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Abstract—We introduce attacklets, a novel approach to model
the high dimensional interactions in cyberattacks. Attacklets are
implemented using a real-world dataset of cyberattacks from the
Verizon Data Breach Investigation Report. Whereas the com-
monly used attack graphs model the action sequences of attackers
for specific exploits, attacklets model general attributes and states
of each attack separately. Attacklets may inform the number
and types of attributes across a wide range of cyberattacks.
These structural properties can then be used in machine learning
models to classify and predict future cyberattacks.

Index Terms—cybersecurity; attack graph; attacklet; cyberat-
tack; data depth

I. INTRODUCTION

A common quantitative method for modeling cyberattacks
uses attack graphs, or attack trees, which are a graphical
representation of attacker actions and corresponding system
security states [1]. In contrast, many methods for modeling
risks in cybersecurity are qualitative because they use sub-
jective data such as expert opinion [2]. Potential applications
for attack graphs include determining overall risks in the
network and identifying and mitigating specific exploits and
vulnerabilities [1], [3], [4]. Here, we demonstrate a novel
approach to modeling cyberattacks by leveraging the high
dimensionality and subdimensionality of attack attributes. We
call this approach attacklets. Attacklets are implemented
using a real-world dataset of cyberattacks from the Verizon
Data Breach Investigations Report (DBIR) [5]. Compared to
typical attack graphs, attacklets model the high dimensional
interactions using the data depth for five attributes/states of
co-occuring attack attributes and their nested sub-attributes.

A. Background and Motivation

The DBIR dataset provides a unique attack graph because of
its high dimensionality (see II). Existing attack graphs either
evaluate every attack path or use assumptions to simplify the
graph [6], [7]. A common attack graph is state-based, and
consists of all possible security states, which may not be
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computationally feasible. Computational challenges are typ-
ically addressed by limiting the number of states or applying
techniques for minimization analysis [7], [8].

An alternative approach of addressing computational issues
for state-based attack graphs is to summarize all attack paths
using descriptive statistics, such as the mean and standard
deviation of path lengths and fixed values for the popularity of
specific exploits [9]. One notable exception, a computationally
feasible state-based attack graph uses approximate inference
of all attack paths [6]. Another type of attack graph simplifies
the assumptions between attacks and system security states
(e.g., necessary and sufficient preconditions for attack success,
security states can only stay the same or get worse) [6], [10].
Whereas, due to individual processing of each attack, our
attacklet approach is both computationally efficient and allows
for longitudinal analyses with attacklet summaries.

II. DATASET

The DBIR dataset is publicly available from [11], see [5]
for a detailed description. The dataset contains breaches from
1971 to 2017. The dataset schema is the Vocabulary for Event
Recording and Incident Sharing (VERIS) [12], which contains
24 top-level variables such as impact, reference, and summary.
Using VERIS, we focus on common attributes of the breaches:
(Discovered_by) which gives the discovery source of a breach
and the four main attributes: Actor, Action, Attribute, and
Asset. These attributes are chosen to provide a succinct and
informative representation of each breach. We refer to this
reduced dataset as the A*D model. Each attribute is further
sub-coded with a subset of states. The Discovery attribute
has external, other, partner, unknown and internal states to
code the source of attack discovery. The Action that was
taken in the attack is sub-coded with error, hacking, malware,
misuse, physical, environmental, social and unknown. The
Actor attribute has the states external, internal, partner and
unknown to code the origin of the attack. Target of the attack
is coded with the Asset attribute, which has media, network,
people, server, unknown, and user states. Attribute encodes
the result of the attack with loss of asset availability, breach
of asset confidentiality, and violation of asset integrity. In



the dataset, 7,614 (i.e., 99.7%) of breaches contain the A*D
attributes. Breach reports tend to contain one state (median
is 1) in each attribute (e.g., Actor: external), but reports with
multiple states for the same attribute also exist (e.g., Action:
misuse and error). In maximum, breach reports contain Action:

5, Actor: 4, Asset: 5, Attribute: 3 and Discovery: 1 states.

III. THE ATTACKLET MODEL
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Fig. 1: The attacklet of a re-
port where an internal worker’s
physical actions and misuse
caused the integrity of server
and network assets to be vi-
olated, making the assets un-
available for use.

We use the term at-
tacklet to refer to the at-
tack graph created from a
breach report where nodes
are A*D attributes (X) and
their states (S). Each at-
tacklet edge ¢ = (u,x)
where u,v € X US. At-
tacklets can be visualized
as in Figure 1; as they co-
appear in the breach re-
port, all A*D nodes are
connected. A state is con-
nected to its attribute, such
as Internal in the Discovery
attribute. For each attribute,
each state has an associated
position on the graph. Next,
we will use these positions
to summarize the informa-
tion contained in a set of
attacklets.

Attacklet Summaries: Attacklets can be grouped or ana-
lyzed in two additional aspects: country of the victim and year
of the attacklet. The year attribute allows a longitudinal study
of how attacklets change shape through years. In Figure 2, we
summarize the attacklets for the last three years of the dataset
(i.e., 2015-2017) with a 50% resolution, which visualizes the
top 50% most frequent states only, for a better view. Annual
summaries show that most breaches occur due to error actions,
and servers are the most common target in confidentiality
attacks. We create a similar view for the attacklets originating
from USA (78% of all attacklets) vs. other countries (i.e.,
Non-USA). Figure 3 shows that USA attacklets differ from
the Non-USA ones in Action, Asset and Discovery attributes.
For example, the USA attacklets show that there are more
media assets attacked, and more physical actions than in the
the Non-USA counterparts.

IV. ATTACKLET REPRESENTATION

A key goal of this work is to create a representation
of attacklets so that tasks, such as attacklet classification
and clustering, can be carried out for security applications
(e.g., anomaly detection). To evaluate properties of attacklet
distributions, we start with selecting a reference, or a baseline
attacklet which can serve multiple purposes. First, a reference
attacklet can be viewed as the most representative type of
breach in a given year or geographic region. We can then

(a) 2015 (b) 2016 (c) 2017

Fig. 2: Summary attacklets for the most recent three years
(50% resolution).Edge thickness indicates the percentage of
an edge appearing in all attacklets.
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Fig. 3: Attacklet summaries for USA vs. other countries (50%
resolution). Edge thickness indicates the percentage of an edge
appearing in all attacklets.

assess how different countries differ from this baseline in terms
of the most typical breaches. Second, we can study temporal
deviations of the newly incoming attacklets from the earlier
defined reference attacklet, which, in turn, can be used as
a early warning signal for new types of breaches. Third, a
reference attacklet can be used for visualization.

In the most basic model, an attacklet can be represented
with respect to the reference attacklet in five A*D attributes.
Distance of an attacklet in each attribute can be computed
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(a) Attacklets in A*D at-
tributes.

(b) Attacklets in A*D and
three pairwise attributes.

Fig. 4: [Color online] A representation of the latest 100
attacklets from 2017 in the dataset. Distance (0 at the center,
1 at the outer rim) in each of the A*D attributes + 3 pairwise
attributes indicates deviation from the reference attacklet. An
attacklet closes a planar surface with its distance to the
reference attacklet in multiple attributes.



in isolation. The reference attacklet of the attribute becomes
a vector of attribute state probabilities. We compute the
distance of attacklet from the reference attacklet as 1 —
sim (attacklet, reference) where the sim function is the Cosine
similarity [13]. Figure 4a shows attacklets in a radar plot where
we associate five distance values for an attacklet.

In a second approach, we consider more than the five
attributes using a joint multivariate distribution of attributes.
Formally, let X;,5 = 1,...,5 be a A*D attribute (e.g., Asset).
Each X;,7 = 1,...,5 can be viewed as a nominal (categor-
ical) discrete random variable which can attain n; different
states (e.g., Asset: server), and each state S;;,7 =1,...,n; is
coded as 1,...,n;. For coding purposes, we sort the states S;;
in the alphabetic order; however, it is important to emphasize
that §;; is intrinsically qualitative and there exists no natural
meaning behind ordering the states. With these notations,
we can assess a marginal distribution P; of the attribute
X;, where a probability of X'; attaining the state S;; is
7 = |Si| /| X, where states j = 1,...,n;. Here |S;;| is
the number of occurrences of the state S;; of the attribute
X; and N; denotes the number of occurrences of the the
attribute X’';. Multiple approaches exist to define a reference
attacklet for the attribute X;. Since X; is a categorical random
variable, mode of a marginal distribution P; may be one
option, with the benefit that mode has an intrinsic natural
meaning. However, extending the mode approach to analysis
of multiple attributes is challenging since finding a mode of
a multivariate distribution may have no analytic solution. As
a result, the mode approach is largely limited to treating all
attributes independently and does not account for dependen-
cies among some key breach characteristics, which clearly
play a significant role in assessing dynamics of breaches.
For example, Actor: Internal and Discovery: Internal has a
strong dependency, because breaches by internal actors may
be noticed more often by internal resources.

P{X1,7X5} =
P{X1={Si1,...,Sin };-- 1 X5 = {S51,..

(1)
. 755n5}}

Since our primary focus is on evaluating relative characteristics
of attacklets with respect to a reference attacklet, we define it,
Y, as an empirical mean of P.

Tzzzzzzﬂk,l,m,s,r(-xl =k X5 =1
Xl X2 Xs X4 Xs

ngm;X4:S;X5:7”) (2)

where Tk,0,m,s,r — P(Xl = k;XQ = Z;Xg = m;X4 =
5; X5 = r) is the probability to observe to observe an attacklet
with the attributes (X1 = kX9 = ;X3 = m; Xy
$; X5 = r) and is defined as the fraction of occurrences of the
combination (X1 =kXyo=1X3=m; X, =5X5 = 7").
Notice that a marginal distribution P; is a univariate sub-
case of P. Furthermore, (1) allows us to project P onto a
subset of attributes which are of particular interest from a
domain knowledge perspective. This knowledge can be as
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simple as ’an internal action such as misuse will more likely
be discovered by other internal actors’, which indicates a
dependency between Action and Discovery. To illustrate the
utility of pairwise attributes, we chose to use Discovery+Actor,
Actor+Action and Action+Asset pairwise dependencies. Fig-
ure 4b shows attacklets with pairwise attributes.

While in this pilot study for simplicity we focus on a
reference attacklet defined by Y, a more general alternative
is to employ a notion of data depth [14] which enables a
more flexible multi-perspective evaluation of a multivariate
distribution P. With data depth [14], we can define multivari-
ate quantiles of P (e.g., multivariate median as a reference
attacklet, or the 5th and 95th multivariate percentiles of P)
which can be used to assign an anomaly score to an incoming
attacklet.

V. DISCUSSION AND CONCLUSION

We have proposed attacklets — a novel, flexible and com-
putationally efficient approach for modeling cyberattacks. We
have illustrated utility of attacklet summaries for visualiza-
tion and description of cyberattacks in different geographical
regions and across years. Furthermore, we have developed a
representation model to store attacklets and use them as input
to machine learning models. In the future, we plan to develop
data depth based anomaly detection algorithms on attacklets.
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