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DOUBLY PENALIZED ESTIMATION IN ADDITIVE REGRESSION
WITH HIGH-DIMENSIONAL DATA

BY ZHIQIANG TAN1 AND CUN-HUI ZHANG2

Rutgers University

Additive regression provides an extension of linear regression by model-
ing the signal of a response as a sum of functions of covariates of relatively
low complexity. We study penalized estimation in high-dimensional nonpara-
metric additive regression where functional semi-norms are used to induce
smoothness of component functions and the empirical L2 norm is used to
induce sparsity. The functional semi-norms can be of Sobolev or bounded
variation types and are allowed to be different amongst individual component
functions. We establish oracle inequalities for the predictive performance of
such methods under three simple technical conditions: a sub-Gaussian con-
dition on the noise, a compatibility condition on the design and the func-
tional classes under consideration and an entropy condition on the functional
classes. For random designs, the sample compatibility condition can be re-
placed by its population version under an additional condition to ensure suit-
able convergence of empirical norms. In homogeneous settings where the
complexities of the component functions are of the same order, our results
provide a spectrum of minimax convergence rates, from the so-called slow
rate without requiring the compatibility condition to the fast rate under the
hard sparsity or certain Lq sparsity to allow many small components in the
true regression function. These results significantly broaden and sharpen ex-
isting ones in the literature.

1. Introduction. Additive regression is an extension of linear regression
where the signal of a response can be written as a sum of functions of covariates
of relatively low complexity. Let (Yi,Xi), i = 1, . . . , n, be a set of n independent
(possibly nonidentically distributed) observations, where Yi ∈ R is a response vari-
able and Xi ∈ Rd is a covariate (or design) vector. Consider an additive regression
model, Yi = g∗(Xi)+ εi with

(1) g∗(x)=
p∑

j=1

g∗
j

(
x(j)

)
,
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where εi is a noise with mean 0 given Xi , x(j) is a vector composed of a small
subset of the components of x ∈ Rd and g∗

j belongs to a certain functional
class Gj . That is, g∗(x) lies in the space of additive functions G = {∑p

j=1 gj (x
(j)) :

gj ∈ Gj , j = 1, . . . , p}. A function g ∈ G may admit the decomposition g(x) =∑p
j=1 gj (x

(j)) for multiple choices of (g1, . . . , gp). In what follows, such choices
are considered equivalent but a favorite decomposition can be used to evaluate
properties (e.g., the L2 norm) of the components of g ∈ G.

In a classical setting (e.g., Stone (1985)), each g∗
j is a univariate function and

x(j) is the j th component of x ∈ [0,1]d , so that p = d . We take a broad view of
additive regression and our analysis will accommodate the general setting where
g∗
j can be multivariate with X

(j)
i being a block of covariates, possibly overlap-

ping across different j as in functional ANOVA (e.g., Gu (2002)). However, most
concrete examples will be given in the classical setting.

Additive modeling has been well studied in the setting where the number of
components p is fixed; see Hastie and Tibshirani (1990) and references therein.
Recently, building upon related works in penalized linear regression, there has
been considerable progress in the development of theory and methods for sparse
additive regression in high-dimensional settings where p can be of greater or-
der than the sample size n but the number of significant components is still
smaller than n; see, for example, Lin and Zhang (2006), Meier, van de Geer and
Bühlmann (2009), Ravikumar et al. (2009), Huang, Horowitz and Wei (2010),
Koltchinskii and Yuan (2010), Raskutti, Wainwright and Yu (2012), Suzuki and
Sugiyama (2013), Dalalyan, Ingster and Tsybakov (2014), Petersen, Witten and
Simon (2016) and Yuan and Zhou (2016).

In this article, we study a penalized estimator ĝ with an associated decomposi-
tion ĝ = ∑p

j=1 ĝj defined as a minimizer of a penalized loss

(2) ∥Y − g∥2n/2+
p∑

j=1

(
ρnj∥gj∥F,j + λnj∥gj∥n

)

over g ∈ G and decompositions g = ∑p
j=1 gj , where (λnj ,ρnj ) are tuning pa-

rameters, ∥ · ∥n is the empirical L2 norm based on the data points, for example,
∥Y − g∥2n = n−1 ∑n

i=1{Yi − g(Xi)}2, and ∥gj∥F,j is a semi-norm describing the
complexity of gj ∈ Gj . For simplicity, the association of ∥gj∥n and ∥gj∥F,j with
X

(j)
i is typically suppressed.
In the penalized loss (2), each component gj is doubly penalized by its empir-

ical norm and functional semi-norm. The empirical norm ∥ · ∥n is used to induce
sparsity, whereas the functional semi-norm ∥ ·∥F,j is used to induce smoothness of
the estimated regression function. For example, if Gj is taken as a Sobolev space
Wm

r on [0,1], then ∥gj∥F,j = {∫ 1
0 |g(m)

j |r dz}1/r for r ≥ 1 and m ≥ 1, where g(m)
j

denotes the mth derivative of gj . For the special case r = 2, the L2-Sobolev space
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Wm
2 is a (reproducing kernel) Hilbert space, used in the construction of smooth-

ing splines (e.g., Gu (2002)). Moreover, if Gj is a bounded variation space Vm on
[0,1], then ∥gj∥F,j = TV(g(m−1)

j ) for m ≥ 1, where TV(·) denotes the total vari-
ation. For univariate smoothing, regression splines using total variation penalties
have been studied in Mammen and van de Geer (1997); see Section 2 for further
discussion.

We consider both fixed and random designs and establish oracle inequalities for
the predictive performance of ĝ under three simple technical conditions: a sub-
Gaussian condition on noises, a compatibility condition on the design and the
functional classes Gj and an entropy condition on Gj . The compatibility condi-
tion is similar to the restricted eigenvalue condition used in analysis of the Lasso,
and for random designs, the empirical compatibility condition can be replaced
by its population version under an additional condition to ensue suitable conver-
gence of empirical norms. For the Sobolev and bounded variation classes, the en-
tropy condition on Gj follows from standard results in the literature (e.g., Lorentz,
Golitschek and Makovoz (1996)).

In the following, we highlight implications of our oracle inequalities and com-
pare our results with existing ones in the classical homogeneous setting where
X

(j)
i is the j th component of Xi and Gj = G0 for all j . Let G0 be either a Sobolev

space Wm
r or a bounded variation space Vm on [0,1]. In this setting, it is natural

to set (λnj ,ρnj ) = (λn,ρn) for all j . Consider random designs, and suppose that
(1) holds with some choice of (g∗

1 , . . . , g
∗
p) satisfying

(3)
p∑

j=1

∥∥g∗
j

∥∥
F ≤ C1MF,

p∑

j=1

∥∥g∗
j

∥∥q
Q ≤ C

q
1Mq,

where ∥f ∥F is a semi-norm on G0, ∥f ∥2Q = n−1 ∑n
i=1E{f 2(Xi)}, C1 > 0 is a

constant depending only on the moments of (ε1, . . . , εn), 0 ≤ q ≤ 1, and Mq > 0
and MF > 0 are allowed to depend on (n,p). In the case of hard sparsity (q = 0),
#{j : g∗

j ≠ 0} ≤ M0. The following self-contained result (Proposition 1) can be
deduced from Propositions 3, 5, 7 and 9.

Let β0 = 1/m and define

w∗
n(q)=max

{
n

−1
2+β0(1−q) ,

(
log(p)/n

) 1−q
2

}
,

γ ∗
n (q)=min

{
n

−1
2+β0(1−q) , n−1/2(log(p)/n

)−(1−q)β0
4

}
.

For 0 ≤ q < 1, we assume that the following compatibility condition holds
with some constants C∗

0 > 0, κ∗
0 > 0 and ξ∗

0 > 1: for any functions {fj ∈
G0 : j = 1, . . . , p} and f = ∑p

j=1 fj , if w
∗
n(q)

∑p
j=1 ∥fj∥F,j +

∑
j∈Sc ∥fj∥Q ≤

ξ∗
0

∑
j∈S ∥fj∥Q, then κ∗2

0
∑

j∈S ∥fj∥2Q ≤ ∥f ∥2Q, where S = {1 ≤ j ≤ p : ∥g∗
j ∥Q >

C∗
0λn}. This condition is a homogeneous version of Assumption 7 later and can
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be relaxed for q = 0 according to Assumption 5. For simplicity, we restrict to
the case where 1 ≤ r ≤ 2 (including r = 1 for Vm). For rm > 1, we assume that
for j = 1, . . . , p, the average marginal density of (X(j)

1 , . . . ,X
(j)
n ) is uniformly

bounded away from 0 and, if q ≠ 1, is also uniformly bounded from above on
[0,1]. The assumption of marginal densities bounded from above, as well as the
restriction 1 ≤ r ≤ 2, can be relaxed under slightly different technical conditions
(see Propositions 3, 4 and 6). For r =m= 1, neither the lower nor the upper bound
of marginal densities need to be assumed.

PROPOSITION 1. Let G0 be a Sobolev spaceWm
r with 1≤ r ≤ 2 andm ≥ 1 or

a bounded variation space Vm with r = 1 and m ≥ 1. Suppose that the noises are
sub-Gaussian, and log(p)= o(n). Let τ0 = 1/(2m+ 1− 2/r), )n = 1 for rm > 1
and )n =

√
logn for r =m= 1.

(i) Let q = 1 and λn = ρn =A0{log(p)/n}1/2 for a sufficiently large constant
A0. If p → ∞, then

(4)
∥∥ĝ − g∗∥∥2

Q =Op(1)C2
1
(
M2

F +M2
1
){
n−1/2)n +

√
log(p)/n

}
.

(ii) Let q = 0, λn = A0[γ ∗
n (0)+ {log(p)/n}1/2] and ρn = λnw

∗
n(0). Suppose

that

(5)
{
w∗
n(0)

−τ0
√
log(np)/n

}
(1+MF +M0)= o(1),

and the preceding compatibility condition holds. Then for sufficiently large A0,

(6)
∥∥ĝ − g∗∥∥2

Q =Op(1)C2
1(MF +M0)

{
n

−1
2+β0 +

√
log(p)/n

}2
.

(iii) Let 0< q < 1, λn = A0[γ ∗
n (q)+ {log(p)/n}1/2] and ρn = λnw

∗
n(q). Sup-

pose that
{
w∗
n(q)

−τ0
(
log(np)/n

) 1−q
2

}
(1+MF +Mq)=O(1),

and the preceding compatibility condition holds. Then for sufficiently large A0,

(7)
∥∥ĝ − g∗∥∥2

Q =Op(1)C2
1(MF +Mq)

{
n

−1
2+β0(1−q) +

√
log(p)/n

}2−q
.

(iv) For each of the cases (i)–(iii), the convergence rate of ∥ĝ − g∗∥2Q matches
the minimax rate over the parameter set (3) up to some multiplicative constants
depending on (MF ,Mq), except for the extra logarithmic factor )n =

√
logn in

case (i) with r =m= 1.

We point out several important features achieved by the foregoing result, distinct
from existing results. First, our results are established for additive regression with
general Lr -Sobolev spaces and bounded variation spaces. An important innovation
in our proofs involves a delicate application of maximal inequalities based on the
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metric entropy of a particular choice of bounded subsets of G0 (see Lemma 1 in
the Supplementary Material (Tan and Zhang (2019))). All previous results seem to
be limited to the L2-Sobolev spaces or similar reproducing kernel Hilbert spaces,
except for Petersen, Witten and Simon (2016), who studied additive regression
with the bounded variation space V1 and obtained the rate {log(np)/n}1/2 for in-
sample prediction under assumption (3) with q = 1. In contrast, our analysis with
q = 1 yields the sharper, yet standard, rate {log(p)/n}1/2 for in-sample prediction
(see Proposition 3), whereas {log(np)/n}1/2 for out-of-sample prediction by (4).

Second, the restricted parameter set (3) represents an L1 ball in ∥ · ∥F semi-
norm (inducing smoothness) but an Lq ball in ∥ · ∥Q norm (inducing sparsity)
for the component functions (g∗

1 , . . . , g
∗
p). That is, the parameter set (3) decouples

conditions for sparsity and smoothness in additive regression: it can encourage
sparsity at different levels 0 ≤ q ≤ 1 while enforcing smoothness only to a lim-
ited extent. Accordingly, our result leads to a spectrum of convergence rates (6),
which are easily seen to slow down as q increases from 0 to 1, corresponding
to weaker sparsity assumptions. While most of previous results are obtained un-
der exact sparsity (q = 0), Yuan and Zhou (2016) studied additive regression with
reproducing kernel Hilbert spaces under an Lq ball in the Hilbert norm ∥ · ∥H :∑p

j=1 ∥g∗
j ∥

q
H ≤ Mq . This parameter set induces smoothness and sparsity simulta-

neously and is in general more restrictive than (3). As a result, the minimax rate of
estimation obtained by Yuan and Zhou (2016), based on constrained least squares
with known Mq instead of penalized estimation, is faster than (7), in the form
n−2/(2+β0) + {log(p)/n}(2−q)/2, unless q = 0 or 1.

Third, in the case of q = 1, our result (4) shows that the rate {log(p)/n}1/2,
with an additional {log(n)/n}1/2 term for the bounded variation space V1, can
be achieved via penalized estimation without requiring a compatibility condition.
This generalizes a slow-rate result for constrained least-squares (instead of pe-
nalization) with known (M1,MF ) in additive regression with the Sobolev–Hilbert
space in Ravikumar et al. (2009). Both are related to earlier results for linear re-
gression (Greenshtein and Ritov (2004); Bunea, Tsybakov and Wegkamp (2007)).

Fourth, the rate of convergence (6) under exact sparsity (q = 0) is known to
be in general faster than in Meier, van de Geer and Bühlmann (2009). Compared
with previous results giving similar rates of convergence as (6) with q = 0 for
Hilbert spaces, our results are stronger in requiring much weaker technical condi-
tions. The penalized estimation procedures in Koltchinskii and Yuan (2010) and
Raskutti, Wainwright and Yu (2012), while minimizing a similar criterion as (2),
involve additional constraints on (g1, . . . , gp): Koltchinskii and Yuan (2010) re-
quired that the sup-norm of

∑p
j=1 gj be bounded by a known constant, whereas

Raskutti, Wainwright and Yu (2012) required that maxj ∥gj∥H be bounded by a
known constant. Moreover, Raskutti, Wainwright and Yu (2012) assumed that the
covariates (X(1)

i , . . . ,X
(p)
i ) are independent of each other. These restrictions were

relaxed in Suzuki and Sugiyama (2013), but only explicitly under the assumption
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that the noises εi are uniformly bounded by a constant. Moreover, our rate condi-
tion (5) about the sizes of (M0,MF ) is much weaker than in Suzuki and Sugiyama
(2013), due to improved analysis of convergence of empirical norms and the more
careful choices (λn,ρn). For example, if (M0,MF ) are bounded, then condition
(5) holds whenever log(p)/n = o(1) for Sobolev–Hilbert spaces, but the condi-
tion previously required amounts to log(p)n−1/2 = o(1). Finally, the seemingly
faster rate in Suzuki and Sugiyama (2013) can be deduced from our results when
(λn,ρn) are allowed to depend on (M0,MF ); see Remarks 10 and 12–14 for rele-
vant discussion.

Finally, minimax rates of convergence in the form (6) have been shown un-
der exact sparsity (q = 0) with L2-Sobolev or similar Hilbert spaces by Raskutti,
Wainwright and Yu (2012) and Dalalyan, Ingster and Tsybakov (2014), respec-
tively, in additive regression and white noise models. For additive regression with
general Lr -Sobolev or bounded variation spaces, our results provide minimax rates
of convergence (achievable by convex programming) under Lq -ball sparsity in
∥ · ∥Q norm as well as L1-ball smoothness in ∥ · ∥F semi-norm. It should be noted
that the dependency of our convergence rates of ĝ on (MF ,Mq) can be matched
with that in the minimax rates when (λn,ρn) are allowed to depend on (M0,MF )

(see Remark 18).
The rest of the article is organized as follows. Section 2 gives a review of uni-

variate functional classes and entropies. Section 3 presents general results for fixed
designs (Section 3.1) and random designs (Section 3.2). Section 4 provides spe-
cific results for Sobolev and bounded variation spaces, and Section 5 studies the
convergence of empirical norms. Section 6 concludes the paper with a discussion.
For space limitation, all proofs are collected in Section S1 and technical tools are
stated in Section S2 of the Supplementary Material.

2. Functional classes and entropies. As a building block of additive regres-
sion, we discuss two broad choices for the function space Gj and the associated
semi-norm ∥gj∥F,j in the context of univariate regression. For concreteness, we
consider a fixed function space, say G1, although our discussion is applicable to
Gj for j = 1, . . . , p. For r ≥ 1, the Lr norm of a function f on [0,1] is defined as
∥f ∥Lr = {∫ 1

0 |f (z)|r dz}1/r .

EXAMPLE 1 (Sobolev spaces). For r ≥ 1 and m ≥ 1, let Wm
r = Wm

r ([0,1])
be the Sobolev space of all functions, g1 : [0,1] → R, such that g(m−1)

1 is abso-
lutely continuous and the norm ∥g1∥Wm

r
= ∥g1∥Lr +∥g(m)

1 ∥Lr is finite, where g
(m)
1

denotes the mth (weak) derivative of g1. To describe the smoothness, a semi-norm
∥g1∥F,1 = ∥g(m)

1 ∥Lr is often used for g1 ∈ Wm
r .

In the statistical literature, a major example of Sobolev spaces is Wm
2 = {g1 :

∥g1∥L2 + ∥g(m)
1 ∥L2 < ∞}, which is a reproducing kernel Hilbert space (e.g., Gu
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(2002)). Consider a univariate regression model

(8) Yi = g1
(
X

(1)
i

)+ εi , i = 1, . . . , n.

The Sobolev spaceWm
2 is known to lead to polynomial smoothing splines through

penalized estimation: there exists a unique solution, in the form of a spline of order
(2m− 1), when minimizing over g1 ∈ Wm

2 the following criterion:

(9)
1
2n

n∑

i=1

{
Yi − g1

(
X

(1)
i

)}2 + ρn1∥g1∥F,1.

This solution can be made equivalent to the standard derivation of smoothing
splines (modulus a zero solution), where the penalty in (9) is ρ ′

n1∥g1∥2F,1 for a
different tuning parameter ρ′

n1. Particularly, cubic smoothing splines are obtained
with the choice m= 2.

EXAMPLE 2 (Bounded variation spaces). For a function f on [0,1], the total
variation (TV) of f is defined as

TV(f )

= sup

{
k∑

i=1

∣∣f (zi)− f (zi−1)
∣∣ : z0 < z1 < · · ·< zk is any partition of [0,1]

}

.

If f is differentiable, then TV(f ) = ∫ 1
0 |f (1)(z)|dz. For m ≥ 1, let Vm =

Vm([0,1]) be the bounded variation space that consists of all functions, g1 :
[0,1] → R, such that g(m−2)

1 , if m ≥ 2, is absolutely continuous and the norm
∥g1∥Vm = ∥g1∥L1 + TV(g(m−1)

1 ) is finite. For g1 ∈ Vm, the semi-norm ∥g1∥F,1 =
TV(g(m−1)

1 ) is often used to describe smoothness. The bounded variation space
Vm includes as a strict subset the Sobolev space Wm

1 , where the semi-norms also
agree: TV(g(m−1)

1 )= ∥g(m)
1 ∥L1 for g1 ∈ Wm

1 .
For univariate regression (8) with bounded variation spaces, TV semi-norms

can be used as penalties in (9) for penalized estimation. This leads to a class of
TV splines, which are shown to adapt well to spatial inhomogeneous smoothness
(Mammen and van de Geer (1997)). For m= 1 or 2, a minimizer of (9) over g1 ∈
Vm can always be chosen as a spline of order m, with the knots in the set of design
points {X(1)

i : i = 1, . . . , n}. But, as a complication, this is in general not true for
m≥ 3.

Recently, there is another smoothing method related to TV splines, called trend
filtering (Kim et al. (2009)), where (9) is minimized over all possible values
{g1(X(1)

i ) : i = 1, . . . , n} with ∥g1∥F,1 replaced by L1 norm of mth-order differ-
ences of these values. This method is equivalent to TV splines only for m = 1
or 2. But when the design points are evenly spaced, it achieves the minimax rate
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of convergence over functions of bounded variation for general m ≥ 1, similarly
as TV splines Tibshirani, 2014. Additive models with trend filtering are studied by
Sadhanala and Tibshirani (2017) in low-dimensional settings.

The complexity of a functional class can be described by its metric entropy,
which plays an important role in the study of empirical processes (van der Vaart
and Wellner (1996)). For a subset F in a metric space F endowed with norm ∥ · ∥,
the covering number N(δ,F,∥ · ∥) is defined as the smallest number of balls of
radius δ in the ∥ · ∥-metric needed to cover F , that is, the smallest value of N
such that there exist f1, . . . , fN ∈ F , satisfying minj=1,...,N ∥f − fj∥ ≤ δ for any
f ∈ F . The entropy of (F,∥ · ∥) is defined as H(δ,F,∥ · ∥)= logN(δ,F,∥ · ∥).

For analysis of regression models, our approach involves using entropies of
functional classes for empirical norms based on design points, for example,
{X(1)

i : i = 1, . . . , n} for subsets of G1. One type of such norms is the empiri-
cal L2 norm, ∥g1∥n = {n−1 ∑n

i=1 g
2
1(X

(1)
i )}1/2. Another is the empirical supre-

mum norm, ∥g1∥n,∞ = maxi=1,...,n g1(X
(1)
i ). If F is the unit ball in the Sobolev

space Wm
r or the bounded variation space Vm on [0,1], the general picture is

H(δ,F,∥ · ∥) ! δ−1/m for commonly used norms ∥ · ∥; See the Supplementary
Material, Section S2.5 (Tan and Zhang (2019)) for more.

3. General results. As in Section 1, consider the estimator

(10) ĝ = argmin
g∈G

Kn(g), Kn(g)= ∥Y − g∥2n/2+A0Rn(g),

where G = {g = ∑p
j=1 gj : gj ∈ Gj }, A0 > 1 is a constant, and the penalty is, up to

the prefactor A0 for technical convenience,

Rn(g)=
p∑

j=1

Rnj (gj )=
p∑

j=1

(
ρnj∥gj∥F,j + λnj∥gj∥n

)

for any decomposition g = ∑p
j=1 gj with gj ∈ Gj . The regularization parameters

(λnj ,ρnj ) are of the form

(11) ρnj = λnjwnj , λnj =C1
{
γnj +

√
log(p/ϵ)/n

}
,

where C1 > 0 is a noise level depending only on parameters in Assumption 1
below, 0< ϵ < 1 is a tail probability for the validity of error bounds, 0<wnj ≤ 1
is a rate parameter and

(12) γnj = n−1/2ψnj (wnj )/wnj

for a function ψnj (·) depending on the entropy of the unit ball of the space Gj
under the associated functional penalty; see Assumption 2 or 4 below.
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Before theoretical analysis, we briefly comment on computation of ĝ. By stan-
dard properties of norms and semi-norms, the objective function Kn(g) is convex
in g. Moreover, there are at least two situations where the infinite-dimensional
problem of minimizing Kn(g) can be reduced to a finite-dimensional one. First, if
each class Gj is a reproducing kernel Hilbert space such as Wm

2 , then a solution
ĝ = ∑p

j=1 ĝj can be obtained such that each ĝj is a smoothing spline with knots
in the design points {X(j)

i : i = 1, . . . , n} (e.g., Meier, van de Geer and Bühlmann
(2009)). Second, by the following proposition, the optimization problem can also
be reduced to a finite-dimensional one when each class Gj is the bounded variation
space V1 or V2.

PROPOSITION 2. Suppose that Gℓ is Vm on [0,1] for some 1 ≤ ℓ ≤ p and
m ≥ 1. Then a solution ĝ = ∑p

j=1 ĝj can be chosen such that ĝℓ is a spline of
order m − 1, that is, a piecewise polynomial of degree m − 1 and, if m ≥ 2, an
(m − 2)th continuously differentiable function. Moreover, ĝℓ can be defined with
knots only in {X(ℓ)

i : i = 1, . . . , n} if m= 1 or 2.

The algorithm in Petersen, Witten and Simon (2016), based on the fused Lasso,
can be directly used to compute ĝ when all classes (G1, . . . ,Gp) are V1. In general,
with a bounded variation class Vm, Yang and Tan (2018) developed a backfitting
algorithm for computing ĝ as defined above for m= 1 or 2, or with the additional
restriction that the knots of ĝ are contained in the data points form≥ 3. Numerical
experiments from these papers showed superior performance of the doubly penal-
ized method, compared with the existing methods as specified in Meier, van de
Geer and Bühlmann (2009) and Ravikumar et al. (2009).

3.1. Fixed designs. For fixed designs, the covariates (X1, . . . ,Xn) are fixed
as observed, whereas (ε1, . . . , εn) and hence (Y1, . . . , Yn) are independent random
variables. The responses are to be predicted when new observations are drawn
with covariates from the sample (X1, . . . ,Xn). The predictive performance of ĝ is
measured by ∥ĝ − g∗∥2n.

Consider the following three assumptions. First, we assume sub-Gaussian tails
for the noises. This condition can be relaxed, but with increasing technical com-
plexity and possible modification of the estimators, which we will not pursue here.

ASSUMPTION 1 (Sub-Gaussian noises). Assume that the noises (ε1, . . . , εn)
are mutually independent and uniformly sub-Gaussian: For some constantsD0 > 0
and D1 > 0,

max
i=1,...,n

D0
{
E exp

(
ε2i /D0

) − 1
} ≤D1.

We will also impose this assumption for random designs with the interpretation
that the aforementioned independence and expectation are taken conditionally on
(X1, . . . ,Xn).
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Second, we impose an entropy condition which describes the relationship be-
tween the function ψnj (·) in the definition of γnj and the complexity of bounded
subsets in Gj . Although entropy conditions are widely used to analyze nonpara-
metric regression (e.g., Section 10.1, van de Geer (2000)), the subset Gj (δ) in
our entropy condition below is carefully aligned with the penalty Rnj (gj ) =
λnj (wnj∥gj∥F,j + ∥gj∥n). This leads to a delicate use of maximal inequalities
so as to relax and in some cases remove restrictions in previous studies of additive
models; see Lemma 1 in the Supplementary Material (Tan and Zhang (2019)) and
Raskutti, Wainwright and Yu (2012), Lemma 1.

ASSUMPTION 2 (Entropy condition for fixed designs). For j = 1, . . . , p, let
Gj (δ)= {fj ∈ Gj : ∥fj∥F,j + ∥fj∥n/δ ≤ 1} and ψnj (δ) be an upper bound of the
entropy integral as follows:

(13) ψnj (δ)≥
∫ δ

0
H 1/2(u,Gj (δ),∥ · ∥n

)
du, 0< δ ≤ 1.

In general, Gj (δ) and the entropy H(·,Gj (δ),∥ · ∥n) may depend on the design
points {X(j)

i }.

Our third assumption is a compatibility condition, which resembles the re-
stricted eigenvalue condition (Bickel, Ritov and Tsybakov (2009)) and the com-
patibility condition (van de Geer and Bühlmann (2009)) used in high-dimensional
analysis of the Lasso in linear regression. We defer to Section 3.2 further discus-
sion about compatibility conditions used in the analysis of additive regression.

ASSUMPTION 3 (Empirical compatibility condition). For certain subset S ⊂
{1,2, . . . , p} and constants κ0 > 0 and ξ0 > 1, assume that

κ2
0

(∑

j∈S
λnj∥fj∥n

)2
≤

(∑

j∈S
λ2nj

)
∥f ∥2n

for any functions {fj ∈ Gj : j = 1, . . . , p} and f = ∑p
j=1 fj ∈ G satisfying

p∑

j=1

λnjwnj∥fj∥F,j +
∑

j∈Sc
λnj∥fj∥n ≤ ξ0

∑

j∈S
λnj∥fj∥n.

REMARK 1. The subset S can be different from {1 ≤ j ≤ p : g∗
j ≠ 0}. In fact,

S is arbitrary in the sense that a larger S leads to a smaller compatibility coeffi-
cient κ0 which appears as a factor in the denominator of the “noise” term in the
prediction error bound below, whereas a smaller S leads to a larger “bias” term.
Assumption 3 is automatically satisfied for the choice S = ∅. In this case, it is
possible to take ξ0 = ∞ and any κ0 > 0, provided that we treat summation over an
empty set as 0 and ∞ × 0 as 0.
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Our main result for fixed designs is an oracle inequality stated in Theorem 1
below, where ḡ = ∑p

j=1 ḡj ∈ G as an estimation target is an additive function but
the true regression function g∗ may not be additive. Our oracle inequality (14) is
sharp with the coefficient of ∥ĝ− g∗∥2n matching that of ∥ḡ− g∗∥2n, similarly as in
Koltchinskii, Lounici and Tsybakov (2011). For ξ ∈ (0,1], denote as a penalized
prediction loss

Dn(ĝ, ḡ, ξ)=
1
2

∥∥ĝ − g∗∥∥2
n +

ξ

2
∥ĝ − ḡ∥2n + ξ(A0 − 1)Rn(ĝ − ḡ).

For a subset S ⊂ {1,2, . . . , p}, write as a bias term for the target ḡ

.n(ḡ, S)=
1
2

∥∥ḡ − g∗∥∥2
n + 2A0

( p∑

j=1

ρnj∥ḡj∥F,j +
∑

j∈Sc
λnj∥ḡj∥n

)

.

The bias term is small when ḡ is smooth and sparse and predicts g∗ well.

THEOREM 1. Suppose that Assumptions 1, 2 and 3 hold for λnj and ρnj in
(11). Then for any A0 > (ξ0 + 1)/(ξ0 − 1) we have with probability at least 1− ϵ,

(14) Dn(ĝ, ḡ, ξ1)≤ .n(ḡ, S)+ ξ2A0κ
−2
0

(∑

j∈S
λ2nj

)
.

where ξ1 = 1− 2A0/{(ξ0 + 1)(A0 − 1)} ∈ (0,1] and ξ2 = (ξ0 + 1)(A0 − 1).

REMARK 2. As seen from our proofs, Theorem 1 and subsequent corollaries
are directly applicable to functional ANOVA modeling, where each function gj

may depend on X
(j)
i , a block of covariates and the variable blocks are allowed

to overlap across different j . The entropy associated with the functional class Gj
need to be determined accordingly.

Taking S = ∅ and ξ0 = ∞ leads to the following corollary, which explicitly
does not require the compatibility condition (Assumption 3).

COROLLARY 1. Suppose that Assumptions 1 and 2 hold. Then for any A0 > 1
we have with probability at least 1− ϵ,

(15) Dn(ĝ, ḡ,1)≤ .n(ḡ,∅)= 1
2

∥∥ḡ − g∗∥∥2
n + 2A0Rn(ḡ).

The following result can be derived from Theorem 1 through the choice S =
{1 ≤ j ≤ p : ∥ḡj∥n > C0λnj } for some constant C0 > 0.

COROLLARY 2. Suppose that Assumptions 1, 2 and 3 hold with S = {1 ≤
j ≤ p : ∥ḡj∥n > C0λnj } for some constant C0 > 0. Then for any 0 ≤ q ≤ 1 and
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A0 > (ξ0 + 1)/(ξ0 − 1) we have, with probability at least 1− ϵ,

Dn(ĝ, ḡ, ξ1)≤ 1
2

∥∥ḡ − g∗∥∥2
n +O(1)

p∑

j=1

(
ρnj∥ḡj∥F,j + λ

2−q
nj ∥ḡj∥qn

)
,

where O(1) depends only on (q,A0,C0, ξ0,κ0).

It is instructive to examine the implications of Corollary 2 in a homogenous
situation where for some constants B0 > 0 and 0< β0 < 2,

(16) max
j=1,...,p

∫ δ

0
H 1/2(u,Gj (δ),∥ · ∥n

)
du ≤ B0δ

1−β0/2, 0< δ ≤ 1.

That is, we assume ψnj (δ)= B0δ
1−β0/2 in (13). For j = 1, . . . , p, let

(17) wnj =wn(q)=
{
γn(q)

}1−q
, γnj = γn(q)= B

2
2+β0(1−q)

0 n
−1

2+β0(1−q) ,

which are determined by balancing the two rates ρnj = λ
2−q
nj , that is, wnj = λ

1−q
nj ,

along with the definition γnj = B0n
−1/2w

−β0/2
nj by (12). For g = ∑p

j=1 gj ∈ G,
denote ∥g∥F,1 =

∑p
j=1 ∥gj∥F,j and ∥g∥n,q =

∑p
j=1 ∥gj∥qn. For simplicity, we also

assume that g∗ is an additive function and set ḡ = g∗ for Corollary 3.

COROLLARY 3. Assume that (1) holds and ∥g∗∥F,1 ≤ C1MF and ∥g∗∥n,q ≤
C
q
1Mq for 0 ≤ q ≤ 1, Mq > 0, and MF > 0, possibly depending on (n,p). In ad-

dition, suppose that (16) and (17) hold, and Assumptions 1 and 3 are satisfied with
S = {1 ≤ j ≤ p : ∥g∗

j ∥n > C0λnj } for some constant C0 > 0. If 0<wn(q) ≤ 1 for
sufficiently large n, then for any A0 > (ξ0 + 1)/(ξ0 − 1), we have with probability
at least 1− ϵ,

Dn
(
ĝ, g∗, ξ1

) = 1+ ξ1

2

∥∥ĝ − g∗∥∥2
n + ξ1(A0 − 1)Rn

(
ĝ − g∗)

≤O(1)C2
1(MF +Mq)

{
γn(q)+

√
log(p/ϵ)/n

}2−q
,(18)

where O(1) depends only on (q,A0,C0, ξ0,κ0).

REMARK 3. There are several interesting features in the convergence rate
(18). First, (18) presents a spectrum of convergence rates in the form

{
n

−1
2+β0(1−q) +

√
log(p)/n

}2−q
,

which are easily shown to become slower as q increases from 0 to 1, that is, the
exponent (2 − q)/{2 + β0(1 − q)} is decreasing in q for 0 < β0 < 2. The rate

(18) gives the slow rate {log(p)/n}1/2 for q = 1, or the fast rate n
−2

2+β0 + log(p)/n
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for q = 0, as previously obtained for additive regression with reproducing ker-
nel Hilbert spaces. We defer to Section 4 the comparison with existing results in
random designs. Second, the rate (18) is in general at least as fast as

{
n

−1
2+β0 +

√
log(p)/n

}2−q
.

Therefore, weaker sparsity (larger q) leads to a slower rate of convergence, but not

as slow as the fast rate {n
−2

2+β0 + log(p)/n} raised to the power of (2− q)/2. This
is in contrast with previous results on penalized estimation over Lq sparsity balls,
for example, the rate {k/n+ log(p)/n}(2−q)/2 obtained for group Lasso estimation
in linear regression (Neghaban et al. (2012)), where k is the group size. Third, the
rate (18) is in general not as fast as the following rate (unless q = 0 or 1):

n
−2

2+β0 + {
log(p)/n

}(2−q)/2
,

which was obtained by Yuan and Zhou (2016) using constrained least squares for
additive regression with reproducing kernel Hilbert spaces under an Lq ball in the
Hilbert norm:

∑p
j=1 ∥g∗

j ∥
q
H ≤ Mq . This difference can be explained by the fact

that an Lq ball in ∥ · ∥H norm is more restrictive than in ∥ · ∥n or ∥ · ∥Q norm for
our results.

3.2. Random designs. For random designs, prediction of the responses can
be sought when new observations are randomly drawn with covariates from
the distributions of (X1, . . . ,Xn), instead of within the sample (X1, . . . ,Xn)
as in Section 3.1. For such out-of-sample prediction, the performance of ĝ is
measured by ∥ĝ − g∗∥2Q, where ∥ · ∥Q denotes the theoretical norm: ∥f ∥2Q =
n−1 ∑n

i=1E{f 2(Xi)} for a function f (x).
Consider the following extensions of Assumptions 2 and 3, such that depen-

dency on the empirical norm ∥ · ∥n and hence on (X1, . . . ,Xn) are removed.

ASSUMPTION 4 (Entropy condition for random designs). For some constant
0< η0 < 1 and j = 1, . . . , p, let ψnj (δ) be an upper bound of the entropy integral,
independent of the realizations {X(j)

i : i = 1, . . . , n}, as follows:

(19) ψnj (δ)≥
∫ δ

0
H ∗1/2((1− η0)u,G∗

j (δ),∥ · ∥n
)
du, 0< δ ≤ 1,

where G∗
j (δ)= {fj ∈ Gj : ∥fj∥F,j + ∥fj∥Q/δ ≤ 1} and

H ∗(
u,G∗

j (δ),∥ · ∥n
) = sup

(X
(j)
1 ,...,X

(j)
n )

H
(
u,G∗

j (δ),∥ · ∥n
)
.

REMARK 4. For Gj defined as a Sobolev space Wm
r with rm > 1 or bounded

variation space Vm with m ≥ 2 on [0,1], the entropy H(u,G∗
j (1),∥ · ∥n) can be
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upper-bounded by the standard estimate of H(u,G∗
j (1),∥ · ∥∞), of order u−1/m,

independently of the the realizations {X(j)
i : i = 1, . . . , n} (Lorentz, Golitschek

and Makovoz (1996)). For the space W1
1 or V1, the entropy H(u,G∗

j (1),∥ · ∥n)
can be obtained from Mammen (1991), still of order u−1/m = u−1, as described
in the Supplementary Material, Section S2.5 (Tan and Zhang (2019)). Because∫ δ
0 (u

−1/m)1/2 du = {2m/(2m − 1)}δ1−1/(2m), the resulting ψnj (δ) is of order
δ1−1/(2m). Further discussion is provided in Remarks 20 and 21.

ASSUMPTION 5 (Theoretical compatibility condition). For some subset S ⊂
{1,2, . . . , p} and constants κ∗

0 > 0 and ξ∗
0 > 1, assume that for any functions {fj ∈

Gj : j = 1, . . . , p} and f = ∑p
j=1 fj ∈ G, if

(20)
p∑

j=1

λnjwnj∥fj∥F,j +
∑

j∈Sc
λnj∥fj∥Q ≤ ξ∗

0

∑

j∈S
λnj∥fj∥Q,

then

(21) κ∗2
0

(∑

j∈S
λnj∥fj∥Q

)2
≤

(∑

j∈S
λ2nj

)
∥f ∥2Q.

REMARK 5. Similarly as in Remark 1 about the empirical compatibility con-
dition, Assumption 5 is also automatically satisfied for the choice S =∅, in which
case it is possible to take ξ∗

0 = ∞ and any κ∗
0 > 0.

REMARK 6. We discuss the fact that the compatibility assumption in-
volves the tuning parameters (wnj ,λnj ). On one hand, in the special case
where (wnj ,γnj ) ≡ (wn,γn) for j = 1, . . . , p, Assumption 5 says that if wn ×∑p

j=1 ∥fj∥F,j + ∑
j∈Sc ∥fj∥Q ≤ ξ∗

0
∑

j∈S ∥fj∥Q, then κ∗2
0 (

∑
j∈S ∥fj∥Q)2 ≤

|S|∥f ∥2Q. Because wn > 0, a sufficient condition for this to hold is that

(22) if
∑

j∈Sc
∥fj∥Q ≤ ξ∗

0

∑

j∈S
∥fj∥Q, then κ∗2

0

(∑

j∈S
∥fj∥Q

)2
≤ |S| · ∥f ∥2Q,

which, by the Cauchy–Schwartz inequality, is satisfied under the following condi-
tion as used in Koltchinskii and Yuan (2010) and Suzuki and Sugiyama (2013):

(23) if
∑

j∈Sc
∥fj∥Q ≤ ξ∗

0

∑

j∈S
∥fj∥Q, then κ∗2

0

∑

j∈S
∥fj∥2Q ≤ ∥f ∥2Q.

Therefore, Assumption 5 is strictly weaker than previous compatibility conditions
in the homogeneous setting. On the other hand, there are implications of Assump-
tion 5 in heterogenous settings. If λnj /(maxℓ∈S λnℓ) → ∞ for some j ∈ Sc, then
the cone condition (20) essentially restricts ∥fj∥Q ≈ 0, which seems harmless to
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whether (21) is satisfied. If λnj /(maxℓ∈S λnℓ) → 0 for some j ∈ Sc, then (20) ef-
fectively leaves the magnitude of ∥fj∥Q unrestricted, which roughly imply that
fj (X

(j)
i ) cannot be highly correlated with {fℓ(X

(ℓ)
i ) : ℓ ∈ S} in order for (21)

to hold. As compatibility conditions are often invoked with S = {1 ≤ j ≤ p :
∥g∗

j ∥Q > 0} depending on unknown ∥g∗
j ∥Q, the latter observation suggests that

in the presence of function classes of different smoothness, Assumption 5 essen-
tially requires that the correlations between component functions specified with
smoother classes and the truly nonzero component functions be bounded away
from 1. For example, this restriction is similar to Condition 2.3 in Müller and van
de Geer (2015), where smoother components are linear functions of components.

To tackle random designs, our approach relies on establishing appropriate con-
vergence of empirical norms ∥ · ∥n to ∥ · ∥Q uniformly over the space of addi-
tive functions G, similarly as in Meier, van de Geer and Bühlmann (2009) and
Koltchinskii and Yuan (2010). For clarity, we postulate the following assumption
on the rate of such convergence to develop general analysis of ĝ. We will study
convergence of empirical norms specifically for Sobolev and bounded variation
spaces in Section 5, and then provide corresponding results on the performance of
ĝ in Section 4. For g = ∑p

j=1 gj ∈ G, denote

R∗
n(g)=

p∑

j=1

R∗
nj (gj ), R∗

nj (gj )= λnj
(
wnj∥gj∥F,j + ∥gj∥Q

)
,

as the population version of the penalty Rn(g), with ∥gj∥Q in place of ∥gj∥n.

ASSUMPTION 6 (Convergence of empirical norms). Assume that

(24) P

{
sup
g∈G

|∥g∥2n − ∥g∥2Q|
R∗2
n (g)

> φn

}
≤ π,

where 0< π < 1 and φn > 0 are such that for sufficiently large n, one or both of
the following conditions are valid:

(i) φn(maxj=1,...,p λ2nj )≤ η20, where η0 is from Assumption 4.
(ii) For some constant 0≤ η1 < 1, we have

(25) φn
(
ξ∗
0 + 1

)2
κ∗−2
0

(∑

j∈S
λ2nj

)
≤ η21,

where S is the subset of {1,2, . . . , p} used in Assumption 5.

Our main result, Theorem 2, gives an oracle inequality for random designs,
where the predictive performance of ĝ is compared with that of an arbitrary addi-
tive function ḡ = ∑p

j=1 ḡj ∈ G, but the true regression function g∗ may not be ad-
ditive, similarly as in Theorem 1 for fixed designs. For a subset S ⊂ {1,2, . . . , p},
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denote

.∗
n(ḡ, S)=

1
2

∥∥ḡ − g∗∥∥2
n + 2A0(1− η0)

( p∑

j=1

ρnj∥ḡj∥F,j +
∑

j∈Sc
λnj∥ḡj∥Q

)

,

which, unlike .n(ḡ, S), involves ∥ḡj∥Q and η0 from Assumptions 4 and 6(i).

THEOREM 2. Suppose that Assumptions 1, 4, 5 and 6(i)–(ii) hold with 0 <
η0 < (ξ∗

0 −1)/(ξ∗
0 +1), for λnj and ρnj in (11). Let A(ξ∗

0 ,η0)= {ξ∗
0 +1+η0(ξ

∗
0 +

1)}/{ξ∗
0 − 1− η0(ξ

∗
0 + 1)}> (1+ η0)/(1− η0). Then for any A0 >A(ξ∗

0 ,η0), we
have with probability at least 1− ϵ − π ,

1
2

∥∥ĝ − g∗∥∥2
n +

ξ∗
1
2

∥ĝ − ḡ∥2n + ξ∗
1A1R

∗
n(ĝ − ḡ)

≤ .∗
n(ḡ, S)+ ξ∗

2A0κ
∗−2
0

(∑

j∈S
λ2nj

)
,(26)

where A1 = (A0 − 1)− η0(A0 + 1) > 0, ξ∗
1 = 1− 2A0/{(ξ∗

0 + 1)A1} ∈ (0,1] and
ξ∗
2 = (ξ∗

0 + 1)A1.Moreover, we have with probability at least 1− ϵ − π ,

D∗
n

(
ĝ, ḡ, ξ∗

1 ,η1
) := 1

2

∥∥ĝ − g∗∥∥2
n +

ξ∗
3
2

∥ĝ − ḡ∥2Q + ξ∗
1A1R

∗
n(ĝ − ḡ)

≤ .∗
n(ḡ, S)+ ξ∗

4A0κ
∗−2
0

(∑

j∈S
λ2nj

)

+ φn

2A2
1
ξ∗−2
1 .∗2

n (ḡ, S),(27)

where ξ∗
3 = ξ∗

1 (1− η21) and ξ∗
4 = ξ∗

2 /(1− η21).

REMARK 7. Similarly as in Remark 2, we emphasize that Theorem 2 and
subsequent corollaries are also applicable to functional ANOVA modeling (e.g.,
Gu (2002)). For example, consider model (1) studied in Yang and Tokdar (2015),
where each g∗

j is assumed to depend only on d0 of a total of d covariates and lie in
a Hölder space with smoothness level α0. Then p = ( d

d0

)
, and the entropy condition

(31) holds with β0 = d0/α0. Under certain additional conditions, Corollary 6 with
q = 0 shows that penalized estimation studied here achieves a convergence rate

M0n
−2

2+β0 +M0 log(p)/n under exact sparsity of size M0, where n
−2

2+β0 is the rate
for estimation of a single regression function in the Hölder class in dimension
d0 with smoothness β−1

0 , and log(p)/n ≍ d0 log(d/d0)/n is the term associated
with handling p regressors. This result agrees with the minimax rate derived in
Yang and Tokdar (2015), but can be applied when more general functional classes
are used such as multidimensional Sobolev spaces. In addition, Yang and Tokdar
(2015) considered adaptive Bayes estimators which are nearly minimax with some
extra logarithmic factor in n.
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Taking S = ∅, ξ∗
0 = ∞, and η1 = 0 leads to the following corollary, which

explicitly does not require the theoretical compatibility condition (Assumption 5)
or the rate condition, Assumption 6(ii), for convergence of empirical norms.

COROLLARY 4. Suppose that Assumptions 1, 4 and 6(i) hold. Then for any
A0 > (1+ η0)/(1− η0), we have with probability at least 1− ϵ − π ,

1
2

∥∥ĝ − g∗∥∥2
n +

1
2
∥ĝ − ḡ∥2n +A1R

∗
n(ĝ − ḡ)

≤ .∗
n(ḡ,∅)= λ2n0 +

1
2

∥∥ḡ − g∗∥∥2
n + 2A0R

∗
n(ḡ).(28)

Moreover, we have with probability at least 1− ϵ − π ,

1
2

∥∥ĝ − g∗∥∥2
n +

1
2
∥ĝ − ḡ∥2Q +A1R

∗
n(ĝ − ḡ)

≤ .∗
n(ḡ,∅)+ φn

2A2
1
.∗2

n (ḡ,∅).(29)

The preceding results deal with both in-sample and out-of-sample prediction.
For space limitation, except in Proposition 3, we hereafter focus on the more chal-
lenging out-of-sample prediction. Under some rate condition about φn in (24),
the additional term involving φn.

∗2
n (ḡ, S) can be absorbed into the first term, as

shown in the following corollary. Two possible scenarios are accommodated. On
one hand, taking ḡ = g∗ directly gives high-probability bounds on the prediction
error ∥ĝ − g∗∥2Q provided that g∗ is additive, that is, model (1) is correctly speci-
fied. On the other hand, the error ∥ĝ − g∗∥2Q can also be bounded, albeit in prob-
ability, in terms of an arbitrary additive function ḡ ∈ G, while allowing g∗ to be
nonadditive.

COROLLARY 5. Suppose that the conditions of Theorem 2 hold with S = {1≤
j ≤ p : ∥ḡj∥Q > C∗

0λnj } for some constant C∗
0 > 0, and (24) holds with φn > 0

also satisfying

(30) φn

( p∑

j=1

ρnj∥ḡj∥F,j +
∑

j∈Sc
λnj∥ḡj∥Q

)

≤ η2,

for some constant η2 > 0. Then for any 0 ≤ q ≤ 1 and A0 > A(ξ∗
0 ,η0), we have

with probability at least 1− ϵ − π ,

D∗
n

(
ĝ, ḡ, ξ∗

1 ,η1
)

≤ {
O(1)+ φn

∥∥ḡ − g∗∥∥2
n

}
{

∥∥ḡ − g∗∥∥2
n +

p∑

j=1

(
ρnj∥ḡj∥F,j + λ

2−q
nj ∥ḡj∥qQ

)
}

,
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where O(1) depends only on (q,A∗
0,C

∗
0 , ξ

∗
0 ,κ

∗
0 ,η0,η1,η2). In addition, suppose

that φn∥ḡ − g∗∥2Q is bounded by a constant and ϵ = ϵ(n,p) tends to 0 in the
definition (11) of (λnj ,ρnj ) and Rn(g) for ĝ in (10). Then for any 0 ≤ q ≤ 1, we
have

∥∥ĝ − g∗∥∥2
Q ≤Op(1)

{
∥∥ḡ − g∗∥∥2

Q +
p∑

j=1

(
ρnj∥ḡj∥F,j + λ

2−q
nj ∥ḡj∥qQ

)
}

.

Similarly as Corollary 3, it is useful to deduce the following result in a homoge-
neous situation where we assume ψnj (δ)= B∗

0 δ1−β0/2 in (19) for some constants
B∗
0 > 0 and 0< β0 < 2:

(31) max
j=1,...,p

∫ δ

0
H ∗1/2((1− η0)u,G∗

j (δ),∥ · ∥n
)
du ≤ B∗

0 δ
1−β0/2, 0< δ ≤ 1.

By Remark 4, this assumption is satisfied with β0 = 1/m and B∗
0 from existing

entropy estimates when each Gj is a Sobolev space Wm
r or bounded variation

space Vm on [0,1] with r ≥ 1 and m ≥ 1 under nonvanishing marginal densities
of X(j)

i . For j = 1, . . . , p, let

wnj =w∗
n(q)=max

{
γn(q)

1−q,ν1−q
n

}
,(32)

γnj = γ ∗
n (q)=min

{
γn(q),B

∗
0n

−1/2ν−(1−q)β0/2
n

}
,(33)

where νn = {log(p/ϵ)/n}1/2, and wn(q)= γn(q)
1−q and

γn(q)= B∗
0

2
2+β0(1−q) n

−1
2+β0(1−q) ≍ n

−1
2+β0(1−q)

are determined from the relationship (12), that is, γn(q) = B∗
0n

−1/2wn(q)
−β0/2.

The reason for why (w∗
n(q),γ

∗
n (q)) are used instead of the simpler choices

(wn(q),γn(q)) is that the rate condition (34) needed below would become stronger
if γ ∗

n (q) were replaced by γn(q). The rate of convergence, however, remains the
same even if γ ∗

n (q) is substituted for γn(q) in (35); see Remark 14 for further
discussion. For g = ∑p

j=1 gj ∈ G, denote ∥g∥F,1 =
∑p

j=1 ∥gj∥F,j and ∥g∥Q,q =∑p
j=1 ∥gj∥qQ.

COROLLARY 6. Assume that (1) holds and ∥g∗∥F,1 ≤ C1MF and ∥g∗∥Q,q ≤
C
q
1Mq for 0 ≤ q ≤ 1, Mq > 0, and MF > 0, possibly depending on (n,p). In

addition, suppose that (31), (32), and (33) hold, Assumptions 1, 5 and 6(i) are
satisfied with 0< η0 < (ξ∗

0 − 1)/(ξ∗
0 + 1) and S = {1 ≤ j ≤ p : ∥g∗

j ∥Q > C∗
0λnj }

for some constant C∗
0 > 0, and (24) holds with φn > 0 satisfying

(34) φnC
2
1(MF +Mq)

{
γ ∗
n (q)+

√
log(p/ϵ)/n

}2−q = o(1).
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Then for sufficiently large n, depending on (MF ,Mq) only through the conver-
gence rate in (34), and any A0 > A(ξ∗

0 ,η0), we have with probability at least
1− ϵ − π ,

(35) D∗
n

(
ĝ, g∗, ξ∗

1 ,0
) ≤O(1)C2

1(MF +Mq)
{
γn(q)+

√
log(p/ϵ)/n

}2−q
,

where OP (1) depends only on (q,A∗
0,C

∗
0 , ξ

∗
0 ,κ

∗
0 ,η0).

In the case of q ≠ 0, Corollary 6 can be improved by relaxing the rate condition
(34) from o(1) to O(1) but requiring the following compatibility condition.

ASSUMPTION 7 (Monotone compatibility condition). For some subset S ⊂
{1,2, . . . , p} and constants κ∗

0 > 0 and ξ∗
0 > 1, assume that for any functions {fj ∈

Gj : j = 1, . . . , p} and f = ∑p
j=1 fj ∈ G, if (20) holds then

(36) κ∗2
0

∑

j∈S
∥fj∥2Q ≤ ∥f ∥2Q.

REMARK 8. By the Cauchy–Schwartz inequality, (36) implies (21), and hence
Assumption 7 is stronger than Assumption 5. However, there is a monotonicity in
S for the validity of Assumption 7 with (36) used. In fact, for any subset S′ ⊂ S
and any functions {f ′

j ∈ Gj : j = 1, . . . , p} and f ′ = ∑p
j=1 f

′
j ∈ G, if

p∑

j=1

λnjwnj

∥∥f ′
j

∥∥
F,j +

∑

j∈S′c
λnj

∥∥f ′
j

∥∥
Q ≤ ξ∗

0

∑

j∈S′
λnj

∥∥f ′
j

∥∥
Q,

then (20) holds with fj = f ′
j , j = 1, . . . , p, and hence, via (36), implies

∥∥f ′∥∥2
Q ≥ κ∗2

0

∑

j∈S

∥∥f ′
j

∥∥2
Q ≥ κ∗2

0

∑

j∈S′

∥∥f ′
j

∥∥2
Q.

Therefore, if Assumption 7 holds for a subset S, then it also holds for any subset
S′ ⊂ S with the same constants (ξ∗

0 ,κ
∗).

REMARK 9. In the homogeneous setting where (wnj ,γnj ) ≡ (wn,γn), As-
sumption 7 is implied by condition (23), which is used in Koltchinskii and Yuan
(2010) and Suzuki and Sugiyama (2013), whereas Assumption 5 is implied by con-
dition (22) as discussed in Remark 6. Conditions (22) and (23) are extensions from,
respectively, the compatibility condition (van de Geer and Bühlmann (2009)) and
restricted eigenvalue condition (Bickel, Ritov and Tsybakov (2009)) for the Lasso.
The constant κ∗

0 from the former condition can be much larger than that from the
latter condition, as shown in van de Geer and Bühlmann (2009), Example 10.5). By
similar reasoning, condition (22) or Assumption 5 may hold with a larger constant
κ∗
0 than (23) or Assumption 7.
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COROLLARY 7. Suppose that the conditions of Corollary 6 are satisfied with
0< q ≤ 1 (excluding q = 0), Assumption 7 holds instead of Assumption 5, and the
following condition holds instead of (34):

(37) φnC
2
1(MF +Mq)

{
γ ∗
n (q)+

√
log(p/ϵ)/n

}2−q ≤ η3,

for some constant η3 > 0. If 0 < w∗
n(q) ≤ 1 for sufficiently large n, then for any

A0 > A(ξ∗
0 ,η0), inequality (35) holds with probability at least 1 − ϵ − π , where

O(1) depends only on (q,A∗
0,C

∗
0 , ξ

∗
0 ,κ

∗
0 ,η0,η3).

To demonstrate the flexibility of our approach and compare with related results,
notably Suzuki and Sugiyama (2013), we provide another result in the context of
Corollary 6 with (wnj ,γnj ) allowed to depend on (MF ,Mq), in contrast with the
choices (32)–(33) independent of (MF ,Mq). For j = 1, . . . , p, let

wnj =w†
n(q)=max

{
w′
n(q),ν

1−q
n (Mq/MF )

}
,(38)

γnj = γ †
n (q)=min

{
γ ′
n(q),B

∗
0n

−1/2ν−(1−q)β0/2
n (Mq/MF )

−β0/2
}
,(39)

where w′
n(q) = γ ′

n(q)
1−q(Mq/MF ) and γ ′

n(q) = B∗
0

2
2+β0(1−q) n

−1
2+β0(1−q) (Mq/

MF )
−β0

2+β0(1−q) are determined from the relationship γ ′
n(q) = B∗

0n
−1/2w′

n(q)
−β0/2

by (12). These choices are picked to balance the two rates: λnwnMF and λ
2−q
n Mq ,

where wn and λn denote the common values of wnj and λnj for j = 1, . . . , p.

COROLLARY 8. Suppose that the conditions of Corollary 6 are satisfied ex-
cept that (wnj ,γnj ) are defined by (38)–(39), and the following condition holds
instead of (34):

(40) φnC
2
1Mq

{
γ †
n (q)+

√
log(p/ϵ)/n

}2−q = o(1).

Then for sufficiently large n, depending on (MF ,Mq) only through the conver-
gence rate in (40), and any A0 > A(ξ∗

0 ,η0), we have with probability at least
1− ϵ − π ,

(41) D∗
n

(
ĝ, g∗, ξ∗

1 ,0
) ≤O(1)C2

1
{
M

2−β0
2+β0(1−q)
q M

(2−q)β0
2+β0(1−q)

F n
−(2−q)

2+β0(1−q) +Mqν
2−q
n

}
,

where O(1) depends only on (q,B∗
0 ,A

∗
0,C

∗
0 , ξ

∗
0 ,κ

∗
0 ,η0).

REMARK 10. In the special case of q = 0 (exact sparsity), the convergence

rate (41) reduces to M

2−β0
2+β0
0 M

2β0
2+β0
F n

−2
2+β0 + M0ν

2
n . The same rate was obtained

in Suzuki and Sugiyama (2013) for additive regression with reproducing kernel
Hilbert spaces under

p∑

j=1

∥∥g∗
j

∥∥0
Q ≤M0,

p∑

j=1

∥∥g∗
j

∥∥
H ≤MF (≤ cM0),
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where ∥g∗
j ∥H is the Hilbert norm, assumed to satisfy ∥g∗

j ∥H ≤ c for all j . As one
of their main points, the rate (41) with q = 0 was argued to be faster than the rate

M0n
−2

2+β0 +M0ν
2
n ≍ (MF +M0)(n

−2
2+β0 + ν2n) in (35) with q = 0, in the case where∑p

j=1 ∥g∗
j ∥0Q and

∑p
j=1 ∥g∗

j ∥H are of different orders. Our analysis sheds new light
on the relationship between the rates (35) and (41): their difference mainly lies in
whether the tuning parameters (wnj ,γnj ) are chosen independently of (MF ,M0)

or depending on (MF ,M0).

4. Minimax rates with Sobolev and bounded variation spaces. For con-
creteness, consider a fully homogeneous situation where each class Gj is a Sobolev
space Wm0

r0 for some constants r0 ≥ 1 and m0 ≥ 1 or a bounded variation space
Vm0 for r0 = 1 and m0 ≥ 1 on [0,1]. Denote β0 = 1/m0. We deduce several ex-
plicit rates of convergence for the predictive performance of ĝ by combining the
results in Section 3.2 and those on convergence of empirical norms involved in As-
sumption 6, which are deferred to Section 5. We also demonstrate that the obtained
rates match minimax lower bounds.

To facilitate justification of conditions related to Assumptions 4 and 6, consider
the following assumption on the marginal densities of the covariates, as commonly
imposed when handling random designs (e.g., Stone (1982)).

ASSUMPTION 8 (Nonvanishing marginal densities). For j = 1, . . . , p, denote
by qj (x

(j)) the average marginal density function of (X(j)
1 , . . . ,X

(j)
n ), that is, the

density function associated with the probability measure n−1 ∑n
i=1QX

(j)
i
, where

Q
X

(j)
i

is the marginal distribution of X
(j)
i . For some constant 0 < ϱ0 ≤ 1, as-

sume that qj (x(j)) is bounded from below by ϱ0 on [0,1] simultaneously for
j = 1, . . . , p.

We distinguish two cases, r0 > β0 or r0 = β0 = 1. First, under Assump-
tion 8, if r0 > β0, then Assumption 4 (entropy in the empirical norm) and As-
sumption 10 (entropy in the empirical supremum norm) are satisfied such that
ψnj (δ) = B∗

0 δ
1−β0/2 and ψnj,∞(z, δ) = O(1)B∗

0z
1−β0/2 for z > 0 and 0 < δ ≤ 1,

where B∗
0 > 0 is a constant depending on ϱ0 among others. See Theorem 4 and Re-

mark 20 in Section 5 for the use of Assumption 10 and related discussion. Second,
by Remark 21, if r0 = β0 = 1, then Assumptions 4 and 10 are satisfied such that
ψnj (δ)= B∗

0 δ
1/2 and ψnj,∞(z, δ)=O(log1/2(n))B∗

0z
1/2 for z > 0 and 0< δ ≤ 1,

even when Assumption 8 does not hold. As a result, )n in Section 5 reduces to

(42) )n =O(1) if r0 > β0 or O
(
log1/2(n)

)
if r0 = β0 = 1.

Informally, )n is the ratio of the prefactors in ψnj,∞(z, δ) and ψnj (δ).
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4.1. Achieved convergence rates. We present our results on the convergence
rates of ĝ in three cases, where the underlying function g∗ = ∑p

j=1 g
∗
j is assumed

to satisfy (3) with q = 1, q = 0, or 0 < q < 1. As discussed in Section 1, the
parameter set (3) decouples sparsity and smoothness, inducing sparsity at different
levels through an Lq ball in ∥ · ∥Q norm for 0 ≤ q ≤ 1, while only enforcing
smoothness through an L1 ball in ∥ · ∥F norm on the components (g∗

1 , . . . , g
∗
p).

The first result deals with the case q = 1 for the parameter set (3).

PROPOSITION 3. Assume that (1) holds and ∥g∗∥F,1 ≤ C1MF and ∥g∗∥Q,1 ≤
C1M1 for MF > 0 and M1 > 0, possibly depending on (n,p). Let wnj = 1 and
γnj = γ ∗

n (1) ≍ n−1/2 by (32)–(33). Suppose that Assumptions 1 and 8 hold, and
log(p/ϵ) = o(n). Then for sufficiently large n, independently of (MF ,M1), and
any A0 > (1+ η0)/(1− η0), we have with probability at least 1− 2ϵ,

∥∥ĝ − g∗∥∥2
n +A1R

∗
n

(
ĝ − g∗) ≤O(1)C2

1(MF +M1)
√
log(p/ϵ)/n,

where O(1) depends only on (B∗
0 ,A0,η0,ϱ0).Moreover, we have

1
2

∥∥ĝ − g∗∥∥2
Q +A1R

∗
n

(
ĝ − g∗) ≤O(1)C2

1
(
M2

F +M2
1
){
n−1/2)n +

√
log(p/ϵ)/n

}
,

with probability at least 1− 2ϵ, where )n is from (42) and O(1) depends only on
(B∗

0 ,A0,η0,ϱ0) and (C2,C3,C4) as in Theorem 4. If r0 = β0 = 1, then the results
are valid even when Assumption 8, and hence ϱ0 are removed.

REMARK 11 (Comparison with existing results). Proposition 3 leads to the
slow rate {log(p)/n}1/2 under L1-ball sparsity in ∥ · ∥Q norm, as previously ob-
tained for additive regression with Sobolev Hilbert spaces in Ravikumar et al.
(2009), except in the case where r0 = β0 = 1, that is, each class Gj is W1

1 or V1.
In the latter case, Proposition 3 shows that the convergence rate is {log(np)/n}1/2
for out-of-sample prediction, but remains {log(p)/n}1/2 for in-sample prediction.
Previously, only the slower rate, {log(np)/n}1/2, was obtained for in-sample pre-
diction in additive regression with the bounded variation space V1 by Petersen,
Witten and Simon (2016).

The second result deals with the case q = 0 for the parameter set (3).

PROPOSITION 4. Assume that (1) holds and ∥g∗∥F,1 ≤ C1MF and ∥g∗∥Q,0 ≤
M0 for MF > 0 and M0 > 0, possibly depending on (n,p). By (32)–(33), let

wnj =w∗
n(0)=max

{
B∗
0

2
2+β0 n

−1
2+β0 ,

( log(p/ϵ)
n

)1/2}
,

γnj = γ ∗
n (0)=min

{
B∗
0

2
2+β0 n

−1
2+β0 ,B∗

0n
−1/2

( log(p/ϵ)
n

)− β0
4

}
.
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Suppose that Assumptions 1, 5 and 8 hold with 0 < η0 < (ξ∗
0 − 1)/(ξ∗

0 + 1) and
S = {1 ≤ j ≤ p : ∥g∗

j ∥Q >C∗
0λnj } for some constant C∗

0 > 0, and

{
)nw

∗
n(0)

−(1−β0/2)τ0γ ∗
n (0)+w∗

n(0)
−τ0

√
log(p/ϵ)/n

}
(1+MF +M0)

= o(1),(43)

where τ0 = 1/(2/β0 + 1 − 2/r0). Then for sufficiently large n, depending on
(MF ,M0) only through the convergence rate in (43), and for any A0 >A(ξ∗

0 ,η0),
we have

(44) D∗
n

(
ĝ, g∗, ξ∗

1 ,0
) ≤O(1)C2

1(MF +M0)
{
n

−1
2+β0 +

√
log(p/ϵ)/n

}2
,

with probability at least 1− 2ϵ, where O(1) depends only on (B∗
0 ,A

∗
0,C

∗
0 , ξ

∗
0 ,κ

∗
0 ,

η0,ϱ0). If r0 = β0 = 1, then the results are valid even when Assumption 8, and
hence ϱ0 are removed.

Condition (43) is based on Theorem 4 for convergence of empirical norms. By
Remark 23, a weaker condition can be obtained using Theorem 5 when 1≤ r0 ≤ 2
and τ0 < 1 (i.e., r0 > β0). It is interesting to note that (43) reduces to (45) below
in the case r0 = β0 = 1.

PROPOSITION 5. Proposition 4 is also valid with (43) replaced by the weaker
condition

(45)
{
w∗
n(0)

−τ0
√
log(np/ϵ)/n

}
(1+MF +M0)= o(1),

in the case where 1 ≤ r0 ≤ 2, r0 > β0, and the average marginal density of
(X

(j)
1 , . . . ,X

(j)
n ) is bounded from above for all j .

REMARK 12 (Comparison with existing results). Propositions 4 and 5 yield

the fast rate n
−2

2+β0 + log(p)/n under L0-ball sparsity in ∥ ·∥Q norm. Previously, the
same rate was obtained for high-dimensional additive regression only with repro-
ducing kernel Hilbert spaces (including the Sobolev space Wm

2 ) by Koltchinskii
and Yuan (2010) and Raskutti, Wainwright and Yu (2012), but under more re-
strictive conditions. They studied hybrid penalized estimation procedures, which
involve additional constraints such that the Hilbert norms of (g1, . . . , gp) are
bounded by known constants when minimizing a penalized criterion. Moreover,
Koltchinskii and Yuan (2010) assumed a constant bound on the sup-norm of pos-
sible g∗, whereas Raskutti, Wainwright and Yu (2012) assumed the independence
of the covariates (X

(1)
i , . . . ,X

(p)
i ) for each i. These restrictions were relaxed in

subsequent work by Suzuki and Sugiyama (2013), but only explicitly under the
assumption that the noises εi are uniformly bounded by a constant. Moreover, our
condition (43) is much weaker than related ones in Suzuki and Sugiyama (2013),
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as discussed in Remarks 13 and 14 below. See also Remark 10 for a discussion
about the relationship between our results and the seemingly faster rate in Suzuki
and Sugiyama (2013).

REMARK 13. To justify Assumptions 6(i)–(ii) on convergence of empirical
norms, our rate condition (43) is much weaker than previous ones used. If each
class Gj is a Sobolev–Hilbert space (r0 = 2), then τ0 = β0/2 and (43) becomes

(46)
{
n1/2w∗

n(0)
β2
0/4γ ∗

n (0)
2 + γ ∗

n (0)
√
log(p/ϵ)

}
(1+MF +M0)= o(1).

Moreover, by Proposition 5, condition (43) can be weakened to (45), that is,

(47) γ ∗
n (0)

√
log(np/ϵ)(1+MF +M0)= o(1),

under an additional condition that the average marginal density of (X(j)
1 , . . . ,X

(j)
n )

is bounded from above for all j . Either condition (46) or (47) is much weaker
than those in related analysis with reproducing kernel Hilbert spaces. In fact, tech-
niques based on the contraction inequality (Ledoux and Talagrand (1991) as used
in Meier, van de Geer and Bühlmann (2009) and Koltchinskii and Yuan (2010)),
lead to a rate condition such as

(48) n1/2
{
γ 2
n (0)+ ν2n

}
(1+MF +M0)= o(1),

where γn(0) = B∗
0

2
2+β0 n

−1
2+β0 and νn = {log(p/ϵ)/n}1/2. This amounts to condi-

tion (6) assumed in Suzuki and Sugiyama (2013), in addition to the requirement
n−1/2(logp) ≤ 1. But condition (48) is even stronger than the following condition:

(49) n1/2
{
γn(0)2+β2

0/4 + γn(0)νn
}
(1+MF +M0)= o(1),

because )nγn(0)2+β2
0/4 + γn(0)νn ≪ γ 2

n (0)+ ν2n if either γn(0) ≫ νn or γn(0) ≪
νn. Condition (49) implies (46) and (47), as we explain in the next remark.

REMARK 14. Our rate condition (43) is in general weaker than the corre-
sponding condition with (w∗

n(0),γ
∗
n (0)) replaced by (wn(0),γn(0)), that is,

(50)
{
)nγn(0)1−(1−β0/2)τ0 + γn(0)−τ0νn

}
(1+MF +M0)= o(1).

This demonstrates the advantage of using the more careful choices (w∗
n(0),γ

∗
n (0))

and also explains why (49) implies (46) in Remark 13. In fact, if γn(0) ≥ νn
then (43) and (50) are identical to each other. On the other hand, if γn(0) < νn,
then w∗

n(0) = νn > γn(0) and w∗
n(0)

−(1−β0/2)τ0γ ∗
n (0) = B∗

0n
−1/2 ×

w∗
n(0)

−(1−β0/2)τ0−β0/2 < γn(0)1−(1−β0/2)τ0 . This also shows that if γn(0) ≪ νn,
then (43) is much weaker than (50). For illustration, if r0 = 2 and hence
τ0 = β0/2, then (50) or equivalently (49) requires at least γn(0)−β0/2νn = o(1),

that is, (logp)n
−2

2+β0 = o(1), and (48) requires at least n1/2ν2n = o(1), that
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is, log(p)n−1/2 = o(1). In contrast, the corresponding requirement for (43),
w∗
n(0)

−β0/2νn = o(1), is automatically valid as long as νn = o(1), that is,
log(p)n−1 = o(1).

The following result deals with the case 0< q < 1 for the parameter set (3).

PROPOSITION 6. Assume that (1) holds and ∥g∗∥F,1 ≤ C1MF and ∥g∗∥Q,q ≤
C
q
1Mq for 0 < q < 1, Mq > 0, and MF > 0, possibly depending on (n,p). Let

wnj =w∗
n(q) and γnj = γ ∗

n (q) by (32)–(33). Suppose that Assumptions 1, 7 and 8
hold with 0< η0 < (ξ∗

0 − 1)/(ξ∗
0 + 1) and S = {1 ≤ j ≤ p : ∥g∗

j ∥Q > C∗
0λnj } for

some constant C∗
0 > 0, log(p/ϵ)= o(n), and

(51)
{
)nw

∗
n(q)

−(1−β0/2)τ0γ ∗
n (q)

1−q +w∗
n(q)

−τ0ν1−q
n

}
(1+MF +Mq)≤ η4,

for some constant η4 > 0, where νn = {log(p/ϵ)/n}1/2. Then for sufficiently large
n, independently of (MF ,Mq), and any A0 >A(ξ∗

0 ,η0), we have

D∗
n

(
ĝ, g∗, ξ∗

1 ,0
) ≤O(1)C2

1(MF +Mq)
{
n

−1
2+β0(1−q) +

√
log(p/ϵ)/n

}2−q
,

with probability at least 1− 2ϵ, where O(1) depends only on (q,B∗
0 ,A

∗
0,C

∗
0 , ξ

∗
0 ,

κ∗
0 ,η0,ϱ0,η4) and (C2,C3,C4) as in Theorem 4. If r0 = β0 = 1, then the results
are valid even when Assumption 8, and hence ϱ0 are removed.

Similarly as in Propositions 4 and 5, condition (51) can be weakened as follows
when 1 ≤ r0 ≤ 2 and τ0 < 1 (i.e., r0 > β0). It should also be noted that (51) is
equivalent to (52) below (with different η4 in the two equations) in the case r0 =
β0 = 1, because γ ∗

n (q) with q < 1 is of a slower polynomial order than n−1/2 and
hence {log(n)/n}1/2γ ∗

n (q)
−1 = o(1).

PROPOSITION 7. Proposition 6 is also valid with (43) replaced by the weaker
condition

(52)
{
w∗
n(q)

−τ0
(
log(np/ϵ)/n

)(1−q)/2}
(1+MF +M0)≤ η4,

for some constant η4 > 0, in the case where 1 ≤ r0 ≤ 2, r0 > β0 and the average
marginal density of (X(j)

1 , . . . ,X
(j)
n ) is bounded from above for all j .

REMARK 15. Propositions 6 and 7 yield, under Lq -ball sparsity in ∥ · ∥Q
norm, a convergence rate interpolating the slow and fast rates smoothly from q = 1
to q = 0, similarly as in fixed designs (Section 3.1). However, the rate condition
(51) involved does not always exhibit a smooth transition to those for the slow
and fast rates. In the extreme case q = 1, condition (51) with q = 1 cannot be
satisfied when M1 is unbounded or when M1 is bounded but )n is unbounded
with r0 = β0 = 1. In contrast, Proposition 3 allows for unboundedM1 and the case
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TABLE 1
Convergence rates for out-of-sample prediction under parameter set (3) with (MF ,Mq) bounded

from above

r0 = β0 = 1

r0 > β0 q = 0

0 ≤ q ≤ 1 q = 1 0< q < 1 νn = o(γn(0)) otherwise

Scale
adaptive

yes yes yes yes no

Rate {γn(q)+ νn}2−q √
log(n)/n+ νn {γn(q)+ νn}2−q

Note: γn(q) ≍ n
−1

2+β0(1−q) and νn = {log(p/ϵ)/n}1/2. Scale-adaptiveness means the convergence
rate is achieved with (wnj ,γnj ) chosen independently of (MF ,Mq).

r0 = β0 = 1. This difference is caused by the need to justify Assumption 6(ii) with
q ≠ 1. In the extreme case q = 0, condition (51) with q = 0 also differ drastically
from (43) in Proposition 4. As seen from the proof of Corollary 7, this difference
arises because Assumption 6(ii) can be justified by exploiting the fact that zq → ∞
as z → ∞ for q > 0 (but not q = 0).

For illustration, Table 1 gives the convergence rates from Propositions 3–6 in
the simple situation where (MF ,Mq) are bounded from above, independently of
(n,p). The rate conditions (43) and (51) are easily seen to hold in all cases except
that (43) is not satisfied for q = 0 when r0 = β0 = 1 but νn ≠ o(γn(0)). In this case,
we show in the following result that the convergence rate {γn(0)+ νn}2 can still
be achieved, but with the tuning parameters (wnj ,γnj ) chosen suitably depending
on the upper bound of (MF ,Mq). This is in contrast with the other cases in Ta-
ble 1 where the convergence rates are achieved by our penalized estimators in a
scale-adaptive manner: (wnj ,γnj ) = (w∗

n(q),γ
∗
n (q)) are chosen independently of

(MF ,Mq) or their upper bounds.

PROPOSITION 8. Assume that r0 = β0 = 1, and MF and M0 are bounded
from above by a constant M > 0. Suppose that the conditions of Proposition 4
are satisfied except with (43) and Assumption 8 removed, and Assumption 7 holds
instead of Assumption 5. Let ĝ′ be the estimator with (wnj ,γnj ) replaced by w′

nj =
K0w

∗
n(0) and γ ′

nj =K
−β0/2
0 γ ∗

n (0) for K0 > 0. Then K0 can be chosen, depending
on M but independently of (n,p), such that for sufficiently large n, depending on
M , and any A0 >A(ξ∗

0 ,η0), we have

D∗
n

(
ĝ′, g∗, ξ∗

1 ,0
) ≤O(1)C2

1(MF +M0)
{
n

−1
2+β0 +

√
log(p/ϵ)/n

}2
,

with probability at least 1− 2ϵ, where O(1) depends only on (M,B∗
0 ,A

∗
0,C

∗
0 , ξ

∗
0 ,

κ∗
0 ,η0) and (C2,C3,C4) as in Theorem 4.
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4.2. Minimax lower bounds. We demonstrate minimiax optimality of the
rates achieved by the doubly penalized estimator ĝ. To clarify main ideas, we
first provide a general result on minimax lower bounds for estimation in ad-
ditive model (1) under the following conditions. Assume that each noise ϵi

is distributed as N(0,σ 2), independently of (X
(1)
i , . . . ,X

(p)
i ), and the vectors

{(εi ,X(1)
i , . . . ,X

(p)
i ) : i = 1, . . . , n} are independent and identically distributed. In

addition, assume that all functions gj ∈ Gj are centered:
∫
gj (z)dz = 0. Suppose

that for 1 ≤ j ≤ p, there exist basis functions {ujℓ(·) : ℓ ≥ 1} in Gj such that for
all integers k ≥ 1 and real numbers aℓ,

(53) c0

k∑

ℓ=1

a2ℓ ≤
∥∥∥∥∥

k∑

ℓ=1

aℓujℓ

∥∥∥∥∥

2

Q

≤
k∑

ℓ=1

a2ℓ ,

and for all signs ejℓ ∈ {−1,1},

(54)

∥∥∥∥∥

k∑

ℓ=1

ejℓujℓ

∥∥∥∥∥
F,j

≤ CFk
1/β0+1/2,

where c0 ∈ (0,1], β0 ∈ (0,2), and CF > 0 are constants. Denote the parameter set
as

G(MF ,Mq)=
{

g(x)=
p∑

j=1

gj
(
x(j)

) :
p∑

j=1

∥gj∥F,j ≤ σMF,

p∑

j=1

∥gj∥qQ ≤ σ qMq

}

,

where 0≤ q ≤ 1, Mq > 0 and MF > 0 are known.

THEOREM 3. (i) Suppose that (53) and (54) hold. Let integers 1 ≤ s ≤ p and
k ≥ 1 be determined such that

(55) MF = CF sn
−1/2k1/β0+1/2, Mq = sn−q/2kq/2.

Then

inf
(g̃1,...,g̃p)

sup
g∗∈G(MF ,Mq)

E

{ p∑

j=1

∥∥g̃j − g∗
j

∥∥2
Q

}

≥ c0c1skσ
2/n= c0c1σ

2
(
MF

CF

)1−q1

Mq1
q n

−(2−q)
2+(1−q)β0 ,

where q1 = (2− β0)/{2+ (1− q)β0} and c1 =
√
2/π

∫ ∞
1 e−z2/2 dz.

(ii) Suppose that (54) hold with k = 1 and CF set to CF,1, for a basis function
uj1(·) with ∥uj∥Q = 1. Let integer s0 ≥ 1 and λ0 be determined such that λ0 =√
(2/n) log(ep/s0) and s0 ≤min(Mq/λ

q
0 ,MF/(CF,1λ0),p). Then

inf
(g̃1,...,g̃p)

sup
g∗∈G(MF ,Mq)

E

{ p∑

j=1

∥∥g̃j − g∗
j

∥∥2
Q

}

≥ σ 2 (1− s0/p)/16
1− s0/p+ 1/e

s0λ
2
0.
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REMARK 16. Suppose Mq/λ
q
0 ≤ min(MF/(CFλ0),p/2) in Theorem 3(ii).

The largest possible s0 and the corresponding λ0 must satisfy s0 ≤ Mq/λ
q
0 <

s0 + 1 ≤ p/2+ 1. This implies nλ20 = 2 log(ep/s0) ≍ 2 log(ep/Mq)+ q logλ20 =
2 log(ep/(Mqn

q))+ q log(2 log(ep/s0)) ≍ 2 log(ep/(Mqn
q)). The last step above

is valid due to 2 log(ep/s0)≥ 2(1+ log 2). Thus, λ0 ≍ {(2/n) log(ep/(Mqn
q))}1/2

and

s0λ
2
0 ≍Mqλ

2−q
0 ≍ Mq

{
(2/n) log

(
ep/

(
Mqn

q))}1−q/2
.

REMARK 17. Return to the setting where Gj is a Sobolev class Wm0
r0 or a

bounded variation class Vm0 on [0,1] for j = 1, . . . , p. Condition (53) is satis-
fied for any L2-orthogonal bases, properly scaled, provided that the marginal den-
sity of X(j)

i is bounded from below and above on [0,1] for all j . Let ujℓ(z) =√
ku0(kz − (ℓ − 1)), ℓ = 1, . . . , k, with supp(u0) ⊂ [0,1] and ∫ 1

0 u20(z)dz = 1.
Then (54) holds with β0 = 1/m0 and CF = ∥u(m0)

0 ∥Lr0
or TV(u(m0−1)

0 ). In The-
orem 3(ii), we take uj1(z) = bj (z − 1/2) for some coefficient bj . Then (54)
holds with k = 1 and CF,1 = max1≤j≤p ∥uj1∥F,j , which is bounded from above
provided that E{(X(j)

i − 1/2)2} is bounded from below for all j . In particular,
CF,1 = 0 in the case of m0 ≥ 2.

The prediction error ∥g̃ − g∗∥2Q can be bounded from below by

∥∥g̃ − g∗∥∥2
Q ≥ (c3/c2)

p∑

j=1

∥∥g̃j − g∗
j

∥∥2
Q,

under the following assumption, which is qualitatively similar to the assumption
that the vector (X(1)

i , . . . ,X
(p)
i ) is uniformly distributed on [0,1]p for establishing

minimax lowers bounds in Raskutti, Wainwright and Yu (2012) and Suzuki and
Sugiyama (2013).

ASSUMPTION 9. Assume that the marginal density of X
(j)
i is bounded

from above by c2 > 0 on [0,1] for all 1 ≤ j ≤ p, and the joint density of
(X

(1)
i , . . . ,X

(p)
i ) is bounded from below by c3 > 0 on [0,1]p .

With these remarks, Theorem 3 then leads to the following minimax lower
bound.

PROPOSITION 9. Let each Gj , j = 1, . . . , p, be a Sobolev class Wm0
r0 or

a bounded variation class Vm0 on [0,1] for r0 ≥ 1 and m0 ≥ 1. Suppose that
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Assumption 9 holds, and Mq/λ
q
0 ≤ min(MF/(CF,1λ0),p/2), with λ0 as in Re-

mark 16 and CF,1 as in Remark 17. Then

inf
g̃

sup
g∗∈G(MF ,Mq)

E
{∥∥g̃ − g∗∥∥2

Q

}

≥O(1)σ 2{(MF/CF )
1−q1Mq1

q n−(2−q)/{2+(1−q)β0} +Mqλ
2−q
0

}
,(56)

where q1 is as in Theorem 3(i), CF = ∥u(m0)
0 ∥Lr0

or TV(u(m0−1)
0 ) as in Remark 17,

and O(1) depends only on (c1, c2, c3).

REMARK 18. The lower bound (56) is matched by the convergence rate (41)
for the doubly penalized estimator ĝ, where the tuning parameters (λn,ρn) are
allowed to depend on (MF ,Mq). Moreover, (56) is matched by the convergence
rate (35) in Corollaries 6 and 7 (as well as the rates in Propositions 3–8), up to
multiplicative constants depending on (MF ,Mq).

REMARK 19. The lower bound (56) with q = 0 is similar to those obtained by
Raskutti, Wainwright and Yu (2012) and Suzuki and Sugiyama (2013) in additive
regression and Dalalyan, Ingster and Tsybakov (2014) in white noise models, all
with L2-Sobolev or similar Hilbert spaces. The extension involved in our results is
to handle 0< q ≤ 1 as well as Lr -Sobolev and bounded variation spaces.

5. Convergence of empirical norms. We provide two explicit results on the
convergence of empirical norms as needed for Assumption 6. These results can
also be useful for other applications.

Our first result, Theorem 4, is applicable (but not limited) to Sobolev and
bounded variation spaces in general. For clarity, we postulate another entropy con-
dition, similar to Assumption 4 but with the empirical supremum norms.

ASSUMPTION 10 (Entropy condition in supremum norms). For j = 1, . . . , p,
let ψnj,∞(·, δ) be an upper envelope of the entropy integral, independent of the
realizations {X(j)

i : i = 1, . . . , n}, as follows:

ψnj,∞(z, δ)≥
∫ z

0
H ∗1/2(u/2,G∗

j (δ),∥ · ∥n,∞
)
du, z > 0,0< δ ≤ 1,

where G∗
j (δ)= {fj ∈ Gj : ∥fj∥F,j + ∥fj∥Q/δ ≤ 1} as in Assumption 4 and

H ∗(
u,G∗

j (δ),∥ · ∥n,∞
) = sup

(X
(j)
1 ,...,X

(j)
n )

H
(
u,G∗

j (δ),∥ · ∥n,∞
)
.

We also make use of the following two conditions about metric entropies and
sup-norms. Suppose that for j = 1, . . . , p, ψnj (δ) and ψnj,∞(z, δ) in Assumptions
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4 and 10 are in the polynomial forms

ψnj (δ)= Bnjδ
1−βj /2, 0< δ ≤ 1,(57)

ψnj,∞(z, δ)= Bnj,∞z1−βj /2, z > 0,0< δ ≤ 1,(58)

where 0< βj < 2 is a constant, and Bnj > 0 and Bnj,∞ > 0 are constants, possibly
depending on n. Denote )n =maxj=1,...,p(Bnj,∞/Bnj ). In addition, suppose that
for j = 1, . . . , p,

(59) ∥gj∥∞ ≤ (C4,j /2)
(∥gj∥F,j + ∥gj∥Q

)τj ∥gj∥1−τj
Q , gj ∈ Gj ,

where C4,j ≥ 1 and 0 < τj ≤ (2/βj − 1)−1 are constants. Let γnj = n−1/2 ×
ψnj (wnj )/wnj = n−1/2Bnjw

−βj /2
nj by (12) and γ̃nj = n−1/2w

−τj
nj for j = 1, . . . , p.

As a function of wnj , the quantity γ̃nj in general differs from γnj even up to a
multiplicative constant unless τj = βj /2 as in the case where Gj is an L2-Sobolev
space; see (61) below.

THEOREM 4. Suppose that Assumptions 4 and 10 hold with ψnj (δ) and
ψnj,∞(z, δ) in the forms (57) and (58), and condition (59) holds. In addition,

suppose that for sufficiently large n, γnj ≤ wnj ≤ 1 and )nγ
1−βj /2
nj ≤ 1 for

j = 1, . . . , p. Then for any 0 < ϵ′ < 1 (e.g., ϵ′ = ϵ), inequality (24) holds with
π = ϵ′2 and φn > 0 such that

φn =O(1)
{
n1/2)nmax

j

γnj

λnj
max
j

γ̃njw
βp+1τj /2
nj

λnj

+max
j

γ̃nj

λnj
max
j

√
log(p/ϵ′)

λnj
+max

j

γ̃ 2
nj log(p/ϵ

′)

λ2nj

}
,(60)

where βp+1 = minj=1,...,p βj , and O(1) depends only on (C2,C3) from Lem-
mas 13 and 14 in the Supplementary Material (Tan and Zhang (2019)) and
C4 =maxj=1,...,p C4,j from condition (59).

REMARK 20. Conditions (57), (58) and (59) are satisfied under Assumption 8,
when each Gj is a Sobolev space Wmj

rj for rj ≥ 1 and mj ≥ 1, or a bounded vari-
ation space Vmj for rj = 1 and mj ≥ 1, on [0,1]. Let βj = 1/mj . First, (59) is
implied by the interpolation inequalities for Sobolev spaces Nirenberg, 1966 with

(61) τj = (2/βj + 1− 2/rj )−1

and C4,j = ϱ−1
0 C4(mj , rj ) depending on C4(mj , rj ) in Lemma 21 of the Supple-

mentary Material (Tan and Zhang (2019)). Moreover, if fj ∈ G∗
j (δ)with 0< δ ≤ 1,

then ∥fj∥F,j ≤ 1 and ∥fj∥Q ≤ δ, and hence ∥fj∥Lrj
≤ ∥fj∥∞ ≤ C4,j by (59). By

rescaling the entropy estimates for Sobolev and bounded variation spaces (Lorentz,
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Golitschek and Makovoz (1996)) as in Lemmas 19 and 20 in the Supplementary
Material (Tan and Zhang (2019)), Assumptions 4 and 10 are satisfied such that
(57) and (58) hold with Bnj independent of n, and Bnj,∞ =O(1)Bnj if rj > βj or
Bnj,∞ =O(log1/2(n))Bnj if rj = βj = 1.

REMARK 21. Assumption 8 is not needed for justification of (57), (58) and
(59), when each class Gj is W1

1 or V1 on [0,1], that is, rj =mj = 1. In this case,
condition (59) directly holds with τj = 1, because ∥gj∥∞ ≤ TV(gj ) + ∥gj∥Q.
Then (57) and (58) easily follow from the entropy estimates in Lemmas 19 and 20
in the Supplementary Material (Tan and Zhang (2019)).

Our second result provides a sharper rate than in Theorem 4, applicable (but
not limited) to Sobolev and bounded variation spaces, provided that the following
conditions hold. For gj ∈ Gj , assume that gj (·) can be written as

∑∞
ℓ=1 θjℓujℓ(·)

for certain coefficients θjℓ and basis functions ujℓ(·) on a set 7. In addition, for
certain positive constants C5,1, C5,2, C5,3, 0 < τj < 1 and 0 < wnj ≤ 1, assume
that for all 1 ≤ j ≤ p,

sup

{
∑k

ℓ=1u
2
jℓ(x)/k : x ∈ 7, k ≥ ℓj0

}

≤ C5,1,(62)

max
k≥1

∑

ℓj,k−1<ℓ≤ℓjk

θ2jℓℓ
1/τj
jk ≤ C5,2

(∥gj∥F,j +w−1
nj ∥gj∥Q

)2
,(63)

ℓj0∑

ℓ=1

θ2jℓw
−2
nj ≤ C5,2

(∥gj∥F,j +w−1
nj ∥gj∥Q

)2
,(64)

with ℓjk = ⌈(2k/wnj )
2τj ⌉ for k ≥ 0 and ℓj,−1 = 0, and for all 1 ≤ j ≤ p and k ≥ 0,

(65) sup
{∥∥∥∥

∑

ℓj,k−1<ℓ≤ℓjk

θjℓujℓ

∥∥∥∥
2

Q
:

∑

ℓj,k−1<ℓ≤ℓjk

θ2jℓ = 1
}

≤ C5,3.

THEOREM 5. Suppose that (62), (63), (64) and (65) hold as above, and
maxj=1,...,p{e2/(1−τj ) + 2w

−τj
nj } ≤ n. Then for any 0 < ϵ′ < 1 (e.g., ϵ′ = ϵ), in-

equality (24) holds with π = ϵ′2 and φn > 0 such that

φn =O(1)
{
max
j

γ̃nj

(1− τj )λnj
max
j

√
log(np/ϵ′)

λnj
+max

j

γ̃ 2
nj log(np/ϵ

′)

(1− τj )2λ
2
nj

}
,

where γ̃nj = n−1/2w
−τj
nj and O(1) depends only on {C5,1,C5,2,C5,3}.

REMARK 22. Let Gj be a Sobolev spaceW
mj
rj with rj ≥ 1, mj ≥ 1, and (rj ∧

2)mj > 1 or a bounded variation space Vmj with rj = 1 and mj > 1 (excluding
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mj = 1) on [0,1]. Condition (62) holds for commonly used Fourier, wavelet and
spline bases. For any L2-orthonormal bases {ujℓ,ℓ ≥ 1}, condition (64) follows
from Assumption 8 with C5,2 ≥ ϱ−1

0 , and condition (65) is also satisfied under an
additional assumption that the average marginal density of {X(j)

i : i = 1, . . . , n} is
bounded from above on [0,1] by C5,3 for all j . In the proof of Proposition 5, we
verify (62) and (63) for suitable wavelet bases with τj = 1/{2mj +1−2/(rj ∧2)},
which satisfies τj < 1 because (rj ∧ 2)mj > 1. In fact, Gj is allowed to be a Besov
space Bmj

rj ,∞, which containsWmj
rj for rj ≥ 1 and Vmj for rj = 1 (e.g., DeVore and

Lorentz (1993)).

REMARK 23. The convergence rate of φn in Theorem 5 is no slower than (60)
in Theorem 4 if 1 ≤ rj ≤ 2 and (1 − τj )

−1{log(n)/n}1/2 = O(γ̃nj ), the latter of

which is valid whenever τj is bounded away from 1 and γ̃nj = n−1/2w
−τj /2
nj is of

a slower polynomial order than n−1/2. However, Theorem 5 requires an additional
side condition (65) along with the requirement of τj < 1, which excludes for ex-
ample the bounded variation space V1 on [0,1]; See equations (46) and (47) for
implications of these rates when used in Assumption 6.

6. Discussion. For additive regression with high-dimensional data, we have
established new convergence results on the predictive performance of doubly pe-
nalized estimation when each component function can be a Sobolev space Wm

r or
a bounded variation space Vm. There remain various open problems to be fully
investigated. First, the doubly penalized estimators are shown under certain con-
ditions to be adaptive to the sizes of L1(∥ · ∥F ) and Lq(∥ · ∥Q) balls with fixed
sparsity index q and smoothness index m. For q = 0 and in white noise models
with unknown component functions in L2-Sobolev spaces, Dalalyan, Ingster and
Tsybakov (2014) developed adaptive estimation with respect to smoothness m.
It is desirable to study how adaptive estimation can be achieved over such balls
with varying q and m. Moreover, it is interesting to study variable selection and
inference about component functions for high-dimensional additive regression, in
addition to predictive performance studied here.

Acknowledgment. The authors thank a referee for extensive comments that
led to improvement of the paper.
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Supplement to “Doubly penalized estimation in additive regression with
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