and provided a universal construction of a feedback law

for a given CLF [88,89]. As such, the problem of learn-

ing CLFs is well known to be hard, involving bilinear

matrix inequalities (BMIs) [94]. An more conservative

(less precise) approach involves solving bilinear prob-

lems simultaneously for a control law and a Lyapunov
function certifying it [25,56]. This also leads to bilin-
ear formulation. Prieur et al. [72] shows that the set

of feasible solutions to such problem may not only be

non-convex, but also disconnected. Nevertheless, there

are some attempts to solve these BMIs which are well

known to be NP-hard [35]. A common approach to solve

these BMIs is to perform an alternating minimization

by fixing one set of bilinear variables while minimizing

over the other. Such an approach has poor guarantees

in practice, often “getting stuck” on a saddle point that

does not allow the technique to make progress in find-

ing a feasible solution [33]. To combat this, Majumdar

et al. (ibid) use LQR controllers and their associated

Lyapunov functions for the linearization of the dynam-

ics as good initial seed solutions [56]. In contrast, our

approach simply assumes a demonstrator in the form of

a MPC controller that can be used to resolve the bilin-

earity. Furthermore, our approach does not encounter

the local saddle point problem. And finally, when the

inputs are saturated, the complexity of such a method
is exponential in the number of control inputs, while
the complexity of our method remains polynomial.

Formal Controller Synthesis The use of the learn-

ing framework with a demonstrator distinguishes the

approach in this paper from recently developed ideas

based on formal synthesis. Majority of these techniques

focus on a given dynamical system and a specification

of the correctness in temporal logic to solve the problem

of controller design to ensure that the resulting trajec-
tories of the closed loop satisfy the temporal specifica-
tions. Most of these approaches are based on discretiza-
tion of the state-space into cells to compute a discrete

abstraction of the overall system [103,54,82,62,44]. An-

other set of solutions are based on formal parameter

synthesis that search for unknown parameters so that

the specifications are met [104,23]. These methods in-
clude synthesize certificates (Lyapunov-like functions)
by solving nonlinear constraints either through branch-

and-bound techniques [36,78], or through a combina-

tion of simulations and quantifier elimination [92,93].

Our method is potentially more scalable, since the use

of a demonstrator allows us to solve convex constraints

instead. Raman et al. design a model-predictive control

(MPC) from temporal logic properties [74]. More specif-

ically, MILP solvers are used inside the MPC, which

can be quite expensive for real-time control applica-

tions. We instead learn a CLF from the MPC and the

CLF yields an easily computable feedback law (using

Sontag’s formula).

Occupation Measures In this paper, we use the Lya-

punov function approach to synthesizing controllers. An

28 Hadi Ravanbakhsh, Sriram Sankaranarayanan

alternative is to use occupation measures [75,71,49,58].

These methods formulate an infinite dimensional prob-

lem to maximize the region of attraction and obtain a

corresponding control law. This is relaxed to a sequence

of finite dimensional SDPs [47]. Note however that the

approach computes an over approximation of the finite

time backward reachable set from the target and a cor-

responding control. Our framework here instead seeks
an under-approximation that yields a guaranteed con-
troller.

Modeling Inaccuracies and Safe Iterative Learn-
ing. A key drawback of our approach is its dependence

on a mathematical model of the system for learning
CLFs. Although this model is by no means identical to
the real system, it is hoped that the CLF and the con-

trol law remain valid despite the unmodeled dynamics.

Our recent work has successfully investigated physical

experiments that use control Lyapunov-like functions

learned from mathematical models for path following

problems on a 1
8 -scale model vehicle using accurate in-

door localization to obtain full state information in real-

time [76]. The broader area of iterative learning con-

trols considers the process of learning how to control a

given plant at the same time as inferring a more refined

model of the plant through exploration [29]. However,

in order to avoid damaging the system, it is necessary

to maintain the system state in a safe set while learn-

ing the system dynamics. Recent work by Wang et al.

consider a combination of barrier certificates for main-
taining safety while learning Gaussian process models of
the vehicle dynamics [101]. Another approach considers
safe reinforcement learning that incrementally refines a

Gaussian process approximation of the unmodeled sys-

tem dynamics, starting from a known initial model [11].

This approach uses a Lyapunov function and performs

explorations at so-called “safe points” from which safety

can be guaranteed during the exploration process. In

doing so, the model of the system is updated along

with an estimate of the safe set obtained as a region

of attraction of the Lyapunov function.

9 Discussion and Future Work

In this section, we discuss some current limitations of

our approach as well as possible extensions of our ap-

proach that can provide avenues for future research.

Extension to Switched Systems: Thus far, our

focus has been on control affine systems. We note that

a variation of our framework is applicable to switched

systems. Specifically, one can transform a plant wherein

the control is performed through switching between dif-

ferent modes into a problem over control affine systems.

Let Q be a finite set of modes, such that the dynam-

ics vary according the mode q ∈ Q (ẋ = fq(x)). The

controller is assumed to operate by selecting the cur-

rent mode q of the plant. Then the condition on ∇V

for stabilizing switched systems:

(∀x 6= 0) (∃q ∈ Q) ∇V · fq(x) < 0 ,

is replaced with

(∀x 6= 0) (∃λ ≥ 0,
∑

q

λq = 1)
∑

q

λq (∇V · fq(x)) < 0.

This is identical to the conditions obtained for a con-

trol affine system, and thus, our framework can readily

extend to such systems. Moreover, using the original

formulation, checking conditions on ∇V is even simpler
(compared to Eq. (17)):

(∃x 6= 0)
∧

q

∇V · fq(x) ≥ 0 .

Extensions to Discrete-Time Systems: Control

problems on discrete-time systems have been widely

studied. MPC schemes are naturally implemented over

such systems, and furthermore, Lyapunov-like condi-

tions extend quite naturally. As such, our approach can

be extended to discrete-time nonlinear systems defined

by maps as opposed to ODEs. However, polynomial dis-

crete systems are known to pose computational chal-

lenges: when the Lie derivative is replaced by a differ-

ence operator, the degree of the resulting polynomial

can be larger.

Optimizing Performance Criteria: Our approach

stops as soon as one CLF is discovered. However, no

claims are made as to the optimality of the CLF. The

experimental results suggest that the controllers found

by the CLFs are quite different from the original demon-

strator in terms of their performance. An important

extension to our work lies in finding CLFs so that the

resulting controllers optimize some performance met-

ric. One challenge lies in specifying these performance

metrics as functions of the coefficients of the CLF. A

simple approach may consist of using a black-box per-

formance evaluation function over the CLF discovered

by our approach. Once a CLF is found, we may continue

our search but now target CLFs whose performance are

strictly better than the ones discovered thus far.

Other Verifiers: The verifier is the main bottleneck

in our learning framework. While in theory, the SDP re-

laxation addresses verification problems for polynomial

system, the scalability for systems of high dimensions is

still an issue. There are alternative solutions to the SDP

relaxation, which promise better scalability. In particu-

lar linear relaxations are more attractive for this frame-

work [2,10]. Using linear relaxations, one could restrict

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 29

the candidate space to positive definite polynomials up

front, and consider only the conditions over ∇V during
the verification process. Therefore, using linear relax-

ations, not only the verification problem scales better,

the number of such verifications to be solved can be

decreased.

For a highly nonlinear system, the degree of poly-
nomials for the dynamics as well as basis functions get

larger. For these systems, the scalability is even more

challenging. In future we wish to explore the the use of

falsifiers (instead of verifiers) and move towards more

scalable solutions [1,4,24]. While falsifiers would not

guarantee correctness, they can be used to find concrete

counterexamples. And by dropping formal correctness,
a falsifier can replace the verifier in the learning frame-
work.

Beyond Polynomial CLFs: In this paper, we as-
sumed that the CLF candidate V is a linear combi-

nation of some given basis functions. While we showed

that this model is precise enough to address exponential

stability over compact sets, there are systems for which

a smooth V does not exist. Nevertheless, our framework

can also handle nonlinear models such as Gaussian mix-
ture or feed forward neural network models, especially
if the verifier is replaced by a falsifier that can be imple-

mented through simulations. However, there are some
serious drawbacks, including more expensive candidate
generation, and weaker convergence guarantees. In fu-

ture work we wish to investigate these models.

Beyond MPC-based Demonstrations: As men-

tioned earlier, the demonstrator is treated as a black-

box. We have investigated to use MPC as they are easy

to design, and can provide smooth feedbacks which

in our experiments is the key to find a smooth CLF.

However, nonlinear MPC schemes using numerical op-

timization can guarantee convergence only to local min-

ima, but this does not translate as such into guarantees
of stability or that the original specifications are met.
However, if we employed human demonstrators (for ex-
ample, an expert who operates the system), the demon-

strator may include errors, and we may need to con-

sider approaches that can reject a subset of the given

demonstrations [83]. In addition, the demonstrations

can lead to inconsistent data, wherein nearby queries

are handled using different strategies by the demonstra-

tor, leading to no single CLF that is compatible with

the given demonstrations [21,16]. These problems are

left for future work.

10 Conclusion

We have thus proposed an algorithmic learning frame-

work for synthesizing control Lyapunov-like functions

for a variety of properties including stability, reach-

while-stay. The framework provides theoretical guaran-
tees of soundness, i.e., the synthesized controller is guar-
anteed to be correct by construction against the given

plant model. Furthermore, our approach uses ideas from

convex analysis to provide termination guarantees and

bounds on the number of iterations.

Acknowledgements We are grateful to Mr. Sina Aghli, Mr.
Souradeep Dutta, Prof. Christoffer Heckman and Prof. Ed-
uardo Sontag for helpful discussions. This work was funded
in part by NSF under award numbers SHF 1527075 and CPS
1646556. All opinions expressed are those of the authors and
not necessarily of the NSF.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic,
F., Gupta, A.: Probabilistic temporal logic falsification
of cyber-physical systems. Trans. on Embedded Com-
puting Systems (TECS) 12, 95– (2013)

2. Ahmadi, A.A., Majumdar, A.: Dsos and sdsos optimiza-
tion: Lp and socp-based alternatives to sum of squares
optimization. In: Information Sciences and Systems
(CISS), 2014 48th Annual Conference on, pp. 1–5. IEEE
(2014)

3. Ames, A.D., Powell, M.: Towards the unification of lo-
comotion and manipulation through control lyapunov
functions and quadratic programs. In: Control of Cyber-
Physical Systems, pp. 219–240. Springer (2013)

4. Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankara-
narayanan, S.: S-taliro: A tool for temporal logic fal-
sification for hybrid systems. In: Tools and algorithms
for the construction and analysis of systems, LNCS, vol.
6605, pp. 254–257. Springer (2011)

5. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A
survey of robot learning from demonstration. Robotics
and Autonomous Systems 57(5), 469 – 483 (2009). DOI
10.1016/j.robot.2008.10.024

6. Artstein, Z.: Stabilization with relaxed controls. Non-
linear Analysis: Theory, Methods & Applications 7(11),
1163 – 1173 (1983). DOI 10.1016/0362-546X(83)90049-
4

7. Atkeson, C.G., Liu, C.: Trajectory-based dynamic pro-
gramming. In: Modeling, Simulation and Optimization
of Bipedal Walking, pp. 1–15. Springer (2013)

8. Atkinson, D.S., Vaidya, P.M.: A cutting plane algo-
rithm for convex programming that uses analytic cen-
ters. Mathematical Programming 69(1-3), 1–43 (1995).
DOI 10.1007/BF01585551

9. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real
Algebraic Geometry. Springer (2003)

10. Ben Sassi, M.A., Sankaranarayanan, S., Chen, X.,
brahm, E.: Linear relaxations of polynomial positivity
for polynomial lyapunov function synthesis. IMA Jour-
nal of Mathematical Control and Information 33(3),
723–756 (2016). DOI 10.1093/imamci/dnv003

30 Hadi Ravanbakhsh, Sriram Sankaranarayanan

11. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause,
A.: Safe model-based reinforcement learning with stabil-
ity guarantees. In: I. Guyon, U.V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett
(eds.) Advances in Neural Information Processing Sys-
tems 30, pp. 908–918. Curran Associates, Inc. (2017)

12. Bertsekas, D.P.: Dynamic programming and optimal
control, vol. 1. Athena Scientific Belmont, MA (1995)

13. Bertsekas, D.P.: Approximate dynamic programming
(2008)

14. Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid
method: A survey. Operations research 29(6), 1039–
1091 (1981). DOI 10.1287/opre.29.6.1039

15. Bouyer, P., Markey, N., Perrin, N., Schlehuber-Caissier,
P.: Timed-automata abstraction of switched dynamical
systems using control invariants. Real-Time Systems
53(3), 327–353 (2017). DOI 10.1007/s11241-016-9262-3

16. Breazeal, C., Berlin, M., Brooks, A., Gray, J.,
Thomaz, A.L.: Using perspective taking to learn
from ambiguous demonstrations. Robotics and Au-
tonomous Systems 54(5), 385 – 393 (2006). DOI
https://doi.org/10.1016/j.robot.2006.02.004. The So-
cial Mechanisms of Robot Programming from Demon-
stration

17. Brown, C.W., Davenport, J.H.: The complexity of quan-
tifier elimination and cylindrical algebraic decomposi-
tion. In: Proceedings of the 2007 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC
’07, pp. 54–60. ACM, New York, NY, USA (2007). DOI
10.1145/1277548.1277557

18. Bryson, A.E.: Applied optimal control: optimization, es-
timation and control. CRC Press (1975)

19. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequen-
tial composition of dynamically dexterous robot behav-
iors. The International Journal of Robotics Research
18(6), 534–555 (1999)

20. Chan, R.P.M., Stol, K.A., Halkyard, C.R.: Review of
modelling and control of two-wheeled robots. Annual
Reviews in Control 37(1), 89 – 103 (2013). DOI
10.1016/j.arcontrol.2013.03.004

21. Chernova, S., Veloso, M.: Learning equivalent action
choices from demonstration. In: Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pp. 1216–1221. IEEE (2008)

22. Curtis, J.W.: Clf-based nonlinear control with poly-
topic input constraints. In: 42nd IEEE Interna-
tional Conference on Decision and Control (IEEE Cat.
No.03CH37475), vol. 3, pp. 2228–2233 Vol.3 (2003).
DOI 10.1109/CDC.2003.1272949

23. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthe-
sis for hybrid systems with an application to simulink
models. In: International Workshop on Hybrid Systems:
Computation and Control, pp. 165–179. Springer (2009)

24. Donzé, A., Maler, O.: Robust satisfaction of tempo-
ral logic over real-valued signals. In: FORMATS, Lec-
ture Notes in Computer Science, vol. 6246, pp. 92–106.
Springer (2010)

25. El Ghaoui, L., Balakrishnan, V.: Synthesis of fixed-
structure controllers via numerical optimization. In: De-
cision and Control, 1994., Proceedings of the 33rd IEEE
Conference on, vol. 3, pp. 2678–2683. IEEE (1994)

26. Elzinga, J., Moore, T.G.: A central cutting plane al-
gorithm for the convex programming problem. Math-
ematical Programming 8(1), 134–145 (1975). DOI
https://doi.org/10.1007/BF01580439

27. Francis, B.A., Maggiore, M.: Models of mobile robots in
the plane. In: Flocking and Rendezvous in Distributed

Robotics, pp. 7–23. Springer (2016). DOI 10.1007/978-
3-319-24729-8 2

28. Freeman, R., Kokotovic, P.V.: Robust nonlinear control
design: state-space and Lyapunov techniques. Springer
Science & Business Media (2008)

29. French, M., Rogers, E.: Non-linear iterative learning by
an adaptive lyapunov technique. International Journal
of Control 73(10), 840–850 (2000)

30. Galloway, K., Sreenath, K., Ames, A.D., Grizzle, J.W.:
Torque saturation in bipedal robotic walking through
control lyapunov function-based quadratic programs.
IEEE Access 3, 323–332 (2015)

31. Gao, S., Kong, S., Clarke, E.M.: dreal: An smt solver for
nonlinear theories over the reals. In: International Con-
ference on Automated Deduction, pp. 208–214. Springer
(2013). DOI 10.1007/978-3-642-38574-2 14

32. Goldman, S., Kearns, M.: On the complexity of teach-
ing. Journal of Computer and System Sciences 50(1),
20 – 31 (1995). DOI 10.1006/jcss.1995.1003

33. Helton, J.W., Merino, O.: Coordinate optimization for
bi-convex matrix inequalities. In: Proc. IEEE CDC,
vol. 4, pp. 3609–3613 vol.4 (1997)

34. Henrion, D., Lasserre, J.B., Löfberg, J.: Gloptipoly 3:
moments, optimization and semidefinite programming.
Optimization Methods & Software 24(4-5), 761–779
(2009)

35. Henrion, D., Lofberg, J., Kocvara, M., Stingl, M.: Solv-
ing polynomial static output feedback problems with
penbmi. In: Proceedings of the 44th IEEE Conference
on Decision and Control, pp. 7581–7586. IEEE (2005)

36. Huang, Z., Wang, Y., Mitra, S., Dullerud, G.E., Chaud-
huri, S.: Controller synthesis with inductive proofs for
piecewise linear systems: An smt-based algorithm. In:
2015 54th IEEE Conference on Decision and Control
(CDC), pp. 7434–7439. IEEE (2015)

37. Jadbabaie, A., Hauser, J.: Control of a thrust-vectored
flying wing: a receding horizon-lpv approach. Interna-
tional Journal of Robust and Nonlinear Control 12(9),
869–896 (2002)

38. Jankovic, M., Fontaine, D., KokotoviC, P.V.: Tora
example: cascade-and passivity-based control designs.
IEEE Transactions on Control Systems Technology
4(3), 292–297 (1996)

39. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-
guided component-based program synthesis. In: Pro-
ceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1, ICSE ’10,
pp. 215–224. ACM, New York, NY, USA (2010). DOI
10.1145/1806799.1806833

40. Jha, S., Seshia, S.A.: A theory of formal synthesis via
inductive learning. Acta Informatica 54(7), 693–726
(2017). DOI 10.1007/s00236-017-0294-5

41. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S.,
Arechiga, N.: Simulation-guided lyapunov analysis for
hybrid dynamical systems. In: Proceedings of the 17th
international conference on Hybrid systems: computa-
tion and control, pp. 133–142. ACM (2014)

42. Khachiyan, L.: An inequality for the volume of inscribed
ellipsoids. Discrete & Computational Geometry 5(1),
219–222 (1990). DOI 10.1007/BF02187786

43. Khansari-Zadeh, Mohammad, S., Khatib, O.: Learn-
ing potential functions from human demonstrations
with encapsulated dynamic and compliant behaviors.
Autonomous Robots 41(1), 45–69 (2017). DOI
10.1007/s10514-015-9528-y

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 31

44. Kloetzer, M., Belta, C.: A fully automated framework
for control of linear systems from temporal logic spec-
ifications. Automatic Control, IEEE Transactions on
53(1), 287–297 (2008)

45. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo
planning. In: Machine Learning: ECML 2006, 17th Eu-
ropean Conference on Machine Learning, Berlin, Ger-
many, September 18-22, 2006, Proceedings, pp. 282–293
(2006). DOI 10.1007/11871842 29

46. Landry, M., Campbell, S.A., Morris, K., Aguilar, C.O.:
Dynamics of an inverted pendulum with delayed feed-
back control. SIAM Journal on Applied Dynamical Sys-
tems 4(2), 333–351 (2005). DOI 10.1137/030600461

47. Lasserre, J.B.: Global optimization with polynomials
and the problem of moments. SIAM Journal on Op-
timization 11(3), 796–817 (2001)

48. Lasserre, J.B.: Moments, positive polynomials and their
applications. World Scientific (2009)

49. Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Non-
linear optimal control via occupation measures and lmi-
relaxations. SIAM Journal on Control and Optimization
47(4), 1643–1666 (2008)

50. Lavalle, S.M., Kuffner Jr, J.J.: Rapidly-exploring ran-
dom trees: Progress and prospects. In: Algorithmic
and Computational Robotics: New Directions. Citeseer
(2000)

51. Leth, T., Wisniewski, R., Sloth, C.: On the existence
of polynomial lyapunov functions for rationally stable
vector fields. In: 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pp. 4884–4889 (2017).
DOI 10.1109/CDC.2017.8264381

52. Liberzon, D.: Switching in systems and control. Springer
Science & Business Media (2012)

53. Lin, Y., Sontag, E.D.: A universal formula for stabi-
lization with bounded controls. Systems & Control
Letters 16(6), 393 – 397 (1991). DOI 10.1016/0167-
6911(91)90111-Q

54. Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of
reactive switching protocols from temporal logic spec-
ifications. Automatic Control, IEEE Transactions on
58(7), 1771–1785 (2013)

55. Lopez, I., McInnes, C.R.: Autonomous rendezvous using
artificial potential function guidance. Journal of Guid-
ance, Control, and Dynamics 18(2), 237–241 (1995)

56. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control de-
sign along trajectories with sums of squares program-
ming. In: Robotics and Automation (ICRA), 2013
IEEE International Conference on, pp. 4054–4061. IEEE
(2013)

57. Majumdar, A., Tedrake, R.: Robust online motion plan-
ning with regions of finite time invariance. In: Algorith-
mic Foundations of Robotics X, pp. 543–558. Springer
(2013). DOI 10.1007/978-3-642-36279-8 33

58. Majumdar, A., Vasudevan, R., Tobenkin, M.M.,
Tedrake, R.: Convex optimization of nonlinear feedback
controllers via occupation measures. The International
Journal of Robotics Research p. 0278364914528059
(2014)

59. Mason, M.: The mechanics of manipulation. In:
Robotics and Automation. Proceedings. 1985 IEEE In-
ternational Conference on, vol. 2, pp. 544–548. IEEE
(1985)

60. Mordatch, I., Todorov, E.: Combining the benefits of
function approximation and trajectory optimization. In:
Proceedings of Robotics: Science and Systems. Berkeley,
USA (2014). DOI 10.15607/RSS.2014.X.052

61. Mosek, A.: The mosek optimization software. Online at
http://www. mosek. com 54, 2–1 (2010)

62. Mouelhi, S., Girard, A., Gössler, G.: Cosyma: a tool
for controller synthesis using multi-scale abstractions.
In: Proceedings of the 16th international conference on
Hybrid systems: computation and control, pp. 83–88.
ACM (2013)

63. Nguyen, Q., Sreenath, K.: Optimal robust control for
bipedal robots through control lyapunov function based
quadratic programs. In: Robotics: Science and Systems
(2015)

64. Nocedal, J., Wright, S.J.: Numerical Optimization.
Springer–Verlag (2006)

65. Papachristodoulou, A., Prajna, S.: On the construction
of Lyapunov functions using the sum of squares decom-
position. In: IEEE CDC, pp. 3482–3487. IEEE Press
(2002)

66. Parillo, P.A.: Semidefinite programming relaxation for
semialgebraic problems. Mathematical Programming
Ser. B 96(2), 293–320 (2003)

67. Peet, M.M.: Exponentially stable nonlinear systems
have polynomial lyapunov functions on bounded re-
gions. IEEE Transactions on Automatic Control 54(5),
979–987 (2009)

68. Peet, M.M., Bliman, P.A.: Polynomial lyapunov func-
tions for exponential stability of nonlinear systems on
bounded regions. IFAC Proceedings Volumes 41(2),
1111 – 1116 (2008). DOI 10.3182/20080706-5-KR-
1001.00192. 17th IFAC World Congress

69. Prajna, S., Jadbabaie, A.: Safety verification of hybrid
systems using barrier certificates. In: HSCC, vol. 2993,
pp. 477–492. Springer (2004)

70. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Intro-
ducing sostools: A general purpose sum of squares pro-
gramming solver. In: Decision and Control, 2002, Pro-
ceedings of the 41st IEEE Conference on, vol. 1, pp.
741–746. IEEE (2002)

71. Prajna, S., Parrilo, P.A., Rantzer, A.: Nonlinear control
synthesis by convex optimization. IEEE Transactions
on Automatic Control 49(2), 310–314 (2004)

72. Prieur, C., Praly, L.: Uniting local and global con-
trollers. In: Decision and Control, 1999. Proceedings
of the 38th IEEE Conference on, vol. 2, pp. 1214–1219.
IEEE (1999)

73. Primbs, J.A., Nevistić, V., Doyle, J.C.: Nonlinear opti-
mal control: A control lyapunov function and receding
horizon perspective. Asian Journal of Control 1(1), 14–
24 (1999)

74. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Se-
shia, S.A.: Reactive synthesis from signal temporal logic
specifications. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Con-
trol, pp. 239–248. ACM (2015)

75. Rantzer, A.: A dual to lyapunov’s stability theorem.
Systems & Control Letters 42(3), 161–168 (2001)

76. Ravanbakhsh, H., Aghli, S., Heckman, C., Sankara-
narayanan, S.: Path-following through control funnel
functions. CoRR abs/1804.05288 (2018). URL
http://arxiv.org/abs/1804.05288

77. Ravanbakhsh, H., Sankaranarayanan, S.: Counter-
example guided synthesis of control lyapunov functions
for switched systems. In: 2015 54th IEEE Conference
on Decision and Control (CDC), pp. 4232–4239 (2015).
DOI 10.1109/CDC.2015.7402879

78. Ravanbakhsh, H., Sankaranarayanan, S.: Counterexam-
ple guided synthesis of switched controllers for reach-
while-stay properties. arXiv preprint arXiv:1505.01180
(2015)

32 Hadi Ravanbakhsh, Sriram Sankaranarayanan

79. Ravanbakhsh, H., Sankaranarayanan, S.: Robust con-
troller synthesis of switched systems using counterex-
ample guided framework. In: 2016 International Con-
ference on Embedded Software (EMSOFT), pp. 1–10
(2016). DOI 10.1145/2968478.2968485

80. Ravanbakhsh, H., Sankaranarayanan, S.: Learning lya-
punov (potential) functions from counterexamples and
demonstrations. In: Proceedings of Robotics: Science
and Systems. Cambridge, Massachusetts (2017). DOI
10.15607/RSS.2017.XIII.049

81. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of im-
itation learning and structured prediction to no-regret
online learning. In: AISTATS, vol. 1, p. 6 (2011)

82. Rungger, M., Zamani, M.: Scots: A tool for the synthe-
sis of symbolic controllers. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computa-
tion and Control, pp. 99–104. ACM (2016)

83. S. Mohammad Khansari-Zadeh, Aude Billard: Learning
control lyapunov function to ensure stability of dynami-
cal system-based robot reaching motions. Robotics and
Autonomous Systems 62(6), 752 – 765 (2014). DOI
10.1016/j.robot.2014.03.001

84. Shor, N.: Class of global minimum bounds on poly-
nomial functions. Cybernetics 23(6), 731–734 (1987).
Originally in Russian: Kibernetika (6), 1987, 9–11

85. Solar-Lezama, A.: Program synthesis by sketching. Pro-
Quest (2008)

86. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.,
Saraswat, V.: Combinatorial sketching for finite pro-
grams. ACM SIGOPS Operating Systems Review
40(5), 404–415 (2006)

87. Sontag, E.D.: A characterization of asymptotic control-
lability. In: Dynamical Systems II (Proc. of University
of Florida International Symposium), pp. 645–648. Aca-
demic Press, NY (1982)

88. Sontag, E.D.: A lyapunov-like characterization of
asymptotic controllability. SIAM Journal on Control
and Optimization 21(3), 462–471 (1983)

89. Sontag, E.D.: A ’universal’ construction of artstein’s
theorem on nonlinear stabilization. Systems & Control
Letters 13(2), 117 – 123 (1989). DOI 10.1016/0167-
6911(89)90028-5

90. Stolle, M., Atkeson, C.G.: Policies based on trajectory
libraries. In: Proceedings 2006 IEEE International Con-
ference on Robotics and Automation, 2006. ICRA 2006.,
pp. 3344–3349. IEEE (2006)

91. Suarez, R., Solis-Daun, J., Aguirre, B.: Global clf stabi-
lization for systems with compact convex control value
sets. In: Proceedings of the 40th IEEE Conference on
Decision and Control (Cat. No.01CH37228), vol. 4, pp.
3838–3843 vol.4 (2001). DOI 10.1109/.2001.980463

92. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switch-
ing logic using constraint solving. International journal
on software tools for technology transfer 13(6), 519–535
(2011)

93. Taly, A., Tiwari, A.: Switching logic synthesis for reach-
ability. In: Proceedings of the tenth ACM international
conference on Embedded software, pp. 19–28. ACM
(2010)

94. Tan, W., Packard, A.: Searching for control Lyapunov
functions using sums of squares programming. In: Aller-
ton conference on communication, control and comput-
ing, pp. 210–219 (2004)

95. Tarasov, S., Khachian, L., Erlikh, I.: The method of
inscribed ellipsoids. Doklady Akademii Nauk. SSSR
298(5), 1081–1085 (1988)

96. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts,
J.W.: Lqr-trees: Feedback motion planning via sums-
of-squares verification. The International Journal of
Robotics Research (2010)

97. Topcu, U., Packard, A., Seiler, P., Wheeler, T.: Stabil-
ity region analysis using simulations and sum-of-squares
programming. In: Proceedings of the American control
conference, pp. 6009–6014 (2007)

98. Vaidya, P.M.: A new algorithm for minimizing convex
functions over convex sets. Mathematical programming
73(3), 291–341 (1996). DOI 10.1007/BF02592216

99. Vandenberghe, L., Boyd, S., Wu, S.P.: Determi-
nant maximization with linear matrix inequality
constraints. SIAM journal on matrix analysis
and applications 19(2), 499–533 (1998). DOI
10.1137/S0895479896303430

100. Vanderbei, R.J.: Linear Programming: Foundations &
Extensions (Second Edition). Springer (2001). Cf.
http://www.princeton.edu/ rvdb/LPbook/

101. Wang, L., Theodorou, E.A., Egerstedt, M.: Safe
learning of quadrotor dynamics using barrier cer-
tificates. CoRR abs/1710.05472 (2017). URL
http://arxiv.org/abs/1710.05472

102. Wieland, P., Allgower, F.: Constructive safety using
control barrier functions. IFAC Proceedings Volumes
40(12), 462 – 467 (2007). DOI 10.3182/20070822-3-ZA-
2920.00076. 7th IFAC Symposium on Nonlinear Control
Systems

103. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Mur-
ray, R.M.: Tulip: a software toolbox for receding horizon
temporal logic planning. In: Proceedings of the 14th in-
ternational conference on Hybrid systems: computation
and control, pp. 313–314. ACM (2011)

104. Yordanov, B., Belta, C.: Parameter synthesis for piece-
wise affine systems from temporal logic specifications.
In: International Workshop on Hybrid Systems: Com-
putation and Control, pp. 542–555. Springer (2008)

105. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning
deep control policies for autonomous aerial vehicles with
mpc-guided policy search. In: Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pp.
528–535. IEEE (2016)

106. Zhong, M., Johnson, M., Tassa, Y., Erez, T., Todorov,
E.: Value function approximation and model predictive
control. In: 2013 IEEE Symposium on Adaptive Dy-
namic Programming and Reinforcement Learning (AD-
PRL), pp. 100–107. IEEE (2013)

