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DOUBLY PENALIZED ESTIMATION IN ADDITIVE REGRESSION
WITH HIGH-DIMENSIONAL DATA

BY ZHIQIANG TAN! AND CUN-HUI ZHANG?>
Rutgers University

Additive regression provides an extension of linear regression by model-
ing the signal of a response as a sum of functions of covariates of relatively
low complexity. We study penalized estimation in high-dimensional nonpara-
metric additive regression where functional semi-norms are used to induce
smoothness of component functions and the empirical L, norm is used to
induce sparsity. The functional semi-norms can be of Sobolev or bounded
variation types and are allowed to be different amongst individual component
functions. We establish oracle inequalities for the predictive performance of
such methods under three simple technical conditions: a sub-Gaussian con-
dition on the noise, a compatibility condition on the design and the func-
tional classes under consideration and an entropy condition on the functional
classes. For random designs, the sample compatibility condition can be re-
placed by its population version under an additional condition to ensure suit-
able convergence of empirical norms. In homogeneous settings where the
complexities of the component functions are of the same order, our results
provide a spectrum of minimax convergence rates, from the so-called slow
rate without requiring the compatibility condition to the fast rate under the
hard sparsity or certain Lg sparsity to allow many small components in the
true regression function. These results significantly broaden and sharpen ex-
isting ones in the literature.

1. Introduction. Additive regression is an extension of linear regression
where the signal of a response can be written as a sum of functions of covariates
of relatively low complexity. Let (¥;, X;),i =1, ..., n, be a set of n independent
(possibly nonidentically distributed) observations, where Y; € R is a response vari-
able and X; € R? is a covariate (or design) vector. Consider an additive regression
model, Y; = g*(X;) + & with
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where &; is a noise with mean 0 given X;, x(/) is a vector composed of a small
subset of the components of x € R? and gj belongs to a certain functional
class G;. That s, g*(x) lies in the space of additive functions G = {Zle gj (x@y:
gj€Gj,j=1,...,p}. A function g € G may admit the decomposition g(x) =
Zf:l gjlx () for multiple choices of (g1, ..., gp)- In what follows, such choices
are considered equivalent but a favorite decomposition can be used to evaluate
properties (e.g., the L norm) of the components of g € G.

In a classical setting (e.g., Stone (1985)), each g;? is a univariate function and
x) is the Jjth component of x € [0, l]d, so that p = d. We take a broad view of
additive regression and our analysis will accommodate the general setting where
g;‘ can be multivariate with X l-(J ) being a block of covariates, possibly overlap-
ping across different j as in functional ANOVA (e.g., Gu (2002)). However, most
concrete examples will be given in the classical setting.

Additive modeling has been well studied in the setting where the number of
components p is fixed; see Hastie and Tibshirani (1990) and references therein.
Recently, building upon related works in penalized linear regression, there has
been considerable progress in the development of theory and methods for sparse
additive regression in high-dimensional settings where p can be of greater or-
der than the sample size n but the number of significant components is still
smaller than n; see, for example, Lin and Zhang (2006), Meier, van de Geer and
Biithlmann (2009), Ravikumar et al. (2009), Huang, Horowitz and Wei (2010),
Koltchinskii and Yuan (2010), Raskutti, Wainwright and Yu (2012), Suzuki and
Sugiyama (2013), Dalalyan, Ingster and Tsybakov (2014), Petersen, Witten and
Simon (2016) and Yuan and Zhou (2016).

In this article, we study a penalized estimator ¢ with an associated decomposi-
tion g = Z;’:l g, defined as a minimizer of a penalized loss

14
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over g € G and decompositions g = Zle gj, where (A,;, pyj) are tuning pa-
rameters, || - ||, is the empirical L, norm based on the data points, for example,
1Y —gll2=n"'37_{Y: — g(X;)}* and |Ig;|IF,; is a semi-norm describing the
complexity of g; € G;. For simplicity, the association of | g;|l, and ||g; || F,; with
X lg’ ) is typically suppressed.

In the penalized loss (2), each component g; is doubly penalized by its empir-
ical norm and functional semi-norm. The empirical norm || - ||, is used to induce
sparsity, whereas the functional semi-norm || - || , ; is used to induce smoothness of
the estimated regression function. For example, if G; is taken as a Sobolev space
W™ on [0, 1], then [|g;]r.; = {fy |g§.m)|rdz}1/’ for r > 1 and m > 1, where g;m)
denotes the mth derivative of g ;. For the special case r = 2, the L;-Sobolev space
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Wj' is a (reproducing kernel) Hilbert space, used in the construction of smooth-
ing splines (e.g., Gu (2002)). Moreover, if G; is a bounded variation space V" on
[0, 1], then |lg;liF,j = TV(gj-m_l)) for m > 1, where TV(-) denotes the total vari-
ation. For univariate smoothing, regression splines using total variation penalties
have been studied in Mammen and van de Geer (1997); see Section 2 for further
discussion.

We consider both fixed and random designs and establish oracle inequalities for
the predictive performance of ¢ under three simple technical conditions: a sub-
Gaussian condition on noises, a compatibility condition on the design and the
functional classes G; and an entropy condition on G;. The compatibility condi-
tion is similar to the restricted eigenvalue condition used in analysis of the Lasso,
and for random designs, the empirical compatibility condition can be replaced
by its population version under an additional condition to ensue suitable conver-
gence of empirical norms. For the Sobolev and bounded variation classes, the en-
tropy condition on G; follows from standard results in the literature (e.g., Lorentz,
Golitschek and Makovoz (1996)).

In the following, we highlight implications of our oracle inequalities and com-
pare our results with existing ones in the classical homogeneous setting where
X i(j ) is the Jjth component of X; and G; = G for all j. Let Gy be either a Sobolev
space W or a bounded variation space V" on [0, 1]. In this setting, it is natural
to set (Ayj, Pnj) = (Ay, py) for all j. Consider random designs, and suppose that
(1) holds with some choice of (g7, ..., g;‘,) satisfying

14 14
3 Ylgilr=cimre, Y lgilG = CiMy,
j=1 j=1

=1
constant depending only on the moments of (eq, ... ,lsn), 0<g=<1l,and M; >0
and MF > 0 are allowed to depend on (n, p). In the case of hard sparsity (g = 0),
#{j: g;’-‘ # 0} < My. The following self-contained result (Proposition 1) can be
deduced from Propositions 3, 5, 7 and 9.
Let Bp = 1/m and define

where || £ is a semi-norm on Go, || /I =n~' Y0, E(f2(X)), €1 > 0 is a

) S -
w;’;(C]) = InaX{n B I=a) | (log(p)/n) 2 }’

I )8
Y (q) = min{n>*A0-0 n_l/z(IOg(p)/n) sl )

For 0 < ¢ < 1, we assume that the following compatibility condition holds
with some constants C; > 0, x5 > 0 and &; > 1: for any functions {f; €

Go:j=1,....,pyand f=3"_ fi,if wi@) XI_ 1 fillrj+ Xjese I fillo <

£ Y jes I fillosthen ig® X jes I fillp < I f1Ig, where S={1 < j < p:ligtlo >
CgAn}. This condition is a homogeneous version of Assumption 7 later and can
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be relaxed for ¢ = 0 according to Assumption 5. For simplicity, we restrict to
the case where 1 < r <2 (including r = 1 for V™). For rm > 1, we assume that
for j =1,..., p, the average marginal density of (X Y ), e X,(,j )) is uniformly
bounded away from 0 and, if ¢ # 1, is also uniformly bounded from above on
[0, 1]. The assumption of marginal densities bounded from above, as well as the
restriction 1 <r <2, can be relaxed under slightly different technical conditions
(see Propositions 3, 4 and 6). For r = m = 1, neither the lower nor the upper bound
of marginal densities need to be assumed.

PROPOSITION 1.  Let Gy be a Sobolev space W with1 <r <2andm > 1 or
a bounded variation space V™ with r = 1 and m > 1. Suppose that the noises are
sub-Gaussian, and log(p) =o(n). Let 1o =1/Cm +1—-2/r), Ty =1 forrm > 1
and 'y = /logn forr =m = 1.

(1) Letg=1land Ay, = p,, = Ao{log(p)/n}l/zfor a sufficiently large constant
Ag. If p — o0, then

) 18— g*y = 0p(NHCE(ME + M) {n~ "2, + /log(p)/n}.

(i) Let g =0, n = Aoly, (0) + {log(p)/n}'/*] and p, = ryw};(0). Suppose
that

&) {wy (077 /log(np)/n}(1 + MF + Mo) = o(1),

and the preceding compatibility condition holds. Then for sufficiently large Ao,

1
©) 16— %% = 0p(NCI(MF + Mo) [n ™0 + Jlog(p)/n}’.

(iii) Ler 0 < g < 1, &y = Aoly; (@) + {log(p)/n}/*] and py = Ay} (q). Sup-
pose that

_ 1—q
{wi (@™ (log(np)/n) 7 }(1 + Mp + My) = O(D),
and the preceding compatibility condition holds. Then for sufficiently large Ao,

=1 _
@) Hg — g*HZQ = 0p(1)C12(MF + Mq){nz+ﬂ0('—q> + ‘/log(p)/n}z g

(iv) For each of the cases (1)—(iii), the convergence rate of ||g§ — g* ||2Q matches
the minimax rate over the parameter set (3) up to some multiplicative constants
depending on (Mf, M), except for the extra logarithmic factor I', = \/logn in
case () withr =m = 1.

We point out several important features achieved by the foregoing result, distinct
from existing results. First, our results are established for additive regression with
general L,-Sobolev spaces and bounded variation spaces. An important innovation
in our proofs involves a delicate application of maximal inequalities based on the
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metric entropy of a particular choice of bounded subsets of Gy (see Lemma 1 in
the Supplementary Material (Tan and Zhang (2019))). All previous results seem to
be limited to the L;-Sobolev spaces or similar reproducing kernel Hilbert spaces,
except for Petersen, Witten and Simon (2016), who studied additive regression
with the bounded variation space V! and obtained the rate {log(np)/n}'/? for in-
sample prediction under assumption (3) with g = 1. In contrast, our analysis with
g = 1 yields the sharper, yet standard, rate {log(p)/n}'/? for in-sample prediction
(see Proposition 3), whereas {log(np)/ n}'/2 for out-of-sample prediction by (4).

Second, the restricted parameter set (3) represents an L ball in || - || semi-
norm (inducing smoothness) but an L, ball in || - || norm (inducing sparsity)
for the component functions (g7, ..., g;‘,). That is, the parameter set (3) decouples
conditions for sparsity and smoothness in additive regression: it can encourage
sparsity at different levels 0 < g < 1 while enforcing smoothness only to a lim-
ited extent. Accordingly, our result leads to a spectrum of convergence rates (6),
which are easily seen to slow down as ¢ increases from O to 1, corresponding
to weaker sparsity assumptions. While most of previous results are obtained un-
der exact sparsity (¢ = 0), Yuan and Zhou (2016) studied additive regression with
reproducing kernel Hilbert spaces under an L, ball in the Hilbert norm || - ||5:

le ||g;‘f 19, < M, . This parameter set induces smoothness and sparsity simulta-
neously and is in general more restrictive than (3). As a result, the minimax rate of
estimation obtained by Yuan and Zhou (2016), based on constrained least squares
with known M, instead of penalized estimation, is faster than (7), in the form
n=2/@+P) 4 {log(p)/n}>=9/?, unless g =0 or 1.

Third, in the case of g = 1, our result (4) shows that the rate {log(p)/n}
with an additional {log(n)/n}'/? term for the bounded variation space V', can
be achieved via penalized estimation without requiring a compatibility condition.
This generalizes a slow-rate result for constrained least-squares (instead of pe-
nalization) with known (M, M) in additive regression with the Sobolev—Hilbert
space in Ravikumar et al. (2009). Both are related to earlier results for linear re-
gression (Greenshtein and Ritov (2004); Bunea, Tsybakov and Wegkamp (2007)).

Fourth, the rate of convergence (6) under exact sparsity (¢ = 0) is known to
be in general faster than in Meier, van de Geer and Biihlmann (2009). Compared
with previous results giving similar rates of convergence as (6) with ¢ = 0 for
Hilbert spaces, our results are stronger in requiring much weaker technical condi-
tions. The penalized estimation procedures in Koltchinskii and Yuan (2010) and
Raskutti, Wainwright and Yu (2012), while minimizing a similar criterion as (2),
involve additional constraints on (g1, ..., gp): Koltchinskii and Yuan (2010) re-
quired that the sup-norm of Zf:l g;j be bounded by a known constant, whereas
Raskutti, Wainwright and Yu (2012) required that max; | g;||# be bounded by a
known constant. Moreover, Raskutti, Wainwright and Yu (2012) assumed that the
covariates (X i(l), . ¢ ;p )) are independent of each other. These restrictions were
relaxed in Suzuki and Sugiyama (2013), but only explicitly under the assumption

1/2
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that the noises ¢; are uniformly bounded by a constant. Moreover, our rate condi-
tion (5) about the sizes of (M, MF) is much weaker than in Suzuki and Sugiyama
(2013), due to improved analysis of convergence of empirical norms and the more
careful choices (A, p,). For example, if (Mo, Mf) are bounded, then condition
(5) holds whenever log(p)/n = o(1) for Sobolev—Hilbert spaces, but the condi-
tion previously required amounts to log(p)n~'/2 = o(1). Finally, the seemingly
faster rate in Suzuki and Sugiyama (2013) can be deduced from our results when
(A, pn) are allowed to depend on (Mo, MF); see Remarks 10 and 12-14 for rele-
vant discussion.

Finally, minimax rates of convergence in the form (6) have been shown un-
der exact sparsity (¢ = 0) with L>-Sobolev or similar Hilbert spaces by Raskutti,
Wainwright and Yu (2012) and Dalalyan, Ingster and Tsybakov (2014), respec-
tively, in additive regression and white noise models. For additive regression with
general L,-Sobolev or bounded variation spaces, our results provide minimax rates
of convergence (achievable by convex programming) under L,-ball sparsity in
| - o norm as well as Li-ball smoothness in || - || r semi-norm. It should be noted
that the dependency of our convergence rates of ¢ on (Mp, M,) can be matched
with that in the minimax rates when (X,, p,) are allowed to depend on (Mg, MF)
(see Remark 18).

The rest of the article is organized as follows. Section 2 gives a review of uni-
variate functional classes and entropies. Section 3 presents general results for fixed
designs (Section 3.1) and random designs (Section 3.2). Section 4 provides spe-
cific results for Sobolev and bounded variation spaces, and Section 5 studies the
convergence of empirical norms. Section 6 concludes the paper with a discussion.
For space limitation, all proofs are collected in Section S1 and technical tools are
stated in Section S2 of the Supplementary Material.

2. Functional classes and entropies. As a building block of additive regres-
sion, we discuss two broad choices for the function space G; and the associated
semi-norm ||g;[|F,; in the context of univariate regression. For concreteness, we
consider a fixed function space, say Gi, although our discussion is applicable to
Qj for j=1,..., p. Forr > 1, the L, norm of a function f on [0, 1] is defined as

1fllz, =g 1f @I dz)'/".

EXAMPLE 1 (Sobolev spaces). For r > 1 and m > 1, let W = W" ([0, 1])
be the Sobolev space of all functions, g1 : [0, 1] — R, such that glm_l) is abso-
lutely continuous and the norm || g1 lym = llg1 I, + g\ Il., is finite, where g\"’
denotes the mth (weak) derivative of g1. To describe the smoothness, a semi-norm
IgillF1 = llg{™ IlL, is often used for g1 € W

In the statistical literature, a major example of Sobolev spaces is Wj' = {g; :

lgillz, + ||8Yn)||L2 < oo}, which is a reproducing kernel Hilbert space (e.g., Gu
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(2002)). Consider a univariate regression model
8) Yi=ai (X" 4+,  i=1,....n

The Sobolev space W5" is known to lead to polynomial smoothing splines through
penalized estimation: there exists a unique solution, in the form of a spline of order
(2m — 1), when minimizing over g; € Wj" the following criterion:

1 n

2n 5

1)y12
9 {Yi_gl(X,'( ))} + outllgillF,1-
This solution can be made equivalent to the standard derivation of smoothing
splines (modulus a zero solution), where the penalty in (9) is p;, g1 ||%F , for a
different tuning parameter p, . Particularly, cubic smoothing splines are obtained
with the choice m = 2.

EXAMPLE 2 (Bounded variation spaces). For a function f on [0, 1], the total
variation (TV) of f is defined as

V()

k
= sup Z|f(zz')—f(zi71)|:zo<zl<--~<zk is any partition of [0, 1] }.
i=1

If f is differentiable, then TV(f) = [y |/ (z)|dz. For m > 1, let V" =
V™([0, 1]) be the bounded variation space that consists of all functions, g :
[0,1] — R, such that g{miz), if m > 2, is absolutely continuous and the norm

—1) - . .
lgillvm = llgillz, + TV(g!™ ") is finite. For g; € V™, the semi-norm || g || .1 =

TV(ggm_l)) is often used to describe smoothness. The bounded variation space
V™ includes as a strict subset the Sobolev space WY*, where the semi-norms also
agree: TV(gEm_l)) = IIgY")IILI for g1 € Wi

For univariate regression (8) with bounded variation spaces, TV semi-norms
can be used as penalties in (9) for penalized estimation. This leads to a class of
TV splines, which are shown to adapt well to spatial inhomogeneous smoothness
(Mammen and van de Geer (1997)). For m = 1 or 2, a minimizer of (9) over g €
V™ can always be chosen as a spline of order m, with the knots in the set of design
points {Xl-(l) :i=1,...,n}. But, as a complication, this is in general not true for
m > 3.

Recently, there is another smoothing method related to TV splines, called trend
filtering (Kim et al. (2009)), where (9) is minimized over all possible values
{gr(xM) i =1,...,n} with | g1l replaced by L; norm of mth-order differ-
ences of these values. This method is equivalent to TV splines only for m =1
or 2. But when the design points are evenly spaced, it achieves the minimax rate
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of convergence over functions of bounded variation for general m > 1, similarly
as TV splines Tibshirani, 2014. Additive models with trend filtering are studied by
Sadhanala and Tibshirani (2017) in low-dimensional settings.

The complexity of a functional class can be described by its metric entropy,
which plays an important role in the study of empirical processes (van der Vaart
and Wellner (1996)). For a subset F in a metric space F endowed with norm || - |,
the covering number N (8, F, || - ||) is defined as the smallest number of balls of
radius 6 in the | - ||-metric needed to cover JF, that is, the smallest value of N
such that there exist fi, ..., fy € F, satisfying min;—y,__ n || f — fjll <6 for any
f € F. The entropy of (F, | - ||) is defined as H(S, F, || - ||) =log NS, F, || - |-

For analysis of regression models, our approach involves using entropies of
functional classes for empirical norms based on design points, for example,
{Xl.(l) :i=1,...,n} for subsets of Gj. One type of such norms is the empiri-
cal Ly norm, || gill, = {n~! Zf’:lg%(Xi(l))}l/z. Another is the empirical supre-
mum norm, ||g1|ln.co = Max;=1,..n gl(Xl.(l)). If F is the unit ball in the Sobolev
space W or the bounded variation space V" on [0, 1], the general picture is
H@G, F, |l -1I) <8~ Y™ for commonly used norms || - ||; See the Supplementary
Material, Section S2.5 (Tan and Zhang (2019)) for more.

3. General results. As in Section 1, consider the estimator

(10) = argn;in Ka(g),  Ku(g) =Y —gll2/2+ AoRn(g),
ge

where G = {g = Zle gj:8j €G;}, Ap > lis aconstant, and the penalty is, up to
the prefactor A for technical convenience,

)4 P
Ru(8) =) Rnj(g)) =D (0njligjllF,j +nnjligjln)
j=1 j=1

for any decomposition g = Z;’:l gj with g; € G;. The regularization parameters
(Anj, pnj) are of the form

(1m) Pnj = AnjWyj, Anj = Ci{ynj + \/log(p/€)/n},

where C1 > 0 is a noise level depending only on parameters in Assumption 1
below, 0 < € < 1 is a tail probability for the validity of error bounds, 0 < w;; <1
is a rate parameter and

(12) Vuj =124 (W) Jwnj

for a function v,;(-) depending on the entropy of the unit ball of the space G;
under the associated functional penalty; see Assumption 2 or 4 below.
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Before theoretical analysis, we briefly comment on computation of g. By stan-
dard properties of norms and semi-norms, the objective function K, (g) is convex
in g. Moreover, there are at least two situations where the infinite-dimensional
problem of minimizing K, (g) can be reduced to a finite-dimensional one. First, if
each class G; is a reproducing kernel Hilbert space such as W', then a solution
g= Zle & can be obtained such that each g; is a smoothing spline with knots
in the design points {X l-(/ ) :i=1,...,n} (e.g., Meier, van de Geer and Bithlmann
(2009)). Second, by the following proposition, the optimization problem can also
be reduced to a finite-dimensional one when each class G; is the bounded variation
space V! or V2.

PROPOSITION 2. Suppose that Gy is V™ on [0, 1] for some 1 < £ < p and
m > 1. Then a solution g = Zle gj can be chosen such that g is a spline of
order m — 1, that is, a piecewise polynomial of degree m — 1 and, if m > 2, an
(m — 2)th continuously differentiable function. Moreover, g; can be defined with
knots only in {Xfl) i=1,...,ntifm=1o0r2.

The algorithm in Petersen, Witten and Simon (2016), based on the fused Lasso,
can be directly used to compute g when all classes (Gi, ..., G)) are V1. In general,
with a bounded variation class V™, Yang and Tan (2018) developed a backfitting
algorithm for computing ¢ as defined above for m = 1 or 2, or with the additional
restriction that the knots of g are contained in the data points for m > 3. Numerical
experiments from these papers showed superior performance of the doubly penal-
ized method, compared with the existing methods as specified in Meier, van de
Geer and Biihlmann (2009) and Ravikumar et al. (2009).

3.1. Fixed designs. For fixed designs, the covariates (X1, ..., X,) are fixed
as observed, whereas (¢1, ..., &,) and hence (Y1, ..., Y,) are independent random
variables. The responses are to be predicted when new observations are drawn
with covariates from the sample (X1, ..., X,,). The predictive performance of g is
measured by ||g — g*||%.

Consider the following three assumptions. First, we assume sub-Gaussian tails
for the noises. This condition can be relaxed, but with increasing technical com-
plexity and possible modification of the estimators, which we will not pursue here.

ASSUMPTION 1 (Sub-Gaussian noises). Assume that the noises (eq, ..., &,)
are mutually independent and uniformly sub-Gaussian: For some constants Do > 0
and D; > 0,

max Do|E exp(s? /Do) — 1} < Dy.

i=l1,..., n
We will also impose this assumption for random designs with the interpretation
that the aforementioned independence and expectation are taken conditionally on
X1,...,. Xn).
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Second, we impose an entropy condition which describes the relationship be-
tween the function v, () in the definition of y,,; and the complexity of bounded
subsets in G;. Although entropy conditions are widely used to analyze nonpara-
metric regression (e.g., Section 10.1, van de Geer (2000)), the subset G;(8) in
our entropy condition below is carefully aligned with the penalty R,;(g;) =
Anj(wyjllgjllF,j + 1lgjlln). This leads to a delicate use of maximal inequalities
so as to relax and in some cases remove restrictions in previous studies of additive
models; see Lemma 1 in the Supplementary Material (Tan and Zhang (2019)) and
Raskutti, Wainwright and Yu (2012), Lemma 1.

ASSUMPTION 2 (Entropy condition for fixed designs). For j=1,..., p, let
Gi® ={fi€G;:Ifillrj+ I filln/8 <1} and ¥,;(8) be an upper bound of the
entropy integral as follows:

)
(13) wnj<5>zf() H'Y2(u,G;(8), |l - lln)du, 0<8<1.

In general, G;(8) and the entropy H(:,G;(8), |l - |l») may depend on the design
points {X\/)}.

Our third assumption is a compatibility condition, which resembles the re-
stricted eigenvalue condition (Bickel, Ritov and Tsybakov (2009)) and the com-
patibility condition (van de Geer and Biihlmann (2009)) used in high-dimensional
analysis of the Lasso in linear regression. We defer to Section 3.2 further discus-
sion about compatibility conditions used in the analysis of additive regression.

ASSUMPTION 3 (Empirical compatibility condition). For certain subset S C

{1,2,..., p} and constants k¢ > 0 and &y > 1, assume that
2
(L rilsih) = (X33 )i
jes jes

for any functions {f; €G;:j=1,...,p}and f = Zle fj € G satisfying

P
Z)\njwnj”fj”F,j + Z )»nj”fj”n <& Z)\nj”fj”n

j=1 jese jes

REMARK 1. The subset S can be different from {1 <j <p: g;f # 0}. In fact,
S is arbitrary in the sense that a larger S leads to a smaller compatibility coeffi-
cient ko which appears as a factor in the denominator of the “noise” term in the
prediction error bound below, whereas a smaller S leads to a larger “bias” term.
Assumption 3 is automatically satisfied for the choice S = &. In this case, it is
possible to take £y = co and any «g > 0, provided that we treat summation over an
empty set as 0 and oo x 0 as 0.
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Our main result for fixed designs is an oracle inequality stated in Theorem 1
below, where g = Zf: 1 &j € G as an estimation target is an additive function but
the true regression function g* may not be additive. Our oracle inequality (14) is
sharp with the coefficient of ||g — g* ||3; matching that of ||g — g* ||,2l, similarly as in
Koltchinskii, Lounici and Tsybakov (2011). For & € (0, 1], denote as a penalized
prediction loss

L 1. £ o
Du(8.8.8) = 518 = &7ll2 + 5118 = &I + (A0 — DRa(E D).

For a subset S C {1, 2, ..., p}, write as a bias term for the target g

o1 - i
An@ =51z -5l +2Ao<2 IR Anjngjnn).
j=1 jese

The bias term is small when g is smooth and sparse and predicts g* well.

THEOREM 1. Suppose that Assumptions 1, 2 and 3 hold for X, and py; in
(11). Then for any Ay > (&9 + 1)/ (&0 — 1) we have with probability at least 1 — €,

(14) Dn(8.8.6D) < An(é,S)-l-SonKJz(Z/\ﬁj)'
jes

where § =1—2A0/{(50 + 1)(Ao — D} € (0, 1] and & = (50 + 1) (Ao — 1).

REMARK 2. As seen from our proofs, Theorem 1 and subsequent corollaries
are directly applicable to functional ANOVA modeling, where each function g;
may depend on X l-(j ). a block of covariates and the variable blocks are allowed
to overlap across different j. The entropy associated with the functional class G;
need to be determined accordingly.

Taking S = @ and &y = oo leads to the following corollary, which explicitly
does not require the compatibility condition (Assumption 3).

COROLLARY 1. Suppose that Assumptions 1 and 2 hold. Then for any Ay > 1
we have with probability at least 1 — €,

. _ 1, _ _
(15) Du(8.8.1) = An(3.2) = 58— 8"} +240Ru ().

The following result can be derived from Theorem 1 through the choice S =
{1<j=<p:lgjlla > Coryj} for some constant Co > 0.

COROLLARY 2. Suppose that Assumptions 1, 2 and 3 hold with S = {1 <
J =< p:lgjlln > Cokyj} for some constant Coy > 0. Then for any 0 < g < 1 and
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Ao > (&0 + 1)/ (&0 — 1) we have, with probability at least 1 — €,

. 1, L _ -
Du(§.8.6) = 52— &* s + O Y (ouj&jlle.j + Ay 113 19).
j=1

where O(1) depends only on (q, Ag, Co, &, k0)-

It is instructive to examine the implications of Corollary 2 in a homogenous
situation where for some constants By > 0 and 0 < 8y < 2,

§
(16 max [CHuG), 1) du < Bop' R 0<5<1.
J=1,.. P 0

That is, we assume yr,,; (8) = Bos'—P0/2 in (13). Forj=1,...,p,let

1 TRD i
A7) wej =we(g) = {ml@} 7, Yuj =¥n(@) =B, " nThi-0,

which are determined by balancing the two rates p,; = k,zl;q, that is, w,; = )L,]lj_q,
along with the definition y,; = Bon~'/2w, */* by (12). For g = X-7_ g € G.
denote llgllF,1 =35, igjllF,j and liglln,g = 3-5_; llg; 4. For simplicity, we also
assume that g* is an additive function and set g = g* for Corollary 3.

COROLLARY 3. Assume that (1) holds and ||g*||r,1 < CiMFp and ||g*||n,q <
Ci] M, for0<q <1, M; >0, and M > 0, possibly depending on (n, p). In ad-
dition, suppose that (16) and (17) hold, and Assumptions 1 and 3 are satisfied with
S={1<j<p: ||g;’.‘||n > Cohnj} for some constant Co > 0. If 0 < wy,(q) < 1 for
sufficiently large n, then for any Ag > (& + 1)/(&o — 1), we have with probability
atleast 1 — e,

1+
2

(18) < O()CHMF + My){yu(q) + Jlog(p/e)/n}> 4,
where O (1) depends only on (g, Ag, Co, &o, k0)-

Du(2. 8% £1) = 18— &*[2 + & (Ao — DRu(2 — &%)

REMARK 3. There are several interesting features in the convergence rate
(18). First, (18) presents a spectrum of convergence rates in the form

-1 _
[n TR0 4 /log(p)/n}2 q.
which are easily shown to become slower as g increases from O to 1, that is, the

exponent (2 — q)/{2 + Bo(1 — q)} is decreasing in g for 0 < By = 2. The rate
(18) gives the slow rate {log(p)/n}'/? for ¢ = 1, or the fast rate n >0 + log(p)/n
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for g = 0, as previously obtained for additive regression with reproducing ker-
nel Hilbert spaces. We defer to Section 4 the comparison with existing results in
random designs. Second, the rate (18) is in general at least as fast as

(7% + flog(p)/n)*

Therefore, weaker sparsity (larger q) leads to a slower rate of convergence, but not

as slow as the fast rate {n 2+ﬂ0 + log(p)/n} raised to the power of (2 — g)/2. This
is in contrast with previous results on penalized estimation over L, sparsity balls,
for example, the rate {k/n +log(p)/n}?~9/2 obtained for group Lasso estimation
in linear regression (Neghaban et al. (2012)), where k is the group size. Third, the
rate (18) is in general not as fast as the following rate (unless ¢ =0 or 1):

=2
n2ho 4 {log(p)/n}a—q)/z’

which was obtained by Yuan and Zhou (2016) using constrained least squares for
additive regression with reproducing kernel Hilbert spaces under an L, ball in the
Hilbert norm: Zp 1 ||g || < M,. This difference can be explained by the fact
that an L, ball i 1n | - Il # norm is more restrictive than in || - ||, or || - || norm for
our results

3.2. Random designs. For random designs, prediction of the responses can
be sought when new observations are randomly drawn with covariates from

the distributions of (Xi,..., X,), instead of within the sample (Xy,..., X,)
as in Section 3.1. For such out-of-sample prediction, the performance of g is
measured by ||§ — g*||%, where || - lo denotes the theoretical norm: | f 1% =

n=1 Y E{f*(X;)} for a function f(x).
Consrder the following extensions of Assumptions 2 and 3, such that depen-
dency on the empirical norm || - ||, and hence on (X1, ..., X,) are removed.

ASSUMPTION 4 (Entropy condition for random designs). For some constant
O<no<land j=1,..., p,lety,;(3) be an upper bound of the entropy integral,

independent of the realizations {X i(] ) :i=1,...,n}, as follows:

)
(19) wnj(a)z/o H*2((1 = noyu, G58), |- lln)du, — 0<5<1,
where G¥(8) ={f; €G; : I filr.j + I fillo/8 < 1} and
H*u,Gi@®), - lln) = sup  H(u, G5 @), Il - lln)-

X xi)

REMARK 4. For G; defined as a Sobolev space W)" with rm > 1 or bounded
variation space V" with m > 2 on [0, 1], the entropy H (u, g;‘(l), || - 1l») can be
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upper-bounded by the standard estimate of H (u, Q;‘(l), I - lloo), Of order u=1/™

independently of the the realizations {X i(j ) :i =1,...,n} (Lorentz, Golitschek
and Makovoz (1996)). For the space Wll or V!, the entropy H (u, Q;‘(l), )
can be obtained from Mammen (1991), still of order u—l/m — u~! as described
in the Supplementary Material, Section S2.5 (Tan and Zhang (2019)). Because
f(f(u’l/m)lﬂdu = {2m/@2m — 1)}8'=1/@™  the resulting Vuj(8) is of order

§1=1/@m Further discussion is provided in Remarks 20 and 21.

ASSUMPTION 5 (Theoretical compatibility condition). For some subset S C
{1,2,..., p} and constants x5 > 0 and £; > 1, assume that for any functions { f; €

gj:j=1,...,p}andf=2§=1fjeg,if

P
(20) > mjwnill filleg+ D Ml fillo <& Aajll fill o

j=1 jese jes

then

Q1) K:;Z(Z x,,,-nf,-ng)2 < (Zx,%j)nfnz.

jes jes

REMARK 5. Similarly as in Remark 1 about the empirical compatibility con-
dition, Assumption 5 is also automatically satisfied for the choice S = &, in which
case it is possible to take &5 = oo and any «j > 0.

REMARK 6. We discuss the fact that the compatibility assumption in-
volves the tuning parameters (wy;j,A,;). On one hand, in the special case
where (Wyj, ¥nj) = (Wy, ¥u) for j =1,..., p, Assumption 5 says that if w, X
S il + Xjese 1 fillo < & jes I filg. then kg2(Xjes1£ill0)? <
|S| ||f||2Q. Because w,, > 0, a sufficient condition for this to hold is that

2
22 if Y fjlle SES‘ZIIijIQ,thenKS‘Z(Z ||fj||Q) <IS1- £

jese jes jes

which, by the Cauchy—Schwartz inequality, is satisfied under the following condi-
tion as used in Koltchinskii and Yuan (2010) and Suzuki and Sugiyama (2013):

(23) it Y (I fillo <& D fillg.thenwg® Y 1 £ilp < £ 1p-

jese jes jes
Therefore, Assumption 5 is strictly weaker than previous compatibility conditions
in the homogeneous setting. On the other hand, there are implications of Assump-
tion 5 in heterogenous settings. If ,,;/(maxgeg Ane) — oo for some j € §¢, then
the cone condition (20) essentially restricts || f; [l ~ 0, which seems harmless to
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whether (21) is satisfied. If A,,; /(max¢es Ay¢) — O for some j € S, then (20) ef-
fectively leaves the magnitude of || f;|lo unrestricted, which roughly imply that
£;(x7) cannot be highly correlated with {f;(X'”) : £ € S} in order for (21)
to hold. As compatibility conditions are often invoked with S ={1 < j < p:
I g;‘f||Q > 0} depending on unknown || g}‘HQ, the latter observation suggests that
in the presence of function classes of different smoothness, Assumption 5 essen-
tially requires that the correlations between component functions specified with
smoother classes and the truly nonzero component functions be bounded away
from 1. For example, this restriction is similar to Condition 2.3 in Miiller and van
de Geer (2015), where smoother components are linear functions of components.

To tackle random designs, our approach relies on establishing appropriate con-
vergence of empirical norms || - ||, to || - || uniformly over the space of addi-
tive functions G, similarly as in Meier, van de Geer and Biihlmann (2009) and
Koltchinskii and Yuan (2010). For clarity, we postulate the following assumption
on the rate of such convergence to develop general analysis of g. We will study
convergence of empirical norms specifically for Sobolev and bounded variation
spaces in Section 5, and then provide corresponding results on the performance of
g in Section 4. For g = Zﬁ-’:l gj €3, denote

R (g) = Z Ry (8)), Ry (gj) = Anj(wnjligillF,; +lIgillo),
as the population version of the penalty R, (g), with [|g;|lo in place of ||g;|lx.

ASSUMPTION 6 (Convergence of empirical norms). Assume that

gl =gl
geg Ry=(8)

where 0 < 7w < 1 and ¢,, > 0 are such that for sufficiently large n, one or both of
the following conditions are valid:

(1) ¢p(max;=i, . pA, ]) < 770’ where ng is from Assumption 4.
(i) For some constant 0 < n; < 1, we have

25) aules + 12X 4 ) =t
jes
where S is the subset of {1, 2, ..., p} used in Assumption 5.

Our main result, Theorem 2, gives an oracle inequality for random designs,
where the predictive performance of g is compared with that of an arbitrary addi-
tive function g = Zle gj € G, but the true regression function g* may not be ad-
ditive, similarly as in Theorem 1 for fixed designs. For a subset S C {1, 2, ..., p},
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denote

Az(gs S) = _”g 8 H +2A0(1 — 770)(2 IOn]”g]”F] + Z )wl]||g]||Q>
j=1 jese

which, unlike A, (g, §), involves ||g;l ¢ and 5o from Assumptions 4 and 6(i).

THEOREM 2. Suppose that Assumptions 1, 4, 5 and 6(i1)—(ii) hold with 0 <
no < (&5 — D/ (&5 + 1) for nj and pa; in (11). Let A(&5.n0) = (&5 + 1 +10(65 +
D}/{Eg — 1= no(§y + D} > (1 +n0)/(1 — no). Then for any Ao > A&y, no), we
have with probability at least 1| — e — 1,

1
o
(26) <AE S +E ong‘z(z %21;)’
jes
where Ay = (Ag — 1) —no(Ag + 1) > 0, & = 1 = 2A0/{(&} + A1} € (0, 1] and
&) = (&5 + 1) A1. Moreover, we have with probability at least 1 — € — 7,

N I T A -
§=g" [y + 1 -2+ E ARG - 2

A 1. & . A
DZ(g,g,éf“,m):Ellg—g*llﬁ+73|Ig—gII2Q+éf‘A1RZ(g—g)

<ANE S+ sIong‘z(Z A,%j)
jes

¢n

2A2

where £ = &{(1 —n7) and & = £ /(1 —n}).

REMARK 7. Similarly as in Remark 2, we emphasize that Theorem 2 and
subsequent corollaries are also applicable to functional ANOVA modeling (e.g.,
Gu (2002)). For example, consider model (1) studied in Yang and Tokdar (2015),
where each g;‘ is assumed to depend only on dp of a total of d covariates and lie in
a Holder space with smoothness level «g. Then p = (50), and the entropy condition
(31) holds with By = do/ag. Under certain additional conditions, Corollary 6 with
q=0 shows that penalized estimation studied here achieves a convergence rate

Q27 EFTPAR(E, S),

Mon 7+ + Moplog(p)/n under exact sparsity of size My, where n2+ﬁ0 is the rate
for estimation of a smgle regression function in the Holder class in dimension
dp with smoothness ,30 , and log(p)/n =< dolog(d/dp)/n is the term associated
with handling p regressors. This result agrees with the minimax rate derived in
Yang and Tokdar (2015), but can be applied when more general functional classes
are used such as multidimensional Sobolev spaces. In addition, Yang and Tokdar
(2015) considered adaptive Bayes estimators which are nearly minimax with some
extra logarithmic factor in n.
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Taking S = &, %‘g = 00, and 11 = 0 leads to the following corollary, which
explicitly does not require the theoretical compatibility condition (Assumption 5)
or the rate condition, Assumption 6(ii), for convergence of empirical norms.

COROLLARY 4. Suppose that Assumptions 1, 4 and 6(i) hold. Then for any
Ao > (1 +n9)/(1 —ng), we have with probability at least 1 — e — 7,

1. s 1, o
Ellg—g*Hn+§|lg—glli+A1R§§(g—g)
_ 1, _ 2 _
(28) SANE. D)=+ 518 = 8"l +240R}(®).
Moreover, we have with probability at least 1 — € — 7,
1, . o 1. o
S1g =gl + 518 — 8l + A1 Ri(@ - 2)

(29) <ANE. 2)+ 2‘{’:2 A(E. D).

1

The preceding results deal with both in-sample and out-of-sample prediction.
For space limitation, except in Proposition 3, we hereafter focus on the more chal-
lenging out-of-sample prediction. Under some rate condition about ¢, in (24),
the additional term involving ¢,,A:‘12 (g, S) can be absorbed into the first term, as
shown in the following corollary. Two possible scenarios are accommodated. On
one hand, taking g = g* directly gives high-probability bounds on the prediction
error ||g — g* ||2Q provided that g* is additive, that is, model (1) is correctly speci-
fied. On the other hand, the error ||g — g*||2Q can also be bounded, albeit in prob-
ability, in terms of an arbitrary additive function g € G, while allowing g* to be
nonadditive.

COROLLARY 5. Suppose that the conditions of Theorem 2 hold with § = {1 <
J=<p:llgjllg > Ciinj} for some constant Cgy > 0, and (24) holds with ¢, > 0
also satisfying

p
(30) %(Z enjllgillEj+ Y )»njlléjHQ) <n2,

j=1 jese

for some constant nz > 0. Then for any 0 < g <1 and Ay > A(&], no), we have
with probability at least 1 — e — 7,

Dy (8.8.5.m)

p
={oM +dulz - g*||i}{||§ — & Ir+ D (oa & e + 2 13 1D)
j=1
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where O(1) depends only on (q, Aj, C5. &5, kg, 10, 01, 12). In addition, suppose
that ¢,llg — g*||2Q is bounded by a constant and € = €(n, p) tends to 0 in the
definition (11) of (Anj, pnj) and R, (g) for g in (10). Then for any 0 < g < 1, we
have

p
l6—g*1% < op(l){ng — ¥+ D (onj 112l Fj + 2 T1Z 1) {-
j=1

Similarly as Corollary 3, it is useful to deduce the following result in a homoge-
neous situation where we assume ¥, (8) = BS‘Sl’ﬂO/ 2 in (19) for some constants
By >0and 0 < By < 2:

8
GO max [CHI(( =00, G5G). I ) du < Bi8' R 0<a <1,
ji=l...pJo

By Remark 4, this assumption is satisfied with o = 1/m and B from existing
entropy estimates when each G; is a Sobolev space VW or bounded variation
space V™ on [0, 1] with r > 1 and m > 1 under nonvanishing marginal densities
ole.(j).Forj =1,...,p,let

(32) wnj = w;(g) = max{y(g)' 7, v, 77},

(33) yni = ¥, (q) = min{y,(q), Byn~ v (1m0R2),

where v, = {log(p/€)/n}'/?, and w,(q) = ya(g)' 7 and

2 -1 -1
Yu(q) = B 7HP00=0 n 7000 = p 2=

are determined from the relationship (12), that is, y,,(g) = Ba‘n’l/ 2w, (q)’ﬂo/ 2,
The reason for why (w;(q),y,’(¢)) are used instead of the simpler choices
(wn(q), vn(q)) is that the rate condition (34) needed below would become stronger
it y,7(q) were replaced by y,(¢g). The rate of convergence, however, remains the
same even if y,"(q) is substituted for y,(g) in (35); see Remark 14 for further
discussion. For g = Zle gj €3G, denote ||g|lF1 = Zle llgillF,;j and |igllo.q =

>0 lgil%.

COROLLARY 6. Assume that (1) holds and ||g*||F,1 < C1MF and ||g*| 0,4 <
Cqu for0<q <1, My >0, and Mf > 0, possibly depending on (n, p). In
addition, suppose that (31), (32), and (33) hold, Assumptions 1, 5 and 6(i) are
satisfied with 0 <no < (5§ — 1)/ + 1D and S={1<j<p: ||g;f||Q > Cihnj}
for some constant C§ > 0, and (24) holds with ¢, > 0 satisfying

(34) G CH(Mp + M)y (q) + Jlog(p/e)/n}* ™ =o(1).
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Then for sufficiently large n, depending on (M, M) only through the conver-
gence rate in (34), and any Ao > A&, no), we have with probability at least
l—e—m,

(35)  Di(g.8"£5.0) < OMCHUME + Mo){yu(q) +/log(p/e)/n}> 7,
where Op (1) depends only on (q, Aj, Cg, &5, k¢ 10)-

In the case of g # 0, Corollary 6 can be improved by relaxing the rate condition
(34) from o(1) to O(1) but requiring the following compatibility condition.

ASSUMPTION 7 (Monotone compatibility condition). For some subset S C

{1,2,..., p} and constants K(’)“ > 0 and 56" > 1, assume that for any functions { f; €
Gj:j=1,...,p}land f = Zle fj € G, if (20) holds then
(36) k2D IfilG < 1f 11

jes

REMARK 8. By the Cauchy—Schwartz inequality, (36) implies (21), and hence
Assumption 7 is stronger than Assumption 5. However, there is a monotonicity in
S for the validity of Assumption 7 with (36) used. In fact, for any subset S’ C S
and any functions {f; € G;:j=1,...,p}and f'=3"_, fi G, if

p
2 dnjwni | £l e+ 22 dnill il g <& 3 Anill £l

Jj=1 jese jes’

then (20) holds with f; = fi,j=1,..., p, and hence, via (36), implies

2 2 2
11 = k62 111l = k6% D1 £l

JES jes’

Therefore, if Assumption 7 holds for a subset S, then it also holds for any subset
S" C § with the same constants (&7, k™).

REMARK 9. In the homogeneous setting where (wy;, ¥uj) = (Wy, V), As-
sumption 7 is implied by condition (23), which is used in Koltchinskii and Yuan
(2010) and Suzuki and Sugiyama (2013), whereas Assumption 5 is implied by con-
dition (22) as discussed in Remark 6. Conditions (22) and (23) are extensions from,
respectively, the compatibility condition (van de Geer and Biithlmann (2009)) and
restricted eigenvalue condition (Bickel, Ritov and Tsybakov (2009)) for the Lasso.
The constant «; from the former condition can be much larger than that from the
latter condition, as shown in van de Geer and Bithlmann (2009), Example 10.5). By
similar reasoning, condition (22) or Assumption 5 may hold with a larger constant
k¢ than (23) or Assumption 7.
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COROLLARY 7. Suppose that the conditions of Corollary 6 are satisfied with
0 < g <1 (excluding g = 0), Assumption 7 holds instead of Assumption 5, and the
following condition holds instead of (34):

37 DaCEMp + M) |y, (q) + Jlog(p/e)/n}* 1 < s,

for some constant n3 > 0. If 0 < w}(q) <1 for sufficiently large n, then for any
Ao > A(&], no), inequality (35) holds with probability at least 1 — € — 1, where
O (1) depends only on (q, Aj, C5. &5 k> 10> 113)-

To demonstrate the flexibility of our approach and compare with related results,
notably Suzuki and Sugiyama (2013), we provide another result in the context of
Corollary 6 with (wy;, y,;) allowed to depend on (MFp, M), in contrast with the
choices (32)—(33) independent of (Mg, My).For j =1,..., p, let

(38)  wyj =w, (g) = max{w),(q), v, "4 (M, /MF))},
(39 vuj =¥, (@) =min{y, (q), Byn~"2v; DR (M, M) P2,

2 —1
where w),(q) = ¥,(q)'"1(My/Mp) and y,(q) = B> 00> 0=0 (M, /

~fo
Mp)* P00 are determined from the relationship y, (¢) = Ba‘nfl/ 2w,/1 (q)Po/2

by (12). These choices are picked to balance the two rates: A, w, M and A%_qM ,
where w;, and A, denote the common values of wyj and A,j for j =1,..., p.

COROLLARY 8. Suppose that the conditions of Corollary 6 are satisfied ex-
cept that (wyj, ynj) are defined by (38)—(39), and the following condition holds
instead of (34):

(40) DuCIM |y, (@) + Jlog(p/e)/n}* ™4 = o(1).

Then for sufficiently large n, depending on (Mp, M) only through the conver-
gence rate in (40), and any Ao > A(§;, no), we have with probability at least
l—€—m,

2 2ﬂglo 2(27(/;‘80 -2
@1 D;(8.g%1.0) = O(CH Mg Mz 270

—g) ”
4 M),
where O (1) depends only on (q, By, A, C5. &5, k5 10)-

REMARK 10. In the special case of ¢ = 0 (exact sparsity), the convergence
2-By 28

TR T .2
rate (41) reduces to M02+’3 oM ?’3 On2+h + Mov,%. The same rate was obtained
in Suzuki and Sugiyama (2013) for additive regression with reproducing kernel
Hilbert spaces under

P P
Yl =Mo. Y lgily < Mr (< cMy).,
j=l1 j=l1
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where ||g;‘f ||z is the Hilbert norm, assumed to satisfy ||g;f|| g <cforall j. As one
of their main points, the rate (41) with ¢ = 0 was argued to be faster than the rate

Monﬁ + Mov,% =< (Mpr+ Mo)(nﬁ + vﬁ) in (35) with g = 0, in the case where
Z‘;:l [| gj ||0Q and Zle IIgj || 7 are of different orders. Our analysis sheds new light
on the relationship between the rates (35) and (41): their difference mainly lies in
whether the tuning parameters (wy;, y»;) are chosen independently of (Mg, Mo)
or depending on (Mf, My).

4. Minimax rates with Sobolev and bounded variation spaces. For con-
creteness, consider a fully homogeneous situation where each class G; is a Sobolev
space ngo for some constants rg > 1 and mqg > 1 or a bounded variation space
V™o for ro =1 and mg > 1 on [0, 1]. Denote By = 1/mqg. We deduce several ex-
plicit rates of convergence for the predictive performance of ¢ by combining the
results in Section 3.2 and those on convergence of empirical norms involved in As-
sumption 6, which are deferred to Section 5. We also demonstrate that the obtained
rates match minimax lower bounds.

To facilitate justification of conditions related to Assumptions 4 and 6, consider
the following assumption on the marginal densities of the covariates, as commonly
imposed when handling random designs (e.g., Stone (1982)).

ASSUMPTION 8 (Nonvanishing marginal densities). For j= 1,_. .., p, denote
by gj(x (7)) the average marginal density function of (X (7 ) , Xn G )) that is, the
density function associated with the probability measure n -1 Zl 1 0 X0 where

0 X(,) is the marginal distribution of X; () . For some constant 0 < gg < 1, as-
sume that qj (x()) is bounded from below by 0o on [0, 1] simultaneously for
ji=1...,p.

We distinguish two cases, ro > Bg or ro = fo = 1. First, under Assump-
tion 8, if ro > Bp, then Assumption 4 (entropy in the empirical norm) and As-
sumption 10 (entropy in the empirical supremum norm) are satisfied such that
Vnj(8) = BEs'=P/2 and ) 00 (2, 8) = O(1)Biz! 7P/ for z > 0 and 0 < 8 < 1,
where Bjj > 0 is a constant depending on g among others. See Theorem 4 and Re-
mark 20 in Section 5 for the use of Assumption 10 and related discussion. Second,
by Remark 21, if ro = o = 1, then Assumptions 4 and 10 are satisfied such that
Ynj (8) = BE8'Y/? and Y1) 00 (2, 8) = O(log!/?(n)) Biz!/? for z > 0and 0 < 6 < 1,
even when Assumption 8 does not hold. As a result, I';, in Section 5 reduces to

(42) T,=0() ifrg>po or O(log"?*(n))  ifro=pgo=1.

Informally, I';, is the ratio of the prefactors in V;; 00(z, 6) and ¥, (8).
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4.1. Achieved convergence rates. We present our results on the convergence
rates of g in three cases, where the underlying function g* = Zle gjf is assumed
to satisfy (3) with g =1, ¢ =0, or 0 < g < 1. As discussed in Section 1, the
parameter set (3) decouples sparsity and smoothness, inducing sparsity at different
levels through an L, ball in || - ||p norm for 0 < g < 1, while only enforcing
smoothness through an L1 ballin || - || r norm on the components (g7, ..., g;*,).

The first result deals with the case ¢ = 1 for the parameter set (3).

PROPOSITION 3.  Assume that (1) holds and || g*||F,1 < C1MF and ||g*[l0,1 <
CiM, for Mp > 0 and My > 0, possibly depending on (n, p). Let w,; = 1 and
Yaj =y (1) < n=1Y2 by (32)-(33). Suppose that Assumptions 1 and 8 hold, and
log(p/€) = o(n). Then for sufficiently large n, independently of (Mp, M), and
any Ag > (1 +no)/(1 — ng), we have with probability at least 1 — 2¢,

18 — g*|% + A1R*(2 — g%) < O()CH (M + My)\/log(p/e)/n,

where O (1) depends only on (Bj, Ao, no, 00). Moreover, we have

1,. R _
EHg—55“”2Q+A11e,>§(g—g*)5 O()C}(ME + M) {n='?T, + Jlog(p/e)/n},

with probability at least 1 — 2¢€, where Ty, is from (42) and O(1) depends only on
(Bg, Ao, no, 00) and (C2, C3, Cy) as in Theorem 4. If ro = o = 1, then the results
are valid even when Assumption 8, and hence oo are removed.

REMARK 11 (Comparison with existing results). Proposition 3 leads to the
slow rate {log(p)/n}'/? under L-ball sparsity in | - lo norm, as previously ob-
tained for additive regression with Sobolev Hilbert spaces in Ravikumar et al.
(2009), except in the case where ro = By = 1, that is, each class G; is VVI1 or VL.
In the latter case, Proposition 3 shows that the convergence rate is {log(np) /n}l/?
for out-of-sample prediction, but remains {log(p)/n}'/? for in-sample prediction.
Previously, only the slower rate, {log(np)/n}'/?, was obtained for in-sample pre-
diction in additive regression with the bounded variation space V! by Petersen,
Witten and Simon (2016).

The second result deals with the case ¢ = 0 for the parameter set (3).

PROPOSITION 4. Assume that (1) holds and || g*||F,1 < Ci1MF and ||g*|lp,0 <
My for Mp > 0 and My > 0, possibly depending on (n, p). By (32)—(33), let

2 -1 /] 1/2
wnj =w;kl(0) =max{Bgz+ﬁ0n2+ﬁ0’ <M) }’
n

2 —

| log(p/e)\~*
i = i 0) = min] By =5, B 2(PELE2) T

n
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Suppose that Assumptions 1, 5 and 8 hold with 0 < no < (§5 — 1)/(§) + 1) and
S={l<j<p: ||g;f||Q > CiAnj} for some constant C; > 0, and

[Tw? (0)~U=Fo/D%0p % () 4 wi(0) ™™, /log(p/e)/n}(1 + M + Mo)
(43) =o(1),

where t9g = 1/(2/Bo + 1 — 2/rg). Then for sufficiently large n, depending on
(MF, My) only through the convergence rate in (43), and for any Ao > A(&§, o),
we have

@) D g EL0) < O()CEMy + Mo)|n ™ + flog(p/e)/n)

with probability at least 1 — 2¢, where O(1) depends only on (Bjj, Ag, Cg, &5, k(5
N0, 00)- If ro = Bo = 1, then the results are valid even when Assumption 8, and
hence gq are removed.

Condition (43) is based on Theorem 4 for convergence of empirical norms. By
Remark 23, a weaker condition can be obtained using Theorem 5 when 1 <rp <2
and 79 < 1 (i.e., ro > Po). It is interesting to note that (43) reduces to (45) below
in the case ro = Bo = 1.

PROPOSITION 5.  Proposition 4 is also valid with (43) replaced by the weaker
condition

45 {w;,0)"™/log(np/€)/n}(1 + MF + Mop) = o(1),
in the case where 1 < ro <2, ro > o, and the average marginal density of
(X(j), e, X,(,j)) is bounded from above for all j.

REMARK 12 (Comparison with existing results). Propositions 4 and 5 yield
2

the fast rate n>*%0 +log(p)/n under Lo-ball sparsity in || - || o norm. Previously, the
same rate was obtained for high-dimensional additive regression only with repro-
ducing kernel Hilbert spaces (including the Sobolev space ;") by Koltchinskii
and Yuan (2010) and Raskutti, Wainwright and Yu (2012), but under more re-
strictive conditions. They studied hybrid penalized estimation procedures, which
involve additional constraints such that the Hilbert norms of (gi,...,g,) are
bounded by known constants when minimizing a penalized criterion. Moreover,
Koltchinskii and Yuan (2010) assumed a constant bound on the sup-norm of pos-
sible g*, whereas Raskutti, Wainwright and Yu (2012) assumed the independence
of the covariates (Xl.(l) sy X i(p )) for each i. These restrictions were relaxed in
subsequent work by Suzuki and Sugiyama (2013), but only explicitly under the
assumption that the noises ¢; are uniformly bounded by a constant. Moreover, our
condition (43) is much weaker than related ones in Suzuki and Sugiyama (2013),
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as discussed in Remarks 13 and 14 below. See also Remark 10 for a discussion
about the relationship between our results and the seemingly faster rate in Suzuki
and Sugiyama (2013).

REMARK 13. To justify Assumptions 6(i)—(ii) on convergence of empirical
norms, our rate condition (43) is much weaker than previous ones used. If each
class G; is a Sobolev—Hilbert space (19 = 2), then 79 = p/2 and (43) becomes

46)  {n'Pwr 0%/ 50) + 1,5 (0)/log(p/e)} (1 + ME + Mo) = o(1).

Moreover, by Proposition 5, condition (43) can be weakened to (45), that is,
47 ¥y (0),/log(np/e)(1 + MFr + Mp) = o(1),

under an additional condition that the average marginal density of (X (j ), o X ,§f ))
is bounded from above for all j. Either condition (46) or (47) is much weaker
than those in related analysis with reproducing kernel Hilbert spaces. In fact, tech-
niques based on the contraction inequality (Ledoux and Talagrand (1991) as used
in Meier, van de Geer and Biihlmann (2009) and Koltchinskii and Yuan (2010)),
lead to a rate condition such as

(48) n2{y20) + v} (1 + Mp + Mg) = o(1),

2 =1
where y,(0) = B;*on** 0 and v, = {log(p/€)/ n}!/2. This amounts to condi-
tion (6) assumed in Suzuki and Sugiyama (2013), in addition to the requirement
n—1/2 (log p) < 1. But condition (48) is even stronger than the following condition:

(49) n 2 {024 4 3, 0)v, ) (1 + Mg + Mo) = o(1),

because Ty, (0)2H40/4 4 1, (0)v, < 2(0) + v2 if either y,(0) 3 v, or y,(0) <
vy,. Condition (49) implies (46) and (47), as we explain in the next remark.

REMARK 14. Our rate condition (43) is in general weaker than the corre-
sponding condition with (w;:(0), y,(0)) replaced by (w,(0), y,(0)), that is,

(50) [Cayn ()1 =A=A/D%0 1y (0) 7™, (1 + M + Mo) = o(1).

This demonstrates the advantage of using the more careful choices (w;: (0), y,(0))
and also explains why (49) implies (46) in Remark 13. In fact, if y,(0) > v,
then (43) and (50) are identical to each other. On the other hand, if y,,(0) < vy,
then w}(0) = vy, > y,(0) and wi(0)~U=A/DWy*©0) = Bin~1/? x
w(0)~U=Po/Dw0=Fo/2 .y, (0)!=(1=F0/D%_ This also shows that if y,(0) < vy,
then (43) is much weaker than (50). For illustration, if ro = 2 and hence
70 = Po/2, then (50) or equivalently (49) requires at least y,(0)~ Po/2y, = 0(1),

that is, (logp)n”ﬁo = o(1), and (48) requires at least n'/?v 2 = o(1), that
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is, log(p)n_l/2 = o(1). In contrast, the corresponding requirement for (43),
w*(0)~F/2y, = o(1), is automatically valid as long as v, = o(1), that is,
log(p)n—! =o(1).

The following result deals with the case 0 < g < 1 for the parameter set (3).

PROPOSITION 6.  Assume that (1) holds and ||g*||F,1 < C\MFp and ||g*| g,q <
Ci]Mq for 0 <q <1, My >0, and Mp > 0, possibly depending on (n, p). Let
wpj = w;(q) and ynj = v, (q) by (32)—~(33). Suppose that Assumptions 1,7 and 8
hold with O < no < (§5 — D/(EF+ D and S={1<j <p: ||g;f||Q > Cihnj} for
some constant C§ > 0, log(p/€) = o(n), and

(51 {Tw)i(q) P10y x ()71 4 wi(g) v 111 + Mp + My) < na,

for some constant ng > 0, where v, = {log(p/e)/n}l/z. Then for sufficiently large

n, independently of (M, M), and any Ao > A(&§, no), we have

—1
D2, 8% &5,0) < O()CH(MF + M) {nFR0=0 1 [log(p/e)/n)* 4,

with probability at least 1 — 2¢, where O(1) depends only on (q, B, Aj, C§. &5,
kg5 10, 00, M4) and (Ca, C3, C4) as in Theorem 4. If ro = Bo = 1, then the results
are valid even when Assumption 8, and hence g are removed.

Similarly as in Propositions 4 and 5, condition (51) can be weakened as follows
when 1 <rgp <2 and 79 < 1 (i.e., ro > Bo). It should also be noted that (51) is
equivalent to (52) below (with different 74 in the two equations) in the case ro =
Bo =1, because y,’(g) with g < 1 is of a slower polynomial order than n~1Y2 and

hence {log(n)/n}!"?y,(g)~! = o(1).

PROPOSITION 7.  Proposition 6 is also valid with (43) replaced by the weaker
condition

(52) {w(g) "™ (log(np/e)/n) ' "V} (1 + Mp + Mo) < na,

for some constant n4 > O in the case where 1 <rg <2, ro > Bo and the average
marginal density of (X;J), cee, X,(,])) is bounded from above for all j.

REMARK 15. Propositions 6 and 7 yield, under L,-ball sparsity in || - ||o
norm, a convergence rate interpolating the slow and fast rates smoothly from g = 1
to g = 0, similarly as in fixed designs (Section 3.1). However, the rate condition
(51) involved does not always exhibit a smooth transition to those for the slow
and fast rates. In the extreme case g = 1, condition (51) with ¢ = 1 cannot be
satisfied when M is unbounded or when M; is bounded but I',, is unbounded
with ro = o = 1. In contrast, Proposition 3 allows for unbounded M and the case
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TABLE 1
Convergence rates for out-of-sample prediction under parameter set (3) with (Mg, Mg) bounded
from above
ro=p=1
ro > Bo q=0
0<g<l1 g=1 O0<g<1 vy = 0(yn(0)) otherwise

Scale yes yes yes yes no
adaptive

Rate (@) + )~ logm)/n + v {rn(@) +va)> 4

-1
Note: y,(g) < n2TPo0=0 and v, = {log(p/e)/n}1/2. Scale-adaptiveness means the convergence
rate is achieved with (wy, y,;) chosen independently of (Mg, My).

ro = PBo = 1. This difference is caused by the need to justify Assumption 6(ii) with
q # 1. In the extreme case ¢ = 0, condition (51) with g = 0 also differ drastically
from (43) in Proposition 4. As seen from the proof of Corollary 7, this difference
arises because Assumption 6(ii) can be justified by exploiting the fact that z7 — oo
as z — oo for g > 0 (but not g = 0).

For illustration, Table 1 gives the convergence rates from Propositions 3-6 in
the simple situation where (MFr, M) are bounded from above, independently of
(n, p). The rate conditions (43) and (51) are easily seen to hold in all cases except
that (43) is not satisfied for ¢ = 0 when ro = By = 1 but v, # 0(y,,(0)). In this case,
we show in the following result that the convergence rate {y,,(0) + v, }? can still
be achieved, but with the tuning parameters (wyj, y»j) chosen suitably depending
on the upper bound of (Mr, M,). This is in contrast with the other cases in Ta-
ble 1 where the convergence rates are achieved by our penalized estimators in a
scale-adaptive manner: (wy;, ¥»j) = (w;(q), ¥, (¢)) are chosen independently of
(MF, M) or their upper bounds.

PROPOSITION 8. Assume that ro = Bo = 1, and My and My are bounded
from above by a constant M > 0. Suppose that the conditions of Proposition 4
are satisfied except with (43) and Assumption 8 removed, and Assumption T holds
instead of Assumption 5. Let §' be the estimator with (wyj, ynj) replaced by w, =
Kow;: (0) and yrij = KO_’BO/Z)/,;“(O) for Ko > 0. Then K¢ can be chosen, depending
on M but independently of (n, p), such that for sufficiently large n, depending on
M, and any Ag > A(&], no), we have

;1
D2, g%, £F.0) < O(1)CHMp + Mo){n™% + Jlog(p/e)/n}?,

with probability at least 1 — 2¢, where O (1) depends only on (M, Bj, AS, Cg, &5
k5, mo) and (Ca, C3, C4) as in Theorem 4.
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4.2. Minimax lower bounds. We demonstrate minimiax optimality of the
rates achieved by the doubly penalized estimator g. To clarify main ideas, we
first provide a general result on minimax lower bounds for estimation in ad-
ditive model (1) under the following conditions. Assume that each noise ¢;
is distributed as N(O,az), independently of (X fl),...,Xl.(p )), and the vectors
{(&;, Xl-(l), e, Xi(p)) :i =1,...,n} are independent and identically distributed. In
addition, assume that all functions g; € G; are centered: [ g;(z)dz = 0. Suppose
that for 1 < j < p, there exist basis functions {u¢(-) : £ > 1} in G; such that for
all integers k > 1 and real numbers ay,

k k 2 k
(53) oy ap <
(=1

Qe je| = a%,
=1 Q =1

and for all signs e, € {—1, 1},

k
Z ejeje
=1

where ¢g € (0, 1], Bo € (0, 2), and Cr > 0 are constants. Denote the parameter set
as

(54) < Cpk!/Pot1/2,

F,j

P P P
G(Mp, M) = [g(x) =Yg Y lgslrg <oMe Y llgilh < oM, Y,
j=1 Jj=1 j=1

where 0 < ¢ <1, M; > 0 and Mp > 0 are known.

THEOREM 3. (i) Suppose that (53) and (54) hold. Let integers 1 <s < p and
k > 1 be determined such that
(55) Mp = Cpsn~ 2k1/FPot1/2, M, =sn"9/2k4/2,
Then

14
LA I b R

(&1,-:8p) g*eG(Mp,M,) =

Mp\!—a —Q2—q)
> cocrsko®/n = coero? (| — M p2+0=0ko |
Cr a

where g1 = (2 — B0)/{2+ (1 — q)Bo} and c; = /2/7 [{° /2 dz.
(i1) Suppose that (54) hold with k = 1 and CF set to Cr 1, for a basis function
uj1(-) with |lujllo = 1. Let integer so > 1 and Lo be determined such that Ao =

J(2/n)log(ep/sop) and so < min(Mq/Aq, MFp/(CF,1A0), p). Then

p
1— 16
Cinf sup E[an,-—g;fnz]zcﬂ—f WLJTALES
(81:-.8p) g*eG(MF,My) =1 —so/p+1/e
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REMARK 16. Suppose Mq/kq < min(Mr/(Crhig), p/2) in Theorem 3(ii).
The largest possible so and the corresponding Ao must satisfy so < M, /kg <
so+ 1 < p/2 + 1. This implies nA3 = 2log(ep/so) = 2log(ep/My) + g logr3 =
2log(ep/(Myn?)) 4 qlog(2log(ep/sop)) < 2log(ep/(Myn?)). The last step above
is valid due to 21log(ep/so) > 2(1 +1og?2). Thus, Ag < {(2/n) log(ep/(qu"))}l/2
and

500 = Myag ™% = M, {(2/n)log(ep/ (Myn?))} 472,

REMARK 17. Return to the setting where g.,- is a Sobolev class ngo or a
bounded variation class V™ on [0, 1] for j =1, ..., p. Condition (53) is satis-
fied for any L,-orthogonal bases, properly scaled, provided that the marginal den-
sity of X l-(/ ) is bounded from below and above on [0, 1] for all j. Let uj¢(z) =
Vkuoglkz — (£ — 1)), £ =1,..., k, with supp(ug) C [0, 1] and fol u%(z) dz=1.
Then (54) holds with fo = 1/mo and Cr = ug"” ., or TV(ug™~"). In The-
orem 3(ii), we take u;1(z) = bj(z — 1/2) for some coefficient b;. Then (54)
holds with k =1 and Cr; = max<j<p |luj1]|F, ;j, which is bounded from above
provided that E{(X”) — 1/2)} is bounded from below for all j. In particular,
Cr,1 =0 in the case of mg > 2.

The prediction error ||g — g* ||2Q can be bounded from below by

P
~ 2 ~ 2
18— &% = (c3/e2) D l&5 — &5
Jj=1
under the following assumption, which is qualitatively similar to the assumption
that the vector (X ,.(1), X ;p )) is uniformly distributed on [0, 1]7 for establishing

minimax lowers bounds in Raskutti, Wainwright and Yu (2012) and Suzuki and
Sugiyama (2013).

ASSUMPTION 9. Assume that the marginal density of ij) is bounded
from above by ¢ > 0 on [0, 1] for all 1 < j < p, and the joint density of

(Xl.(l), . Xi(p)) is bounded from below by c¢3 > 0 on [0, 1]7.

With these remarks, Theorem 3 then leads to the following minimax lower
bound.

PROPOSITION 9. Let each Gj, j =1,..., p, be a Sobolev class W;ﬁo or
a bounded variation class V™ on [0, 1] for ro > 1 and my > 1. Suppose that
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Assumption 9 holds, and Mq/Kg <min(Mr/(CF,1r0), p/2), with Ao as in Re-
mark 16 and Cr 1 as in Remark 17. Then

inf  sup  E{]|z-g"5)
8 g*eG(Mp,My)

56) > 0o {(Mp/Cp)' =0 M~ Q- 0/2H=0] |y 53270

where q1 is as in Theorem 3(i), Cp = ||u(()m°) L, or TV(u(()mO_])) as in Remark 17,
and O (1) depends only on (c1, c2, c3).

REMARK 18. The lower bound (56) is matched by the convergence rate (41)
for the doubly penalized estimator ¢, where the tuning parameters (A, p,) are
allowed to depend on (MF, My). Moreover, (56) is matched by the convergence
rate (35) in Corollaries 6 and 7 (as well as the rates in Propositions 3-8), up to
multiplicative constants depending on (Mg, M,).

REMARK 19. The lower bound (56) with ¢ = 0 is similar to those obtained by
Raskutti, Wainwright and Yu (2012) and Suzuki and Sugiyama (2013) in additive
regression and Dalalyan, Ingster and Tsybakov (2014) in white noise models, all
with Ly-Sobolev or similar Hilbert spaces. The extension involved in our results is
to handle 0 < g <1 as well as L,-Sobolev and bounded variation spaces.

5. Convergence of empirical norms. We provide two explicit results on the
convergence of empirical norms as needed for Assumption 6. These results can
also be useful for other applications.

Our first result, Theorem 4, is applicable (but not limited) to Sobolev and
bounded variation spaces in general. For clarity, we postulate another entropy con-
dition, similar to Assumption 4 but with the empirical supremum norms.

ASSUMPTION 10 (Entropy condition in supremum norms). For j=1,..., p,
let ¥uj,00(-, 8) be an upper envelope of the entropy integral, independent of the

realizations {ij) :i=1,...,n}, as follows:

Z
Ve ) = [ 0/2.G50). 1 )b, 2>0.0<5<1.
where g}?(é) ={fj€G;:Ifillr;+Ifillg/8 <1} asin Assumption 4 and

H*(u,G7 (&), 1l - o) = sup  H(u,G7 ), |- lln,co)-
& x)

We also make use of the following two conditions about metric entropies and
sup-norms. Suppose that for j =1, ..., p, ¥,,;(8) and ¥,j 0 (z, §) in Assumptions
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4 and 10 are in the polynomial forms
(57) Vnj(8) = By8' P2, 0<s<1,
(58) Ynjoo(z:8) = Bajocz' P12, 2>0,0<8<1,

where 0 < 8; < 2is a constant, and B,; > 0 and B;,; oc > 0 are constants, possibly
depending on . Denote I'; = maxj—1,.. »(Byj,co/Byj). In addition, suppose that
forj=1,...,p,

1-
(59 llgjlloo < (Caj/2)(llgjllFj +lgillo)7 gl o v, 8j €9j,

where C4 ; > 1 and 0 < 7; < (2/8; — 1)’1 are constants. Let y,; =n~
Ynj ) /wnj = 2By, 7 by (12) and 7y == Pw, [ for j=1..... p.
As a function of w;, the quantlty Yaj in general differs from y,; even up to a
multiplicative constant unless 7; = /2 as in the case where G; is an L-Sobolev
space; see (61) below.

1/2

THEOREM 4. Suppose that Assumptions 4 and 10 hold with ,;(8) and

Ynj,00(2,8) in the forms (57) and (58), and condition (59) holds. In addition,
suppose that for sufficiently large n, Ynj < wnj <1 and F,,ynl] Pir2 <1 for
j=1,...,p. Then for any 0 < € < 1 (e.g., € =€), inequality (24) holds with

7 =€ and ¢, > 0 such that

. 7 .wﬂg+1fj/2
q’),,:O(l)[nl/anmaxmmax My
J )\nj J )\nj
~2 /
JIog(p/e Vi log(p/€’)
60) + max 111 aXMeraxwf},
i Anj o Anj j 7

where Bpy1 =minj—y,_ , B}, and O(1) depends only on (C3,C3) from Lem-
mas 13 and 14 in the Supplementary Material (Tan and Zhang (2019)) and
Cs=max;_y . pCy  from condition (59).

REMARK 20. Conditions (57), (58) and (59) are satisfied under Assumption 8,
when each G; is a Sobolev space W, 7 for r; i >1and m; > 1, or a bounded vari-
ation space V" for r; =1 and m; > > 1,on [0,1]. Let B; =1/m;. First, (59) is
implied by the interpolation inequalities for Sobolev spaces Nirenberg, 1966 with

(61) T =Q/Bj+1-2/r)""

and Cy ; = QalC4(mj, r;j) depending on C4(m j, r;) in Lemma 21 of the Supple-
mentary Material (Tan and Zhang (2019)). Moreover, if f; € g* B)with0<é§ <1,
then || fjliF,j = Tand || fjllo =8, and hence || fjllz,, = ||f]||oo < C4,j by (59). By

rescaling the entropy estimates for Sobolev and bounded variation spaces (Lorentz,
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Golitschek and Makovoz (1996)) as in Lemmas 19 and 20 in the Supplementary
Material (Tan and Zhang (2019)), Assumptions 4 and 10 are satisfied such that
(57) and (58) hold with B,,; independent of n, and B;j 0o = O(1)Byj if rj > B; or
Byjoo = O(log! /2 (n))By; if rj = pj = 1.

REMARK 21. Assumption 8 is not needed for justification of (57), (58) and
(59), when each class G; is Wll or V! on [0, 1], that is, rj =m; = 1. In this case,
condition (59) directly holds with t; = 1, because [|gjllcc < TV(g;) + ligjllo-
Then (57) and (58) easily follow from the entropy estimates in Lemmas 19 and 20
in the Supplementary Material (Tan and Zhang (2019)).

Our second result provides a sharper rate than in Theorem 4, applicable (but
not limited) to Sobolev and bounded variation spaces, provided that the following
conditions hold. For g; € G;, assume that g;(-) can be written as Y 72, 6¢u j¢(-)
for certain coefficients 6, and basis functions u j¢(-) on a set 2. In addition, for
certain positive constants Cs 1, Cs2, C53,0 < 7; <1 and 0 < wy; < 1, assume
that forall 1 < j < p,

(62) supd S u%,(x)/k:x € Q. k> Ljor < Cs 1.
1/t; _ 2
63) max Y 0% < Csallgileg +wy'lgillo)’.
T A1 <t=<Lji
Kj() )
(64) Y 05w, ? < Csa(llgilrj+w, lgilo),
=1

with €5 = [(2% /wy;)?%] fork > 0and €; _; = 0,and forall 1 < j < pandk > 0,

D B > 9,24 = } <Cs3.

Ljk—1<t=ljk Ljk—1<t=ljr

2
(65) sup[

THEOREM 5. Suppose that (62), (63), (64) and (65) hold as above, and
maszl,,,_,p{ez/(l_tf) + ZwIZjTj} <n. Then for any 0 < €’ <1 (e.g., € =€), in-
equality (24) holds with m = €' 2 and ¢n > 0 such that

- ~2 ’
. N 7 log(np/e’)
¢ = 0(1):max Ynj max ognp/e’) +maxyﬂ]gp/},

A =Tk Anj NGRS H

where y,; = n_l/zwn_;j and O(1) depends only on {Cs,1, Cs2, Cs3}.

REMARK 22. LetG; be a Sobolev space WZ" withr; >1,m;>1,and (r; A
2)mj > 1 or a bounded variation space V"/ with r; =1 and m; > 1 (excluding
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mj = 1) on [0, 1]. Condition (62) holds for commonly used Fourier, wavelet and
spline bases. For any Lj-orthonormal bases {u ¢, £ > 1}, condition (64) follows
from Assumption 8 with Cs5 > > o 1, and condition (65) is also satisfied under an
additional assumption that the average marginal density of {X l-(" )= 1,...,n}is
bounded from above on [0, 1] by Cs 3 for all j. In the proof of Proposition 5, we
verify (62) and (63) for suitable wavelet bases with t; = 1/{2m; +1—=2/(r; A2)},
which satisfies 7; < 1 because (r; A2)m; > 1. In fact, G; is allowed to be a Besov
space Bf:] o0, Which contains Wf;j forr; > 1and V" forr j =1(e.g., DeVore and
Lorentz (1993)).

REMARK 23. The convergence rate of ¢, in Theorem 5 is no slower than (60)
in Theorem 4 if 1 <r; <2 and (1 — rj)_l{log(n)/n}l/2 = O(ynj), the latter of
which is valid whenever 7; is bounded away from 1 and y,; = n=V zwn_jrj /2 is of
a slower polynomial order than n~'/2. However, Theorem 5 requires an additional
side condition (65) along with the requirement of 7; < 1, which excludes for ex-
ample the bounded variation space V! on [0, 1]; See equations (46) and (47) for
implications of these rates when used in Assumption 6.

6. Discussion. For additive regression with high-dimensional data, we have
established new convergence results on the predictive performance of doubly pe-
nalized estimation when each component function can be a Sobolev space W or
a bounded variation space V™. There remain various open problems to be fully
investigated. First, the doubly penalized estimators are shown under certain con-
ditions to be adaptive to the sizes of L(]| - [[r) and Ly (]| - [|o) balls with fixed
sparsity index ¢ and smoothness index m. For ¢ = 0 and in white noise models
with unknown component functions in L;-Sobolev spaces, Dalalyan, Ingster and
Tsybakov (2014) developed adaptive estimation with respect to smoothness .
It is desirable to study how adaptive estimation can be achieved over such balls
with varying ¢ and m. Moreover, it is interesting to study variable selection and
inference about component functions for high-dimensional additive regression, in
addition to predictive performance studied here.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Doubly penalized estimation in additive regression with
high-dimensional data” (DOI: 10.1214/18-A0S1757SUPP; .pdf). We provide
proofs and technical tools.


https://doi.org/10.1214/18-AOS1757SUPP

PENALIZED ESTIMATION IN ADDITIVE REGRESSION 2599

REFERENCES

BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig
selector. Ann. Statist. 37 1705-1732. MR2533469

BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the Lasso.
Electron. J. Stat. 1 169-194. MR2312149

DALALYAN, A., INGSTER, Y. and TSYBAKOV, A. B. (2014). Statistical inference in compound
functional models. Probab. Theory Related Fields 158 513-532. MR3176357

DEVORE, R. A. and LORENTZ, G. G. (1993). Constructive Approximation. Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 303. Springer,
Berlin. MR1261635

GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional linear predictor selection
and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039

Gu, C. (2002). Smoothing Spline ANOVA Models. Springer Series in Statistics. Springer, New York.
MR1876599

HASTIE, T. J. and TIBSHIRANI, R. J. (1990). Generalized Additive Models. Monographs on Statis-
tics and Applied Probability 43. CRC Press, London. MR1082147

HUANG, J., HOROWITZ, J. L. and WEI, F. (2010). Variable selection in nonparametric additive
models. Ann. Statist. 38 2282-2313. MR2676890

KimM, S.-J., KoH, K., BOYD, S. and GORINEVSKY, D. (2009). /1 trend filtering. SIAM Rev. 51
339-360. MR2505584

KOLTCHINSKII, V., LOUNICI, K. and TSYBAKOV, A. B. (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. Ann. Statist. 39 2302-2329. MR2906869

KOLTCHINSKII, V. and YUAN, M. (2010). Sparsity in multiple kernel learning. Ann. Statist. 38
3660-3695. MR2766864

LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces: Isoperimetry and Pro-
cesses. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Re-
lated Areas (3)] 23. Springer, Berlin. MR1102015

LIN, Y. and ZHANG, H. H. (2006). Component selection and smoothing in multivariate nonpara-
metric regression. Ann. Statist. 34 2272-2297. MR2291500

LORENTZ, G. G., GOLITSCHEK, M. V. and MAKOVOZ, Y. (1996). Constructive Approximation:
Advanced Problems. Grundlehren der Mathematischen Wissenschaften | Fundamental Principles
of Mathematical Sciences] 304. Springer, Berlin. MR1393437

MAMMEN, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann.
Statist. 19 741-759. MR1105842

MAMMEN, E. and VAN DE GEER, S. (1997). Locally adaptive regression splines. Ann. Statist. 25
387-413. MR1429931

MEIER, L., VAN DE GEER, S. and BUHLMANN, P. (2009). High-dimensional additive modeling.
Ann. Statist. 37 3779-3821. MR2572443

MULLER, P. and VAN DE GEER, S. (2015). The partial linear model in high dimensions. Scand.
J. Stat. 42 580-608. MR3345123

NIRENBERG, L. (1966). An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa Cl. Sci.
(3) 20 733-737. MR0208360

PETERSEN, A., WITTEN, D. and SIMON, N. (2016). Fused lasso additive model. J. Comput. Graph.
Statist. 25 1005-1025. MR3572026

RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2012). Minimax-optimal rates for sparse ad-
ditive models over kernel classes via convex programming. J. Mach. Learn. Res. 13 389-427.
MR2913704

RAVIKUMAR, P., LAFFERTY, J., L1U, H. and WASSERMAN, L. (2009). Sparse additive models.
J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 1009-1030. MR2750255


http://www.ams.org/mathscinet-getitem?mr=2533469
http://www.ams.org/mathscinet-getitem?mr=2312149
http://www.ams.org/mathscinet-getitem?mr=3176357
http://www.ams.org/mathscinet-getitem?mr=1261635
http://www.ams.org/mathscinet-getitem?mr=2108039
http://www.ams.org/mathscinet-getitem?mr=1876599
http://www.ams.org/mathscinet-getitem?mr=1082147
http://www.ams.org/mathscinet-getitem?mr=2676890
http://www.ams.org/mathscinet-getitem?mr=2505584
http://www.ams.org/mathscinet-getitem?mr=2906869
http://www.ams.org/mathscinet-getitem?mr=2766864
http://www.ams.org/mathscinet-getitem?mr=1102015
http://www.ams.org/mathscinet-getitem?mr=2291500
http://www.ams.org/mathscinet-getitem?mr=1393437
http://www.ams.org/mathscinet-getitem?mr=1105842
http://www.ams.org/mathscinet-getitem?mr=1429931
http://www.ams.org/mathscinet-getitem?mr=2572443
http://www.ams.org/mathscinet-getitem?mr=3345123
http://www.ams.org/mathscinet-getitem?mr=0208360
http://www.ams.org/mathscinet-getitem?mr=3572026
http://www.ams.org/mathscinet-getitem?mr=2913704
http://www.ams.org/mathscinet-getitem?mr=2750255

2600 Z. TAN AND C.-H. ZHANG

SADHANALA, V. and TIBSHIRANI, R. J. (2017). Additive models with trend filtering. Preprint.
Available at arXiv:1702.05037.

STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist.
10 1040-1053. MR0673642

STONE, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13 689-705.
MRO0790566

SuzUKl, T. and SUGIYAMA, M. (2013). Fast learning rate of multiple kernel learning: Trade-off
between sparsity and smoothness. Ann. Statist. 41 1381-1405. MR3113815

TAN, Z. and ZHANG, C.-H. (2019). Supplement to “Doubly penalized estimation in additive regres-
sion with high-dimensional data.” DOI:10.1214/18-A0S1757SUPP.

TIBSHIRANTI, R. J. (2014). Adaptive piecewise polynomial estimation via trend filtering. Ann. Statist.
42 285-323. MR3189487

VAN DE GEER, S. (2000). Empirical Processes in M-Estimation. Cambridge Univ. Press, Cambridge.

VAN DE GEER, S. A. and BUHLMANN, P. (2009). On the conditions used to prove oracle results for
the Lasso. Electron. J. Stat. 3 1360-1392. MR2576316

VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes:
With Applications to Statistics. Springer Series in Statistics. Springer, New York. MR1385671

YANG, T. and TAN, Z. (2018). Backfitting algorithms for total-variation and empirical-norm penal-
ized additive modelling with high-dimensional data. Star 7 e198. MR3905854

YANG, Y. and TOKDAR, S. T. (2015). Minimax-optimal nonparametric regression in high dimen-
sions. Ann. Statist. 43 652-674. MR3319139

YUAN, M. and ZHOU, D.-X. (2016). Minimax optimal rates of estimation in high dimensional
additive models. Ann. Statist. 44 2564-2593. MR3576554

DEPARTMENT OF STATISTICS

RUTGERS UNIVERSITY

110 FRELINGHUYSEN ROAD

PISCATAWAY, NEW JERSEY 08854

USA

E-MAIL: ztan@stat.rutgers.edu
czhang @stat.rutgers.edu


http://arxiv.org/abs/arXiv:1702.05037
http://www.ams.org/mathscinet-getitem?mr=0673642
http://www.ams.org/mathscinet-getitem?mr=0790566
http://www.ams.org/mathscinet-getitem?mr=3113815
https://doi.org/10.1214/18-AOS1757SUPP
http://www.ams.org/mathscinet-getitem?mr=3189487
http://www.ams.org/mathscinet-getitem?mr=2576316
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=3905854
http://www.ams.org/mathscinet-getitem?mr=3319139
http://www.ams.org/mathscinet-getitem?mr=3576554
mailto:ztan@stat.rutgers.edu
mailto:czhang@stat.rutgers.edu

