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Abstract—We introduce attacklets, a novel approach to model
the high dimensional interactions in cyberattacks. Attacklets are
implemented using a real-world dataset of cyberattacks from the
Verizon Data Breach Investigation Report. Whereas the com-
monly used attack graphs model the action sequences of attackers
for specific exploits, attacklets model general attributes and states
of each attack separately. Attacklets may inform the number
and types of attributes across a wide range of cyberattacks.
These structural properties can then be used in machine learning
models to classify and predict future cyberattacks.

Index Terms—cybersecurity; attack graph; attacklet; cyberat-
tack; data depth

I. INTRODUCTION

A common quantitative method for modeling cyberattacks

uses attack graphs, or attack trees, which are a graphical

representation of attacker actions and corresponding system

security states [1]. In contrast, many methods for modeling

risks in cybersecurity are qualitative because they use sub-

jective data such as expert opinion [2]. Potential applications

for attack graphs include determining overall risks in the

network and identifying and mitigating specific exploits and

vulnerabilities [1], [3], [4]. Here, we demonstrate a novel

approach to modeling cyberattacks by leveraging the high

dimensionality and subdimensionality of attack attributes. We

call this approach attacklets. Attacklets are implemented

using a real–world dataset of cyberattacks from the Verizon

Data Breach Investigations Report (DBIR) [5]. Compared to

typical attack graphs, attacklets model the high dimensional

interactions using the data depth for five attributes/states of

co-occuring attack attributes and their nested sub-attributes.

A. Background and Motivation

The DBIR dataset provides a unique attack graph because of

its high dimensionality (see II). Existing attack graphs either

evaluate every attack path or use assumptions to simplify the

graph [6], [7]. A common attack graph is state-based, and

consists of all possible security states, which may not be
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computationally feasible. Computational challenges are typ-

ically addressed by limiting the number of states or applying

techniques for minimization analysis [7], [8].

An alternative approach of addressing computational issues

for state-based attack graphs is to summarize all attack paths

using descriptive statistics, such as the mean and standard

deviation of path lengths and fixed values for the popularity of

specific exploits [9]. One notable exception, a computationally

feasible state-based attack graph uses approximate inference

of all attack paths [6]. Another type of attack graph simplifies

the assumptions between attacks and system security states

(e.g., necessary and sufficient preconditions for attack success,

security states can only stay the same or get worse) [6], [10].

Whereas, due to individual processing of each attack, our

attacklet approach is both computationally efficient and allows

for longitudinal analyses with attacklet summaries.

II. DATASET

The DBIR dataset is publicly available from [11], see [5]

for a detailed description. The dataset contains breaches from

1971 to 2017. The dataset schema is the Vocabulary for Event

Recording and Incident Sharing (VERIS) [12], which contains

24 top-level variables such as impact, reference, and summary.

Using VERIS, we focus on common attributes of the breaches:

(Discovered by) which gives the discovery source of a breach

and the four main attributes: Actor, Action, Attribute, and

Asset. These attributes are chosen to provide a succinct and

informative representation of each breach. We refer to this

reduced dataset as the A
4
D model. Each attribute is further

sub-coded with a subset of states. The Discovery attribute

has external, other, partner, unknown and internal states to

code the source of attack discovery. The Action that was

taken in the attack is sub-coded with error, hacking, malware,

misuse, physical, environmental, social and unknown. The

Actor attribute has the states external, internal, partner and

unknown to code the origin of the attack. Target of the attack

is coded with the Asset attribute, which has media, network,

people, server, unknown, and user states. Attribute encodes

the result of the attack with loss of asset availability, breach

of asset confidentiality, and violation of asset integrity. In
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the dataset, 7,614 (i.e., 99.7%) of breaches contain the A
4
D

attributes. Breach reports tend to contain one state (median

is 1) in each attribute (e.g., Actor: external), but reports with

multiple states for the same attribute also exist (e.g., Action:

misuse and error). In maximum, breach reports contain Action:

5, Actor: 4, Asset: 5, Attribute: 3 and Discovery: 1 states.

III. THE ATTACKLET MODEL

Fig. 1: The attacklet of a re-

port where an internal worker’s

physical actions and misuse

caused the integrity of server

and network assets to be vi-

olated, making the assets un-

available for use.

We use the term at-
tacklet to refer to the at-

tack graph created from a

breach report where nodes

are A
4
D attributes (X ) and

their states (S). Each at-

tacklet edge e = (u, x)
where u, v ∈ X ∪ S . At-

tacklets can be visualized

as in Figure 1; as they co-

appear in the breach re-

port, all A
4
D nodes are

connected. A state is con-

nected to its attribute, such

as Internal in the Discovery

attribute. For each attribute,

each state has an associated

position on the graph. Next,

we will use these positions

to summarize the informa-

tion contained in a set of

attacklets.

Attacklet Summaries: Attacklets can be grouped or ana-

lyzed in two additional aspects: country of the victim and year
of the attacklet. The year attribute allows a longitudinal study

of how attacklets change shape through years. In Figure 2, we

summarize the attacklets for the last three years of the dataset

(i.e., 2015–2017) with a 50% resolution, which visualizes the

top 50% most frequent states only, for a better view. Annual

summaries show that most breaches occur due to error actions,

and servers are the most common target in confidentiality

attacks. We create a similar view for the attacklets originating

from USA (78% of all attacklets) vs. other countries (i.e.,

Non-USA). Figure 3 shows that USA attacklets differ from

the Non-USA ones in Action, Asset and Discovery attributes.

For example, the USA attacklets show that there are more

media assets attacked, and more physical actions than in the

the Non-USA counterparts.

IV. ATTACKLET REPRESENTATION

A key goal of this work is to create a representation

of attacklets so that tasks, such as attacklet classification

and clustering, can be carried out for security applications

(e.g., anomaly detection). To evaluate properties of attacklet

distributions, we start with selecting a reference, or a baseline
attacklet which can serve multiple purposes. First, a reference

attacklet can be viewed as the most representative type of

breach in a given year or geographic region. We can then

(a) 2015 (b) 2016 (c) 2017

Fig. 2: Summary attacklets for the most recent three years

(50% resolution).Edge thickness indicates the percentage of

an edge appearing in all attacklets.

(a) USA (b) Non-USA

Fig. 3: Attacklet summaries for USA vs. other countries (50%

resolution). Edge thickness indicates the percentage of an edge

appearing in all attacklets.

assess how different countries differ from this baseline in terms

of the most typical breaches. Second, we can study temporal

deviations of the newly incoming attacklets from the earlier

defined reference attacklet, which, in turn, can be used as

a early warning signal for new types of breaches. Third, a

reference attacklet can be used for visualization.

In the most basic model, an attacklet can be represented

with respect to the reference attacklet in five A
4
D attributes.

Distance of an attacklet in each attribute can be computed

Action

Actor

AssetAttribute

Discovery

(a) Attacklets in A
4
D at-

tributes.

Action

Actor

Asset

Attribute

Discovery

Actor+Discovery

Actor+Action

Asset+Action

(b) Attacklets in A
4
D and

three pairwise attributes.

Fig. 4: [Color online] A representation of the latest 100

attacklets from 2017 in the dataset. Distance (0 at the center,

1 at the outer rim) in each of the A
4
D attributes + 3 pairwise

attributes indicates deviation from the reference attacklet. An

attacklet closes a planar surface with its distance to the

reference attacklet in multiple attributes.
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in isolation. The reference attacklet of the attribute becomes

a vector of attribute state probabilities. We compute the

distance of attacklet from the reference attacklet as 1 −
sim(attacklet, reference) where the sim function is the Cosine

similarity [13]. Figure 4a shows attacklets in a radar plot where

we associate five distance values for an attacklet.

In a second approach, we consider more than the five

attributes using a joint multivariate distribution of attributes.

Formally, let X i, i = 1, . . . , 5 be a A
4
D attribute (e.g., Asset).

Each X i, i = 1, . . . , 5 can be viewed as a nominal (categor-

ical) discrete random variable which can attain ni different

states (e.g., Asset: server), and each state Sij , j = 1, . . . , ni is

coded as 1, . . . , ni. For coding purposes, we sort the states Sij

in the alphabetic order; however, it is important to emphasize

that Sij is intrinsically qualitative and there exists no natural

meaning behind ordering the states. With these notations,

we can assess a marginal distribution Pi of the attribute

X i, where a probability of X i attaining the state Sij is

πj = |Sij | / |X i|, where states j = 1, . . . , ni. Here |Sij | is

the number of occurrences of the state Sij of the attribute

X i and Ni denotes the number of occurrences of the the

attribute X i. Multiple approaches exist to define a reference

attacklet for the attribute X i. Since X i is a categorical random

variable, mode of a marginal distribution Pi may be one

option, with the benefit that mode has an intrinsic natural

meaning. However, extending the mode approach to analysis

of multiple attributes is challenging since finding a mode of

a multivariate distribution may have no analytic solution. As

a result, the mode approach is largely limited to treating all

attributes independently and does not account for dependen-

cies among some key breach characteristics, which clearly

play a significant role in assessing dynamics of breaches.

For example, Actor: Internal and Discovery: Internal has a

strong dependency, because breaches by internal actors may

be noticed more often by internal resources.

P
{X 1; . . . ;X 5

}
= (1)

P
{X 1 = {S11, . . . ,S1n1

}; . . . ;X 5 = {S51, . . . ,S5n5
}}

Since our primary focus is on evaluating relative characteristics

of attacklets with respect to a reference attacklet, we define it,

Υ, as an empirical mean of P.

Υ =
∑

X 1

∑

X 2

∑

X 3

∑

X 4

∑

X 5

πk,l,m,s,r

(X 1 = k;X 2 = l;

X 3 = m;X 4 = s;X 5 = r
)

(2)

where πk,l,m,s,r = P
(X 1 = k;X 2 = l;X 3 = m;X 4 =

s;X 5 = r
)

is the probability to observe to observe an attacklet

with the attributes
(X 1 = k;X 2 = l;X 3 = m;X 4 =

s;X 5 = r
)

and is defined as the fraction of occurrences of the

combination
(X 1 = k;X 2 = l;X 3 = m;X 4 = s;X 5 = r

)
.

Notice that a marginal distribution Pi is a univariate sub-

case of P. Furthermore, (1) allows us to project P onto a

subset of attributes which are of particular interest from a

domain knowledge perspective. This knowledge can be as

simple as ’an internal action such as misuse will more likely

be discovered by other internal actors’, which indicates a

dependency between Action and Discovery. To illustrate the

utility of pairwise attributes, we chose to use Discovery+Actor,

Actor+Action and Action+Asset pairwise dependencies. Fig-

ure 4b shows attacklets with pairwise attributes.

While in this pilot study for simplicity we focus on a

reference attacklet defined by Υ, a more general alternative

is to employ a notion of data depth [14] which enables a

more flexible multi-perspective evaluation of a multivariate

distribution P. With data depth [14], we can define multivari-

ate quantiles of P (e.g., multivariate median as a reference

attacklet, or the 5th and 95th multivariate percentiles of P)

which can be used to assign an anomaly score to an incoming

attacklet.

V. DISCUSSION AND CONCLUSION

We have proposed attacklets – a novel, flexible and com-

putationally efficient approach for modeling cyberattacks. We

have illustrated utility of attacklet summaries for visualiza-

tion and description of cyberattacks in different geographical

regions and across years. Furthermore, we have developed a

representation model to store attacklets and use them as input

to machine learning models. In the future, we plan to develop

data depth based anomaly detection algorithms on attacklets.
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