Noname manuscript No.
(will be inserted by the editor)

Learning Control Lyapunov Functions from Counterexamples

and Demonstrations

Hadi Ravanbakhsh . Sriram Sankaranarayanan

Received: date / Accepted: date

Abstract We present a technique for learning control
Lyapunov-like functions, which are used in turn to syn-
thesize controllers for nonlinear dynamical systems that
can stabilize the system, or satisfy specifications such
as remaining inside a safe set, or eventually reaching a
target set while remaining inside a safe set. The learn-
ing framework uses a demonstrator that implements
a black-box, untrusted strategy presumed to solve the
problem of interest, a learner that poses finitely many
queries to the demonstrator to infer a candidate func-
tion, and a verifier that checks whether the current can-
didate is a valid control Lyapunov function. The over-
all learning framework is iterative, eliminating a set of
candidates on each iteration using the counterexamples
discovered by the verifier and the demonstrations over
these counterexamples. We prove its convergence using
ellipsoidal approximation techniques from convex op-
timization. We also implement this scheme using non-
linear MPC controllers to serve as demonstrators for
a set of state and trajectory stabilization problems for
nonlinear dynamical systems. We show how the veri-
fier can be constructed efficiently using convex relax-
ations of the verification problem for polynomial sys-
tems to semi-definite programming (SDP) problem in-
stances. Our approach is able to synthesize relatively
simple polynomial control Lyapunov functions, and in
that process replace the MPC using a guaranteed and
computationally less expensive controller.

H. Ravanbakhsh
University of Colorado, Boulder
E-mail: hadi.ravanbakhsh@colorado.edu

S. Sankaranarayanan
University of Colorado, Boulder
E-mail: sriram.sankaranarayanan@colorado.edu

Keywords Lyapunov Functions - Controller Syn-
thesis - Learning from Demonstrations - Concept
Learning.

1 Introduction

We propose a novel learning from demonstration scheme
for inferring control Lyapunov functions (potential func-
tions) for stabilizing nonlinear dynamical systems to
reference states/trajectories, and implementing control
laws for specifications such as maintaining a system in-
side a set of safe states, reaching a target set while re-
maining inside a safe set and tracking a given trajectory
while not deviating too far away. Control Lyapunov
functions (CLF's) have wide applications to autonomous
systems [37,30,3,63,83]. They extend the classic notion
of Lyapunov functions to systems involving control in-
puts [87,88,6]. Finding a CLF also leads us to an as-
sociated feedback control law that can be used to solve
the stabilization problem. Additionally, they can be ex-
tended for feedback motion planning using extensions
to time-varying or sequential CLFs [19,96]. Likewise,
they have been investigated in the robotics community
in many forms including artificial potential functions to
solve path planning problems involving obstacles [55].

However, synthesizing CLFs for nonlinear systems
remains a challenge [73]. Standard approaches to find-
ing CLFs include the use of dynamic programming,
wherein the value function satisfies the conditions of a
CLF [12], or using non-convex bilinear matrix inequal-
ities (BMI) [35].

In this article, we investigate the problem of learning
a CLF using a black-box DEMONSTRATOR that imple-
ments an unknown state feedback law to stabilize the
system to a given equilibrium. This DEMONSTRATOR

Hadi Ravanbakhsh, Sriram Sankaranarayanan

can be queried at a given system state, and returns
a demonstration in the form of a control input gener-
ated at that state by its feedback law. Such a DEMON-
STRATOR can be realized using an expensive nonlin-
ear model predictive controller (MPC) that uses a lo-
cal optimization scheme, or even a human operator un-
der certain assumptions . Additionally, the framework
has a LEARNER which selects a candidate CLF and a
VERIFIER that tests whether this CLF is valid. If the
CLF is invalid, the VERIFIER returns a state at which
the current candidate fails. The LEARNER queries the
DEMONSTRATOR to obtain a control input correspond-
ing to this state. It subsequently eliminates the current
candidate along with a set of related functions from
further consideration. The framework continues to ex-
haust the space of candidate CLFs until no CLFs re-
main or a valid CLF is found in this process. We prove
the process can converge in finitely many steps provided
the LEARNER chooses the candidate function appropri-
ately at each step. We also provide efficient SDP-based
approximations to the verification problem that can
be used to drive the framework. Finally, we test this
approach on a variety of examples, by solving stabi-
lization problems for nonlinear dynamical systems. We
show that our approach can successfully find CLF's us-
ing finite horizon nonlinear MPC schemes with appro-
priately chosen cost functions to serve as demonstra-
tors. In these instances, the CLFs yield control laws
that are computationally inexpensive, and guaranteed
against the original dynamical model.

This paper is an extended version of our earlier
work [80]. When compared to the earlier work, we have
thoroughly expanded the technical sections to provide
detailed proofs of the various results and a detailed
exposition of each component of our learning frame-
work. Additionally, we have included a new section that
discusses specifications other than stability properties.
We have also extended our experimental results and
compare different options for implementing the overall
learning loop as well as comparisons with other meth-
ods. We also provide a detailed discussion of various
extensions to the approach presented in this paper.

1.1 Mlustrative Example: TORA System

Figure 1(a) shows a mechanical system, called transla-
tional oscillations with a rotational actuator (TORA).
The system consists of a cart attached to a wall using
a spring. Inside the cart, there is an arm with a weight
which can rotate. The cart itself can oscillate freely and

1 However, we do not handle noisy or erroneous demonstra-
tors in this paper.

there are no friction forces. The system has two degrees
of freedom, including the position of the cart x, and the
rotational position of the arm 6. The controller can ro-
tate the arm through input u. The goal is to stabilize
the cart to x = 0, with its velocity, angle, and angular
velocity @ = 0 = § = 0. We refer the reader to Jankovic
et al. [38] for a derivation of the dynamics, shown be-
low in terms of state variables (z1,...,24), collectively
written as a vector x, and a single control input (uq),
written as a vector u, after a basis transformation:

T1 = XTo, To = —2x1 + ESiH(ZL‘g), T3 = Ty, Tg = U7 - (1)

sin(z3) is approximated using a degree three polynomial
approximation which is quite accurate over the range
z3 € [~2,2]. The equilibrium 2z = & = 0§ = = 0
now corresponds to 1 = 22 = x3 = x4 = 0. The
system has a single control input u; that is bounded
uy € [—1.5,1.5]. Further, we define a “safe set” S :
[—1,1] x [-1,1] x [-2,2] x [-1,1], so that if x(0) € S
then x(t) € S for all time ¢ > 0.

MPC Scheme: A first approach to solve the prob-
lem uses a nonlinear model-predictive control (MPC)
scheme using a discretization of the system dynam-
ics with time step 7 = 1. The time ¢ belongs to set
{0,7,27,...,NT = H} and:

x(t+7) =x(t) + 7f(x(t),u(t)), (2)

with f(x,u) representing the vector field of the ODE in
(1). Fixing the time horizon H = 30, we use a simple
cost function J(x(0),u(0),u(r),...,u(H —7)}):

Yo (xOIE+ @) + N x#)E. (3)

te{0,7,....,.H—71}

Here, we constrain u(t) € [—1.5,1.5] for all ¢ and define
x(t+ 7) in terms of x(t) using the discretization in (2).
Such a control is implemented using a first /second order
numerical gradient descent method to minimize the cost
function [64]. The stabilization of the system was infor-
mally confirmed through hundreds of simulations from
different initial states. However, the MPC scheme is ex-
pensive, requiring repeated solutions to (constrained)
nonlinear optimization problems in real-time. Further-
more, in general, the closed loop lacks formal guaran-
tees despite the high confidence gained from numerous
simulations.

Learning a Control Lyapunov Function: In this
article, we introduce an approach which uses the MPC
scheme as a DEMONSTRATOR, and attempts to learn
a control Lyapunov function. Then, a control law (in a
closed form) is obtained from the CLF. The overall idea,
depicted in Fig. 2, is to pose queries to the offline MPC
at finitely many witness states {x() ... xU)}. Then,

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 3

60 80 100

%

T3 \b

TV

0 20

40 ‘ 60 80 100

Fig. 1 TORA System. (a) A schematic diagram of the TORA system. (b) Execution traces of the system using MPC control
(blue traces) and Lyapunov based control (red traces) starting from same initial point.

(x17u1)7~-'7(xj7uj)

LEARNER

VERIFIER

DEMONSTRATOR I

No(x;+1)

Fig. 2 Overview of the learning framework for learning a
control Lyapunov function.

for each witness state x(*, the MPC is applied to gen-
erate a sequence of control inputs u(”(0), ul?(7),---,
u® (H—7) with x() as the initial state, in order to drive
the system into the equilibrium starting from x(*). The
MPC then retains the first control input u(® : u((0),
and discards the remaining (as is standard in MPC).
This yields the so called observation pairs (x®,u(®)
that are used by the LEARNER.

The LEARNER attempts to find a candidate func-
tion V(x) that is positive definite and which decreases
at each witness state x(¥) through the control input u(®.
This function V is potentially a CLF function for the
system. This function is fed to the VERIFIER, which
checks whether V(x) is indeed a CLF, or discovers a
state xU*1 which refutes V. This new state is added
to the witness set and the process is iterated. The pro-
cedure described in this paper synthesizes the control
Lyapunov function V(x) below:

V =1.2223 + 0.31z23 + 0.4423 — 0.28x429
+0.80z 423 + 1.692% + 0.07x129 — 0.6621 73
— 1.85x4x1 + 1.627 .

Next, this function is used to design a associated
control law that guarantees the stabilization of the model

described in Eq. (1). Figure 1(b) shows a closed loop
trajectory for this control law vs control law extracted
by the MPC. At each step, given a current state x, we
compute an input u € [—1.5, 1.5] such that:

(VV) - f(x,u) <0. (4)

First, the definition of a CLF guarantees that any state
x € S, a control input u € [—1.5,1.5] that satisfies
Eq. (4) exists. Such a u may be chosen directly by
means of a formula involving x [53,91] unlike the MPC
which solves a nonlinear problem in Eq. (3). Further-
more, the resulting control law guarantees the stability
of the resulting closed loop.

2 Background

We recall preliminary notions, including the stabiliza-
tion problem for nonlinear dynamical systems.

2.1 Problem Statement

We will first define the system model studied through-
out this paper.

Definition 1 (Control System) A state feedback

control system ¥(X, U, f,K) consists of a plant, a con-

troller over X C R™ and U C R™.

1. X C R"is the state space of the system. The control
inputs belong to a set U defined as a polyhedron:

U={u| Au>b}. (5)

2. The plant consists of a vector field defined by a con-
tinuous and differentiable function f : X x U +— R™.

Hadi Ravanbakhsh, Sriram Sankaranarayanan

X:f(xru)

Fig. 3 Closed-loop state feedback system.

3. The controller measures the state of the plant x €
X and provides feedback u € U. The controller is
defined by a feedback function K : X — U (Fig. 3).

For now, we assume K is a smooth (continuous and
differentiable) function. For a given feedback law IC, an
execution trace of the system, starting from an initial
state x¢ is a function: x : [0,T(xg)) — X, which maps
time ¢ € [0, T(xg)) to a state x(t), such that

x(t) = f(x(t), K(x(1)))

where %(-) is the right derivative of x(-) w.r.t. time over
[0,T(x0)). Since f and K are assumed to be smooth,
there exists a unique trajectory for any xg, defined over
some time interval [0,7(xq)). Here T(xg) is oo if tra-
jectory starting from xq exists for all time. Otherwise,
T'(x0) is finite if the trajectory “escapes” in finite time.
For most of the systems we study, the closed loop dy-
namics are such that a compact set S will be positive
invariant. In fact, this set will be a sublevel set of a Lya-
punov function for the closed loop dynamics. This fact
along with the smoothness of f, K suffices to establish
that T'(x¢) = oo for all xo € S. Unless otherwise noted,
we will consider control laws K that will guarantee ex-
istence of trajectories for all time.

A specification describes the desired behavior of all
possible execution traces x(-). In this article, we study
a variety of specifications, including stability, trajectory
tracking, and safety. For simplicity, we first focus on sta-
bility. Extensions to other specifications are presented
in Section 6. Also, without loss of generality, we assume
x = 0 is the desired equilibrium. Moreover, f(0,0) = 0.

Problem 1 (Synthesis for Asymptotic Stability)
Given a plant, the control synthesis problem is to de-
sign a controller (a feedback law K) s.t. all traces x(-)
of the closed loop system ¥(X,U, f,K) are asymptoti-
cally stable. We require two properties for asymptotic
stability. First, the system is Lyapunov stable:

(Ve > 0)
(30 > 0)

()
(x(0> € 35(0)> (vt 2 0) x(t) € Be(0),

wherein Bs(x) C R™ is the ball of radius ¢ centered at
x. In other words, for any chosen € > 0, we may ensure

that the trajectories will stay inside a ball of e radius
by choosing the initial conditions to lie inside a ball of
0 radius.

Furthermore, all the trajectories converge asymp-
totically towards the origin:

(Ve > 0) (vx(-)) (3T > 0) (¥t > T) x(t) € Be(0).

IL.e., For any chosen € > 0, all trajectories will eventually
reach a ball of radius € around the origin and stay inside
forever.

Stability in our method is addressed through Lya-
punov analysis. More specifically, our solution is based
on control Lyapunov functions (CLF). CLFs were first
introduced by Sontag [87,88], and studied at the same
time by Artstein [6]. Sontag’s work shows that if a sys-
tem is asymptotically stablizable, then there exists a
CLF even if the dynamics are not smooth [88]. Now,
let us recall the definition of a positive and negative
definite functions.

Definition 2 (Positive Definite) A function V : R®
— R is positive definite over a set X containing 0, iff
V(0) =0 and V(x) > 0 for all x € X \ {0}.

Likewise, V is negative definite iff —V is positive
definite.

Definition 3 (Control Lyapunov Function(CLF))
A smooth, radially unbounded function V is a control
Lyapunov function (CLF) over X, if the following con-
ditions hold [6]:

V' is positive definite over X (6)
minyey (VV) - f(x,u) is negative definite overX ,

where VV is the gradient of V. Note that (VV) - f is
the Lie derivative of V according to the vector field f.

Another way of interpreting the second condition is that
for each x € X, a control u € U can be chosen to
ensure an instantaneous decrease in the value of V', as
illustrated in Fig. 4.

Solving Stabilization using CLFs: Finding a CLF
V' guarantees the existence of a feedback law that can
stabilize all trajectories to the equilibrium [6]. However,
constructing such a feedback law is not trivial and po-
tentially expensive. Further results can be obtained by
restricting the vector field f to be control affine:

Fow s o)+ 3), ™

wherein f; : X — R[X]". Assuming U : R™, Sontag
provides a method for extracting a feedback law K, for

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 5

Fig. 4 Control Lyapunov Function (CLF): Level-sets of a
CLF V are shown using the green lines. For each state (blue
dot), the vector field f(x,u) for u = K(x) is the blue arrow,
and it points to a direction which decreases V.

control affine systems from a control Lyapunov func-
tion [89]. More specifically, if a CLF V is available, the
following feedback law stabilizes the system:

0 B(x)=0
—bi () LIV B(x) 0,
where a(x) = VV.fo(x), bi(x) = VV.f;(x), and f(x) =
>oiny b} (x).

Remark 1 Feedback law K provided by the Sontag for-
mula is not necessarily continuous at the origin. Nev-
ertheless, such a feedback law still guarantees stabiliza-
tion. See [89] for more details.

Ki(x) = (®)

Sontag formula can be extended to systems with satu-
rated inputs where U is an n-ball [53] or a polytope [91].
Also switching-based feedback is possible, under some
mild assumptions (to avoid Zeno behavior) [22,77]. We
assume dynamics are affine in control and use these re-
sults which reduce Problem 1 to that of finding a control
Lyapunov function V.

2.2 Discovering CLF's

We briefly summarize approaches for discovering CLFs
for a given plant model in order to stabilize it to a
given equilibrium state. Efficient methods for discover-
ing CLFs are available only for specific classes of sys-
tems such as feedback linearizable systems, or for so-
called strict feedback systems, wherein a procedure called
backstepping can be used [28]. However, finding CLFs
for general nonlinear systems is challenging [73].

One class of solutions uses optimal control theory
by setting up the problem of stabilization as one of
minimizing a cost function over the trajectories of the
system. If the cost function is set up appropriately, then
the value function for the resulting dynamic program-
ming problem is a a CLF [73,12]. To do so, however,
one needs to solve a Hamilton-Jacobi-Bellman (HJB)

partial differential equation to discover the value func-
tion, which can be quite hard in practice[18]. In fact,
rather than solve HJB equations to obtain CLFs, it is
more common to derive a CLF using a procedure such
as backstepping and apply inverse optimality results to
derive cost functions [28].

A second class of solution is based on parameteriza-
tion. More specifically, a class of function V¢ (x) is pa-
rameterized by a set of unknown parameters c. This pa-
rameterization is commonly specified as a linear combi-
nation of basis functions of the form V¢ (x) : > ¢;9:(x).
Furthermore, the functions g; commonly range over all
possible monomials up to some prespecified degree limit
D. Next, an instantiation of the parameters c is discov-
ered so that the resulting function V' is a CLF. Un-
fortunately, discovering such parameters requires the
solution to a quantifier elimination problem, in gen-
eral. This is quite computationally expensive for nonlin-
ear systems. Previously, authors proposed a framework
which uses sampling to avoiding expensive quantifier
eliminations [78]. Despite the use of sampling, scala-
bility remains an issue. Another solution is based on
sum-of-squares relaxations [84,47,66], along the lines
of approaches used to discover Lyapunov functions [65].
However, discovering CLFs using this approach entails
solving a system of bilinear matrix inequalities [94,35].
In contrast to LMIs, the set of solutions to a BMIs form
a nonconvex set, and solving BMIs is well-known to
be computationally expensive, in practice. Rather than
solving a BMI to find a CLF, and then extracting the
feedback law from the CLF, an alternative approach is
to simultaneously search for a Lyapunov function V' and
an unknown feedback law at the same time [25,94,56].
The latter approach also yields bilinear matrix inequal-
ities of comparable sizes. Rather than seek algorithms
that are guaranteed to solve BMIs, a simpler approach
is to attempt to solve the BMIs using alternating min-
imization: a form of coordinate descent that fixes one
set of variables in BMI, obtaining an LMI over the re-
maining variables. However, these approaches usually
stuck in a local “saddle point”, and fail as a result [33].

Approaches that parameterize a family of functions
Ve(x) face the issue of choosing a family such that a
CLF belonging to that family is known to exist when-
ever the system is asymptotically stabilizable in the first
place. There is a rich literature on the existence of CLF's
for a given class of plant models. As mentioned earlier,
if a system is asymptotically stablizable, then there ex-
ists a CLF even if the dynamics are not smooth [88].
However, the CLF does not have to be smooth. Re-
cent results, have shown some light on the existence
of polynomial Lyapunov functions for certain classes of
systems. Peet showed that an exponentially stable sys-

Hadi Ravanbakhsh, Sriram Sankaranarayanan

tem has a polynomial local Lyapunov function over a
bounded region [67]. Thus, if there exists some feed-
back law that exponentially stabilizes a given plant, we
may conclude the existence of a polynomial CLF for
that system. This was recently extended to rationally
stable systems i.e., the distance to equilibrium decays
as o(t %) for trajectories starting from some set 2, by
Leth et al. [51]. These results do not guarantee that a
search for a polynomial CLF will be successful due to
the lack of a bound on the degree D. This can be ad-
dressed by increasing the degree of the monomials until
a CLF is found, but the process can be prohibitively ex-
pensive. Another drawback is that most approaches use
SOS relaxations over polynomial systems to check the
CLF conditions, although there is no guarantee as yet
that polynomial CLFs that are also verifiable through
SOS relaxations exist.

Another class of solutions involves approximate dy-
namic programming to find approximations to value
functions [13]. The solutions obtained through these ap-
proaches are not guaranteed to be CLF's and thus may
need to be discarded, if the final result does not satisfy
the conditions for a CLF. Approximate solutions are
also investigated through learning from demonstrations
[106]. Khansari-Zadeh et al. learn a CLF from demon-
strations through a combination of sampling states and
corresponding feedback provided by the demonstrator.
A likely CLF is learned through parameterizing a class
of functions V¢(x), and finding conditions on ¢ by en-
forcing the conditions for the CLFs at the sampled
states [83]. The conditions for being a CLF should be
checked on the solution obtained by solving these con-
straints.

Compared to the techniques described above, the
approach presented in this paper is based on param-
eterization by choosing a class of functions V¢(x) and
attempting to find a suitable ¢ € C' so that the result is
a CLF. Our approach avoids having to solve BMIs by
instead choosing finitely many sample states, and using
demonstrator’s feedback to provide corresponding sam-
ple controls for the state samples. However, instead of
choosing these samples at random, we use a verifier to
select samples. Furthermore, our approach can also sys-
tematically explore the space of possible parameters C'
in a manner that guarantees termination in number of
iterations polynomial in the dimensionality of C' and x.
The result upon termination can be a guaranteed CLF
V or failure to find a CLF among the class of functions
provided.

3 Formal Learning Framework

As mentioned earlier, finding a control Lyapunov func-
tion is computationally expensive, requiring the solu-
tion to BMIs [94] or hard non-linear constraints [77].
The goal is to search for a solution (CLF) over a hy-
pothesis space. More specifically, a CLF is parameter-
ized by a set of unknown parameters ¢ € C' (C' C R").
The parameterized CLF is shown by V.. And the goal
is to find c € C s.t.

V. is positive definite)
mingey VVe.f(x,u) is negative definite.

A standard approach is to choose a set of basis func-
tions ¢1,...,9r (g; : X — R) and search for a function
of the form

Velx) = 3 ja(x) (10)

Remark 2 The basis functions are chosen s.t. V. is ra-
dially unbounded and smooth, independent of the co-
efficients.

As mentioned earlier, the learning framework has
three components: a demonstrator, a learner, and a ver-
ifier (see Fig. 2). The demonstrator inputs a state x and
returns a control input u € U, that is an appropriate
“instantaneous” feedback for x. Formally, demonstrator
is a function D : X — U.

Remark 3 (Demonstrator) The demonstrator is treated
as a black box. This allows to use a variety of ap-
proaches ranging from trajectory optimization [105],
human expert demonstrations [83], and sample-based
methods [50,45], which can be probabilistically com-
plete. While the demonstrator is presumed to stabilize
the system, our method can work even if the demon-
strator is faulty. Specifically, a faulty demonstrator in
worst case, may cause our method to terminate without
having found a CLF. However, if a CLF is found by our
approach, it is guaranteed to be correct.

The formal learning procedure receives inputs:

1. A plant described by f
2. A “black-box” demonstrator function D : X +— U
3. A set of basis functions g1,...,¢g, to form the hy-

pothesis space Ve(x) : D" ¢jg; (%),
and either (a) outputs a ¢ € C' s.t. Ve(x) : c' - g(x) is a

CLF (Eq. (9)); or (b) declares FAILURE: no CLF could
be discovered.

The goal of this framework is to find a CLF from a
finite set of queries to a demonstrator.

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 7

Definition 4 (Observations) We define a set of ob-
servations O as

O:{(X17u1)7~'~7(xj7uj)}CXXU7

where u; is the demonstrated feedback for state x;, i.e.,
u; : D(x;). Further, we will assume that x; # 0.

Definition 5 (Observation Compatibility) A func-
tion V is said to be compatible with a set of observa-
tions O iff V' respects the CLF conditions (Eq. (6)) for
every observation in O:

B Vi(xi) >0A
vy =on A (Vv-f(Xi,Ui) <0> '

(xi7ui)€Oj

We note that observation compatible functions need
not necessarily be a CLF, since they may violate the
CLF condition for some state x that is not part of an
observation in O. On the flip side, not every CLF (sat-
isfying the conditions in Eq. (6)) will necessarily be
compatible with a given observation set O.

Definition 6 (Demonstrator Compatibility) A
function V is said to be compatible with a demonstrator
D iff V respects the CLF conditions (Eq. (6)) for every
observation that can be generated by the demonstrator:

V(0) = 0 /\Vx;ﬁO(Vx) >0)

VV - f(x,D(x)) <0

In other words, V' is a Lyapunov function for the closed
loop system ¥(X, U, f, D).

Now, we describe the learning framework. The frame-
work consists of a learner and a verifier. The learner
interacts with the verifier and the demonstrator. The
framework works iteratively and at each iteration j the
learner maintains a set of observations

Oj : {(xl,ul),...,(xj,uj)} cXxU.

Corresponding to O;, C; C C is defined as a set of
candidate unknowns for function V;(x). Formally, C; is
a set of all ¢ s.t. V¢ is compatible with O;:

Ve(0) =0 A
Cji ceC /\ ‘/;(Xi)>0/\
V‘/:: . f(xi,ui) <0

(xisu,) €0,
(11)

The overall procedure is shown in Fig. 5. The pro-
cedure starts with an empty set Oy = () and the cor-
responding set of compatible function parameters C :
{c € C' | V¢(0) = 0}. Each iteration j (starting from
j = 1) involves the following steps:

FINDCANDIDATE(O;_1) |

0 CANDIDATE

Output: fail

0 « 01 U{(xj,u;)} |

Fig. 5 Visualization of the learning framework

1. FINDCANDIDATE: The learner checks if there exists

a V. compatible with O;_;.

(a) If no such c exists, the learner declares failure
(Cj—1=10).

(b) Otherwise, a candidate ¢; € Cj_; is chosen and
the corresponding function V¢, (x) : c;.g(x) is
considered for verification.

2. VERIFY: The verifier oracle tests whether V¢, is a

CLF (Eq. (9))

(a) If yes, the process terminates successfully (V,
is a CLF)

(b) Otherwise, the oracle provides a witness x; # 0
for the negation of Eq. (9).

3. UPDATE: Using the demonstrator u; : D(x;), a new
observation (x;,u;) is added to the training set:

0 : Oj—1U{(x,u;)} (12)
. Ve(x;) >0 A
Cj : Cj,1 n {C | VVC) f(Xj,U.j) < O} . (13)

Theorem 1 The learning framework as described above
has the following property:

1. ¢; € Cj. Le., the candidate found at the gt step is
eliminated from further consideration.

2. If the algorithm succeeds at iteration j, then the out-
put function Ve, is a valid CLF for stabilization.

3. The algorithm declares failure at iteration j if and
only if no linear combination of the basis functions
is a CLF compatible with the demonstrator.

Proof 1) Suppose that ¢; € C;. Then, c; satisfies the
following conditions (Eq. (13)):

Ve, (xj) >0 A VV, - f(xj,u5) <O0.

However, the verifier guarantees that c; is a counterex-
ample for Eq. (6). Le.,

Ve, (x;) <0V VVe, - f(xj,u5) >0,

which is a contradiction. Therefore, c; & C;.

Hadi Ravanbakhsh, Sriram Sankaranarayanan

2) The algorithm declares success if the verifier could
not find a counterexample. In other words, V¢, satisfies
conditions of Eq. (6) and therefore a CLF.

3) The algorithm declares failure if C'; = (). On the
other hand, by definition, C; yields the set of all ¢ s.t. V¢
(which is linear combination of basis functions) is com-
patible with the observations O;. Therefore, C; =
implies that that no linear combination of the basis
functions is compatible with the O; and therefore com-
patible with the demonstrator.

One possible choice of basis functions involves mono-
mials g;(x) : x% wherein |a;|; < Dy for some degree
bound Dy for the learning concept (CLF). Inverse re-
sults suggest polynomial basis for Lyapunov functions
are expressive enough for verification of exponentially
stable, smooth nonlinear systems over a bounded re-
gion [68]. This, justifies using polynomial basis for CLF.

In the next two section we present implementations
of each of the modules involved, namely the learner and
the verifier.

4 Learner

Recall that the learner needs to check if there exists
a ¢ s.t. V¢ is compatible with the observation set O
(Definition 5). In other words, we wish to check

(BeeC) V(@ =0n A (V‘Z:-()}i(i(il(l)i)/L 0) '

(xi,u;)€EO

Note that each function V(x;) : ¢'-g(x;) in our hypoth-
esis space, is linear in c. Also, VV¢.f(x;,u;) is linear in
c:
VVef(xiywi) = Y ex Ve (xi).f(xi, 1) -

k=1

The (initial) space of all candidates C' is assumed to
be a hyper-rectangular box, and therefore a polytope.
Let ﬁ] represent the topological closure of the set C;
obtained at the j" iteration (see Eq. (11)).

Lemma 1 For each j > 0, @ s a polytope.

Proof We prove by induction. Initially C' is an hyper-
rectangular box. Also, Cy : C' N Hy, where

Hy={c | Ve(0) = crgi(0) =0}
k=1

As Ve islinearin ¢, Hy : {c | af.c = by} is a hyper-plane,
where ag and by depend on the values of, g,(0) (k =
1,...,7). And Cy would be intersection of a polytope
and a hyper-plane, which is a polytope. Now, assume

C;_1 is a polytope. Recall that C; is defined as Cj :
C;—1 N H; (Eq. (13)), where

{c | > et (cr gr(x5)) >0 A }
k=1 (cr Var(x)) - f(x,05)) <0 f

Notice that f(x;,u;), gk(x;), and Vgg(x;) are constants
and

Hj!

Hj :Hjlﬂng
Hji {c|al.c>bj1}

={c| > (er gr(x;)) > 0}
k=1
Hjs {c | a§-2.c > bjo}

= {c| > (cr Vgr(x;) - f(x;,1;)) <0}

k=1

Therefore, C; is intersection of a polytope (C;_1) and
two half-spaces (H;) which yields another polytope.

The learner should sample a point ¢; € Cj_; at 4t
iteration, which is equivalent to checking emptiness of
a polytope with some strict inequalities. This is solved
using slight modification of simplex method, using in-
finitesimals for strict inequalities, or using interior point
methods [100]. We will now demonstrate that by choos-
ing c; carefully, we can guarantee the polynomial time
termination of our learning framework.

4.1 Termination

Recall that in the framework, the learner provides a
candidate and the verifier refutes the candidate by a
counterexample and a new observation is generated by
the demonstrator. The following lemma relates the sam-
ple c; € C;_; at the jt" iteration and the set Cj in the
subsequent iteration.

atc > b such

and (b)

Lemma 2 There exists a half-space H} :
that (a) c; lies on boundary of hyperplane H,
Cj - Cj_l N HJ*

Proof Recall that we have ¢; € Cj_; but ¢; € C; by
Theorem 1. Let ﬁj calc = b be a separating hyper-
plane between the (convex) set C; and the point c;,
such that C; C {c | a’c > b}. By setting the offset
b : a'cj, we note that b < b. Therefore, by defining
HY as alc > b, we obtain the required half-space that
satisfies conditions (a) and (b).

While sampling a point from C;_; is solved by solv-
ing a linear programming problem, Lemma. 2 suggests
that the choice of c; governs the convergence of the al-
gorithm. Figure. 6 demonstrates the importance of this

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 9

choice by showing candidate c;, hyperplanes H;; and
ng and Cj.

For a faster termination, we wish to remove a “large
portion” of C_; to obtain a “smaller” C;. There are
two important factors which affect this: (i) counterex-
ample x; selection and (ii) candidate c; selection. Coun-
terexample x;, would affect u; : D(x;), g(x;), and
f(x;,u;) and therefore defines the hyper-planes Hjy
and Hjs. On the other hand, candidate c; ¢ C;. We
postpone discussion on the counterexample selection to
the next section, and for the rest of this section we
focus on different techniques to generate a candidate
C; € ijl'

The goal is to find a c; s.t.

VOI(CJ) < CkVOl(ijl), (14)

for each iteration j and a fixed constant 0 < a <
1, independent of the hyperplanes H;; and Hj. Here
Vol(C;) represents the volume of the (closure) of the set
C;. Since closure of C} is contained in C' which happens
to be compact, this volume will always be finite. Note
that if we can guarantee Eq. (14), it immediately fol-
lows that Vol(C;) < a/Vol(Cy). This implies that the
volume of the remaining candidates “vanishes” rapidly.

Remark 4 By referring to Vol(C}), we are implicitly as-
suming that C; is not embedded inside a subspace of
R", i.e., it is full-dimensional. However, this assumption
is not strictly true. Specifically, Cy : C' N Hy, where Hy
is a hyper-plane. Thus, strictly speaking, the volume of
Cpy in R” is 0. This issue is easily addressed by first fac-
toring out the linearity space of Cy, i.e., the affine hull of
Cy. This is performed by using the equality constraints
that describe the affine hull to eliminate variables from
Cp. Subsequently, Cy can be treated as a full dimen-
sional polytope in R"~% | wherein d; is the dimension
of its linearity space.

Furthermore, since C; € Cp, we can continue to
express C; inside R"~% using the same basis vectors
as Cp. A further complication arises if C; is embedded
inside a smaller subspace. We do not treat this case in
our analysis. However, note that this can happen for at
most r iterations and thus, does not pose a problem for
the termination analysis.

Intuitively, it is clear from Figure 6 that a candidate
at the center of C;_; would be a good one. We now
relate the choice of c; to an appropriate definition of
center, so that Eq. (14) is satisfied.

Center of Maximum Volume Ellipsoid Maximum
volume ellipsoid (MVE) inscribed inside a polytope is
unique with many useful characteristics.

Fig. 6 Search space: Original candidate region C; (green) at
the start of the j" iteration, the candidate c;, and the new
region Cj41 (hatched region with blue lines).

IR ij'l

Fig. 7 Search Space: Original candidate region C;_1 (C;)
is shown in blue (green) polygon. The maximum volume el-
lipsoid E;_1 (E;) is inscribed in Cj_1 (C;) and its center is
the candidate c¢; (cj4+1).

Theorem 2 (Tarasov et al.[95]) Let c; be chosen as
the center of the MVE inscribed in Cj_1. Then,

%MQ)§<1_i>WMC%ﬁ-

Recall, here that r is the number of basis func-
tions such that Cj_; € R". This leads us to a scheme
that guarantees termination of the overall procedure in
finitely many steps under some assumptions. The idea
is simple. Select the center of the MVE inscribed in
Cj;_1 at each iteration (Fig. 7).

Let C C (—A, A)" for A > 0. Furthermore, let us
additionally terminate the procedure as having failed
whenever the Vol(C;) < (26)" for some arbitrarily small
0 > 0. This additional termination condition is easily
justified when one considers the precision limits of float-
ing point numbers and sets of small volumes. Clearly,
as the volume of the sets C; decreases exponentially,
each point inside the set will be quite close to one that
is outside, requiring high precision arithmetic to repre-
sent and sample from the sets C;.

Theorem 3 If at each step c; is chosen as the center
of the MVE in C;j_1, the learning loop terminates in at
most

7(log(A) —log(0))
—log (1-3)

= O(r?) iterations.

10

Hadi Ravanbakhsh, Sriram Sankaranarayanan

Proof Initially, Vol(Cy) < (24)". Then by Theorem 2
1. 1.
Vol(C;) < (1 —=)? Vol(Cp) < (1 —=)"(24)"
r r

= log (Y;gﬁy) <7 log(1l— %)

After k = %ﬂoggé))

Vol(C;) _ r(log(A) — log(9))
‘o (@24)" > ST log(l- 1)
and

— log (Y‘;ﬁ?ﬂ) < rlog (Z)
— log (\/Z;IZC)?)) < rlog (222)
= log(Vol(Cy)) < log((26)").

And it is concluded that Vol(Cy) < (26)", which is the
termination condition. And asymptotically — log(1— %)
is £2() (can be shown using Taylor expansion as r —
oo) and therefore, the maximum number of iterations

would be O(r?).

iterations:

1
log(1 — =
og(r),

However, checking the termination condition is com-
putationally expensive as calculating the volume of a
polytope is #P hard, i.e., as hard as counting the num-
ber of solutions to a SAT problem. One solution is to
first calculate an upper bound on the number of it-
erations using Theorem 3, and stop if the number of
iterations has exceeded the upper-bound.

A better approach is to consider some robustness
for the candidate.

Definition 7 (Robust Compatibility) A candidate
c is d-robust for ¢ > 0 w.r.t. observations (demonstra-
tor), iff for each ¢ € Bs(c), Ve : ¢ - g(x) is compatible
with observations (demonstrator) as well.

Let E; be the MVE inscribed inside C; (Fig. 7).
Following the robustness assumption, it is sufficient to
terminate the procedure whenever:

Vol(E;) < ~d", (15)
where y is the volume of r-ball with radius 1.

Theorem 4 ([95,42]) Let c; be chosen as the center
of Ej_1. Then,

Vol(E;) < (2) Vol (Bj_1) .

Theorem 5 If at each step c; is chosen as the center

of Ej_1, the learning loop condition defined by Eq. (15)

is violated in at most

r(log(4) —log(9))
—log (5)

= O(r) iterations.

Proof Initially, Ba(0) is the MVE inside box [—A, A]"
and therefore, Vol(Ey) < yA". Then by Theorem 2

Vol(E;) < (S)j Vol(Ey) < (%)HAT
= log(Vol(E})) — log(yA") < j log(g).

After k = 108(2)—108(9)) it orations:
- 10g(§)

rllog(4) ~log(@)) |8

log(Vol(E})) —log(yA") < “log(®) 9

and

= log(Vol(E})) — log(vA") < r(log(0) — log(4))
= log(Vol(Ey)) — log(vA") < log(76") — log(vA")
= log(Vol(Ey)) < log(~d") .

It is concluded that Vol(E)) < +¢", which is the ter-
mination condition. And asymptotically the maximum
number of iterations would be O(r).

Volume of an ellipsoid is effectively computable and
thus, such termination condition can be checked easily.
Also, the convergence rate is linear in r as opposed to
r2, when the robustness is not guaranteed.

Theorem 6 The learning framework either finds a con-
trol Lyapunov functions or proves that no linear combi-
nation of the basis function would yield a function with
robust compatibility with the demonstrator.

Proof By Theorem 1, if verifier certifies correctness of
a solution V', then V is a CLF. Assume that the frame-
work terminates after k iterations and no solution is
found. Then, by Theorem 3, Vol(E}) < v4". This means
that a ball with radius § would not fit in C}, as FEj is
the MVE inscribed inside Cj. In other words

(Ve e C) (3¢ € Bs(c)) ¢ € C .

On the other hand, for all ¢ &€ Cf, V. is not compatible
with the observations O;. Therefore, even if there is
a CLF V; s.t. ¢ € (%, the CLF is not robust in its
compatibility with the demonstrator.

The MVE itself can be computed by solving a convex
optimization problem[95,99].

Other Definitions for Center of Polytope: Beside
the center of MVE inscribed inside a polytope, there are
other notions for defining center of a polytope. These in-
clude the center of gravity and Chebyshev center. Cen-
ter of gravity provides the following inequality [14]

e

Vol (C;) < (1 - 1) Vol (C;) < 0.64 Vol(C;_1) ,

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 11

meaning that the volume of candidate set is reduced
by at least 36% at each iteration. Unfortunately, cal-
culating center of gravity is very expensive. Chebyshev
center [26] of a polytope is the center of the largest
Euclidean ball that lies inside the polytope. Finding a
Chebyshev center for a polytope is equivalent to solving
a linear program, and while it yields a good heuristic, it
would not provide an inequality in the form of Eq. (14).

There are also notions for defining center for a set
of constraints, including analytic center, and volumetric
center. Assuming C : {c | A\; al.c < b;}, then analytic
center for \; al.c < b; is defined as

ac(/\ al.c < b;) = argmin — Z log(b; — al.c).

Notice that infinitely many inequalities can represent
C and any point inside C' can be an analytic center
depending on the inequalities. Atkinson et al. [8] and
Vaidya [98] provide candidate generation techniques,
based on these centers , along with appropriate termi-
nation conditions and convergence analysis.

5 Verifier

The verifier checks the CLF conditions in Eq. (9) for
a candidate V¢, (x) : ¢} - g(x). Since the CLF is gener-
ated by the learner, it is guaranteed that V., (0) = 0
(Eq. (11)). Accordingly, verification is split into two
separate checks:

(A) Check if V¢, (x) is a positive polynomial for x # 0,
or equivalently:

(Ax#0) V,(x) <0. (16)

(B) Check if the Lie derivative of V., can be made
negative for each x # 0 by a choice u € U:

(Fx #0) (VuecU) (VVe,)- f(x,u) > 0. (17)

This problem seems harder due to the presence of a
quantifier alternation.

Lemma 3 Fq. (17) holds for some x # 0 iff

(3x#0,0) A>0,\b > —VV, . fo(x)

AN =TV fix)ie (1...m)). 18

Proof Suppose Eq. (17) holds. Then, for the given V,
there exists a x # 0 s.t.

vV . fo(X)+
>0, (19)

(ueU) VV-fxu) = | S gy pio |2
=1

which is equivalent to:

(Bu)Au>bAVV - fo(x)+ > VV - fi(x)u; <0.

i=1
This yields a set of linear inequalities (w.r.t. u). Using
Farkas lemma, this is equivalent to

(A > 0)AN = VV - fi(x)(i € {1..m})
A'b > —VV - fo(x).

Thus, for a given V| Eq. (17) is equivalent to Eq. (18).

The verifier needs to check Eq. (16) and Eq. (18).
This problem is in general undecidable if the basis func-
tions include trigonometric and exponential functions.
However, d-decision procedures can solve these prob-
lems approximately [31]. In our experience, d-decision
procedures do not scale as verifiers for the range of
benchmarks we wish to tackle. Nevertheless, these solvers
allow us to conveniently implement a verifier for small
but hard problems involving rational and trigonometric
functions.

Assuming that the dynamics and chosen bases are
polynomials in x, the verification problem reduces to
checking if a given semi-algebraic set defined by poly-
nomial inequalities is empty. The verification problem
for polynomial dynamics and polynomial CLFs is decid-
able with a high complexity (NP hard) [9]. Exact ap-
proaches using semi-algebraic geometry [17] or branch-
and-bound solvers (including the dReal approach cited
above) can tackle this problem precisely. However, for
scalability, we consent to a relaxation using SDP solvers.
We now present a relaxation using semidefinite pro-
gramming (SDP) solvers.

5.1 SDP Relaxation

Let w : [x, A] collect the state variables x and the dual
variables A involved in the conditions stated in (18).
The core idea behind the SDP relaxation is to consider
a vector collecting all monomials of degree up to D:

1
w1
m: (1] s
wP
wherein D is chosen to be at least half of the maximum
degree in x among all monomials in g;(x) and Vg; -

fi (X)Z

D> %maX U <{deg(gj)} U {U deg(Vy; - fi)}>

J

12

Hadi Ravanbakhsh, Sriram Sankaranarayanan

Let us define Z(w) : mm?, which is a symmetric matrix
of monomial terms of degree at most 2D. Each polyno-
mial of degree up to 2D may now be written as a trace
inner product

p(x,A): (P, Z(w)) = trace(PZ(w)),

wherein the matrix P has real-valued entries that de-
fine the coeflicients in p corresponding to the various
monomials. Although, Z is a function of x and A, we
will write Z(x) as a function of just x to denote the
matrix Z([x,0]) (i.e., set A = 0).

Checking Eq. (16) is equivalent to solving the fol-
lowing optimization problem over x

maxx (I, Z(x))
st Ve, 2(x)) <0, (20)
wherein [is the identity matrix, and V, (x) is written in
the inner product form as (Ve,, Z(x)). Let (A, Z(w))
represent the variable A;. A is represented as vector
A(Z(w)), wherein the k*" element is (A}, Z(w)). Then,
the conditions in (18) are now written as

maxy (I, Z(w))
st. (Fe,i, Z(w)) = ALA(Z(w)), i € {1,...,m}
(=Fe,0. Z(w)) < b A(Z(w))
A(Z(w)) =0,
(21)

wherein the components VV¢, - fi(x) defining the Lie
derivatives of V¢, are now written in terms of Z(w)
as (F, i, Z(w)). Notice that Z(0) is a square matrix
where the first element (Z(0)q,1) is 1 and the rest of
the entries are zero. Let Zy = Z(0) . Then (I, Zp) = 1,
and (Yw) Z(w) = Z,.

The SDP relaxation is used to solve these prob-
lems and provide an upper bound of the solution and
D defines the degree of relaxation [34]. The relaxation
treats Z(w) as a fresh matrix variable Z that is no
longer a function of w. The constraint Z = Z; is added.
Z(w) : mm® is a rank one matrix and ideally, Z should
be constrained to be rank one as well. However, such a
constraint is non-convex, and therefore, will be dropped
from our relaxation. Also, constraints involving Z(w)
in Egs. (20) and (21) are added as support constraints
(cf. [47,48,34]). Both optimization problems (Egs.(20)
and (21)) are feasible by setting Z to be Zy. Further-
more, if the optimal solution for each problem is 1 in the
SDP relaxation, then we will conclude that the given
candidate is a CLF. Unfortunately, the converse is not
necessarily true: the relaxation may fail to recognize
that a given candidate is in fact a CLF.

Lemma 4 Whenever the relaxed optimization problems
in Egs. (20) and (21) yield 1 as a solution, then the
given candidate V¢, (x) is in fact a CLF.

Proof Suppose that Ve, is not a CLF but both opti-
mization problems yield an optimal value of 1. Then,
one of Eq. (16) or Eq. (17) is satisfied. L.e. (Ix* #
0,* > 0) s.t. Ve, (x*) <0 or AIN* = VV,.fi(x*)(i €
{1...m}),*'b > —VVq,.fo(x*). Let w* = [x*, *]
and therefore Z(w*) = Zj is a solution for Eq. (20)
or Eq. (21). Let Z' = Z(x*) — Zy. As w* # 0, Z’ has
a non-zero diagonal element, and since Z’ = 0, we may
also conclude that one of the eigenvalues of Z’ must be
positive. Therefore, (I, Z’) > 0 as the trace of Z' is the
sum of eigenvalues of Z'. Thus, (I, Z(w)) > (I, Zy) = 1.
Thus, the optimal solution of at least one of the two
problems has to be greater than one. This contradicts
our original assumption.

However, the converse is not true. It is possible for
Z = Zy to be optimal for either relaxed condition, but
Z # Z(w) for any w. This happens because (as men-
tioned earlier) the relaxation drops two key constraints
to convexify the conditions: (1) Z has to be a rank one
matrix written as Z : mm? and (2) there is a w such
that m is the vector of monomials corresponding to w.

Lemma 5 Suppose Eq. (21) has a solution Z # Z,
then

m

i=1

Proof While in the relaxed problem, the relation be-
tween monomials are lost, each inequality in Eq. (21)
holds. Let A = A(Z). Then, we have:

<ch,¢,Z> = Afj\, ie{l,...,m}
<7FC_7’707Z> S bt}\7 5\ 2 0.

Similar to Lemma. 3 (using Farkas Lemma) this is equiv-
alent to

m
(Vu€eU) (Fe,0,2)+ > (Fe,i Z)ui > 0.
=1

5.2 Lifting the Counterexamples

Thus far, we have observed that the relaxed optimiza-
tion problems (Eqgs. (20) and (21)) yield matrices Z as
counterexamples, rather than vectors x. Furthermore,
given a solution Z, there is no way for us to extract a
corresponding x for reasons mentioned above. We solve

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 13

this issue by “lifting” our entire learning loop to work
with observations of the form:

Oj : {(Z17u1)7""(Zj’uj)}7

effectively replacing states x; by matrices Z;.

Also, each basis function gx(x) in g is now writ-
ten instead as (G, Z). The candidates are therefore,
> i1k (Gy, Z). Likewise, we write the components of
its Lie derivative Vg f; in terms of Z ({Gy;, Z)). There-
fore

T T
Ve=> eGi, Fei=_ cxGhi-
k=1 k=1

Definition 8 (Relaxed CLF) A polynomial function
Ve(x) = Y1y crgr(x), s.t. (Ve, Zy) = 0 is a D-relaxed
CLF iff for all Z # Zy:

(22)

Ve, Z) >0 A

(FueU) (Fog, Z)+ ™ (Fou, Z) < 0. (23)

Theorem 7 A relaved CLF is a CLF.

Proof Suppose that V; is not a CLF. The proof is com-
plete by showing that V7 is not a relaxed CLF. If V. (0) #
0, then (Ve, Zy) # 0 and V¢ is not a relaxed CLF. Oth-
erwise, according to Eq. (6) there exists a x # 0 s.t.

Ve(x) <0V VuelU) Vie.f(x,u) >0.
Therefore, there exists x # 0 s.t.

Ve, Z(x)) <0V

(Vu € U) (Feo, Z(x)) + > (Feir Z(x))u; > 0.

Setting Z : Z(x) shows that V¢ is not a relaxed CLF,
since the negation of Eq. (23) holds.

We lift the overall formal learning framework to
work with matrices Z as counterexamples using the fol-
lowing modifications to various parts of the framework:

1. First, for each (Z;,u;) in the observation set, Z;
is the feasible solution returned by the SDP solver
while solving Egs. (21) and (20).

2. However, the demonstrator D requires its input to
be a state x € X. We define a projection operator
7 : ¢ — X mapping each Z to a state x : w(Z), such
that the demonstrator operates over w(Z;) at each
step. Note that the vector of monomials m used
to define Z from x includes the degree one terms
r1,...,ZTn. The projection operator simply selects
the entries from Z corresponding to these variables.
Other more sophisticated projections are also pos-
sible, but not considered in this work.

3. The space of all candidates C' remains unaltered ex-
cept that each basis polynomial is now interpreted
as g; : (G4, Z) and similarly for the Lie derivative
(Vg;)- f(x,u). Thus, the learner is effectively unal-
tered.

Definition 9 (Relaxed Observation Compatibil-
ity) A polynomial function V; is said to be compatible
with a set of D-relaxed-observations O iff V. respects
the D-relaxed CLF conditions (Eq. (6)) for every point
in O:

<Vc, Z0> =0A

/\ (<Vc, Zk> >0 A >

FC 5 Z ni FC 79 Z 7 0)
(Zuk)€0; (Foo, Zi) + 2im (Fesis Zie) ki <
Definition 10 (Relaxed Demonstrator Compat-
ibility) A polynomial function V. is said to be com-
patible with a relaxed-demonstrator D o 7 iff V. re-
spects the D-relaxed CLF conditions (Eq. (6)) for ev-
ery observation that can be generated by the relaxed-
demonstrator:

Ve, Zo) =0 A
VZ = Zo, Z # Zo)
Ve, Z) >0 A
(<Fc,07 Z)+ 355 (Fei, Z) D(n(Z)); < 0) '
In other words, V¢ is a relaxed Lyapunov function for
the closed loop system ¥ (X, U, f,D o).

Theorem 8 The adapted formal learning framework
terminates and either finds a CLF V, or proves that
no linear combination of basis functions would yield
a CLF, with robust compatibility w.r.t. the (relaxed)
demonstrator.

Proof C;_; represents all ¢ s.t. V¢ is compatible with
relaxed-observation O;_1. Still V. and F¢ ; are linear in
c (Eq. (22)), and therefore C;j_; which is the set of all
ceC s.t.

(Ve, Zo) =0 A
/\ (<VC,Zk> >0 A > ,
Zenun)e0; 1 \ Doiet (Fegir Zie) i + (Fe0, Zi) <0

is a polytope (similar to Lemma 1). Suppose, at j**
iteration, Ve, : c?.g is generated by the learner. The
relaxed verifier solves Egs. (20) and (21). If the optimal
solution for these problems are 1, by Lemma 4, V, is
a CLF. Otherwise, it returns a counterexample Z; >
Zy and Z; # Zy. More over, according to Egs. (20)
and (21) and Lemma 5:

<ch7Zj> <0V

m

i=1

14

Hadi Ravanbakhsh, Sriram Sankaranarayanan

In other words, V¢, is not a D-relaxed CLF. Next, the
demonstrator generates a proper feedback for 7(Z;) and
observation (Z;, D(w(Z;))) is added to the set of obser-
vations. Notice that V., does not respect the D-relaxed
CLF conditions for (ZJ.-7D(7T(Z]-))). Le.

<VC.7”ZJ'> <0V

(Fey0, Z3) + 3 (Feyis Z;) D(r(Z3))i > 0.
i=1

Therefore, the new set C'; does not contain c;. Now, the
learner uses the center of maximum volume ellipsoid, to
generate the next candidate. This process repeats and
the learning procedure terminates in finite iterations.
When the algorithm returns with no solution, it means
that Vol(C;) < ~44”. Similar to Theorem 6, this guaran-
tees that no ball of radius ¢ fits inside C';, which repre-
sents the set of all linear combination of basis functions,
compatible with the relaxed observations. Therefore, no
linear combination of basis functions would yield a CLF
with robust compatibility with the relaxed observation
and therefore with the relaxed-demonstrator.

In the rest of this paper, we use CLF for discussions.
Nevertheless, the same results can be applied to relaxed
CLF as well.

5.3 Counterexamples Selection

As discussed earlier, in Section 4, there are two impor-
tant factors that affect the overall convergence rate of
the learning framework: (a) the choice of a candidate
c; € Cj_; and (b) the choice of a counterexample x;
that shows that the current candidate V¢, is not a CLF.
We will now discuss the choice of a “good” counterex-
ample.

As mentioned, when there is a counterexample x;
for Ve, there are two half spaces Hj : {c | a};.c > bj1},
and Hjp : {c | aly.c > bjp} such that C; : Cj_1 N
Hj1 N Hjs. In particular, c; € C}, yields the following
constraints over c;:
a§1.cj < bjl \Y a§-2.cj < ij . (24)
In general, the counterexample affects the coefficients
of the half-spaces aj;,b; for | € {1,2}. To wit, the
counterexample x; defines values for u; : D(x;), g:(x;),
fi(x,u;), which in turn, define Hj; and Hjs. Thus, a
good counterexample should “remove” as large a set as
possible from C;_;. Looking at Eq. (24), it is clear that
aﬁ-l.cj — bj; would measure how “far away” the coun-
terexample is from the boundary of the half-space Hj;,
assuming that ||aj;|| is kept constant. As proposed in

our earlier work [77], one could find a counterexam-
ple that maximizes these quantities, so that a “good”
counterexample can be selected. For checking (16), the
verifier finds a counterexample x that maximizes a slack
variable v s.t.

Vc_j (X) S 7’)/7

and for the second check (18), the slack variable v is
introduced and maximized as follows:

A=y A NAXN=VVL, - fi(x) A
=1

Ab > —VVe, - fo(x)+7.

As such, we cannot prove improved bounds on the
number of iterations to terminate using this approach.
However, we do, in fact, see a significant decrease in the
number of iterations by adding an objective function to
the selection of the counterexample.

6 Specifications

In previous sections, the problem of finding a CLF was
discussed. However, the concept can be extend to other
Lyapunov-like arguments that are useful for specifica-
tions such as reach-while-stay, and safety. In this sec-
tion, some of these specifications are addressed.

6.1 Local Lyapunov Function

Many nonlinear systems are only locally stabilizable,
especially in presence of input saturation. Therefore, we
wish to study stabilization inside a compact set S. Let
int(R) be the interior of set R. We consider a compact
and connected set S C X where the origin 0 € int(S)
is the state we seek to stabilize to. Furthermore, we
restrict the set S to be a basic semi-algebraic set defined
by a conjunction of polynomial inequalities:

S:{xeR"|psi(x)<0,...,psx(x) <0}.

The stabilization problem can be reduced to the
problem of finding a local CLF V which respect the
following constraints

V(0)=0
(vx e S\ {0}) V(x) >0 (25)
(vx e S\ {0}) Buel) VV- f(x,u) <0.

Given a function V and a comparison predicate x€ {=
, <, <, >, >}, we define V™7 as the set:

VP = {x|V(x) x B} .

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 15

Let £* be maximum J s.t. V=# C S. Having a CLF V,
it guarantees that there is a strategy to keep the state
inside V<8, and stabilize to the origin (Fig. 4).

Theorem 9 Given a control affine system W, where
U : R™ and a polynomial control Lyapunov function
V' satisfying Eq. (25), there is a feedback function K
for which if xg € V<F", then:

1. (vt >0) x(t)e S

2. Ve>0) (AT >0) ||x(T)—0] <e.

Proof First, using Sontag results, there exists a feed-
back function K* s.t. while x € S, then %/ =VV.
f(x,u) < 0 [89]. Assuming x(0) = xo € V<F" C §,
then initially V(x(0)) < B*. Now, assume the state
reaches 0S at time to. By continuity, there is a time
t; <ty st x(t1) € (V<) and (Vt € [0,t1]) x(t) € S.
Thus, V(x(t1)) = f* and

Vi) = (Vo) + [at) < visio).

This means V(x(t1)) < B*, which is a contradiction.
Therefore, the state never reaches 0S5 and remains in
int(S) forever.

V would be a Lyapunov function for the closed loop
system when the control unit is replaced with the feed-
back function K* and using standard results in Lya-
punov theory (Ve > 0) (3T > 0) ||x(T) —0|| < e.

Finding a local CLF is similar to finding a global one.
One only needs to consider set S in the formulation.
The observation set would consists of (x;,u;)7_, where
x; is inside S and the verifier would check the following
conditions:

k
(Fx #0) A\ psi(x) SOAV(x) >0

i=1

k
(Fx #0) \ psi(x) SOA(Vu € U) VV - f(x,u) >0,

i=1
which is as hard as the one solved in Section. 5.

Lemma 6 Assuming (i) the demonstrator function D
is smooth, (ii) the closed loop system with feedback law
D is exponentially stable over a bounded region S, then
there exists a local polynomial CLF, compatible with D.

Proof Under assumption (i) and (ii), one can show that
a polynomial local Lyapunov function V' (not control
Lyapunov function) exists for the closed loop system
U (X,U, f,D) [68]:

V(0) = 0 /\(VxES\O)(Vix) >0)

VV . f(x,D(x)) <0

This means that V' is compatible with the demonstra-
tor. V' is also a local CLF as it satisfies Eq. (25).

As mentioned, the learning framework fails when
the basis functions are not expressive to capture a CLF
compatible with the demonstrator and one needs to up-
date the demonstrator and/or the set of basis functions.
However, if one believes that the demonstrator satisfies
the conditions in Lemma 6, then, success of the learn-
ing procedure is guaranteed, provided the set of basis
functions is rich enough.

6.2 Barrier Certificate

Barrier certificates are used to guarantee safety prop-
erties for the system. More specifically, given compact
and connected semi-algebraic sets S (safe) and I (ini-
tial) s.t. I C int(S), the overall goal is to ensure that
whenever x(0) € I, we have x(t) € S for all time ¢ > 0.
The sets S, I are expressed as semi-algebraic sets of the
following form:

S:{xeR"|pgi(x)<0,...
IZ{XER" |p[’1(X)§O,...

7pS,k(X) S O}
7pl,l(x) S 0} .

The safety problem can be reduced to the problem
of finding a (relaxed [69]) control barrier certificate B
which respect the following constraints [102]:

(vxel) B(x)<0
(Vx & int(S)) B(x) >0 (26)
(Vx e S\int(I)) (GueU) VB- f(x,u) <0.

To find such a barrier certificate, one needs to define
B as a linear combination of basis functions and use
the framework to find a correct B. The verifier would
check the following conditions that negate each of the
conditions in Eq. (26). First we check if there isax € I
such that B(x) > 0.

l
(3x) Aprj(x)<0 A B(x)>0.
j=1

Next, we check if there exists a x ¢ int(.S) such that
B(x) < 0. Clearly, if x & int(S), we have pg;(x) > 0
for at least one ¢ € {1,...,k}. This yields k conditions
of the form:

(3x) ps.i(x) >0AB(x) <0, i € {1,...,k}.

Finally, we ask if 3x € S\ int(I) that violates the de-
crease condition. Doing so, we obtain [conditions. For
each i € {1,...,1}, we solve

k
(3%) pri(x) 20 A /\ ps,j(x) <0
~—_——— =1
—_———
x€eS

ANMueU)VB: f(x,u) >0,

xgint(I)

16

Hadi Ravanbakhsh, Sriram Sankaranarayanan

Overall, we have 1+ k + different checks. If any of
these checks result in x, it serves as a counterexample
to the conditions for a barrier function (26).

As before, we choose basis functions ¢i,...,g, for
the barrier set Be : Y, _; ¢xgr(x). Given observations
set O; : {(x1,u1),...,(x;,u;)}, the corresponding can-
didate set C; of observation compatible barrier func-
tions is defined as the following:

XiEI*)Bc(Xi)<0/\

x; € int(S) = Be(x;) >0 A
xX; €8 \ Z’I’Lt([)

VB .f(xi,u;) <0

el A

(xi,u;)€0;

The LHS of the implication for each observation (x;, u;)
is evaluated and the RHS constraint is added only when
the LHS holds. Nevertheless, @ remains a polytope
similar to Lemma. 1.

Remark 5 For the original control barrier certificates, it
is sufficient to check whether B can be decreased on the
boundary (B=Y). The relaxed version of control barrier
certificates is introduced by Prajna et al. [69] using sum
of squares (SOS) relaxation. Here we use this relaxation
to simplify the candidate generation process. However,
for the verification process this relaxation is not needed
and without any complication, one could verify the orig-
inal conditions as opposed to the relaxed ones. This
trick will improve the precision of the method.

6.3 Reach-While-Stay

In this problem, the goal is to reach a target set T' from
an initial set I, while staying in a safe set S, wherein
I C S. The set S is assumed to be compact. By com-
bining the local Lyapunov function and a barrier certifi-
cate, one can define a smooth, Lyapunov-like function
V, that satisfies the following conditions (see [79]):

C1: (Vxel)V(x)<0
C2: (Vx & int(S)) V(x) >0 (27)
C3:(Vxe S\int(T)(BuelU)VV - f(x,u) <0.

We briefly sketch the argument as to why such a
Lyapunov-like function satisfies the reach-while-stay, re-
ferring the reader to our earlier work on control certifi-
cates for a detailed proof [79]. Suppose we have found
a function V satisfying (27). V is strictly negative over
the initial set I and strictly positive outside the safe
set S. Furthermore, as long as the flow remains inside
the set S without reaching the interior of the target
T, there exists a control input at each state to strictly
decrease the value of V. Combining these observations,
we conclude either (a) the flow remains forever inside

set S\ int(T) or (b) must visit the interior of set T' (be-
fore possibly leaving S). However, option (a) is ruled
out because S \ int(T) is a compact set and V is a
continuous function. Therefore, if the flow were to re-
main within S\ int(T) forever then V(x(t)) - —oo
as t — oo, which directly contradicts the fact that V
must be lower bounded on a compact set S\ int(T).
We therefore, conclude that the flow must stay inside
S and eventually visit the interior of the target T'.
The learning framework extends easily to search for
a function V' that satisfies the constraints in Eq. (27).

6.4 Finite-time Reachability

The idea of funnels has been developed to use the Lya-
punov argument for finite-time reachability [59]. Then,
following Majumdar et al., a library of control funnels
can provide building blocks for motion planning [57].
Likewise, control funnels are used to reduce reach-avoid
problem to timed automata [15].

In this section, we consider Lyapunov-like functions
for establishing control funnels. Let I be a set of initial
states for the plant (x(0) € I), and T be the target set
that the system should reach at time H > 0 (x(H) €
int(T)). Let S be the safe set, such that I,7 C S and
x(t) € S for time ¢ € [0,H]. The goal is to find a con-
troller that guarantees that whenever x(0) € I, we have
x(t) € S for all t € [0,H] and x(H) € int(T). To solve
this, we search instead for a control Lyapunov-like func-
tion V' (x,t) that is a function of the state and time, with
the following properties:

Cl: (vxel)V(x,0) <0

C2: (vx & int(T)) V(x,H) > 0

C3: (vi?&%&) V(x,t) >0 (28)
C4: (:iee[g’m> (Buel) V(t,x,u) <0,

where V(t,x,u) = %—‘t/ +VV - f(x,u). First of all, when
initialized to x(0) € I, we have V(x,0) < 0 by con-
dition C1. Next, the controller’s action through condi-
tion C'4 guarantees that dd—‘t/ < 0 over the trajectory for
t € [0,H], as long as x € S. Through C3, we can guar-
antee that x(¢) € S for ¢t € [0, H]. Finally, it follows
that V(x(#H),H) < 0. Through C2, we conclude that
x € int(T). As depicted in Fig. 8, the set V= forms a
barrier, and set V< forms the required funnel, while
t < H.

Theorem 10 Given compact semi-algebraic sets I, S,
T, a time horizon H, and a smooth function V' satisfy-
ing Eq. (28), there exists a control strategy s.t. for all
traces of the closed loop system, if x(0) € I, then

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 17

x®

V(x,0=0

XL @

Fig. 8 A schematic view of a control funnel. Blue lines
show the boundary of the funnel V(x,t) = 0. Also, initially
V(x1,0) < 0 and at the end of horizon, V(x2,H) > 0.

1. (Vte [0,H]) x(t) € S
2. x(H) € int(T).

Proof Using Sontag result [89,102], there is a feedback
K which decreases value of V while t € [0, H] and x € S:

(Mt e[0,H],xeS) V(t,x,K(x)) <0.

Now, assume x(0) € I. By the first condition of Eq. (28),
V(x(0),0) < 0. Assume there is a time ¢t € [0, H] s.t.
x(t) ¢ S. By compactness of S, and smooth dynam-
ics, there is a time t2 s.t. V(x(t2),t2) € 05 and for all
t < to, x(t) € int(S). According to the third condition
of Eq. (28), V(x(t2),t2) > 0. Since V is a smooth func-
tion there is a time t; (0 < t; < t2) s.t. V(x(t1),t1) =0
and for all t < t1, V(x(¢),t) € S. By the fourth condi-
tion in Eq. (28):

V(x(t1),t1) = V(x(0),0) +/0 1 V(t,x(t), K(x(t)))
< V(x(0),0) <0.

This is a contradiction and therefore, for all ¢ € [0, H],
x(t) € S. And similar to the argument above, it is
guaranteed that for all ¢ € [0,H], V(x(¢),t) < 0. By
the second condition of Eq. (28), it is guaranteed that
if x(H) ¢ int(T), then V(x(H),H) > 0. Therefore,
x(H) € int(T).

Using the Lyapunov-like conditions (28), the prob-
lem of finding such control funnels (respecting Eq. (28))
belongs to the class of problem which could be solved
with our method.

7 Experiments

In this section, we describe numerical results on some
case studies. We first describe our implementation of
the techniques described thus far. The verifier compo-
nent is implemented using tool Gloptipoly [34], which in
turn uses Mosek to solve SDP problems [61], and only
needs a degree of relaxation D as its input. For the

demonstrator, a nonlinear MPC scheme is used, which
is solved using a gradient descent algorithm. For each
benchmark, the following parameters are tuned to ob-
tain the cost function:

1. time step 7
2. number of horizon steps N
3. @, R, and H for the cost function:

(Zfi—ll x(it)! Q x(it) +u(it)! R u(i7)>
+x(N7)t H x(NT).

As such, an MPC cost function is designed to enforce a
specification such as stability or reaching a target set.
However, since the approach provides no guarantees,
we run hundreds of simulations of the closed loop sys-
tem starting from randomly selected initial states to
check whether the specifications are met. Failing this,
the cost function is adjusted, repeating the testing pro-
cess. And finally, for the learner, quadratic polynomials
are used as candidates for the desired Lyapunov-like
functions. Nevertheless, more complicated polynomials
are also supported by our implementation. Beside these
inputs, each control problem has a specification. For ex-
ample, for a reach-while-stay problem, the target set T,
initial set I, and safe set S are provided as inputs.

All the computations reported in this section were
performed on a Mac Book Pro with 2.9 GHz Intel Core
i7 processor and 16GB of RAM. The reported CLFs are
rounded to two decimal points. The implementation is
available upon request.

7.1 Case Study I:

This system is two-wheeled mobile robot modeled with
five states [z, y, v, 8,] and two control inputs [27], where
x and y define the position of the robot, v is its velocity,
0 is the rotational position and 7 is the angle between
the front and rear axles. The goal is to stabilize the
robot to a target velocity v* =5, and * =~+* =y* =0
as shown in Fig. 9. The dynamics of the model is as
follows:

z v cos(f)

Y v sin(6)

v =|w :
0 vo

o u

where o = tan(y) (see Fig. 9). Variable x is immaterial
in the stabilization problem and is dropped to obtain
a model with four state variables [y,v,0,0]. Also, the
sine function is approximated with a polynomial of de-
gree one. The inputs are saturated over the intervals

18

Hadi Ravanbakhsh, Sriram Sankaranarayanan

Fig. 9 A schematic view of the bicycle model.

U : [-10,10] x [-10,10], and the specification is reach-
while-stay, provided by the following sets

 [=2,2] % [3,7] [=1,1] x [=1, 1]
By.4(0)
Bo1(0).

The method finds the following CLF":

N~ W0

0.
0.

V =0.37y? + 0.52y0 + 3.1162 + 0.98yo + 2.2306+
4.4602 — 0.36vy — 0.29v6 + 0.95v0 + 3.86v2 .

This CLF is used to design a controller. Fig. 10
shows the projection of trajectories on to z-y plane
for the synthesized controller in red. The blue trajecto-
ries are generated using the MPC controller that served
as the demonstrator. The behavior of the system for
both controllers are similar but not identical. Notice
that the initial state in Fig. 10(c) is not in the re-
gion of attraction (guaranteed region). Nevertheless,
the CLF-based controller can still stabilize the system
while keeping the system in the safe region. On the
other hand, the MPC violates the safety constraints
even when the safety constraints are imposed in the
MPC scheme. The safety is violated because in the be-
ginning 0 gets larger than 1 and it gets close to 7/2
(the robots moves almost vertically).

7.2 Case Study II:

The problem of keeping the inverted pendulum in a ver-
tical position is considered. This case study has applica-
tions in balancing two-wheeled robots [20]. The system
has two degrees of freedom: the position of the cart z,
and the degree of the inverted pendulum 6. The goal is
to keep the pendulum in a vertical position by moving
the cart with input « (Fig. 11).

-1 | | | | | | |
0 5 10 15 20 25 30 35 40

X
(a) Initial state: [0.25,0.25,0.25,0.25]

0 5 10 15 20 25 30 35 40
X
(b) Initial state: [0, -0.25,-0.5,0]

0 5 10 15 2 25 30 35 40
(c) Initial state: [-1,1,0.6, 1]

Fig. 10 Simulation for the bicycle robot - Projected on x-y
plane. Simulation traces are plotted for three different initial
states. Blue (red) traces corresponds to trajectories of the
system for MPC controller (CLF-based controller).

The system has four state variables [z, &, 0, 9] with
the following dynamics [46]:

i J—
il=
where m = 0.21 and M = 0.815 are masses of the pen-
dulum and the cart respectively, g = 9.8 is the gravita-
tional acceleration, and [= 0.305 is distance of center

of mass of the pendulum from the cart. After partial
linearization, the dynamics have the following form:

-

The trigonometric and rational functions are ap-
proximated with polynomials of degree three. The input
is saturated U : [—20,20] and sets for a safety specifi-
cation are S : [—1,1]*, I: By 1(0).

Fig. 12 shows the some of the traces of the closed
loop system for the CLF-based controller as well as
the MPC controller. Notice that the trajectories of the
CLF based controller are quite distinct from the MPC,
especially in regions where the demonstration is not
provided during the CLF synthesis process. For exam-
ple, in Figure. 12(b), the behaviors of these controllers
are similar outside the initial set I. However, inside I
(near the equilibrium) the behavior is different, since
the demonstrations are only generated for states out-
side I. The CLF-based controller is designed using the
following CLF generated by the learning framework:

du—4ei+4mlb? sin(0)—3mg sin(6) cos()
4(M+m)—3m cos?(0)]
(M+m)gsin(0)—(u—ei) cos(d) —mlh? sin() cos(0) ’
1(3(M+m)—m cos(6)?)

dy + Al en(8) g) cos(O)

—3u cos(6)
l

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 19

Fig. 11 A schematic view of the “inverted pendulum on a
cart”.

V =16.370% + 50.3706 + 75.160° + 13.5120 + 43.2620+
10.4422 + 23.3004 + 38.0920 + 11.134x + 9.5532 .

7.3 Case Study III:

Caltech ducted fan has been used to study the aero-
dynamics of a single wing of a thrust vectored, fixed
wing aircraft [37]. In this case study, we wish to de-
sign forward flight control in which the angle of attack
needs to be set for a stable forward flight. The model of
the system is carefully calibrated through wind tunnel
experiments. The system has four states: v is the veloc-
ity, v is the moving direction the ducted fan, 6 is the
rotational position, and ¢ is the angular velocity. The
control inputs are the thrust v and the angle at which
the thrust is applied §, (Fig. 13). Also, the inputs are
saturated: U : [0,13.5] x [—0.45,0.45]. The dynamics
are:

mo —D(v,a) — Wsin(7y) + ucos(a +)
mvy | | L(v,) — Wcos(y) + usin(a + dy,)

0 g ’
Jq M (v,) — uly sin(dy,)

where the angle of attack o = 0 —~, and D, L, and M
are polynomials in v and «. For full list of parameters,
see [37]. According to the dynamics, x* : [6,0,0.1771, 0]
is a stable equilibrium (for u* : [3.2, —0.138]) where the
ducted fan can move forward with velocity 6. Thus, the
goal is to reach near x*. The system is not affine in
control. We replace u and 4, with us = wusin(d,) and
Ue = U cos(dy,):

—D(v,a)—W sin(v)+u. cos(a) —u, sin(a)

L(v,0)—W cos('y)—i-gi sin(a)4us cos(a)

e muv

q
M(v,a)=lrus
J

ESTRES SO TN

Projection of U into the new coordinate will yield a sec-
tor of a circle. Then, set U is safely under-approximated
by a polytope U as shown in Fig. 14. Next, we perform
a translation so that the x* (u*) is the origin of the
state (input) space in the new coordinate system. In or-
der to obtain a polynomial dynamics, we approximate
v~1, sin and cos with polynomials of degree one, three
and three, respectively. These changes yield a polyno-
mial control affine dynamics, which fits the description
of our model. For the reach-while-stay specification, the
sets are defined as the following:

S :[3,9] x [-0.75,0.75] x [~0.75,0.75] x [~2,2]
I:{[v,7,0,q)"(0.40)* + 72 + 62 + ¢* < 0.4%}
T :{[v,7,0,q]"(0.4v)* + v* + 6 + ¢* < 0.05%}.

The projection of some of the traces of the system in
z-y plane is shown in Fig. 15. We set zg = yp = 0 and

& =wvcos(y), y=wvsin(y).

The CLF-based controller is designed using the follow-
ing generated CLF:

V =+ 3.23¢> +2.17¢0 + 3.900% — 0.2qv — 0.45060
+0.530% + 1.66¢y — 1.33v0 + 0.48v7 + 3.90~2.

The traces show that the CLF-based controller stabi-
lizes faster, however, the MPC controller uses the aero-
dynamics to achieve the same goal with a better per-
formance.

7.4 Case Study IV:

This case study addresses another problem for the pla-
nar Caltech ducted fan [37]. The goal is to keep the
planar ducted fan in a hover mode. The system has
three degrees of freedom, x, y, and 6, which define the
position and orientation of the ducted fan. There are six
state variables x, y, 0, , 7, 6 and two control inputs
uy, ug (U € [-10,10] x [0, 10]). The dynamics are

ma —d.& + ug cos(f) — ug sin(f)
mij | = | —dcy +uz cos(f) + uy sin(f) —mg | ,
Jo U]

where m = 11.2, g = 0.28, J = 0.0462, » = 0.156 and
d. = 0.1. The system is stable at origin for u* : [0, mg].
Therefore, we set ux as the origin for the input space.
The specification is a reach-while-stay property with
the following sets:

S:[=1,1] x [-1,1] x [<0.7,0.7] x [-1,1]3
I: 80_25(0),T : 801(0) .

20 Hadi Ravanbakhsh, Sriram Sankaranarayanan
' ;
03 g i
02} b
X X 9
01} .
0
004 : : : : 1 : :]
002+ . 05
0 0 0 °
0.02F 8 05
0.04 . . 1 - ,

t
(a) Initial state (0.3,0,0,0)

t
(b) Initial state (1,1, 1, 1)

Fig. 12 Simulation for the inverted pendulum system. Simulation traces are plotted for two initial states. Red (blue) traces

show the simulation for the CLF-based (MPC) controller.

Fig. 13 A schematic view of the Caltech ducted fan.

Us

0
L/\ Uc
’\/ 135

Fig. 14 Set of feasible inputs U and its under approximation
U in the new coordinate for case study III.

uy
M\ ue
’\/ 35

The trigonometric functions are approximated with de-
gree two polynomials and the procedure finds a quadratic
CLF:

V =1.646% — 0.560y + 13.539> + 0.070y + 1.15y5+
1.16y% + 1.7400 + 0.0350 — 0.77y0 + 4.800%—
4.570% + 0.85d3 + 0.34yd — 8.59260 + 12.77i%—
0.450z + 0.06gz + 0.51yz — 3.71x6 + 4.12zi+
1.88z2.

Some of the traces are shown in Fig. 16. As the simu-
lation suggest, the MPC controller behaves very differ-
ently and the CLF-based controller yield solutions with
more oscillations. The CLF-based controller first stabi-
lizes and 6 and then value of y settles. Also, once the
trace is inside the target region, the CLF-based con-

(a)

‘
/(20 40 60 80 100 120

1 (b)

0 20 40 60 80 100 120

Fig. 15 Simulation for forward flight of Caltech ducted fan
- Projected on x-y plane. Blue (red) traces are trajectories of
the closed loop system with the MPC (CLF-based) controller.
The rotational position is shown for some of the states (in
black for the initial state) for each trajectory. Initial states are
[2,0.4,0.717,0], [-1,—0.25,—0.133,0], and [—1,0.4,0.177,0]
for (a), (b), and (c), respectively.

troller does not guarantee decrease in V' as this fact is
intuitively visible in Fig. 16(c).

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 21

0.1

005]

0

005
Y o1
0.15
02
025
(a) Initial state: [-1,0,-0.7,1,0,0]
05
04 1
T ——
03 1
y 02 1
0.1F 1
of / 1
o1 ‘ ‘ ‘ ‘ ‘ ‘
05 04 03 02 0.1 0 0.1 02
(b) Initial state: [-0.5,0.5,-0.5,0,0,0]
0.1
005} 1
y D B—
7
0.05|)> .
ol ‘ ‘ ‘ ‘ ‘ ‘
01 005 0 005 0.1 0.15 02 025

X
(c) Initial state: [0.25,0,0.25,0,0,0]

Fig. 16 Simulation for Case Study IV - Projected on x-
y plane. The trajectories corresponding to the CLF-based
(MPC) controller are shown in red (blue) lines. The boundary
of the target set is shown in yellow.

7.5 Case Study V:

In this case study, a unicycle model [52] is considered.
It is known that no continuous feedback can stabilize
the unicycle, and therefore no continuous CLF exists.
However, considering a reference trajectory for a mov-
ing unicycle, one can keep the system near the reference
trajectory, using control funnels. The unicycle model
has the dynamics:

i =wuycos(0) , §=uysin(@), 0 =usy.

By a change of basis, a simpler dynamic model is used
here (see. [52]):

T1 = U1, To = U2, T3 = T1Uz — TaUj .

We consider a planning problem, in which starting
near [0,z,y] = [§,—1,—1], the goal is to reach near
[0, z,y] = [0,2,0]. In the first step, a feasible trajectory
x*(t) is generated as shown in Fig. 17(a). Then x*(¢)
is approximated with piecewise polynomials. More pre-
cisely, trajectory consists of two segments. The first seg-
ment brings the car to the origin and the second seg-
ment moves the car to the destination. Each segment is
approximated using polynomials in ¢ with degree up to
three:

seg. 2 :

seg. 1: 1 —0.64¢)(1 + 0.64¢)

)

)
y=m—1
x*(t) = —
y*(t) = —(1 — 0.64t)(1 — 0.2t — 0.25¢2).

Let Tr(6, x, y) represent the transformation of the state
in terms of (0, z, y) coordinate system to the (z1, z2, x3)
coordinates. Also, for two set A, and B, let A& B be
the Minkowski sum of A and B. For example, we write
{Tr(0,z,y)} ® Bs(0) to denote a state and a ball of
radius § around it. Moreover, let S; (S3) be the min-
imal box which contains the trajectory x*(-) for the
first (second) segment in the (x1,xz2,x3) coordinates.
For the first segment, the goal is to reach from the ini-
tial set I : {Tr(w/2,—1,—1)} @ B1(0) to the target set
T :{Tr(0,0,0)} @ B1(0). Also, the safe set is defined as
S :S; @ [~1.5,1.5]%. That is, an enlarged box around
S1. And in the next segment, the goal is to reach from
initial set I : T'r(0,0,0)®8B1(0) to T : Tr(0,2,0)®B1(0)
as the target, while staying in S : Sy @ [2, 2]°.

For each segment, we search for a Lyapunov-like
function V as a time varying function, quadratic in the
states. Our method is applied to this problem, and we
are able to find a strategy to implement the plan with
guarantees. The boundary of the funnels is shown in
Fig. 17(a). Also, some simulation traces are shown in
Fig. 17(b), where the CLF controller is implemented us-
ing the generated funnels. As simulations suggest, the
funnels can effectively stabilize the traces to the trajec-
tory, when the unicycle is moving forward.

7.6 Performance

As mentioned earlier, the inputs to the learning frame-
work are the plant, monomial basis functions, and the
demonstrator. Also, the degree of relaxation D is also
considered as input. At each iteration, first a MVE in-
scribed inside a polytope is calculated. This task is per-
formed quite efficiently. The MPC scheme used inside

22

Hadi Ravanbakhsh, Sriram Sankaranarayanan

(a)

(b)

Fig. 17 (a) Trajectory tracking using control funnel - Projected on x-y plane. The reference trajectory is shown with the green
line, consists of two segments. Starting from Ry, the state remains in the funnel (blue region) until it reaches R4 . Boundary
of each smaller blue region shows the boundary of the funnel for a specific time. (b) Simulation traces for some random initial

states.

the demonstrator is an input and we do not consider
its performance here. Nevertheless, MPC is known to
be very efficient if it is carefully tuned. We mention that
the MPC parameters used here are selected by a non-
expert and usually the time step is very small and the
horizon is very long. Nevertheless, as the MPC is used
offline, they are still suitable for our framework. Also,
costs matrices @), R, and H are diagonal:

Q = diag(Q") , R=diag(R') , H = Ndiag(Q'),

where @ € R™ and R’ € R™. There are two other
important factors that determines the performance of
the whole learning framework: (i) the time taken by
the verifier and (ii) the number of iterations. Table. 1
shows the results of the learning framework for the set
of case studies described thus far. For each problem
instance, the parameters of the MPC, as well as the de-
gree of relaxation are provided. Also, the performance
of the learning framework is tabulated. First, the proce-
dure starts from C : [—-A, A]" and terminates whenever
Vol(E;) < v0". We set A =100 and § = 102, The re-
sults demonstrate that the method terminates in few
iterations, even for the cases where a compatible CLF
does not exists.

Notice that the number of demonstrations is dif-
ferent from the number of iterations. Recall that two
separate problems are solved for the verification. One
involves checking the positivity of V', and the other in-
volves checking whether VV' can be decreased. When
a counterexample x; is found for the former problem,
there is no need to check the latter condition. Further-
more, we do not require a demonstration for such a
scenario. This optimization is added to speed up our
overall procedure by avoiding expensive calls to the
MPC. To accommodate this, our approach calculates

Cj41 (instead of Cjy1) for such counterexamples as:

Ciy1: Cjn{c| Ve(x;) >0} . (29)

Otherwise, if the counterexample violates conditions on
VV, then

A A Ve(x;) >0
Cj+1 : Cj n {C | ch.f(xjj,llj) < 0} . (30)

However, c; ¢ C'j+1 for both cases and the convergence
guarantees continue to hold. As Table. 1 shows, using
this trick, the number of demonstrations can be much
smaller than the total number of iterations.

At each iteration, several verification problems are
solved which involve solving large SDP problems. While
the complexity of solving SDP is polynomial in the
number of variables, they are still hard to solve. The
verification problem is quite expensive when the num-
ber of variables and degree of relaxation are large. Nev-
ertheless, as the SDP solvers mature further, we believe
our method can solve larger problems, since the verifi-
cation procedure is currently the computational bottle-
neck for the learning framework. We note that, using
larger degree of relaxation does not necessarily lead to
a longer learning process (e.g. hover flight example).
For example, for the inverted pendulum example, us-
ing degree of relaxation five the procedure finds a CLF
faster when compared to the case wherein the degree of
relaxation is set to four.

In previous sections, we discussed that two impor-
tant factor governs the convergence of the search pro-
cess: (i) candidate selection, and (ii) counterexample
selection. In order to study the effect of these pro-
cesses, we investigate different techniques to evaluate
their performances. For candidate selection, we consider
three different methods. In the first method, a Cheby-
shev center of C} is used as a candidate. In the second
method, the analytic center of constraints defining C;
is the selected candidate and redundant constraints are
not dropped. And finally, in the last method, the center
of MVE inscribed in C; yields the candidate. Also, for
each of these methods, we compare the performance for

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 23

Table 1 Results on the benchmark. 7: MPC time step, N: number of horizon steps, Q’: defines MPC state cost, R’: defines
MPC input cost, D: SDP relaxation degree bound, #Dem : number of demonstrations, #Itr: number of iterations, V. Time:
total computation time for verification (minutes), Time: total computation time (minutes)

Problem Demonstrator Verifier Performance

System Name T N Q' R’ D #Dem | # Itr | V. Time | Time | Status
. 3 2 74 3 3 Fail
Unicycle-Segment 2 0.1 10 [111] [11] 4 9 57 4 4 Suce
. 3 27 86 9 10 Fail
Unicycle-Segment 1 0.1 | 20 [111] [11] 1 23 71 1 12 Suce
3 52 118 7 14 Fail

TORA 1 30 [1 11 1] [1] 4 19 76 5 8 Suce
3 56 85 7 27 Fail

Inverted Pendulum || 0.04 | 50 [10111] [10] 4 53 69 9 25 Succ
5 34 50 7 19 Succ

. 2 14 32 2 2 Fail
Bicycle 0.4 20 [1 11 1] [1 1} 3 7 25 1 1 Suce
. 2 119 225 77 90 Fail
Bicycle x 2 0.4 20 [11111111]] [1111] 3 30 31 43 46 Suce
. 4 14 7 16 18 Fail

Forward Flight 0.4 | 40 [1111] [11] 5 4 64 10 10 Suce
2 57 147 12 40 Fail

Hover Flight 04 |40 | [111111] [11] 3 57 124 21 47 | Succ
4 51 116 30 54 Succ

two different cases: (i) a random counterexample is gen-
erated, (ii) the generated counterexample maximizes
constraint violations (see Sec. 5.3). Table 2 shows the
performance for each of these cases, applied to the same
set of problems. The results demonstrate that selecting
good counterexamples would increase the convergence
rate (fewer iterations). Nevertheless, the time it takes
to generate these counterexamples increases, and there-
fore, the overall performance degrades. In conclusion,
while generating good counterexamples provides better
reduction in the space of candidates, it is computation-
ally expensive, and thus, it seems to be beneficial to
just rely on candidate selection for fast termination.
Table. 2 also suggests that Chebyshev center has the
worst performance. Also, the MVE-based method per-
forms better (fewer iterations) compared to the method
which is based on the analytic center.

7.7 Comparison with Other Approaches

We now compare our method against other techniques
used to automatically construct provably correct con-
trollers.

Comparison with CEGIS: We have claimed that
the use of demonstrator helps our approach deal with
a computationally expensive quantifier alternation in
the CLF condition. To understand the impact of this
aspect of our approach, we first we compare the pro-
posed method with our previous work, namely coun-
terexample guided inductive synthesis (CEGIS) that is

designed to solve constraints with quantifier alterna-
tion, and applied to the synthesis of CLFs [78]. In this
framework, the learning process only relies on coun-
terexamples provided by a verifier component, without
involving demonstrations. Despite a timeout that is set
to two hours, our CEGIS method timed out for all the
problem instances discussed in this article, without dis-
covering a CLF. As a result, we exclude this approach
from further comparisons. These results suggest that
demonstrations are essential for fast convergence.

Learning CLFs from Data: On the other hand,
Khansari-Zadeh et al. [83] learn likely CLFs from demon-
strations from sets of states that are sampled without
(a) the use of a verifier to check, and (b) counterexam-
ples as new samples, both of which are features of our
approach. Therefore, the correctness of the controller
thus derived is not formally guaranteed. To this end,
we verify if the solution is in fact a CLF.

The methodology of Khansari-Zadeh et al. is imple-

mented using the following steps:
1. Choose a parameterization of the desired CLF V,(x)

(identical to our approach).

2. Generate samples in batches, wherein for each batch:

(a) Sample N; = 50 states uniformly at random,
and for each state x;, add the constraint Ve (x;) >
0, for i € [1, Nq].

(b) Sample Ny = 5 States at random, and for each
state x; (j € [1, N3]), simulate the MPC demon-
strator for N3 = 10 time steps to obtain state
control samples

{50, w51), 5 (%585, W N5) } -

24

Hadi Ravanbakhsh, Sriram Sankaranarayanan

Table 2 Results on different variations. I: number of iterations, VT: computation time for verification (minutes), T: total
computation time (minutes), Simple CE: any counterexample, Max CE: counterexample with maximum violation

Chebyshev Center Analytic Center MVE Center

Problem Simple CE Max CE Simple CE Max CE Simple CE Max CE

I VT T I VT T I VT T I VT T I VT T I VT T
Unicycle - Seg. 2 83 4 4 22 9 9 76 5 6 | 23 9 10 57 4 4] 15 6 6
Unicycle - Seg. 1 81 6 7 34 17 17 85 10 10 | 35 15 16 71 11 12 | 36 18 18
TORA 185 7 10 52 12 15 95 5 9 | 36 9 11 76 5 8 | 36 12 14
Inverted Pend. 163 10 23 85 22 30 57 8 20 | 51 22 32 50 7 19 | 35 18 25
Bicycle 99 3 3 40 5 5 31 2 2 | 20 3 3 25 1 2 | 15 3 3
Bicycle x 2 759 121 127 | 438 244 246 96 47 50 | 77 141 143 81 43 46 | 66 132 133
Forward Flight 676 20 21 34 30 31 113 15 16 | 21 18 19 64 10 10 | 16 16 16
Hover Flight 499 65 90 | 196 113 127 146 36 67 | 90 92 109 116 30 54 | 75 69 82

(c) Add the constraints VVe- flx=x, ,,u=u;, < 0 for
j=1,...,Ny and k = 1,..., N3 to enforce the
negative definiteness of the CLF.

3. At the end of batch k, solve the system of linear
constraints thus far to check if there is a feasible
solution.

4. If there is no feasible solution, then exit, since no
function in V¢(x) is compatible with the data.

5. If there is a feasible solution, check this solution
using the VERIFIER.

6. If the verifier succeeds, then exit successfully with
the CLF discovered.

7. Otherwise, continue to generate another batch of
samples.

We enforce the constraint V(x) > 0 and VV- f < 0 over

different sets of samples, since simulating the demon-

strator is much more expensive for each point. The ap-
proach iterates between generating successive batches

of data until a preset timeout of two hours as long as (a)

there are CLFs remaining to consider and (b) no CLF

has been discovered thus far. The time taken to learn
and verify the solution is not considered against the to-
tal time limit, and also not added to the overall time
reported. Besides stability, the approach is also adapted
for other properties, which are used in our benchmarks.

The results are reported in Table. 3. Since the gen-

eration of random samples are involved, we run the pro-

cedure 10 times on each benchmark, and report the per-
centage of trials that succeeded in finding a CLF, the
number of timeouts and the number of trials that ended
in an infeasible set of constraints. We note that the suc-
cess rate is 100% for just one problem instance. For four
other problem instances, the method is successful for a
fraction of the trials. The remaining benchmarks fail on
all trials. Next, the minimum and maximum number of
demonstrations needed in the trials to find a CLF is
reported as the “best-case” and “worst-case” respec-
tively. We note that our approach requires much fewer
demonstrations even when compared the best case sce-
nario. Thus, we conclude from this data that the time
spent by our approach for finding counterexamples is

justified by the significant decrease in the number of
demonstrations, and thus, faster convergence. This is
beneficial especially for cases where generating demon-
strations is expensive.

For one of the benchmarks (the forward flight prob-
lem of the Caltech ducted fan), the method stops for all
cases because a function compatible with the data does
not exist. As such, this suggests that no CLF compat-
ible with the demonstrator exists. On the other hand,
our approach successfully finds a CLF while considering
just four demonstrations.

Finally, for two of the larger problem instances, we
continue to obtain feasible solutions at the end of the
time limit, although the verifier cannot prove the learned
function is a CLF. In other words, there are values of ¢
left, that have not been considered by the verifier. Our
approach uses counterexamples, along with a judicious
choice of candidate CLFs to eliminate all but a bounded
volume of candidates.

Comparison with Bilinear Solvers: We now com-
pare our method against approaches based on bilin-
ear formulations found in related work [25,56,94]. We
wish to find a Lyapunov function V' and a correspond-
ing feedback law K : X +— U, simultaneously. There-
fore, we assume K is a linear combination of basis
functions K : Z;l:l Orhi(x). Likewise, we parameter-
ize V as a linear combination of basis functions, as well:
V i > —1 ckgr(x). Then, we wish to find ¢ and 6 that
satisfy the constraints corresponding to the property at
hand. To synthesize a CLF, we wish to find V., Ky, so
that Ve(x) and its Lie derivative under the feedback
u = Kpy(x) is negative definite. This is relaxed as an
optimization problem:
min y
c,0,y

s.t. Ve is positive definite

(¥ x #0) VVe(x) - f(x, Ko(x)) < 7]x][3

The decision variables include c, 8 that parameter-
ize V and K, respectively. In fact, if a feasible solu-
tion is obtained such that v < 0 then we may stop the

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 25

Table 3 Results for “demonstration-only” method. #Sam.: number of samples,

#Dem: number of demonstrations, Case:

best-case or worst-case, Time: total computation time (minutes), TO: time out (> 2 hours).

Problem Stats Performance Proposed Method
System Name Succ. % | TO % || Case | #Sam. | #Dem. | Time | Status || #Sam. | #Dem. | Time
. best 400 40 1 Succ
Unicycle-Segment 2 60 0 worst 600 79 1 Fail 65 2 4
. best 600 35 2 Succ
Unicycle-Segment 1 45 0 worst 300 70 3 Fail 79 23 12
best 6300 535 43 Succ
TORA 60 30 worst 17100 1580 TO Fail 84 19 8
best 2250 137 84 Succ
Inverted Pendulum 30 70 worst 15750 300 TO Fail 58 34 19
. best 2700 55 2 Succ
Bicycle 100 O |l worst | 54000 1883 48 | Succ 33 7 !
Bicycle x 2 0 100 best 81600 1736 TO Fail 89 30 16
worst - - - -
. best 900 35 4 Fail
Forward Flight 0 0 worst 2700 254 31 Fail 72 4 10
Hover Flight o| 100 | Pest 7150 27| TO | Fail 132 57 | 47
worst - - - -
optimization and declare that a CLF has been found. siders 3™ different cases, where m is the number of

To solve this bilinear problem, we use alternative min-
imization approach described below. First, V is initial-
ized to be a positive definite function (by initializing
c to some fixed value). Then, the approach repeatedly
alternates between the following steps:

1. c is fixed, and we search for a 6 that minimizes .
2. 0 is fixed, and we search for a ¢ that minimizes ~.

Each of these problems can be relaxed using Sum of
Squares (SOS) programming [70]. The approach is iter-
ated and results in a sequence of values vy > v1 > 72 >

- > 7;, wherein ~; is the value of the objective af-
ter ¢ optimization instances have been solved. Since the
solution of one optimization instance forms a feasible
solution for the subsequent instance, it follows that ~;
are monotonically nondecreasing. The iterations stop
whenever v does not decrease sufficiently between it-
erations. After termination, the approach succeeds in
finding V., Ky only if v < 0. Otherwise the approach
fails.

Finding a suitable initial value for c is an important
factor for success. As proposed by Majumdar et al, we
pose and solve a linear feedback controller by applying
the LQR method to the linearization of the dynam-
ics [56]. In this case, we initialize V' using the optimal
cost function provided by the LQR. We also note that
the linearization for the dynamics is not controllable for
all cases and we can not always use this initialization
trick. In these cases, we start from a initial candidate
such as ||x|[3.

Additionally, Majumdar et al. (ibid) discuss solu-
tions to handle input saturation for control inputs that
must lie between two bounds. A precise approach con-

control inputs to distinguish between each control in-
put u; being saturated at either limits or unsaturated.
Furthermore, they provide a less expensive but conser-
vative solution wherein they require Ky(x) € U to avoid
input saturation, which yields fewer constraints. Here,
we consider three different variations of this method: (i)
inputs are not saturated, (ii) inputs are saturated and
the conservative solution is used, and (iii) inputs are
saturated and the original/expensive solution is used.
We consider variation (ii) only if the method is suc-
cessful without forcing the input saturation, and we
consider variation (iii) only if the conservative solution
(variation (ii)) fails. For the Lyapunov function V we
consider quadratic monomials as our basis functions,
and for the feedback law K, we consider both linear
and quadratic basis functions as separate problem in-
stances. Similar to the SDP relaxation considered in
this work, the SOS programming approach uses a de-
gree limit D for the multiplier polynomials used in the
positivstellensatz (cf. [48]). The limits used for the bilin-
ear optimization approach are identical to those used in
our method for each benchmark. The bilinear method
is adapted to other properties used in our benchmarks
and the results are shown in Table 4.

For the first two problem instances, the linearized
dynamics are not controllable, and thus, we can not
use the LQR trick for initialization. Instead, we use
the solution obtained using our method as the starting
point. Despite this, the bilinear optimization approach
fails to find a feedback law. This suggests that the fixed
structure of the feedback law K is more restrictive when
compared to fixing a CLF and using Sontag’s formula
for synthesizing a feedback law K.

26

Hadi Ravanbakhsh, Sriram Sankaranarayanan

Table 4 Results for “bilinear formulation” method. K: ba-
sis functions used to parameterize K, L: basis functions are
monomials with maximum degree 1 (linear), Q: basis func-
tions are monomials with maximum degree 2 (quadratic),
LQR: if LQR is used for initialization, ST.: saturation type,
NP: numerical problem, St.: status.

Problem Param. Status
System Name K | LQR ST.(i) | ST.(ii) | ST.(iii)
Unicycle-Seg. 2 (]5 : : B :
Unicycle-Seg. 1 (]5 : : : ~
TORA L v v 4 -
Inverted Pend. L v v v -
Bicycle L v v v -
Bicycle™® L v v E3 v
Bicycle x 2 L v NP - -
Forward Flight L v NP - -

. L v E3 - -
Hover Flight Q v ®] B

Bicycle*: The bicycle case-study where U is [—5,5]? instead
of [—10,10]? (Our method could solve this problem instance
as well).

For the remaining instances, we were able to use the
LQR trick successfully to find an initial solution. Start-
ing from this solution, the bilinear approach is success-
ful on four problem instances, but fails for the hover
flight problem. This suggests that even the LQR trick
may not always provide a good initialization. For two of
the larger problem instances, the bilinear method fails
because of numerical errors, when dealing with large
SDP problems. While the SOS programming has similar
complexity compared to our method, it encounters nu-
merical problems when solving large problems. We be-
lieve two factors are important here. First, our method
solves different smaller verification problems and veri-
fies each condition separately, while in a SOS formula-
tion all conditions on V' and VV are formulated into
one big SDP problem. Moreover, in our method when
we encounter a numerical error, we simply use the (po-
tentially wrong) solution as a spurious counterexample
without losing the soundness. Then, using demonstra-
tions we continue the search. On the other hand, when
the bilinear optimization procedure encounters a nu-
merical error, it is unable to make further progress to-
wards an optimal solution.

In conclusion, our method has several benefits when
compared to the bilinear formulation. First, our method
does not assume any specific parameterization for the
feedback law. Instead it assumes a form for the CLF but
uses Sontag’s formula to obtain a feedback law. This is
advantageous since we do not have to fix the struc-
ture of the feedback law in our approach. Second, our
method uses demonstrations to generate a candidate in-
stead of a local search, and we provide an upper-bound
on the number of iterations. And finally, our method
can sometimes recover from numerically ill-posed SDPs,

and thus scales better as demonstrated through experi-
ments. On the flip side, unlike the bilinear formulation,
our method relies on a demonstrator that may not be
easy to implement.

8 Related Work

In this section, we review the related work from the
robotics, control, and formal verification communities.

Synthesis of Lyapunov Functions from Data:
The problem of synthesizing Lyapunov functions for a
control system by observing the states of the system in
simulation has been investigated in the past by Topcu et
al. to learn Lyapunov functions along with the resulting
basin of attraction [97]. Whereas the original problem
is bilinear, the use of simulation data makes it easier to
postulate states that belong to the region of attraction,
and therefore find Lyapunov functions that belong to
this region by solving LMIs in each case. The applica-
tion of this idea to larger black-box systems is demon-
strated by Kapinski et al. [41], where the counterex-
amples are used to generate data iteratively. Our ap-
proach focuses on controller synthesis through learning
a control Lyapunov function to replace an existing con-
troller. A key difference lies in the fact that we do not
attempt to prove that the original demonstrator is nec-
essarily correct, but find a control Lyapunov function
by assuming that the demonstrator is able to stabilize
the system for the specific states that we query on. An-
other important contribution lies in our analysis of the
convergence of the learning with a bound on the max-
imum number of queries needed. In fact, these results
can also be applied to the Lyapunov function synthe-
sis approaches mentioned earlier. Similar to our work,
Khansari-Zadeh et al. [83] uses human demonstrations
to generate data and enforce CLF conditions for the
data points, to learn a CLF candidate. Their work does
not include a verifier and therefore, the CLF candidate
may not, in fact, be a CLF. However, the method can
handle errors in the demonstrations by finding a max-
imal set of observations for which a compatible CLF
exists, whereas our method does not address erroneous
demonstrations.

Counter-Example Guided Inductive Synthesis:
Our approach of alternating between a learning mod-
ule that proposes a candidate and a verification module
that checks the proposed candidate is identical to the
counter-example guided inductive synthesis (CEGIS)
framework originally proposed in verification commu-
nity by Solar-Lezama et al. [86,85]. As such, the CEGIS
approach does not include a demonstrator that can be
queried. The extension of this approach Oracle-guided

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 27

inductive synthesis [39], generalizes CEGIS using an in-
put/output oracle that serves a similar role as a demon-
strator in this paper. However, the goal here is not to
mimic the demonstrator, but to satisfy the specifica-
tions. Also, Jha et al. [40] prove bounds on the number
of queries for discrete concept classes using results on
exact concept learning in discrete spaces [32]. In this
article, we consider searching over continuous concept
class, and prove bounds on the number of queries under
a robustness assumption.

The CEGIS procedure has been used for the syn-
thesis of CLF's recently by authors [77,79], combining
it with SDP solvers for verifying CLFs. The key differ-
ence here lies in the use of the demonstrator module
that simplifies the learning module. In the absence of
a demonstrator module, the problem of finding a can-
didate reduces to solving linear constraints with dis-
junctions, an NP-hard problem [77]. Likewise, the con-
vergence results are quite weak [78]. In the setting of
this paper, however, the use of a MPC scheme as a
demonstrator allows us to use faster LP solvers and pro-
vide convergence guarantees. Empirically, we are able
to demonstrate the successful inference of CLF's on sys-
tems with up to eight state variables, whereas previous
work in this space has been restricted to much smaller
problems [77].

Learning from Demonstration: The idea of learn-
ing from demonstrations has a long history [5]. The
overall framework uses a demonstrator that can, in fact,
be a human operator [83,43] or a complex MPC-based
control law [90,7,81,106,60,105]. The approaches differ
on the nature of the interactions between the learner
and the demonstrator; as well as how the policy is in-
ferred. Our approach stands out in many ways: (a) We
represent our policies by CLFs which are polynomial.
On one hand, these are much less powerful than ap-
proaches that use neural networks [105], for instance.
However, the advantage lies in our ability to solve ver-
ification problems to ensure that the resulting policy
learned through the CLF is correct with respect to the
underlying dynamical model. (b) Our framework is ad-
versarial. The choice of the counterexample to query
the demonstrator comes from a failed attempt to vali-
date the current candidate. (¢) Finally, we use simple
yet powerful ideas from convex optimization to place
bounds on the number of queries, paralleling some re-
sults on concept learning in discrete spaces [32].

Lyapunov Analysis for Controller Synthesis Son-
tag originally introduced Control Lyapunov functions
and provided a universal construction of a feedback law
for a given CLF [88,89]. As such, the problem of learn-
ing CLFs is well known to be hard, involving bilinear
matrix inequalities (BMIs) [94]. An more conservative

(less precise) approach involves solving bilinear prob-
lems simultaneously for a control law and a Lyapunov
function certifying it [25,56]. This also leads to bilin-
ear formulation. Prieur et al. [72] shows that the set
of feasible solutions to such problem may not only be
non-convex, but also disconnected. Nevertheless, there
are some attempts to solve these BMIs which are well
known to be NP-hard [35]. A common approach to solve
these BMIs is to perform an alternating minimization
by fixing one set of bilinear variables while minimizing
over the other. Such an approach has poor guarantees
in practice, often “getting stuck” on a saddle point that
does not allow the technique to make progress in find-
ing a feasible solution [33]. To combat this, Majumdar
et al. (ibid) use LQR controllers and their associated
Lyapunov functions for the linearization of the dynam-
ics as good initial seed solutions [56]. In contrast, our
approach simply assumes a demonstrator in the form of
a MPC controller that can be used to resolve the bilin-
earity. Furthermore, our approach does not encounter
the local saddle point problem. And finally, when the
inputs are saturated, the complexity of such a method
is exponential in the number of control inputs, while
the complexity of our method remains polynomial.

Formal Controller Synthesis The use of the learn-
ing framework with a demonstrator distinguishes the
approach in this paper from recently developed ideas
based on formal synthesis. Majority of these techniques
focus on a given dynamical system and a specification
of the correctness in temporal logic to solve the problem
of controller design to ensure that the resulting trajec-
tories of the closed loop satisfy the temporal specifica-
tions. Most of these approaches are based on discretiza-
tion of the state-space into cells to compute a discrete
abstraction of the overall system [103,54,82,62,44]. An-
other set of solutions are based on formal parameter
synthesis that search for unknown parameters so that
the specifications are met [104,23]. These methods in-
clude synthesize certificates (Lyapunov-like functions)
by solving nonlinear constraints either through branch-
and-bound techniques [36,78], or through a combina-
tion of simulations and quantifier elimination [92,93].
Our method is potentially more scalable, since the use
of a demonstrator allows us to solve convex constraints
instead. Raman et al. design a model-predictive control
(MPC) from temporal logic properties [74]. More specif-
ically, MILP solvers are used inside the MPC, which
can be quite expensive for real-time control applica-
tions. We instead learn a CLF from the MPC and the
CLF yields an easily computable feedback law (using
Sontag’s formula).

Occupation Measures In this paper, we use the Lya-
punov function approach to synthesizing controllers. An

28

Hadi Ravanbakhsh, Sriram Sankaranarayanan

alternative is to use occupation measures [75,71,49,58].
These methods formulate an infinite dimensional prob-
lem to maximize the region of attraction and obtain a
corresponding control law. This is relaxed to a sequence
of finite dimensional SDPs [47]. Note however that the
approach computes an over approximation of the finite
time backward reachable set from the target and a cor-
responding control. Our framework here instead seeks
an under-approximation that yields a guaranteed con-
troller.

Modeling Inaccuracies and Safe Iterative Learn-
ing. A key drawback of our approach is its dependence
on a mathematical model of the system for learning
CLFs. Although this model is by no means identical to
the real system, it is hoped that the CLF and the con-
trol law remain valid despite the unmodeled dynamics.
Our recent work has successfully investigated physical
experiments that use control Lyapunov-like functions
learned from mathematical models for path following
problems on a %—scale model vehicle using accurate in-
door localization to obtain full state information in real-
time [76]. The broader area of iterative learning con-
trols considers the process of learning how to control a
given plant at the same time as inferring a more refined
model of the plant through exploration [29]. However,
in order to avoid damaging the system, it is necessary
to maintain the system state in a safe set while learn-
ing the system dynamics. Recent work by Wang et al.
consider a combination of barrier certificates for main-
taining safety while learning Gaussian process models of
the vehicle dynamics [101]. Another approach considers
safe reinforcement learning that incrementally refines a
Gaussian process approximation of the unmodeled sys-
tem dynamics, starting from a known initial model [11].
This approach uses a Lyapunov function and performs
explorations at so-called “safe points” from which safety
can be guaranteed during the exploration process. In
doing so, the model of the system is updated along
with an estimate of the safe set obtained as a region
of attraction of the Lyapunov function.

9 Discussion and Future Work

In this section, we discuss some current limitations of
our approach as well as possible extensions of our ap-
proach that can provide avenues for future research.

Extension to Switched Systems: Thus far, our
focus has been on control affine systems. We note that
a variation of our framework is applicable to switched
systems. Specifically, one can transform a plant wherein
the control is performed through switching between dif-
ferent modes into a problem over control affine systems.

Let @ be a finite set of modes, such that the dynam-
ics vary according the mode ¢ € Q (%X = f,(x)). The
controller is assumed to operate by selecting the cur-
rent mode g of the plant. Then the condition on VV
for stabilizing switched systems:

(Vx#0) (Jge Q) VV - fi(x) <0,

is replaced with

(Vx#0) (AN>0,) A =1) > A (VV - fy(x)) <0.

This is identical to the conditions obtained for a con-
trol affine system, and thus, our framework can readily
extend to such systems. Moreover, using the original
formulation, checking conditions on VV is even simpler
(compared to Eq. (17)):

(Fx#£0) AVV - f,(x)>0.

Extensions to Discrete-Time Systems: Control
problems on discrete-time systems have been widely
studied. MPC schemes are naturally implemented over
such systems, and furthermore, Lyapunov-like condi-
tions extend quite naturally. As such, our approach can
be extended to discrete-time nonlinear systems defined
by maps as opposed to ODEs. However, polynomial dis-
crete systems are known to pose computational chal-
lenges: when the Lie derivative is replaced by a differ-
ence operator, the degree of the resulting polynomial
can be larger.

Optimizing Performance Criteria: Our approach
stops as soon as one CLF is discovered. However, no
claims are made as to the optimality of the CLF. The
experimental results suggest that the controllers found
by the CLFs are quite different from the original demon-
strator in terms of their performance. An important
extension to our work lies in finding CLFs so that the
resulting controllers optimize some performance met-
ric. One challenge lies in specifying these performance
metrics as functions of the coefficients of the CLF. A
simple approach may consist of using a black-box per-
formance evaluation function over the CLF discovered
by our approach. Once a CLF is found, we may continue
our search but now target CLFs whose performance are
strictly better than the ones discovered thus far.

Other Verifiers: The verifier is the main bottleneck
in our learning framework. While in theory, the SDP re-
laxation addresses verification problems for polynomial
system, the scalability for systems of high dimensions is
still an issue. There are alternative solutions to the SDP
relaxation, which promise better scalability. In particu-
lar linear relaxations are more attractive for this frame-
work [2,10]. Using linear relaxations, one could restrict

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 29

the candidate space to positive definite polynomials up
front, and consider only the conditions over VV during
the verification process. Therefore, using linear relax-
ations, not only the verification problem scales better,
the number of such verifications to be solved can be
decreased.

For a highly nonlinear system, the degree of poly-
nomials for the dynamics as well as basis functions get
larger. For these systems, the scalability is even more
challenging. In future we wish to explore the the use of
falsifiers (instead of verifiers) and move towards more
scalable solutions [1,4,24]. While falsifiers would not
guarantee correctness, they can be used to find concrete
counterexamples. And by dropping formal correctness,
a falsifier can replace the verifier in the learning frame-
work.

Beyond Polynomial CLFs: In this paper, we as-
sumed that the CLF candidate V is a linear combi-
nation of some given basis functions. While we showed
that this model is precise enough to address exponential
stability over compact sets, there are systems for which
a smooth V does not exist. Nevertheless, our framework
can also handle nonlinear models such as Gaussian mix-
ture or feed forward neural network models, especially
if the verifier is replaced by a falsifier that can be imple-
mented through simulations. However, there are some
serious drawbacks, including more expensive candidate
generation, and weaker convergence guarantees. In fu-
ture work we wish to investigate these models.

Beyond MPC-based Demonstrations: As men-
tioned earlier, the demonstrator is treated as a black-
box. We have investigated to use MPC as they are easy
to design, and can provide smooth feedbacks which
in our experiments is the key to find a smooth CLF.
However, nonlinear MPC schemes using numerical op-
timization can guarantee convergence only to local min-
ima, but this does not translate as such into guarantees
of stability or that the original specifications are met.
However, if we employed human demonstrators (for ex-
ample, an expert who operates the system), the demon-
strator may include errors, and we may need to con-
sider approaches that can reject a subset of the given
demonstrations [83]. In addition, the demonstrations
can lead to inconsistent data, wherein nearby queries
are handled using different strategies by the demonstra-
tor, leading to no single CLF that is compatible with
the given demonstrations [21,16]. These problems are
left for future work.

10 Conclusion

We have thus proposed an algorithmic learning frame-
work for synthesizing control Lyapunov-like functions
for a variety of properties including stability, reach-
while-stay. The framework provides theoretical guaran-
tees of soundness, i.e., the synthesized controller is guar-
anteed to be correct by construction against the given
plant model. Furthermore, our approach uses ideas from
convex analysis to provide termination guarantees and
bounds on the number of iterations.

Acknowledgements We are grateful to Mr. Sina Aghli, Mr.
Souradeep Dutta, Prof. Christoffer Heckman and Prof. Ed-
uardo Sontag for helpful discussions. This work was funded
in part by NSF under award numbers SHF 1527075 and CPS
1646556. All opinions expressed are those of the authors and
not necessarily of the NSF.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic,
F., Gupta, A.: Probabilistic temporal logic falsification
of cyber-physical systems. Trans. on Embedded Com-
puting Systems (TECS) 12, 95— (2013)

2. Ahmadi, A.A., Majumdar, A.: Dsos and sdsos optimiza-
tion: Lp and socp-based alternatives to sum of squares
optimization. In: Information Sciences and Systems
(CISS), 2014 48th Annual Conference on, pp. 1-5. IEEE
(2014)

3. Ames, A.D., Powell, M.: Towards the unification of lo-
comotion and manipulation through control lyapunov
functions and quadratic programs. In: Control of Cyber-
Physical Systems, pp. 219-240. Springer (2013)

4. Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankara-
narayanan, S.: S-taliro: A tool for temporal logic fal-
sification for hybrid systems. In: Tools and algorithms
for the construction and analysis of systems, LNCS, vol.
6605, pp. 254-257. Springer (2011)

5. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A
survey of robot learning from demonstration. Robotics
and Autonomous Systems 57(5), 469 — 483 (2009). DOI
10.1016/j.robot.2008.10.024

6. Artstein, Z.: Stabilization with relaxed controls. Non-
linear Analysis: Theory, Methods & Applications 7(11),
1163 — 1173 (1983). DOI 10.1016/0362-546X (83)90049-
4

7. Atkeson, C.G., Liu, C.: Trajectory-based dynamic pro-
gramming. In: Modeling, Simulation and Optimization
of Bipedal Walking, pp. 1-15. Springer (2013)

8. Atkinson, D.S.; Vaidya, P.M.: A cutting plane algo-
rithm for convex programming that uses analytic cen-
ters. Mathematical Programming 69(1-3), 1-43 (1995).
DOI 10.1007/BF01585551

9. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real
Algebraic Geometry. Springer (2003)

10. Ben Sassi, M.A., Sankaranarayanan, S., Chen, X.,
brahm, E.: Linear relaxations of polynomial positivity
for polynomial lyapunov function synthesis. IMA Jour-
nal of Mathematical Control and Information 33(3),
723-756 (2016). DOI 10.1093/imamci/dnv003

30 Hadi Ravanbakhsh, Sriram Sankaranarayanan

11. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause, Robotics, pp. 7-23. Springer (2016). DOI 10.1007/978-
A.: Safe model-based reinforcement learning with stabil- 3-319-24729-8_2
ity guarantees. In: I. Guyon, U.V. Luxburg, S. Bengio, 28. Freeman, R., Kokotovic, P.V.: Robust nonlinear control
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett design: state-space and Lyapunov techniques. Springer
(eds.) Advances in Neural Information Processing Sys- Science & Business Media (2008)
tems 30, pp. 908-918. quran Associa‘fes, Inc. (2017) 29. French, M., Rogers, E.: Non-linear iterative learning by

12. Bertsekas, D.P.: Dynamic programming and optimal an adaptive lyapunov technique. International Journal
control, vol. 1. Athena Sc}entiﬁc Belmc?nt, MA (199§) of Control 73(10), 840-850 (2000)

13. Bertsekas, D.P.: Approximate dynamic programming 30. Galloway, K., Sreenath, K., Ames, A.D., Grizzle, J.W.:
(2008)] L Torque saturation in bipedal robotic walking through

14. Bland, R.G., Goldfarb, D.,'Todd, M.J.: The ellipsoid control lyapunov function-based quadratic programs.
1031 (1081). DOT 101587 fopre 2060030 BB Access 3, 523332 (2015)

. . opre.29.6. g)
15. Bouyer, P., Markey, N., Perrin, N., Schlehuber-Caissier, 31 Gao,. S., Kong, .S" Clarke, E.M.: dreal: An sm‘F solver for
. . . . nonlinear theories over the reals. In: International Con-
P.: Timed-automata abstraction of switched dynamical . .
systems using control invariants. Real-Time Systems ference on Automated Deduction, pp. 208-214. Springer
53(3), 327-353 (2017). DOI 10.1007/s11241-016-9262-3 19 goﬁf). DOSI 110(‘1007/ 91\748'3'0641'58574'2*114.t ¢ tonch

16. Breazeal, C., Berlin, M., Brooks, A., Gray, J., - soldman, 5., Biearns, V.. Un the complexity ol teach-
Thomaz, A.L.. Using perspective taking to learn ing. Journal of Computer ancll System Sciences 50(1),
from ambiguous demonstrations. Robotics and Au- 20 — 31 (1995). DOI 10.1006/jcss.1995.1003
tonomous Systems 54(5), 385 — 393 (2006). DOI 33. Helton, J.W., Merino, O.: Coordinate optimization for
https://doi.org/10.1016/j.robot.2006.02.004. The So- bi-convex matrix inequalities. In: Proc. IEEE CDC,
cial Mechanisms of Robot Programming from Demon- vol. 4, pp. 3609-3613 vol.4 (1997)
stration 34. Henrion, D., Lasserre, J.B., Lofberg, J.: Gloptipoly 3:

17. Brown, C.W., Davenport, J.H.: The complexity of quan- moments, optimization and semidefinite programming.
tifier elimination and cylindrical algebraic decomposi- Optimization Methods & Software 24(4-5), 761-779
tion. In: Proceedings of the 2007 International Sympo- (2009)
sium on Symbolic and Algebraic Computation, ISSAC 35. Henrion, D., Lofberg, J., Kocvara, M., Stingl, M.: Solv-
’07, pp. 54-60. ACM, New York, NY, USA (2007). DOI ing polynomial static output feedback problems with
10.1145/1277548.1277557 penbmi. In: Proceedings of the 44th IEEE Conference

18. Bryson, A.E.: Applied optimal control: optimization, es- on Decision and Control, pp. 7581-7586. IEEE (2005)
timation and control. CRC Press (1975) 36. Huang, Z., Wang, Y., Mitra, S., Dullerud, G.E., Chaud-

19. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequen- huri, S.: Controller synthesis with inductive proofs for
tial composition of dynamically dexterous robot behav- piecewise linear systems: An smt-based algorithm. In:
iors. The International Journal of Robotics Research 2015 54th IEEE Conference on Decision and Control
18(6), 534-555 (1999) (CDCQ), pp. 7434-7439. IEEE (2015)

20. Chan, 'RP'M" Stol, K.A., Halkyard, C.R.: Review of 37. Jadbabaie, A., Hauser, J.: Control of a thrust-vectored
mod.elhng. and control of two-wheeled robots. Annual flying wing: a receding horizon-lpv approach. Interna-
Reviews in Control 37(1), 89 — 103 (2013). DOI tional Journal of Robust and Nonlinear Control 12(9),
10.1016/j.arcontrol.2013.03.004 869-896 (2002)

21. Chernova, S., Veloso, M.: Learning equivalent action 3¢ jankovie, M., Fontaine, D., KokotoviC, P.V.: Tora
choices from demonstration. In: Intelligent Robots. and example: cascade-and passivity-based control designs.
Systems, 2008. IROS 2008. IEEE/RSJ International IEEE Transactions on Control Systems Technology
Conference on, pp. 1216-1221. IEEE (2008) u

22. Curtis, J.W.: Clf-based li trol with pol 4(3), 2927297 (1996)

o CUIS, SV ~Pased nohanear conro. with DPowy- 39. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-
topic input constraints. In: 42nd IEEE Interna- . .
. .. guided component-based program synthesis. In: Pro-
tional Conference on Decision and Control (IEEE Cat. ceedings of the 32Nd ACM/IEEE International Con-
No.03CH37475), vol. 3, pp. 22282233 Vol.3 (2003).) 8 N :
erence on Software Engineering - Volume 1, ICSE ’10,
DOI 10.1109/CDC.2003.1272949
. . pp. 215-224. ACM, New York, NY, USA (2010). DOI

23. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthe- 10.1145/1806799.1806833
sis for hybrid systems with an application to simulink Jhl S Seshi éA A th £ | hesis vi
models. In: International Workshop on Hybrid Systems: 40. ‘ ;" o els 18, . ”A t ?O?’ ot lorma synthesis via
Computation and Control, pp. 165-179. Springer (2009) inductive learning. cta Informatica 54(7), 693-726

24. Donzé, A., Maler, O.: Robust satisfaction of tempo- (2017). DOI 10.1007/500236-017-0294-5

; _ ; . _ . Kapinski, J., Deshmu .V., Sankaranarayanan, S.
ral logic over real-valued signals. In: FORMATS, Lec 41. Kapi 'k47 I, D. h .khv J y7 Sanka Y b S.,
ture Notes in Computer Science, vol. 6246, pp. 92—106. Arechiga, N.: Simulation-guided lyapunov analysis for
Springer (2010 hybrid dynamical systems. In: Proceedings of the 17th

25. Eli) Gﬁam(li, L.? Balakrishnan, V.: Synthesis of fixed- ir}ternational conference on Hybrid systems: computa-
structure controllers via numerical optimization. In: De- tion and control, pp. 133-142. ACM (2014)
cision and Control, 1994., Proceedings of the 33rd IEEE 42. Khachiyan, L.: An inequality for the volume of inscribed
Conference on, vol. 3, pp. 2678-2683. IEEE (1994) ellipsoids. Discrete & Computational Geometry 5(1),

26. Elzinga, J., Moore, T.G.: A central cutting plane al- 219-222 (1990). DOI 10.1007/BF02187786
gorithm for the convex programming problem. Math- 43. Khansari-Zadeh, Mohammad, S., Khatib, O.: Learn-
ematical Programming 8(1), 134-145 (1975). DOI ing potential functions from human demonstrations
https://doi.org/10.1007/BF01580439 with encapsulated dynamic and compliant behaviors.

27. Francis, B.A., Maggiore, M.: Models of mobile robots in Autonomous Robots 41(1), 45-69 (2017). DOI

the plane. In: Flocking and Rendezvous in Distributed

10.1007/s10514-015-9528-y

Learning Control Lyapunov Functions from Counterexamples and Demonstrations 31

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Kloetzer, M., Belta, C.: A fully automated framework
for control of linear systems from temporal logic spec-
ifications. Automatic Control, IEEE Transactions on
53(1), 287-297 (2008)

Kocsis, L., Szepesvari, C.: Bandit based monte-carlo
planning. In: Machine Learning: ECML 2006, 17th Eu-
ropean Conference on Machine Learning, Berlin, Ger-
many, September 18-22, 2006, Proceedings, pp. 282293
(2006). DOI 10.1007/11871842_29

Landry, M., Campbell, S.A., Morris, K., Aguilar, C.O.:
Dynamics of an inverted pendulum with delayed feed-
back control. STAM Journal on Applied Dynamical Sys-
tems 4(2), 333-351 (2005). DOI 10.1137/030600461
Lasserre, J.B.: Global optimization with polynomials
and the problem of moments. SIAM Journal on Op-
timization 11(3), 796-817 (2001)

Lasserre, J.B.: Moments, positive polynomials and their
applications. World Scientific (2009)

Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Non-
linear optimal control via occupation measures and lmi-
relaxations. SIAM Journal on Control and Optimization
47(4), 1643-1666 (2008)

Lavalle, S.M., Kuffner Jr, J.J.: Rapidly-exploring ran-
dom trees: Progress and prospects. In: Algorithmic
and Computational Robotics: New Directions. Citeseer
(2000)

Leth, T., Wisniewski, R., Sloth, C.: On the existence
of polynomial lyapunov functions for rationally stable
vector fields. In: 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pp. 4884-4889 (2017).
DOI 10.1109/CDC.2017.8264381

Liberzon, D.: Switching in systems and control. Springer
Science & Business Media (2012)

Lin, Y., Sontag, E.D.: A universal formula for stabi-
lization with bounded controls. Systems & Control
Letters 16(6), 393 — 397 (1991). DOI 10.1016/0167-
6911(91)90111-Q

Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of
reactive switching protocols from temporal logic spec-
ifications. Automatic Control, IEEE Transactions on
58(7), 1771-1785 (2013)

Lopez, 1., McInnes, C.R.: Autonomous rendezvous using
artificial potential function guidance. Journal of Guid-
ance, Control, and Dynamics 18(2), 237-241 (1995)
Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control de-
sign along trajectories with sums of squares program-
ming. In: Robotics and Automation (ICRA), 2013
IEEE International Conference on, pp. 4054-4061. IEEE
(2013)

Majumdar, A., Tedrake, R.: Robust online motion plan-
ning with regions of finite time invariance. In: Algorith-
mic Foundations of Robotics X, pp. 543-558. Springer
(2013). DOI 10.1007/978-3-642-36279-8_33

Majumdar, A., Vasudevan, R., Tobenkin, M.M.,
Tedrake, R.: Convex optimization of nonlinear feedback
controllers via occupation measures. The International
Journal of Robotics Research p. 0278364914528059
(2014)

Mason, M.: The mechanics of manipulation. In:
Robotics and Automation. Proceedings. 1985 IEEE In-
ternational Conference on, vol. 2, pp. 544-548. IEEE
(1985)

Mordatch, I., Todorov, E.: Combining the benefits of
function approximation and trajectory optimization. In:
Proceedings of Robotics: Science and Systems. Berkeley,
USA (2014). DOI 10.15607/RSS.2014.X.052

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

Mosek, A.: The mosek optimization software. Online at
http://www. mosek. com 54, 2-1 (2010)

Mouelhi, S., Girard, A., Gossler, G.: Cosyma: a tool
for controller synthesis using multi-scale abstractions.
In: Proceedings of the 16th international conference on
Hybrid systems: computation and control, pp. 83-88.
ACM (2013)

Nguyen, Q., Sreenath, K.: Optimal robust control for
bipedal robots through control lyapunov function based
quadratic programs. In: Robotics: Science and Systems
(2015)

Nocedal, J., Wright, S.J.: Numerical Optimization.
Springer—Verlag (2006)

Papachristodoulou, A., Prajna, S.: On the construction
of Lyapunov functions using the sum of squares decom-
position. In: IEEE CDC, pp. 3482-3487. IEEE Press
(2002)

Parillo, P.A.: Semidefinite programming relaxation for
semialgebraic problems. Mathematical Programming
Ser. B 96(2), 293-320 (2003)

Peet, M.M.: Exponentially stable nonlinear systems
have polynomial lyapunov functions on bounded re-
gions. IEEE Transactions on Automatic Control 54(5),
979-987 (2009)

Peet, M.M., Bliman, P.A.: Polynomial lyapunov func-
tions for exponential stability of nonlinear systems on
bounded regions. IFAC Proceedings Volumes 41(2),
1111 — 1116 (2008). DOI 10.3182/20080706-5-KR-
1001.00192. 17th IFAC World Congress

Prajna, S., Jadbabaie, A.: Safety verification of hybrid
systems using barrier certificates. In: HSCC, vol. 2993,
pp. 477-492. Springer (2004)

Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Intro-
ducing sostools: A general purpose sum of squares pro-
gramming solver. In: Decision and Control, 2002, Pro-
ceedings of the 41st IEEE Conference on, vol. 1, pp.
741-746. IEEE (2002)

Prajna, S., Parrilo, P.A., Rantzer, A.: Nonlinear control
synthesis by convex optimization. IEEE Transactions
on Automatic Control 49(2), 310-314 (2004)

Prieur, C., Praly, L.: Uniting local and global con-
trollers. In: Decision and Control, 1999. Proceedings
of the 38th IEEE Conference on, vol. 2, pp. 1214-1219.
IEEE (1999)

Primbs, J.A., Nevisti¢, V., Doyle, J.C.: Nonlinear opti-
mal control: A control lyapunov function and receding
horizon perspective. Asian Journal of Control 1(1), 14—
24 (1999)

Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Se-
shia, S.A.: Reactive synthesis from signal temporal logic
specifications. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Con-
trol, pp. 239-248. ACM (2015)

Rantzer, A.: A dual to lyapunov’s stability theorem.
Systems & Control Letters 42(3), 161-168 (2001)
Ravanbakhsh, H., Aghli, S., Heckman, C., Sankara-
narayanan, S.: Path-following through control funnel

functions. CoRR abs/1804.05288 (2018). URL
http://arxiv.org/abs/1804.05288
Ravanbakhsh, H., Sankaranarayanan, S.: Counter-

example guided synthesis of control lyapunov functions
for switched systems. In: 2015 54th IEEE Conference
on Decision and Control (CDC), pp. 4232-4239 (2015).
DOI 10.1109/CDC.2015.7402879

Ravanbakhsh, H., Sankaranarayanan, S.: Counterexam-
ple guided synthesis of switched controllers for reach-
while-stay properties. arXiv preprint arXiv:1505.01180
(2015)

32 Hadi Ravanbakhsh, Sriram Sankaranarayanan
79. Ravanbakhsh, H., Sankaranarayanan, S.: Robust con- 96. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts,
troller synthesis of switched systems using counterex- J.W.: Lqr-trees: Feedback motion planning via sums-
ample guided framework. In: 2016 International Con- of-squares verification. The International Journal of
ference on Embedded Software (EMSOFT), pp. 1-10 Robotics Research (2010)
(2016). DOI 10.1145/2968478.2968485 97. Topcu, U., Packard, A., Seiler, P., Wheeler, T.: Stabil-

80. Ravanbakhsh, H., Sankaranarayanan, S.: Learning lya- ity region analysis using simulations and sum-of-squares
punov (potential) functions from counterexamples and programming. In: Proceedings of the American control
demonstrations. In: Proceedings of Robotics: Science conference, pp. 6009-6014 (2007)
and Systems. Cambridge, Massachusetts (2017). DOI 98. Vaidya, P.M.: A new algorithm for minimizing convex
10.15607/RSS.2017.XI11.049 functions over convex sets. Mathematical programming

81. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of im- 73(3), 291-341 (1996). DOI 10.1007/BF02592216
itation learning and structured prediction to no-regret 99. Vandenberghe, L., Boyd, S., Wu, S.P.: Determi-
online learning. In: AISTATS, vol. 1, p. 6 (2011) nant maximization with linear matrix inequality

82. Rungger, M., Zamani, M.: Scots: A tool for the synthe- constraints. SIAM journal on matrix analysis
sis of symbolic controllers. In: Proceedings of the 19th and applications 19(2), 499-533 (1998). DOI
International Conference on Hybrid Systems: Computa- 10.1137/50895479896303430
tion and Control, pp. 99-104. ACM (2016) 100. Vanderbei, R.J.: Linear Programming: Foundations &

83. S. Mohammad Khansari-Zadeh, Aude Billard: Learning Extensions (Second Edition). Springer (2001). Cf.
control lyapunov function to ensure stability of dynami- http://www.princeton.edu/ rvdb/LPbook/
cal system-based robot reaching motions. Robotics and 101. Wang, L., Theodorou, E.A., Egerstedt, M.: Safe
Autonomous Systems 62(6), 752 — 765 (2014). DOI learning of quadrotor dynamics using barrier cer-
10.1016/j.robot.2014.03.001 tificates. CoRR abs/1710.05472 (2017). URL

84. Shor, N.: Class of global minimum bounds on poly- http://arxiv.org/abs/1710.05472
nomial functions. Cybernetics 23(6), 731-734 (1987). 102. Wieland, P., Allgower, F.: Constructive safety using
Originally in Russian: Kibernetika (6), 1987, 9-11 control barrier functions. IFAC Proceedings Volumes

85. Solar-Lezama, A.: Program synthesis by sketching. Pro- 40(12), 462 — 467 (2007). DOI 10.3182/20070822-3-Z A~
Quest (2008) 2920.00076. 7th IFAC Symposium on Nonlinear Control

86. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Systems
Saraswat, V.: Combinatorial sketching for finite pro- 103. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Mur-
grams. ACM SIGOPS Operating Systems Review ray, R.M.: Tulip: a software toolbox for receding horizon
40(5), 404-415 (2006) temporal logic planning. In: Proceedings of the 14th in-

87. Sontag, E.D.: A characterization of asymptotic control- ternational conference on Hybrid systems: computation
lability. In: Dynamical Systems II (Proc. of University and control, pp. 313-314. ACM (2011)))
of Florida International Symposium), pp. 645-648. Aca- 104. Y(.)rdanov, B., Belta, C.: Parameter syrllthems for piece-
demic Press, NY (1982) wise affine s.,ystems from temporal lqglc specifications.

88. Sontag, E.D.: A lyapunov-like characterization of In: In.ternatlonal Workshop on Hybrid ‘Systemsz Com-
asymptotic controllability. SIAM Journal on Control putation and Control, pp. _5427555' Springer (2008))
and Optimization 21(3)’ 462-471 (1983) 105. ZhELIlg7 T., Kahn, G., Levme, S‘7 Abbeel, P.: Learmng

89. Sontag, E.D.: A 'universal’ construction of artstein’s deep coptrol po%icies for autonornouslaerial vehicles Wlith
theorem on nonlinear stabilization. Systems & Control mpc-guided policy search. In: Robotlcs and Automation
Letters 13(2), 117 — 123 (1989). DOI 10.1016/0167- (ICRA), 2016 IEEE International Conference on, pp.
6911(89)90028-5 528-535. IEEE (2016)

90. Stolle, M., Atkeson, C.G.: Policies based on trajectory 106. Zhong, M., Joh.nson, M., Tfassia, Y., Brez, T, TOdf”?"’
libraries. In: Proceedings 2006 IEEE International Con- E.: Value function approx1matlon' and model pI‘(.%dlCtlve
ference on Robotics and Automation, 2006. ICRA 2006., cont‘rol, In: 2013. IEEE Syr_nposmm on AdaPtlve Dy-
pp. 3344-3349. IEEE (2006) namic Programming and Reinforcement Learning (AD-

91. Suarez, R., Solis-Daun, J., Aguirre, B.: Global clf stabi- PRL), pp. 100-107. IEEE (2013)
lization for systems with compact convex control value
sets. In: Proceedings of the 40th IEEE Conference on
Decision and Control (Cat. No.01CH37228), vol. 4, pp.

3838-3843 vol.4 (2001). DOI 10.1109/.2001.980463

92. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switch-
ing logic using constraint solving. International journal
on software tools for technology transfer 13(6), 519-535
(2011)

93. Taly, A., Tiwari, A.: Switching logic synthesis for reach-
ability. In: Proceedings of the tenth ACM international
conference on Embedded software, pp. 19-28. ACM
(2010)

94. Tan, W., Packard, A.: Searching for control Lyapunov
functions using sums of squares programming. In: Aller-
ton conference on communication, control and comput-
ing, pp. 210-219 (2004)

95. Tarasov, S., Khachian, L., Erlikh, I.: The method of

inscribed ellipsoids. Doklady Akademii Nauk. SSSR
298(5), 1081-1085 (1988)

