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Abstract

We propose a bootstrap-based calibrated projection procedure to build confidence
intervals for single components and for smooth functions of a partially identified param-
eter vector in moment (in)equality models. The method controls asymptotic coverage
uniformly over a large class of data generating processes. The extreme points of the
calibrated projection confidence interval are obtained by extremizing the value of the
function of interest subject to a proper relaxation of studentized sample analogs of the
moment (in)equality conditions. The degree of relaxation, or critical level, is calibrated
so that the function of @, not 6 itself, is uniformly asymptotically covered with prespec-
ified probability. This calibration is based on repeatedly checking feasibility of linear
programming problems, rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is gener-
ally nonlinear and potentially intricate. We provide an algorithm, based on the response
surface method for global optimization, that approximates the solution rapidly and accu-
rately, and we establish its rate of convergence. The algorithm is of independent interest
for optimization problems with simple objectives and complicated constraints. An empir-
ical application estimating an entry game illustrates the usefulness of the method. Monte
Carlo simulations confirm the accuracy of the solution algorithm, the good statistical as
well as computational performance of calibrated projection (including in comparison to
other methods), and the algorithm’s potential to greatly accelerate computation of other
confidence intervals.

Keywords: Partial identification; Inference on projections; Moment inequalities; Uni-
form inference.
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1 Introduction

This paper provides novel confidence intervals for projections and smooth functions of a
parameter vector § € © — R? d < oo, that is partially or point identified through a finite
number of moment (in)equalities. In addition, we develop a new algorithm for computing
these confidence intervals and, more generally, for solving optimization problems with “black
box” constraints, and obtain its rate of convergence.

Until recently, the rich literature on inference for moment (in)equalities focused on con-

fidence sets for the entire vector 0, usually obtained by test inversion as
Cn(ci—a) ={0€0:T,(0) <c1-a(0)}, (1.1)

where the test statistic 7,,(0) aggregates violations of the sample analog of the moment
(in)equalities and the critical value ¢;_,(f) controls asymptotic coverage, often uniformly
over a large class of data generating processes (DGPs). However, applied researchers are
frequently interested in a specific component (or function) of 6, e.g., the returns to education.
Even if not, they may simply want to report separate confidence intervals for components of
a vector, as is standard practice in other contexts. Thus, consider inference on the projection
p’'0, where p is a known unit vector. To date, it is common to report as confidence set the

corresponding projection of Cp,(c1—q) or the interval

CIProl = inf p'0, sup po|, (1.2)
0eCn(ci—a) 0eCn(c1_a)

which will miss any “gaps” in a disconnected projection but is much easier to compute.
This approach yields asymptotically valid but typically conservative and therefore needlessly
large confidence regions. The potential severity of this effect is easily appreciated in a point
identified example. Given a 4/n-consistent estimator 0,, € R with limiting covariance matrix
equal to the identity matrix, the usual 95% confidence interval for 6 equals [énk —1.96, énk +
1.96]. Yet the analogy to CIE™ would be projection of a 95% confidence ellipsoid, which
with d = 10 yields [énk — 4.28, énk + 4.28] and a true coverage of essentially 1.

Our first contribution is to provide a bootstrap-based calibrated projection method to
largely anticipate and correct for the conservative effect of projection. The method uses an
estimated critical level ¢, 1, calibrated so that the projection of Cp(én1-q) covers p'6 (but
not necessarily 6) with probability at least 1 — . As a confidence region for the true p'6, one

may report this projection, i.e.

{ple S Cn(émlfa)}, (13)



or, for computational simplicity and presentational convenience, the interval

CIl, = inf  p'o, sup PO|. (1.4)
0€Cn(én,1-a) 06Cn(En1—a)
We prove uniform asymptotic validity of both over a large class of DGPs.

Computationally, calibration of ¢, 1. is relatively attractive: We linearize all constraints
around 6, so that coverage of p’f# can be calibrated by analyzing many linear programs.
Nonetheless, computing the above objects is challenging in moderately high dimension. This
brings us to our second contribution, namely a general method to accurately and rapidly
compute confidence intervals whose construction resembles (1.4). Additional applications
within partial identification include projection of confidence regions defined in Chernozhukov,
Hong, and Tamer (2007), Andrews and Soares (2010), or Andrews and Shi (2013), as well as
(with minor tweaking; see Appendix B) the confidence interval proposed in Bugni, Canay, and
Shi (2017, BCS henceforth) and further discussed later. In an application to a point identified
setting, Freyberger and Reeves (2017, Supplement Section S.3) use our method to construct
uniform confidence bands for an unknown function of interest under (nonparametric) shape
restrictions. They benchmark it against gridding and find it to be accurate at considerably
improved speed. More generally, the method can be broadly used to compute confidence
intervals for optimal values of optimization problems with estimated constraints.

Our algorithm (henceforth called E-A-M for Evaluation-Approximation-Maximization) is
based on the response surface method, thus it belongs to the family of expected improvement
algorithms (see e.g. Jones, 2001; Jones, Schonlau, and Welch, 1998, and references therein).
Bull (2011) established convergence of an expected improvement algorithm for unconstrained
optimization problems where the objective is a “black box” function. The rate of convergence
that he derives depends on the smoothness of the black box objective function. We substan-
tially extend his results to show convergence, at a slightly slower rate, of our similar algorithm
for constrained optimization problems in which the constraints are sufficiently smooth “black
box” functions. Extensive Monte Carlo experiments (see Appendix C and Section 5 of Kaido,
Molinari, and Stoye (2017)) confirm that the E-A-M algorithm is fast and accurate.

Relation to existing literature. The main alternative inference prodedure for projec-
tions — introduced in Romano and Shaikh (2008) and significantly advanced in BCS — is based
on profiling out a test statistic. The classes of DGPs for which calibrated projection and the
profiling-based method of BCS (BCS-profiling henceforth) can be shown to be uniformly valid
are non-nested."

Computationally, calibrated projection has the advantage that the bootstrap iterates over
linear as opposed to nonlinear programming problems. While the “outer” optimization prob-

lems in (1.4) are potentially intricate, our algorithm is geared toward them. Monte Carlo

!See Kaido, Molinari, and Stoye (2017, Section 4.2 and Supplemental Appendix F) for a comparison of the
statistical properties of calibrated projection and BCS-profiling, summarized here at the end of Section 3.2.
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simulations suggest that these two factors give calibrated projection a considerable compu-
tational edge over profiling, though profiling can also benefit from the E-A-M algorithm.
Indeed, in Appendix C we replicate the Monte Carlo experiment of BCS and find that adapt-
ing E-A-M to their method improves computation time by a factor of about 4, while switching
to calibrated projection improves it by a further factor of about 17.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011, PPHI henceforth) also use
linearization but, subject to this approximation, directly bootstrap the sample projection.
This is valid only under stringent conditions.? Other related articles that explicitly consider
inference on projections include Beresteanu and Molinari (2008), Bontemps, Magnac, and
Maurin (2012), Kaido (2016), and Kline and Tamer (2016). None of these establish uniform
validity of confidence sets. Chen, Christensen, and Tamer (2018) establish uniform validity
of MCMC-based confidence intervals for projections, but aim at covering the projection of
the entire identified region ©7(P) (defined later) and not just of the true 0. Gafarov, Meier,
and Montiel-Olea (2016) use our insight in the context of set identified spatial VARs.

Regarding computation, previous implementations of projection-based inference (e.g.,
Ciliberto and Tamer, 2009; Grieco, 2014; Dickstein and Morales, 2018) reported the smallest
and largest value of p'6 among parameter values 6 € C,(c1—,) that were discovered using,
e.g., grid-search or simulated annealing with no cooling. This becomes computationally cum-
bersome as d increases because it typically requires a number of evaluation points that grows
exponentially with d. In contrast, using a probabilistic model, our method iteratively draws
evaluation points from regions that are considered highly relevant for finding the confidence
interval’s end point. In applications, this tends to substantially reduce the number of evalu-
ation points.

Structure of the paper. Section 2 sets up notation and describes our approach in detail,
including computational implementation of the method and choice of tuning parameters.
Section 3.1 establishes uniform asymptotic validity of C'I,, and Section 3.2 shows that our
algorithm converges at a specific rate which depends on the smoothness of the constraints.
Section 4 reports the results of an empirical application that revisits the analysis in Kline
and Tamer (2016, Section 8). Section 5 draws conclusions. The proof of convergence of our
algorithm is in Appendix A. Appendix B shows that our algorithm can be used to compute
BCS-profiling confidence intervals. Appendix C reports the results of Monte Carlo simulations
comparing our proposed method with that of BCS. All other proofs, background material for

our algorithm, and additional results are in the Online Appendix.?

2The published version of PPHI, i.e. Pakes, Porter, Ho, and Tshii (2015), does not contain the inference
part. Kaido, Molinari, and Stoye (2017, Section 4.2) show that calibrated projection can be much simplified
under the conditions imposed by PPHI.

3 Appendix D provides convergence-related results and background material for our algorithm and describes
how to compute ¢,,1—a(f). Appendix E presents the assumptions under which we prove uniform asymptotic
validity of CI,. Appendix F verifies, for a number of canonical partial identification problems, the assumptions
that we invoke to show validity of our inference procedure and for our algorithm. Appendix G contains the
proof of Theorem 3.1. Appendix H collects Lemmas supporting this proof.
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2 Detailed Explanation of the Method

2.1 Setup and Definition of CI,

Let X; € X € R be a random vector with distribution P, let © < R denote the parameter
space, and let m; : X x © — R for j = 1,...,J; + Jo denote known measurable functions
characterizing the model. The true parameter value 6 is assumed to satisfy the moment

inequality and equality restrictions

Ep[m](Xl,H)] < 0, j = 1,...,J1 (21)
Ep[mj(Xi,(g)] =0,j=J1+1,....,J1 + Ja. (2.2)

The identification region ©(P) is the set of parameter values in O satisfying (2.1)-(2.2). For

a random sample {X;,i = 1,...,n} of observations drawn from P, we write

mn7j(0)5n_12?:1mj(Xi79)7 ] = 17”-7J1+J2 (23)
Gnj =710 [my (X, 0] = [ OD)Y2, j=1,...,Ji +J (2.4)

for the sample moments and the analog estimators of the population moment functions’

standard deviations op . The confidence interval in (1.4) then is

Cl, = [-s(-p, Cn(én71—a))7 s(p, Cn(éml—a))] (2.5)

with

mn(0) Cnteal®), j=1,...,7 (2.6)

$(p,Cn(Cn1—a)) =sup p'o s.t. /n—
6e© on,;(0)

and similarly for (—p). Henceforth, to simplify notation, we write ¢, for é,1_o. We also
define J = J; + 2J> moments, where my, j, +,+%(0) = =g, () for k =1,...,Jo. That is,
we treat moment equality constraints as two opposing inequality constraints.

For a class of DGPs P that we specify below, define the asymptotic size of C1I,, by*

. . . . /
h}?l,lo%f })r€17f> Hegﬁp) P(p'oeCl,). (2.7)

We next explain how to control this size and then how to compute C'1,,.

2.2 Calibration of ¢,(#)

Calibration of ¢, requires careful analysis of the moment restrictions’ local behavior at each

point in the identification region. This is because the extent of projection conservatism

“Here we focus on the confidence interval C'I,, defined in (1.4). See Appendix G.2.3 for the analysis of the
confidence region given by the mathematical projection in (1.3).
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depends on (i) the asymptotic behavior of the sample moments entering the inequality re-
strictions, which can change discontinuously depending on whether they bind at € or not,
and (ii) the local geometry of the identification region at 6, i.e. the shape of the constraint
set formed by the moment restrictions. Features (i) and (ii) can be quite different at different
points in ©;(P), making uniform inference challenging. In particular, (ii) does not arise if
one only considers inference for the entire parameter vector, and hence is a new challenge
requiring new methods.

To build an intuition, fix P € P and 6 € ©;(P). The projection of 6 is covered when

infyee p'v <0< SUpyeo P’V
MMy, (9 ” AN = Ny, (9 " .
s.t. % < én(V), V5 s.t. % < én(V), V5

— i iane\/E(efg) p,)\ <0< i SUP xe/n(©—0) p')\
st Yomng OAVR) o9 4 N //m) V[ | s YEmma UMV s g 4N/ /m) LY

6n,j(O0+X/ V) = 6n,j(O+XNVn) =

infye /m(@—0)nppe P'A o< SUP e, /m(0—0)~pBd P'A
nmy, ;i (0+N//n ~ . = My, i (0+N/A/n o
— st LNV < o (0 + A/R) V] st YoM a OOV < 6 (0 4+ /) .V

(2.8)

Here, we first substituted ¢ = 6 + A\/4/n and took A to be the choice parameter; intuitively,
this localizes around 6 at rate 1/4/n. We then make the event smaller by adding the constraint
e pB?, with B¢ =[~1,1]% and p > 0 a tuning parameter. We motivate this step later.
Our goal is to set the probability of (2.8) equal to 1 — a. To ease computation, we
approximate (2.8) by linear expansion in A of the constraint set. For each j, add and subtract
VnEp[m;(X;,0 + X\/4/n)]/6n,;(8 + A/4/n) and apply the mean value theorem to obtain

Vi (6 + A+/n) op; (0 +A/+/n)
Gnj (6 + \/n) Gn,j (0 + A/+/n)

Here Gy, ;(-) = v/n(mn;(-) — Ep[m;(Xi,-)])/op;(+) is a normalized empirical process indexed
by 0 € ©, Dp;(-) = Vo{Ep[m;(Xi,-)]/op;(-)} is the gradient of the normalized moment,
1,p;(-) = Ep(mj(X;,-))/op;(+) is the studentized population moment, and the mean value
0 lies componentwise between 6 and 6 + \/y/n.”

= (Gnj (6 + A/n) + Dpi(O)A + /ny1,p(6))

. (2.9)

We formally establish that the probability of the last event in (2.8) can be approximated
by the probability that 0 lies between the optimal values of two stochastic linear programs.
The components that characterize these programs can be estimated. Specifically, we replace
Dp;(-) with a uniformly consistent (on compact sets) estimator, f)n,j(-),ﬁ and the process
G, j(-) with its simple nonparametric bootstrap analog, GZJ(-) = n~123"  (mi(XP,-) —
M, j(+))/6n,;(-).7 Estimation of v1 p;(6) is more subtle because it enters (2.9) scaled by 1/n,

®The mean value  changes with j but we omit the dependence to ease notation.
5See Online Appendix F for such estimators in some canonical moment (in)equality examples.
"BCS approximate G, ;(-) by n= Y2 3" [(m;(Xi, ) = n; (-))/Fn,5 ()] xs with {x; ~ N(0,1)}=; i.i.d. This

1=1

[5]
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so that a sample analog estimator will not do. However, this specific issue is well understood
in the moment inequalities literature. Following Andrews and Soares (2010, AS henceforth)
and others (Bugni, 2010; Canay, 2010; Stoye, 2009), we shrink this sample analog toward
zero, leading to conservative (if any) distortion in the limit. Formally, we estimate v1 p;(6)
by go(én,j (0)), where ¢ : R‘[]ioo] — ]R‘[]ioo] is one of the Generalized Moment Selection (GMS

henceforth) functions proposed by AS,

R;l\/ﬁmnd(@)/é’n,j(a) j=1,.. S Jh
0 G=Ji4 1.,

£n;(0) = (2.10)

and k, — 00 is a user-specified thresholding sequence.® In sum, we replace the random

constraint set in (2.8) with the (bootstrap based) random polyhedral set”

A (8,p,0) = {A € V/n(© =) N pB? Gy, ;(60) + D (0N + (60 (0) <, j =1,.... T},

(2.11)
The critical level ¢,(6) to be used in (2.6) then is
én(0) = inf {c eR; : P* ( min  pPA<0<  max p’)\> >1- a} (2.12)
AEAL (0,p,c) AeAb (0,p,¢)
= inf{ce Ry : P*(A2(0,p,¢c) n {PA=0} # ) =1 - a}, (2.13)

where P* denotes the law of the random set A% (6, p, c) induced by the bootstrap sampling
process, i.e. by the distribution of (X?,..., X?) conditional on the data. Expression (2.13)
uses convexity of A’(f,p,c) and reveals that the probability inside curly brackets can be
assessed by repeatedly checking feasibility of a linear program.!® We describe in detail in
Online Appendix D.4 how we compute ¢é,(#) through a root-finding algorithm.

We conclude by motivating the “p-box constraint” in (2.8), which is a major novel con-
tribution of this paper. The constraint induces conservative bias but has two fundamental
benefits: First, it ensures that the linear approximation of the feasible set in (2.8) by (2.11)

is used only in a neighborhood of #, and therefore that it is uniformly accurate. More subtly,

approximation is equally valid in our approach, and can be faster as it avoids repeated evaluation of m; (Xf ).
8 A common choice of ¢ is given component-wise by
(@) 0 if z=>-1
(1) =
£ —o0 if z<—1.

Restrictions on ¢ and the rate at which k,, diverges are imposed in Assumption E.2. While for concreteness
here we write out the “hard thresholding” GMS function, Theorem 3.1 below applies to all but one of the
GMS functions in AS, namely to ¢! — *, all of which depend on k' \/nimn, ; (0)/Gn,;(6). We do not consider
GMS function ¢®, which depends also on the covariance matrix of the moment functions.

9Here, we implicitly assume that © is a polyhedral set. If it is instead defined by smooth convex
(in)equalities, these can be linearized too.

10We implement a program in R? for simplicity but, because p’A = 0, one could reduce this to R?7!.

[6]



it ensures that coverage induced by a given ¢ depends continuously on estimated parameters
even in certain intricate cases. This renders calibrated projection valid in cases that other

methods must exclude by assumption.'!

2.3 Computation of C'/,, and of Similar Confidence Intervals

Projection based methods as in (1.2) and (1.4) have nonlinear constraints involving a critical
value which in general is an unknown function, with unknown gradient, of #. Similar con-
siderations often apply to critical values used to build confidence intervals for optimal values
of optimization problems with estimated constraints. When the dimension of the parameter
vector is large, directly solving optimization problems with such constraints can be expensive
even if evaluating the critical value at each 6 is cheap.

This concern motivates this paper’s second main contribution, namely a novel algorithm

for constrained optimization problems of the following form:

p'0* = sup p'o
0e©

st. g;(0) <c0), j=1,..,J, (2.14)

where 6* is an optimal solution of the problem and g;(-),j7 = 1,...,J as well as ¢(-) are
fixed functions of . In our own application, g;(6) = 4/nm, ;j(0)/6, ;(0) and, for calibrated
projection, c(f) = ¢,(6).12

The key issue is that evaluating c(-) is costly.'® Our algorithm does so at relatively few
values of §. Elsewhere, it approximates ¢(-) through a probabilistic model that gets updated
as more values are computed. We use this model to determine the next evaluation point but
report as tentative solution the best value of 6 at which ¢(-) was computed, not a value at
which it was merely approximated. Under reasonable conditions, the tentative optimal values
converge to p'6* at a rate (relative to iterations of the algorithm) that is formally established
in Section 3.2.

After drawing an initial set of evaluation points that we set to grow linearly with d, the

algorithm has three steps called E, A, and M below.

"n (2.11), set (G441(),G%2() ~ N(0,I2), p = D1 = Dyo = (0,1), p1() = w2(-) = 0, and a = .05.
Then simple algebra reveals that (with or without p-box) é,(-) = ®~'(+v/.95) ~ 1.95. If D, , = (0,1 — )
and D, » = (0,1 — §), then without p-box we have é,(-) = ®~1(.95)/4/2 ~ 1.16 for any small § > 0, and we
therefore cannot expect to get é,(-) right if gradients are estimated. With p-box, é,(-) — 1.95 as § — 0, so
the problem goes away. This stylized example is relevant because it resembles polyhedral identified sets where
one face is near orthogonal to p. It violates assumptions in BCS and PPHI.

12We emphasize that, in analyzing the computational problem, we take the data, including bootstrap data,
as given. Thus, while an econometrician would usually think of \/nmy, ;j(0)/6,,;(0) and é,(f) as random
variables, for this section’s purposes they are indeed just functions of 6.

13For simplicity and to mirror our motivating application, we suppose that g;(+) is easy to compute. The
algorithm is easily adapted to the case where it is not. Indeed, in Appendix B, we show how E-A-M can
be employed to compute BCS-profiling confidence intervals, where the profiled test statistic itself is costly to
compute and is approximated together with the critical value.

[7]



Initialization: Draw randomly (uniformly) over © a set (A1), ...,0(%)) of initial evaluation
points. Evaluate ¢(6)) for ¢ = 1,...,k — 1. Initialize L = k.

E-Step: Evaluate ¢(A(%)) and record the tentative optimal value
Po*F = max{p'0" : L e {1,..,L},5(0) < c(69)}, (2.15)

with g(0) = max;—1 s g;().

A-step: Approximate 6 — ¢(f) by a flexible auxiliary model. We use a Gaussian-process
regression model (or kriging), which for a mean-zero Gaussian process ((-) indexed by 6 and

with constant variance ¢2 specifies

TEO = p+¢0"), ¢=1,...,L, (2.16)
Corr(¢(0),¢(0") = Kg(0—0'), 6,0 € O, (2.17)

where Y = ¢(0(?)) and K3 is a kernel with parameter vector 5 € Xizl[ﬁh,ﬁh] cRe;eg,
K30 —0") = exp(— ZZ=1 0r, — 071?/Br). The unknown parameters (u,s%) can be estimated
by running a GLS regression of T = (T(l), ey T(L))’ on a constant with the given correlation
matrix. The unknown parameters  can be estimated by a (concentrated) MLE.

The (best linear) predictor of the critical value and its gradient at 6 are then given by

cr(0) = p+rL(0)RN (Y — A1), (2.18)
Vocr(0) = it + QL(OR, (Y — 1), (2.19)

where r7(6) is a vector whose (-th component is Corr(¢(6),(6?))) as given above with
estimated parameters, Qr(f) = Vyrp(6)’, and Ry is an L-by-L matrix whose (¢,¢') entry
is Corr(¢(09), ¢(6))) with estimated parameters. This surrogate model has the property
that its predictor satisfies ¢z (0) = ¢(0),¢ = 1,...,L. Hence, it provides an analytical
interpolation, with analytical gradient, of evaluation points of ¢(+).'* The uncertainty left in

¢(+) is captured by the variance

1—-1R;'rz(0))?
2s3(0) =¢ [ 1—r(0)R, 'rp(0) + ( L () : (2.20)
TR;'1
M-step: With probability 1 — ¢, obtain the next evaluation point OLAD) ag
g(0) — cL(9)
9Lt € arg max El; (0) = arg max(p'0 — p'0*L), (1 — & g(Ai , 2.21
g&e@ £(®) %e@ (p P )+( ( $sp(0) )) ( )

14See details in Jones, Schonlau, and Welch (1998). We use the DACE MATLAB kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in our empirical application and Monte Carlo experiments.


http://www2.imm.dtu.dk/projects/dace/
http://www2.imm.dtu.dk/projects/dace/

where El(0) is the expected improvement function.'> This step can be implemented by
standard nonlinear optimization solvers, e.g. MATLAB’s fmincon or KNITRO (see Appendix
D.3 for details). With probability e, draw 9(L+1) randomly from a uniform distribution over
O. Set L «— L + 1 and return to the E-step.

The algorithm yields an increasing sequence of tentative optimal values p'6*L L = k +
1,k +2,..., with 6%F satisfying the true constraints in (2.14) but the sequence of evaluation
points leading to it obtained by maximization of expected improvement defined with respect
to the approzimated surface. Once a convergence criterion is met, p'6*% is reported as the
end point of C'I,,. We discuss convergence criteria in Appendix C.

The advantages of E-A-M are as follows. First, we control the number of points at which
we evaluate the critical value; recall that this evaluation is the expensive step. Also, the initial
k evaluations can easily be parallelized. For any additional E-step, one needs to evaluate ¢(-)

L+1) " The M-step is crucial for reducing the number of additional

only at a single point 6¢
evaluation points. To determine the next evaluation point, it trades off “exploitation” (i.e. the
benefit of drawing a point at which the optimal value is high) against “exploration” (i.e. the
benefit of drawing a point in a region in which the approximation error of ¢ is currently large)
through maximizing expected improvement.!® Finally, the algorithm simplifies the M-step
by providing constraints and their gradients for program (2.21) in closed form, thus greatly
aiding fast and stable numerical optimization. The price is the additional approximation
step. In the empirical application in Section 4 and in the numerical exercises of Appendix C,

this price turns out to be low.

2.4 Choice of Tuning Parameters

Practical implementation of calibrated projection and the E-A-M algorithm is detailed in
Kaido, Molinari, Stoye, and Thirkettle (2017). It involves setting several tuning parameters,
which we now discuss.

Calibration of ¢, in (2.13) must be tuned at two points, namely the use of GMS and the
choice of p. The trade-offs in setting these tuning parameters are apparent from inspection
of (2.11). GMS is parameterized by a shrinkage function ¢ and a sequence k, that controls
the rate of shrinkage. In practice, choice of k, is more delicate. A smaller x, will make
A larger, hence increase bootstrap coverage probability for any given ¢, hence reduce ¢,
and therefore make for shorter confidence intervals — but the uniform asymptotics will be
misleading, and finite sample coverage therefore potentially off target, if k,, is too small. We
follow the industry standard set by AS and recommend &, = 1/log n.

5 Heuristically, El(6) is the expected improvement gained from analyzing parameter value 6 for a Bayesian
whose current beliefs about ¢ are described by the estimated model. Indeed, for each 6, the maximand in
(2.21) multiplies improvement from learning that 6 is feasible with this Bayesian’s probability that it is.

161t is also possible to draw multiple points in each iteration (Schonlau, Welch, and Jones, 1998), as we do
in our implementation of the method.



The trade-off in choosing p is similar but reversed. A larger p will expand A’ and therefore
make for shorter confidence intervals, but (our proof of) uniform validity of inference requires
p < . Indeed, calibrated projection with p = 0 will disregard any projection conservatism
and (as is easy to show) exactly recovers projection of the AS confidence set. Intuitively, we
then want to choose p large but not too large.

To this end, we heuristically calibrate p based on how much conservative distortion one
is willing to accept in well-behaved cases. This distortion — denote it 7, for which we suggest
a numerical value of 0.01 — is compared against a bound on conservative distortion that is

itself likely to be conservative but data free and trivial to compute. In particular, we set
1/d
_ Ji+J:
p:q>1(§+§(1—n/(1§2)) ) (2.22)

The underlying heuristic is as follows: If all basic solutions (i.e., intersections of exactly
d constraints) that potentially define vertices of A2 realize inside the p-box, then the p-box
cannot affect the values in (2.12) and hence not whether coverage obtains in a given bootstrap
sample. Conversely, the probability that at least one basic solution realizes outside the p-box
bounds from above the conservative distortion. This probability is, of course, dependent on
unknown parameters. Our data free approximation imputes multivariate standard normal
distributions for all basic solutions and Bonferroni adjustment to handle their covariation.'”

The E-A-M algorithm also has two tuning parameters. One is k, the initial number
of evaluation points. The other is €, the probability of drawing 8+ randomly from a
uniform distribution on © instead of by maximizing El;. In calibrated projection use of the
E-A-M algorithm there is a single “black box” function, ¢,(0). We therefore suggest setting
k = 10d + 1, similarly to the recommendation in Jones, Schonlau, and Welch (1998, p. 473).
In our Monte Carlo exercises we experimented with larger values, e.g. k = 20d + 1, and
found that the increased number had no noticeable effect on the computed C'I,. If a user
applies our E-A-M algorithm to a constrained optimization problem with many “black box”
functions to approximate, we suggest using a larger number of initial points.

The role of € (e.g., Bull, 2011, p. 2889) is to trade off the greediness of the El;, maximiza-
tion criterion with the overarching goal of global optimization. Sutton and Barto (1998, pp.
28-29) explore the effect of setting e = 0.1 and 0.01 on different optimization problems, and
find that for sufficiently large L, ¢ = 0.01 performs better. In our own simulations we have
found that drawing both a uniform point and computing the value of § for each L (thereby

sidestepping the choice of €) is fast and accurate, and that is what we recommend doing.

17To reproduce the expression, recall that if a = (‘]1;‘]2) random variables in R? are individually multivariate
standard normal, then a Bonferroni upper bound on the probability that not all of them realize inside the
p-box equals a(l - (1- 2<I>(—p))d). Also, if Bonferroni is replaced with an independence assumption, the

expression changes to p = ®~* (% + %(1 — n)l/“d). The numerical difference is negligible for moderate Ji + Jo.



3 Theoretical Results

3.1 Asymptotic Validity of Inference

In this section we establish that C'I,, is uniformly asymptotically valid in the sense of ensur-
ing that (2.7) equals at least 1 — . The result applies to: (i) Confidence intervals for one
projection; (ii) joint confidence regions for several projections, in particular confidence hyper-
rectangles for subvectors; (iii) confidence intervals for smooth nonlinear functions f : © — R.
Examples of the latter extension include policy analysis and estimation of partially identified

counterfactuals as well as demand extrapolation subject to rationality constraints.'®
THEOREM 3.1: Suppose Assumptions E.1, E.2, E.3, E.4, and E.5 hold. Let 0 < a < 1/2.

(1) Let C1, be as defined in (1.4), with ¢, as in (2.13). Then:

liminf inf inf P(p0eCl,)>1-a. (3.1)
n—o PeP geO(P)

(II) Letp',...,p" denote unit vectors in RY, h < d. Then:

liminf inf inf P(p¥0e CL,;,k=1,...,h) > 1—aq, (3.2)
n—®  PeP 0O (P)

where Cl, j, = [infeecn(émpkle,supeecn(éﬁ)pkle] and ¢ () = inf{ce R, : P*(A%(0,p,c)n
(koA =01 = @) > 1-a}.

(111) Let C’I,{ be a confidence interval whose lower and upper points are obtained solving

inf /sup f(6) s.t. v/nimn, j(0)/60,;0) <é6), j=1,...,J,

0EO© " geo
where &}(0) = inf{c = 0: P*(AL(8,p,¢) n {|Vof(0)| *Vof(O)A =0} = &) > 1 — }
Suppose that there exist w > 0 and M < o such that infpep infgee,(p) [V f(0)] =
and supy geo |V.f(0) =V f(0)| < M|0— 0|, where Vo f(0) is the gradient of f(0)." Let
0 <a<1/2. Then:

liminf inf inf P(f(0)eCI))>1-a. 3.3
iminf inf inf (f(0) e CILy) o (3.3)

All assumptions can be found in Online Appendix E.1. Assumptions E.1 and E.5 are mild
regularity conditions typical in the literature; see, e.g., Definition 4.2 and the corresponding

discussion in BCS. Assumption E.2 is based on AS and constrains the GMS function ¢(-)

'8Tn Appendix G.2.3, we show that the result actually applies to the mathematical projection in (1.3).
19Because the function f is known, these conditions can be easily verified in practice (especially if the first
one is strengthened to hold over ©).
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as well as the rate at which k, diverges. Assumption E.4 requires normalized population
moments to be sufficiently smooth and consistently estimable. Assumption E.3 is our key
departure from the related literature. In essence, it requires that the correlation matrix of
the moment functions corresponding to close-to-binding moment conditions has eigenvalues
uniformly bounded from below.?’ Under this condition, we are able to show that in the limit
problem corresponding to (2.8) —where constraints are replaced with their local linearization
using population gradients and Gaussian processes— the probability of coverage increases
continuously in c. If such continuity is directly assumed (Assumption E.6), Theorem 3.1
remains valid (Online Appendix G.2.2). While the high level Assumption E.6 is similar in
spirit to a key condition (Assumption A.2) in BCS, we propose Assumption E.3 due to its
familiarity and ease of interpretation; a similar condition is required for uniform validity of
standard point identified Generalized Method of Moments inference. In Online Appendix
F.2 we verify that our assumptions hold in some of the canonical examples in the partial
identification literature: mean with missing data, linear regression and best linear prediction
with interval data (and discrete covariates), entry games with multiple equilibria (and discrete
covariates), and semi-parametric binary regression models with discrete or interval valued
covariates (as in Magnac and Maurin, 2008).

Assumptions E.1-E.5 define the class of DGPs over which our proposed method yields
uniformly asymptotically valid coverage. This class is non-nested with the class of DGPs
over which the profiling-based methods of Romano and Shaikh (2008) and BCS are uni-
formly asymptotically valid. Kaido, Molinari, and Stoye (2017, Section 4.2 and Supplemental
Appendix F) show that in well behaved cases, calibrated projection and BCS-profiling are
asymptotically equivalent. They also provide conditions under which calibrated projection
has lower probability of false coverage in finite sample, thereby establishing that the two

methods’ finite sample power properties are non-ranked.

3.2 Convergence of the E-A-M Algorithm

We next provide formal conditions under which the sequence p'0* generated by the E-A-
M algorithm converges to the true end point of C'I,, as L — o0 at a rate that we obtain.
Although p'6*L = max{p'0¥) : £ e {1,...,L},5(0) < c(§)}, so that 6%L satisfies the true
constraints for each L, the sequence of evaluation points 6 is mostly obtained through
expected improvement maximization (M-Step) with respect to the approzimating surface
cr(+). Because of this, a requirement for convergence is that the function ¢(-) is sufficiently
smooth, so that the approximation error in |c¢(#) —c,(0)| vanishes uniformly in 6 as L — 00.%!

We furthermore assume that the constraint set in (2.14) satisfies a degeneracy condition

20 Assumption E.3 allows for high correlation among moment inequalities that cannot cross. This covers
equality constraints but also entry games as the ones studied in Ciliberto and Tamer (2009).

21 As in Bull (2011), our convergence result accounts for the fact that the parameters of the Gaussian process
prior in (2.16) are re-estimated for each iteration of the A-step using the “training data” {8, c(8°)},.
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introduced to the partial identification literature by Chernozhukov, Hong, and Tamer (2007,
Condition C.3).?2 In our application, the condition requires that C,(¢,) has an interior and
that the inequalities in (2.6), when evaluated at points in a (small) 7-contraction of Cy (&),
are satisfied with a slack that is proportional to 7. Theorem 3.2 below establishes that these
conditions jointly ensure convergence of the E-A-M algorithm at a specific rate. This is a
novel contribution to the literature on response surface methods for constrained optimization.
In the formal statement below, the expectation Eg is taken with respect to the law of
(9(1), e H(L)) determined by the Initialization step and the M-step but conditioning on the
sample. We refer to Appendix A for a precise definition of Fg and a proof of the theorem.

THEOREM 3.2: Suppose © — R? is a compact hyperrectangle with nonempty interior,
that |p|| = 1, and that Assumptions A.1, A.2, and A.3 hold. Let the evaluation points
(9(1), e ,G(L)) be drawn according to the Initialization and M-steps. Then

o 01y = 0( () an ), (3.4

where |- HL%D is the L*-norm under Q, 6 = 1+ x, and the constants 0 < v < o0 and 0 < x < o©
are defined in Assumption A.1. If v = oo, the statement in (3.4) holds for any v < oo.

The requirement that © is a compact hyperrectangle with nonempty interior can be
replaced by a requirement that © belongs to the interior of a closed hyperrectangle in R%.
Assumption A.1 specifies the types of kernel to be used to define the correlation functional in
(2.17). Assumption A.2 collects requirements on differentiability of g;(#),j = 1,...,J, and
smoothness of ¢(f). Assumption A.3 is the degeneracy condition discussed above.

To apply Theorem 3.2 to calibrated projection, we provide low level conditions (Assump-
tion D.1 in Online Appendix D.1.1) under which the map 6 +— ¢, (6) uniformly stochastically
satisfies a Lipschitz-type condition. To get smoothness, we work with a mollified version
of ¢, denoted ¢, in equation (D.1), where 7, = o(n~/?).23 Theorem D.1 in the Online
Appendix shows that ¢, and ¢, ,, can be made uniformly arbitrarily close, and that ¢, -,
yields valid inference as in (3.1). In practice, we directly apply the E-A-M steps to é,.

The key condition imposed in Theorem D.1 is Assumption D.1. It requires that the GMS

t,24 and that the standardized moment functions

function used is Lipschitz in its argumen
are Lipschitz in 6. In Online Appendix F.1 we establish that the latter condition is satisfied
by some canonical examples in the moment (in)equality literature: mean with missing data,
linear regression and best linear prediction with interval data (and discrete covariates), entry

games with multiple equilibria (and discrete covariates), and semi-parametric binary regres-

22Chernozhukov, Hong, and Tamer (2007, eq. (4.6)) impose the condition on the population identified set.

23For a discussion of mollification, see e.g. Rockafellar and Wets (2005, Example 7.19).

24This requirement rules out the GMS function in footnote 8, but it is satisfied by other GMS functions
proposed by AS.



sion models with discrete or interval valued covariates (as in Magnac and Maurin, 2008).2
The E-A-M algorithm is proposed as a method to implement our statistical procedure,
not as part of the statistical procedure itself. As such, its approximation error is not taken
into account in Theorem 3.1. Our comparisons of the confidence intervals obtained through
the use of E-A-M as opposed to directly solving problems (2.6) through the use of MATLAB’s

fmincon in our empirical application in the next section suggest that such error is minimal.

4 Empirical Illustration: Estimating a Binary Game

We employ our method to revisit the study in Kline and Tamer (2016, Section 8) of “what
explains the decision of an airline to provide service between two airports.” We use their
data and model specification.?S Here we briefly summarize the set-up and refer to Kline and
Tamer (2016) for a richer discussion.

The study examines entry decisions of two types of firms, namely Low Cost Carriers
(LCC) versus Other Airlines (OA). A market is defined as a trip between two airports,
irrespective of intermediate stops. The entry decision Y7 ; of player £ € {LCC, OA} in market
i is recorded as a 1 if a firm of type ¢ serves market ¢ and 0 otherwise. Firm ¢’s payoff
equals Yg’i(ZZiz?g + 0;Y ¢ + ug;), where Y_,; is the opponent’s entry decision. Each firm
enters if doing so generates non-negative payoffs. The observable covariates in the vector
Zy; include the constant and the variables W ¢ and Wg 1“°. The former is market size, a
market-specific variable common to all airlines in that market and defined as the population
at the endpoints of the trip. The latter is a firm-and-market-specific variable measuring the
market presence of firms of type ¢ in market ¢ (see Kline and Tamer, 2016, p. 356 for its
exact definition). While W *#¢ enters the payoff function of both firms, ngegl (respectively,
ngi) is excluded from the payoff of firm OA (respectively, LCC). Each of market size and
of the two market presence variables are transformed into binary variables based on whether
they realized above or below their respective median. This leads to a total of 8 market types,
hence J; = 16 moment inequalities and Jy = 16 moment equalities. The unobserved payoff
shifters uy; are assumed to be i.i.d. across ¢ and to have a bivariate normal distribution
with E(ug;) = 0, Var(ue;) = 1, and Corr(urcc,i,uoa,) = r for each i and £ € {LCC,OA},
where the correlation r is to be estimated. Following Kline and Tamer (2016), we assume
that the strategic interaction parameters drcc and dpa are negative, that r > 0, and that
the researcher imposes these sign restrictions. To ensure that Assumption E.4 is satisfied,?”

we furthermore assume that r» < 0.85 and use this value as its upper bound in the definition

?5For these same examples we verify the differentiability requirement in Assumption A.2 on g;(6).

26The data, which pertains to the second quarter of the year 2010, is downloaded from http://qeconomics.
org/ojs/index.php/qe/article/downloadSuppFile/371/1173.

2"This assumption, common in the literature on projection inference, requires that Dp,;(0) are Lipschitz in
6 and have bounded norm. But d({Ep[m;(X,-)]/op;(-)})/or includes a denominator equal to (1 —r2?)%. As
r — 1, this leads to a violation of the assumption and to numerical instability.

[14]
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of the parameter space.

The results of the analysis are reported in Table 1, which displays 95% nominal confidence
intervals (our CI,, as defined in equations (2.5)-(2.6)) for each parameter. The output of the
E-A-M algorithm is displayed in the accordingly labeled column. The next column shows
a robustness check, namely the output of MATLAB’s fmincon function, henceforth labelled
“direct search,” that was started at each of a widely spaced set of feasible points that were
previously discovered by the E-A-M algorithm. We emphasize that this is a robustness or
accuracy check, not a horse race: Direct search mechanically improves on E-A-M because
it starts (among other points) at the point reported by E-A-M as optimal feasible. Using
the standard MultiStart function in MATLAB instead of the points discovered by E-A-M
produces unreliable and extremely slow results. In 10 out of 18 optimization problems that we
solved, the E-A-M algorithm’s solution came within its set tolerance (0.005) from the direct
search solution. The other optimization problems were solved by E-A-M with a minimal error
of less than 5%.

Table 1 also reports computational time of the E-A-M algorithm, of the subsequent direct
search, and the total time used to compute the confidence intervals. The direct search greatly
increases computation time with small or negligible benefit. Also, computational time varied
substantially across components. We suspect this might be due to the shape of the level sets
of maxj—1,._j+/nmy, j(0)/6,;(0): By manually searching around the optimal values of the
program, we verified that the level sets in specific directions can be extremely thin, rendering
search more challenging.

Comparing our findings with those in Kline and Tamer (2016), we see that the results
qualitatively agree. The confidence intervals for the interaction effects (drcc and dp4) and
for the effect of market size on payoffs (93, and ¥£%°) are similar to each other across the
two types of firms. The payoffs of LC'C firms seem to be impacted more than those of OA
firms by market presence. On the other hand, monopoly payoffs for LCC' firms seem to be
smaller than for OA firms.?® The confidence interval on the correlation coefficient is quite
large and includes our upper bound of 0.85.%

For most components, our confidence intervals are narrower than the corresponding 95%
credible sets reported in Kline and Tamer (2016).3C However, the intervals are not comparable
for at least two reasons: We impose a stricter upper bound on r and we aim to cover the
projections of the true parameter value as opposed to the identified set.

Overall, our results suggest that in a reasonably sized, empirically interesting problem,

calibrated projection yields informative confidence intervals. Furthermore, the E-A-M algo-

28Monopoly payoffs are those associated with a market with below-median size and below-median market
presence (i.e., the constant terms).

29Being on the boundary of the parameter space is not a problem for calibrated projection; indeed, it is
accounted for in the calibration of &, in equations (2.11)-(2.13).

39For the interaction parameters 8, Kline and Tamer’s upper confidence points are lower than ours; for the
correlation coefficient 7, their lower confidence point is higher than ours.
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rithm appears to accurately and quickly approximate solutions to complex smooth nonlinear

optimization problems.

5 Conclusion

This paper proposes a confidence interval for linear functions of parameter vectors that are
partially identified through finitely many moment (in)equalities. The extreme points of our
calibrated projection confidence interval are obtained by minimizing and maximizing p’# sub-
ject to properly relaxed sample analogs of the moment conditions. The relaxation amount,
or critical level, is computed to insure uniform asymptotic coverage of p'# rather than 6 it-
self. Its calibration is computationally attractive because it is based on repeatedly checking
feasibility of (bootstrap) linear programming problems. Computation of the extreme points
of the confidence intervals is furthermore attractive thanks to an application of the response
surface method for global optimization; this is a novel contribution of independent interest.
Indeed, one key result is a convergence rate for this algorithm when applied to constrained
optimization problems in which the objective function is easy to evaluate but the constraints
are “black box” functions. The result is applicable to any instance when the researcher wants
to compute confidence intervals for optimal values of constrained optimization problems. Our
empirical application and Monte Carlo analysis show that, in the DGPs that we considered,
calibrated projection is fast and accurate, and also that the E-A-M algorithm can greatly

improve computation of other confidence intervals.
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A Convergence of the E-A-M Algorithm

In this appendix, we provide details on the algorithm used to solve the outer maximization problem
as described in Section 2.3. Below, let (€2, F) be a measurable space and w a generic element of ). Let
LeN and let (A1), ..., 87)) be a measurable map on (9, F) whose law is specified below. The value
of the function ¢ in (2.14) is unknown ex ante. Once the evaluation points 0 ¢ = 1,..., L realize,
the corresponding values of ¢, i.e. T =¢(8"), ¢ =1, ..., L, are known. We may therefore define the

information set
Fr=000 10 0=1,. L). (A1)

Let C, = {0 : e {l,--- L}, 95 (09) < c(00),j =1,---,J} be the set of feasible evaluation points.
Then argmaxgee, p'0 is measurable with respect to F;, and we take a measurable selection §** from
it.

Our algorithm iteratively determines evaluation points based on the expected improvement cri-
terion (Jones, Schonlau, and Welch, 1998). For this, we formally introduce a model that describes
the uncertainty associated with the values of ¢ outside the current evaluation points. Specifically, the

unknown function ¢ is modeled as a Gaussian process such that>!

E[c(6)] = 1, Cov(c(h),c(6)) = Ks(6 —0'), (A2)

where 3 = (B4, ..., B4) € R? controls the length-scales of the process. Two values c(f) and c(#') are
highly correlated when 6, — 6}, is small relative to 5. Throughout, we assume 3 p S Br, < B, for some
0<p, < By < oo fork=1,..,d Welet 3= (B,...,04) € R% Specific suggestions on the forms of
K are given in Appendix D.2.

For a given (u,s, 3), the posterior distribution of ¢ given Fj, is then another Gaussian process
whose mean c,(+) and variance ¢?s () are given as follows (Santner, Williams, and Notz, 2013, Section
4.1.3):

eL(0) = p+rL(0)RE (X — i) (A.3)

252 (0) = 2 (1 o (0) R (0) + U 11'2{21‘"1“9)) ) (A4)

Given this, the expected improvement function can be written as

Bl (0) = E[(90 — p0"*)  1{5(0) < c(0)}1F1]
— 00— 0" ) P(e(0) > max g,(0)\FL)

ERREE)

c(0) —cr(9) L maxjon g 9i(0) —cr(0) ‘]__L>

= (p'0 —p'0*") P (

es(0) 7 ssr(0)
_ (p/9 _ple*,L)+ <1 _® <g(0§)s:(2[j@>) ’ (A.5)

The evaluation points (A(V), ..., #(%)) are then generated according to the following algorithm (M-step

31We use P and E to denote the probability and expectation for the prior and posterior distributions of ¢
to distinguish them from P and E used for the sampling uncertainty for X;.

[19]



in Section 2.3).

ALGORITHM A.1: Let ke N.
Step 1: Initial evaluation points 6 ..., 6(
Step 2: For L > k, with probability 1 — ¢, let 0(L+1) = argmazyeoBLL(0). With probability €, draw

O uniformly at random from ©.

k) are drawn uniformly over © independent of c.

Below, we use Q to denote the law of (0(1), . G(L)) determined by the algorithm above. We also
note that 0*L+1 = arg maXgec, ., P'0 is a function of the evaluation points and therefore is a random

variable whose law is governed by Q. We let
C={0eO:gh) — ) <0} (A.6)

We require that the kernel used to define the correlation functional for the Gaussian process
in (2.17) satisfies some basic regularity conditions. For this, let Kz = Se‘Q”ixng/g(x)dx denote
the Fourier transform of K. Note also that, for real valued functions f,g, f(y) = ©@(g(y)) means

f(y) = O(g(y)) as y — oo and liminf, . f(y)/g(y) > 0.

AsSUMPTION A.1 (Kernel Function): (i) Kp is continuous and integrable; (i) Kz = kg(|z|) for
some nonincreasing function kg : Ry — Ry ; (iii) As & — o either Kg(x) = O(|z]|2*~%) for some
v >0 or Kg(z) = O(|z|"2~9) for all v > 0; (iv) Ky is k-times continuously differentiable for
k = |2v], and at the origin K has k-th order Taylor approximation Py satisfying |K(x) — Py(z)| =
O(||lz[|* (= In || z])?X) as z — 0, for some x > 0.

Assumption A.1 is essentially the same as Assumptions 1-4 in Bull (2011). When a kernel satisfies
the second condition of Assumption A.1 (iii), i.e. Kg(z) = O(|z|2*~%),Yv > 0, we say v = c0.
Assumption A.1 is satisfied by popular kernels such as the Matérn kernel (with 0 < v < oo and
X = 1/2) and the Gaussian kernel (v = o0 and x = 0). These kernels are discussed in Appendix D.2.

Finally, we require that the functions g; are differentiable with continuous Lipschitz gradient,>?
that the function ¢ is smooth, and we impose on the constraint set C (which is a confidence set in our
application) a degeneracy condition inspired by Chernozhukov, Hong, and Tamer (2007, Condition
C.3).33 Below H(©) is the reproducing kernel Hilbert space (RKHS) on © € R determined by the
kernel used to define the correlation functional in (2.17). The norm on this space is | - [|3;,; see Online
Appendix D.2 for details.

AssuMPTION A.2 (Continuity and Smoothness): (i) For each j =1,...,J, the function g;(8) is
differentiable in 0 with Lipschitz continuous gradient. (i) The function c : © — R satisfies |cl|y, < R
for some R >0, where = (B1,--- ,Ba)"

AssuMPTION A.3 (Degeneracy): There exist constants (Cy, M, T1) such that for all w € [0,11],
max g;(0) — c(f) < =Chw, forall@eC™%,
J

dp(C™%,C) £ Mw,

32This requirement holds in the canonical partial identification examples discussed in Online Appendix F,
using the same arguments as in Online Appendix F.1, provided 6,,;(0) > 0.
33 Chernozhukov, Hong, and Tamer (2007) impose the degeneracy condition on the population identified set.
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where C-% ={0 e C :d(0,0\C) = w}.

Assumptions A.2-A.3 jointly imply a linear minorant property on max;(g;(6) — c(6))4:
ACy > 0,72 > 0: max(g;(0) — c(0))+ = Comin{d(0,C), T2}. (A.7)
J

To see this, define f;(6) = g;(8) — c(8), so that the Lh.s. of the above inequality is max; f;(6). By
Assumptions A.2-A.3 and compactness of ©, f;(-) is differentiable with Lipschitz continuous gra-
dient. Let D]() denote its gradient and let M denote the corresponding Lipschitz constant. Let
e =C,/(MM.J), where (Cy, M) are from Assumption A.3. We will show that, for constants (Ca, 75)
to be determined, (i) d(6,C) < € = max; f;(8) = Cad(6,C) and (ii) d(0,C) = € = max; f;(0) = Cama,
so that the minimum between these bounds applies to any 6.

To see (i), write § = 6* + r, where * is the projection of § onto C. Fix a sequence w,, —
0. By assumption A.3, there exists a corresponding sequence 6% — 6* with (for m large enough)
0% — 0% < Mw,, but also max; f;(0%) < —Ciw,. Let t,, = (8% — 6*)/]|0% — 6*| be the sequence
of corresponding directions. Then for any accumulation point ¢ of ¢, and any active constraint j
(i.e., fi(0*) = 0; such j necessarily exists due to continuity of f;(+)), one has D;(§*)t < —Cy/M.
We note for future reference that this finding implies |D;(6*)| = Cy/M. It also implies that the
Mangasarian-Fromowitz constraint qualification holds at 6*, hence r (being in the normal cone of C
at 6*) is in the positive span of the active constraints’ gradients. Thus j can be chosen such that
£i(0%) = 0 and D;(0*)r = |D;(0*)||r|/J. For any such j, write

KO = fen+ [ DEEE

0 dk

[l

_ 0+j D;(0* + kr)rdk
) 0

_ f (Ds(0%)r + (D3(0* + kr) = D;(6%))r) dk
0

> [D;0)Irll/ T+ J; (=MEr]) ] dk
> gl = Mir|?/2
> sl

In the inequality steps, we successively substituted bounds stated before the display, evaluated the
integral in k, and (in the last step) used |r| < e. This establishes (i), where Cy = C1/(2MJ). Next,
by continuity of max; f;(-) and compactness of the constraint set, 7 = ming{max; f;(¢) : d(6,C) > ¢}
is well-defined and strictly positive. This establishes (ii) with 72 = 7/Cs.

A.1 Proof of Theorem 3.2

For each L € N, let

rp = <ﬁ> _V/d(ln L)x. (A.8)
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Proof of Theorem 3.2. First, note that
Hp/e* _ple*,L”Lé — EQ[ |p/9* _ple*,L|] — EQ[ple* _pla*,L]7 (Ag)

where the last equality follows form p’0* — p’0*L+1 > 0, Q — a.s. Hence, it suffices to show

Eo[p6* — p/6*"] = o((%)f"/ “(n L)é). (A.10)

Let (Q,F) be a measurable space. Below, we let L > 2k. Let 0 < v < 00. Let 0 < n < € and
Ay € F be the event that at least |nL] of the points §*+1) ... (L) are drawn independently from a
uniform distribution on ©. Let By, € F be the event that one of the points 8(“*+1) ... (L) is chosen

)

by maximizing the expected improvement. For each L, define the mesh norm:

=g ~ G
hL_Zlel@pefll}PLHQ 0] (A.11)

For a given M > 0, let Cy, € F be the event that hy, < M(L/In L)~"/¢. We then let
DLEAL(\BL(\CL. (A12)
For each w € Dy, let

lw,L)=inf{feN: L<I< 2L79@ € argmax El; ,(0)}. (A.13)
0cO

This is a (random) index that is associated with the first maximizer of the expected improvement
between L and 2L.

Let e = (L/In L) %/4(InL)® for § > 1 + x and note that e, is a positive sequence such that
er, — 0 and r;, = o(e). We further define the following events:

B ={weQ:0< g0ty —c(9l@)y <ep, 1y} (A.14)
By ={weQ: —ey ) < g(OUE)) — (0L < 0} (A.15)
Esp = {we Q: g0ty — c(0U@EN)| > g4, 1) (A.16)

Note that Dy can be partitioned into Dy n Eyp, Dy, n Eop, and Dy n E3;,. By Lemmas A.2, A.3,
and A.4, there exists a constant M > 0 such that, respectively,

sup  |p0* —p/0* P ey, ) < M (A.17)
weDrLnE L

sup  [p/0% — p0* D) ey, 1y < M (A.18)
weDrLNE>g,

sup  [p'0* — p'0* 8|/ exp(—Mny.1)) < M, (A.19)

weDrnEsp,

where 1, = e, /rr. Note that

nL =er/rp = (InL)°™X (A.20)
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Hence, by taking M sufficiently large so that M > v/d,
exp(—Mng) = exp (M (InL)°™X) <exp(-MInL) =L M = O(L™"/) = O(ey), (A.21)
where the inequality follows from M(InL)®~X > MInL by 6 > 1 + x. By (A.17)-(A.21),

sup [p'0* —Pla*’l(w’L)V@z(w,L) <M, (A.22)

weDp,

for some constant M > 0 for all L sufficiently large. Since L < {(w, L) < 2L, p'0** is non-decreasing

in L, and £, is non-increasing in L, we have
Ppo* —p'0*2t < M(L/InL)™"/4(In L) < M(2L/In2L)"/4(In2L)° (A.23)

where the last equality follows from L~*/% = 2¥/4(2L)~*/4 and In L < In2L.
Now consider the case w ¢ Dr. By (A.12),

Q(DE) < Q(AL) + Q(B;) + Q(CE). (A.24)

Let Z; be a Bernoulli random variable such that Z, = 1 if #®) is randomly drawn from a uniform
distribution. Then, by the Chernoff bounds (see e.g. Boucheron, Lugosi, and Massart, 2013, p.48),

L
Q(A5) =Q( Y. Zi <|nL]) <exp(—(L —k + 1)e(e — n)*/2). (A.25)
(=k+1

Further, by the definition of By,
Q(Bg) = ¢*, (A.26)

and finally by taking M large upon defining the event C, and applying Lemma 12 in Bull (2011), one

has

Q(CE) = 0L ), (A.27)
for any v > 0. Combining (A.24)-(A.27), for any v > 0,

Q(Dg) =0(L™). (A.28)

Finally, noting that p’6* — p’6*2L is bounded by some constant M > 0 due to the boundedness of ©,

we have

EQ[pla* _plo*,QL] — f plg* _ple*,ZLdQ +f ple* _pla*,QLdQ
Dy, D¢

= O((2L/m2L) "4 (In2L)%) + O(2L™7), (A.29)

where the second equality follows from (A.23) and (A.28). Since v > 0 can be made aribitrarily large,
one may let the second term on the right hand side of (A.29) converge to 0 faster than the first term.
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Therefore
Eo[p'0* — p'0**"] = O((2L/In 2L)~"/4(In2L)°), (A.30)

which establishes the claim of the theorem for 0 < v < oc. When the second condition of Assumption
A1 (iii) holds (i.e., ¥ = ), the argument above holds for any 0 < v < 0. O

A.2 Auxiliary Lemmas for the Proof of Theorem 3.2

Let Dy, be defined as in (A.12). The following lemma shows that on Dy n Eyp, p’0* and p' o« L)
are close to each other, where we recall that 0¢(«-L)) is the expected improvement maximizer (but

does not belong to C for w € Eqp).

LEMMA A.1: Suppose Assumptions A.1, A.2, and A.3 hold. Let €1, be a positive sequence such
that e, — 0 and rp = o(er). Then, there exists a constant M > 0 such that sup,cp, ~g,, [P'0* —
p’G(e(w*L))Veg(w’L) < M for all L sufficiently large.

Proof. We show the result by contradiction. Let {wr} © Q be a sequence such that wy, € Dy, n Eqp,
for all L. First, assume that, for any M > 0, there is a subsequence such that |p/0* — p/@“wr.L)| >
Mey,, ) for all L. This occurs if it contains a further subsequence along which, for all L, (i)
p'oEwrL) _ plox > Mey,, 1) or (i) p'0* — p/giwr,L)) > Mey,,1y-

Case (i): p/0WwrL) —p/g* > Mey,, 1) for all L for some subsequence.

To simplify notation, we select a further subsequence {ar} of {L} such that for any a;, < ap/,
U(way.ar) < L(w,,,,ars). This then induces a sequence {#(9)} of expected improvement maximizers
such that p'0®) — p/0* > Me, for all £, where each ¢ equals U wq, ,ar) for some ay, € N. In what
follows, we therefore omit the arguments of ¢, but this sequence’s dependence on (w,, ,ar) should be
implicitly understood.

Recall that C defined in equation (A.6) is a compact set and that c6¥) = argming.. [0 — 6|
denotes the projection of #¢) on C. Then

PO —p'o* = (p0) — p'Te6™) + (p'TI0") — p'o*)
< pl6%) — 6| + (p'TIc6 — p'o*) < d(6'), C), (A.31)

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows
from p'TI0(®) — p'0* < 0 due to IcA®) € C. Therefore, by equation (A.7), for any M > 0

G0©O) = c(01) . = Cod(89,C) > CyMey, (A.32)

for all £ sufficiently large, where the last inequality follows from p'6(¥) —p'6* > Me,. Take M such that
CyM > 1. Then (g(69)) — ¢(89))) /ey > CoM > 1 for all £ sufficiently large, contradicting wy, € Fp,.

Case (ii): Similar to Case (i), we work with a further subsequence along which p'6* — p’8¥) > Me, for
all £. Recall that along this subsequence, #*) ¢ C because 0 < §(89)) — (619 < e,. We will construct
00 e Cc~e¢ s.t. El,_1(0Y)) > El,_;(01), contradicting the definition of ().
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By Assumption A.3,
du(C™°,C) < Mey, (A.33)
for all ¢ such that e, < 71. By the Cauchy-Schwarz inequality, for any 6,
PO —p'0 < |p]6* — 9. (A.34)

Therefore, minimizing both sides with respect to # € C~¢¢ and noting that |p| = 1, we obtain

po* — sup p'd < inf |0* —4)|. (A.35)
fec=e gec—ee
Further, noting that 6* € C,
Cinf 0% — 6] < sup_ mf Ha — 0] <dg(C™,0). (A.36)
0eC—=¢
By (A.33)-(A.36),
p'0* — sup p'0 < Mey, (A.37)
ec—=e

for all ¢ sufficiently large. Therefore, for all ¢ sufficiently large, one has

p'0* — sup p'0 <p'0* —p'o", (A.38)
feC—*et
implying existence of () € C—<¢ s.t.
P00 > o, (A.39)

By Lemma A.6, for ¢(0) = (g(0) — c(0))/s¢(0), one can write

EL(0)) < (p'0©) — p’e*’f—m(l—@(W)) (A.40)
< (0 — 0" 1) (1 - B(-R))), (A.41)

where the last inequality uses ¢(6()) > 0. Lemma A.6 also yields

(7+)) (A.42)

for all ¢ sufficiently large, where the second inequality follows from (A.39). Next, by Assumption A.3,

n(0)
5(0) 150 g1 A (HOT)+ R
Bl (01) > (/0 - po* ) (1= 2(F—))
)
S

> (p/e(f) —p19*1Z71)+(1 _ @(

50 _ g(0") —c(6Y) _ —Cie
0 = S < (A.43)

for all ¢ sufficiently large. Note that s,(#()) = O(r¢) by (A.62) and r, = o(e;) by assumption. Hence,
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t(6) — —oo. This in turn implies
Bl 1(09) > (700 — p'g*=1), (1 — &(~R/c)) (A.44)

for all ¢ sufficiently large. (A.41) and (A.44) jointly establish the desired contradiction. O

The next lemma shows that on Dy, n Eqp, p'0* and p'0* L) are close to each other, where we

recall that 6% ((«<.1)) is the optimum value among the available feasible points (it belongs to C).

LEMMA A.2: Suppose Assumptions A.1, A.2, and A.3 hold. Let €5, be a positive sequence such
that e, — 0 and rp = o(er). Then, there exists a constant M > 0 such that sup,cp, ~g,, [P'0* —
p’G*’Z(“*L)|/6g(w7L) < M for all L sufficiently large.

Proof. We show below p'6* — p/6*Hw.L)—1 — O(g¢(w,ry) uniformly over Dy, n Eyy, for some decreasing
sequence ¢y satisfying the assumptions of the lemma. The claim then follows by re-labeling &,.

Suppose by contradiction that, for any M > 0, there is a subsequence {w,,} c Q along which
Wa, € Dg, and |p/6* —p/g*H(@ar00) 1| > Mey(y,, ap) for all L sufficiently large. To simplify notation,
we select a subsequence {ar} of {L} such that for any ar < ar:, #(wa,,ar) < €(wa,,,ars). This then
induces a sequence such that [p'6* — p'0**~1| > Me, for all £, where each £ equals £(w,,,ar) for
some ay, € N. Similar to the proof of Lemma A.1, we omit the arguments of ¢ below and construct a
sequence of points ) € C~¢ such that El,_;(8()) > EI,_,(6©)).

Arguing as in (A.33)-(A.36), one may find a sequence of points 6 e == such that

p'o* —p'09 < Mgy, (A.45)
for some M; > 0 and for all ¢ sufficiently large. Furthermore, by Lemma A.1,

p'0* — p'0\)| < Myey, (A.46)
for some My > 0 and for all ¢ sufficiently large. Arguing as in (A.41),

El1(0)) < (/6 —p/6*~1) 4 (1 — ®(—R/5))
= 0% —p' 0" — (p0* — p'0)), (1 — B(—R)S))
< (0% —p'0* ) (1 — ©(=R/s)) + |p'6* —p'6“), (A.47)

where the last inequality follows from the triangle inequality, p’6* — p’'6**~1 > 0, and 1 — <I>(_§—R) <1

Similarly, by Lemma A.6,
~ - 10
EL 1 (0) > (/80 — pro+e1), (1 - o (L)
S
- t(@©)+ R
— () OF _ ofpE =1 _ (% _ 10(L) _
(0% —p'0 (0" —p'0 ))+(1 ‘I’(i< ))

H(£) ~
> (ple* _ple*,é—l)(l _ @(M)) _ (ple* —pltg(é)), (A.48)

where the last inequality holds for all ¢ sufficiently large because p'6* — p/0) € (0, M2ey] and one
can find a subsequence p/0* — p'0*!=1 > Mye, so that p'0* — p'6* =1 — (p/6* — p'0) > 0 for all ¢
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sufficiently large.
Subtracting (A.47) from (A.48) yields

El,_1(6©) — EL,_, (69)
-R t(0W) + R «
% Ik =1 _ (0% _ A0 1% ()
> (/0" =0 ) (0(T5) —@(F)) - ot /0 — et — o)

S
> (ple* _ple*,é—l)(q)(%R) _ @(W)) — (M + M>)ey, (A.49)

where the last inequality follows from (A.45) and (A.46). Note that there is a constant ¢ > 0 s.t.

o<1 o (1Y L (.50

due to t() - —co by (A.43), (A.62), and ry = o(e;). Therefore, for all £ sufficiently large,
El,_1(8) —EI,_1(0")) > M(ep — (M + My)ey. (A.51)

One may take M large enough so that, for some positive constant v, M{e, — (M7 + Ms)ey > ey for
all ¢ sufficiently large, which implies Eﬂg,l(é(@) —EI, 1(6®) > 0 for all £ sufficiently large. However,

this contradicts the assumption that #() ¢ C~¢¢ is the expected improvement maximizer. O
The next lemma shows that on Dy, n Esr, p'0* and p'0*(«@.L) are close to each other.

LEMMA A.3: Suppose Assumptions A.1, A.2, and A.3 hold. Let {e,} be a positive sequence such
that e, — 0 and rr, = o(er). Then, there exists a constant M > 0 such that sup ep, ~p,, [P0 —
p’ﬁ*’e(w’L)Vsaw’L) < M for all L sufficiently large.

Proof. Note that, for any L € N, w € Dy, n Esr, and £ = £(w, L), 01 satisfies g(0(?) — ¢(09) < 0,
hence p’0*’e > p'0©, which in turn implies

0<po* — o™t < plo* _plg(é). (A.52)

Therefore, it suffices to show the existence of M > 0 that ensures (p/'6* — p/@U-L)), < Meg, 1)
uniformly over Dy n Ey, for all L. Suppose by contradiction that, for any M > 0, there is a

subsequence {w,, } < Q along which w,, € Dy, N Ea,, and p'8% — p/§f@ar00)) > Mey for

Wa; ,aL)
all L sufficiently large. Again, we select a subsequence {ar} of {L} such that for any aLL < ar,
U(way . ar) < l(w,,,,ars). This then induces a sequence {#(“)} of expected improvement maximizers
such that (p'0* — p'0), > Me, for all £, where each ¢ equals £(w,, ,ar) for some az, € N.

Similar to the proof of Lemma A.1, we omit the arguments of ¢ below and prove the claim by
contradiction. Below, we assume that, for any M > 0, there is a further subsequence along which
p'0* — p'0) > Me, for all ¢ sufficiently large.

Now let ¢}, = Cey with C > 0 specified below. By Assumption A.3, for all 6 € C=, it holds that

9(0) = c(0) < —=CCrey, (A.53)

for all ¢ sufficiently large. Noting that —e, < §(0“)) — ¢(6'9)) and taking C such that CCy > 1, it
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follows that 0() ¢ C—<¢ for all ¢ sufficiently large.
Arguing as in (A.33)-(A.36), one may find a sequence of points 8¢) € C~°¢ such that

0% —p'0'Y < Mgy = M, Cey, (A.54)

This and the assumption that one can find a subsequence such that p'6* — p'0¥) > M,Ce, for all ¢
imply

p'o* —p'0) < p'o* — p'otd), (A.55)
for all ¢ sufficiently large. Now mimic the argument along (A.41)-(A.44) to deduce
El,1(69) > EI,_,(6) (A.56)

for all ¢ sufficiently large. However, this contradicts the assumption that 0 ¢ C—¢ is the expected

improvement maximizer. O
The next lemma shows that on Dy n Esp,, p’6* and p’@*’(f(w”:)) are close to each other.

LEMMA A.4: Suppose Assumptions A.1, A.2, and A.3 hold. Let e;, = (L/In L)~"/4(In L)? for § >
1+x. Letn, = er/rr, = (In L) X. Then there exists a constant M > 0 such that Supep, ~g,, [P0 —
p’@*’z(“’*L)|/eXp(—M77@(w’L)) < M for all L sufficiently large.

Proof. Let {wr} < Q be a sequence such that wy, € Dy, for all L. Since wy, € By, there is £ = ¢(wy,, L)
such that L < ¢ < 2L and 0 is chosen by maximizing the expected improvement. For later use,
we note that, for any M > 0, it can be shown that exp(—Mny_1)/exp(—Mng) — 1, which in turn
implies that there exists a constant C' > 1 such that

exp(—Mnp_1) < Cexp(—Mny), (A.57)

for all L sufficiently large.
For € © and L € N, let I(0) = (p'0 — p'0%L);1{g(0) < c()}. Recall that #* is an optimal



solution to (2.14). Then, for all L sufficiently large,

@) ) B
p o —poet=t DI, (%) < BIL_, (0%) (1 — ®(R/s)) " < BL_, (0)(1 — d(R/S)) "

Io-1(6%) + My exp(—Mne-1) ) (1 - ®(R/s)) ™
Lo1(0%) + My exp(— i) ) (1 - @(R/s)) ™

I
(
(
< (1o 1(0%") + My exp(=Nn) ) (1 - @(R/)) ™
(
(

< (11471(9“’”) +3My exp(—Mm)) (1—@(R/))
' 30y exp(— 1) (1 - B(R/6))

where (1) follows by construction, (2) follows from Lemma A.6 (i), (3) follows from #(¥) being the
maximizer of the expected improvement, (4) follows from Lemma A.5, (5) follows from (A.57) with
M, = CMj, (6) follows from 0** = argmaxgee,p'6, (7) follows from Lemma A.5, (8) follows from
01 being the expected improvement maximizer, (9) follows from Lemma A.5, and (10) follows
from T,_; (A~ 1) = 0 due to the definition of #*¢~!. This establishes the claim. O

For evaluation points 6y such that [g(0r) — c¢(6L)| > €L, the following lemma is an analog of
Lemma 8 in Bull (2011), which links the expected improvement to the actual improvement achieved

by a new evaluation point 6.

LEMMA A.5: Suppose © c R? is bounded and p € S*'. Suppose the evaluation points (011, .-  9(F))
are drawn by Algorithm A.1 and let Assumptions A.1 and A.2-(ii) hold. For 6 € © and L € N, let
I.(0) = (pP0—p'0%L), 1{g(0) < c(#)}. Let {e1} be a positive sequence such that ey, — 0 and r, = o(cr).
Let n, = e /rr,. Then, for any sequence {01} < © such that |g(0r) — c(0L)] > €L,

Io(0r) —ve <EIL(0r) <Ip(fr) + vz, (A.58)

where v, = O(exp(—Mnr)).

Proof of Lemma A.5. If s;(01) = 0, then the posterior variance of ¢(6r) is zero. Hence, EI.(01) =
I(Ar), and the claim of the lemma holds.

Suppose sr(01) > 0. We first show the upper bound. Let v = (g(0r) — ¢(01))/sL(0r) and
t=(g(0r) —c(0r))/sr(01). By Lemma 6 in Bull (2011), we have |u — t| < R. Starting from Lemma



A.6(1), we can write

El(6) < (p'0r — p'0™ )4 (1 - ‘I’(t _gR)>

= (/6 — p'9%)  (Ha(01) < e(0n)) + Ua(6n) > o)) (1 - 2 ("))

S
<T.(0) + (W0 — p0™L) . 1{G(0) > c(61)} (1 _ @(g)), (A.59)

where the last inequality used 1 — ®(z) < 1 for any x € R. Note that one may write

13002) > (0} (1~ 0 (")) = 14g(00) > et0)) (1 - o (L0 0Oy =y )

¢sp(0r)

To be clear about the hyperparameter value at which we evaluate sy, we will write sz, (6r;3). By the
hypothesis that |lc[3;, < R and Lemma 4 in Bull (2011), we have

d
lellas, < H (Br/B,) =S (A.61)

Note that there are |nL]| uniformly sampled points, and Kg is associated with index v € (0,00). As
shown in the proof of Theorem 5 in Bull (2011), this ensures that

sup  s5(0r;0) = O(hp(InL)X) = O(rr). (A.62)
BElTi_1 (8,8

Below, we simply write this result sy (6) = O(rr). This, together with |g(61) — ¢(f1)| > e and the
fact that 1 — ®(-) is decreasing, yields

Hg(0s) > e(0n)) (1 - o W) <1 (s - )

ssp(0r) ¢sp(0n) <
< 1= Q(Min, — Ma), (A.63)

for some M; > 0 and where My = R/s. Note that, by the triangle inequality,
— ©(Minr — M) < 1—@(Mine) + |(1 — @(Ming — Ma)) — (1 — 2(Mine))l, (A.64)
and

—®(Min) <

YA (Minr) = O(exp(—Mmny)), (A.65)

for some M > 0, where ¢ is the density of the standard normal distribution, and the inequality follows
from 1 — ®(x) < ¢(z)/x. The second term on the right hand side of (A.64) can be bounded as

(1 = ®(Muynz — Mz)) = (1 = &(Minr))| < ¢(iiL) Mz = O(exp(=M1nyz)) (A.66)

by the mean value theorem, where 7 is a point between Miny and Miny — M;. The claim of
the lemma then follows from (A.59), (A.63)-(A.66), and (p'0 — p’Gz’L) being bounded because © is
bounded.
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Similarly, for the lower bound, we have

ElL(0) = (001 —p'07)+ (1 (t . R))

> (p’eL—p’9L) 1{9(9L) ( )}< (I)(t+R>)

> 1(00) — (40 = 907) 1 {g(00) < (o)} (7). (467
Note that we may write
1 (0r) < e () < 14g0,) < corjo (10 ziiL(LL*)SL(QL)R), (A.68)
by [g(6L) — ¢(0L)| > 1. Arguing as in (A.77) and noting that ® is increasing, one has
Hgtor) < conto( T THEET) <o (G 4 )
< O(=Ming + Ms), (A.69)
for some M; > 0 and My > 0. By the triangle inequality,
O(—Miny + Mz) < ©(=Mung) + |®(=Miny + Mz) — ©(=MinL)), (A.70)
where arguing as in (A.65),
@(—Minr) =1—@(Minr) = O(exp(—Mnr)). (A.71)

The second term on the right hand side of (A.70) can be bounded as

|®(—Myng + Ma) — &(—Myng)|
= |(1 = &(MinL — Ma)) — (1 — @(M1nr))| < ¢(7) M2 = O(exp(—Mnr)), (A.72)

by the mean value theorem, where 71, is a point between Miny and Miny — My. The claim of the
lemma then follows from (A.77)-(A.72), and (p'6;, — p'6%") being bounded because © is bounded. [

LEMMA A.6: Suppose © < R? is bounded and p € S*1 and let Assumptions A.1 and A.2-(ii)
hold. Let t(0) = (g(0) — c(0))/s.(0). For 0 € © and Le N, let 11,(0) = (p'0 — p'6*L) . 1{g(#) < c(9)}.
Then, (i) for any L€ N and 0 € O,

t0)+ R
S

) <EL®) < wo—pomiy, (1- o))

(0’0 —p’9*7L)+(1 - <I>( .

Further, (ii) for any L € N and 0 € © such that sp(0) > 0,

I.(0) < EI,(0) (1 - @(E))fl. (A.74)

S

Proof. (i) Let u(6) = (5(6) — c1(8))/s1.(6) and #(6) = (3(6) — c(6))/s1.(6). By Lemma 6 in Bull (2011),
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we have |u(f) — t(6)| < R. Since 1 — ®(-) is decreasing, we have

ELL(0) = (00 — p'6* "), (1 . @(@)) < (0 —p'o=t), (1 - @(M%R)). (A.75)
Similarly,
ELL(8) = (/6 — p'6* 1), (1 - q>(@)) > (06— p'o*h), (1 - @(M%R)). (A.76)

(ii) For the lower bound in (A.74), we have

EIL(0) = (p'0 — p'0*™1L), (1 - ‘I’(M%R))

> (0 - p0*5)1{5(0) < c(0)} (1 - @(“")%R»

> 1,(0)(1 — ®(R/S)), (A.77)

where the last inequality follows from ¢(0) = (g(0) — ¢(0))/sr(6) < 0 and the fact that 1 — ®(+) is

decreasing. O

B Applying the E-A-M Algorithm to Profiling

We describe below how to use the E-A-M procedure to compute BCS-profiling based confidence
intervals. Let 7 < R denote the parameter space for 7 = p’6. The (one-dimensional) profiling

confidence region is

{7 eT: inf To6) < cﬁm(f)}, (B.1)
0:p'6=r
where ¢ is the critical value proposed in Bugni, Canay, and Shi (2017) and T, is any test statistic
that they allow for. The E-A-M algorithm can be used to compute the endpoints of this set so that
the researcher may report an interval.

For ease of exposition, we discuss below the computation of the right end point of the confidence

interval, which is the optimal value of the following problem:3*

max T (B.2)
TeT
4. inf  T,(0) < ME(7).
s eeelzgfezr (0) < e (7)
We then take ¢(7) = —infgpee.pro=r Tn(f) + cME(7) as a black-box function and apply the E-A-M
algorithm.?® We include the profiled statistic in the black-box function because it involves a non-

linear optimization problem, which is also relatively expensive. The modified procedure is as follows.

Initialization: Draw randomly (uniformly) over 7 < R a set (7(1),...,7()) of initial evaluation

points and evaluate c(7(9)) for £ = 1,...,k — 1. Initialize L = k.

34The left end point is the optimal value of a program that replaces max with min.
350One may view (B.2) as a special case of (2.14) with a scalar control variable and a single constraint
91(7) < ¢(7) with g1 (1) = 0.
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E-Step: Evaluate ¢(7()) and record the tentative optimal value
b =max{r’: Le{1,.. LY e(r Oy > 0}.

A-step: (Approximation) Approximate 7 — ¢(7) by a flexible auxiliary model. We again use the
kriging approximation, which for a mean-zero Gaussian process ((-) indexed by 7 and with

constant variance ¢? specifies

TO =+ ¢(+9), ¢=1,...,L (B.3)
Corr(¢(),¢(7") = Kg(r = 7'), 7,7 € R, (B.4)

where Kj is a kernel with a scalar parameter 5 € [8, 3] € Ryy. The parameters are estimated

in the same way as before.

The (best linear) predictor of ¢ and its derivative are then given by

rr(7)RH (Y — i), (B.5)
QL(T)RIHY — 1), (B.6)

where r1(7) is a vector whose ¢-th component is Corr(¢(r),((7(9))) as given above with es-
timated parameters, Qr(7) = V.rp(7), and Ry is an L-by-L matrix whose (¢,¢') entry is
Corr(¢(r®),¢(r*))) with estimated parameters. The amount of uncertainty left in ¢(7) is

captured by the following variance:

(1 — llelrL(T))z). (B?)

A2 2 _ 2 -1
() = (1 - ru (' Ry 'ra() + SR
M-step: (Maximization): With probability 1 — €, maximize the expected improvement function

El; to obtain the next evaluation point, with:

(L+1) = ElL(7) = S SR Y GCAWANY B.8
T arirzlrax (1) ar§§_ax(7 T )+< (fSL(T))) (B.8)

With probability €, draw 7(&+1) randomly from a uniform distribution over 7.

As before, 7% is reported as end point of CT,, upon convergence. In order for Theorem 3.2 to
apply to this algorithm, the profiled statistic infgee.pyo=r 77,(f) and the critical value ¢M% need to
be sufficiently smooth. We leave derivation of sufficient conditions for this to be the case to future

research.

C An Entry Game Model and Some Monte Carlo Simulations

We evaluate the statistical and numerical performance of calibrated projection and E-A-M in com-
parison with BCS-profiling in a Monte Carlo experiment run on a server with two Intel Xeon X5680
processors rated at 3.33GHz with 6 cores each and with a memory capacity of 24Gb rated at 1333MHz.

The experiment simulates a two-player entry game in the Monte Carlo exercise of BCS, using their
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code to implement their method.3%

C.1 The General Entry Game Model

We consider a two player entry game based on Ciliberto and Tamer (2009):

Yo =0 Yo=1
Y1 =0 0,0 O,Zéﬁl + ug
Yi=1 Z{'&l 4+ uq1,0 Z{(z?l+A1)+u1,Z§(192+A2)+u2

Here, Y;, Z;, and uy denote player 's binary action, observed characteristics, and unobserved
characteristics. The strategic interaction effects Z/ Ag 0 measure the impact of the oppo-
nent’s entry into the market. We let X = (Y1,Y2, 2], Z5)". We generate Z = (Z1,Z2) as
an ii.d. random vector taking values in a finite set whose distribution p, = P(Z = z) is
known. We let u = (uj,u2) be independent of Z and such that Corr(u,us) = r € [0,1]
and Var(uy) = 1,0 = 1,2. We let § = (97,0%, A}, AL, 7). For a given set A = R? we define
G,(A) = P(u € A). We choose G, so that the c.d.f. of u is continuous, differentiable, and
has a bounded p.d.f. The outcome Y = (Y7, Y2) results from pure strategy Nash equilibrium
play. For some value of Z and u, the model predicts monopoly outcomes Y = (0,1) and (1, 0)
as multiple equilibria. When this occurs, we select outcome (0, 1) by independent Bernoulli

trials with parameter p € [0,1]. This gives rise to the following restrictions:

E[{Y = (0,0)}1{Z = 2}] = G((—0, =2101) x (=00, —=2592))p. = 0 (C.1)

E[I{Y = (1, D}1{Z = 2}] — G, ([—21(91 + A1), +0) x [=25 (02 + Ag), +00))p. =0 (C.2)

E[{Y = (0, )}1{Z = 2}] = G- ((—o0, =21 (01 + A1) x [~2592, +0))p. < 0 (C.3)
—E[{Y = (0, D}U{Z = 2}] + | Gr((=o0, =2} (9 + A1) x [~ 240z, +00)

— Gr([—2191, =21 (91 + A1) x [—25099, —25(92 + Ag))]pz <0.
(C4)

We show in Online Appendix F that this model satisfies Assumptions D.1 and E.3-2.37
Throughout, we analytically compute the moments’ gradients and studentize them using

sample analogs of their standard deviations.

C.2 A Comparison to BCS-Profiling

BCS specialize this model as follows. First, ui,us are independently uniformly distributed
on [0, 1] and the researcher knows r = 0. Equality (C.1) disappears because (0,0) is never
an equilibrium. Next, Z; = Zy = [1; {Wk}g":"o], where W}, are observed market type indi-

36See nttp://qeconomics.org/ojs/index. php/qe/article/downloadSuppFile/431/1411.
3"The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes,
Porter, Ho, and Ishii (2011) exclude any DGP that has moment equalities.
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cators, Ay = [6¢;0q,,] for £ = 1,2, and 1 = ¥ = ¥ = [0; {29[’“] Z":VO].?’S The parameter
vector is @ = [61;02;9] with parameter space © = {# € R2TIW : (§1,48,) € [0,1]%, V) €
[0, min{d1,d2}], kK = 1,...,dw}. This leaves 4 moment equalities and 8 moment inequali-
ties (so J = 16); compare equation (5.1) in BCS. We set dyy = 3, P(Wj, = 1) = 1/4,k =
0,1,2,3, 6 =[0.4;0.6;0.1;0.2;0.3], and p = 0.6. The implied true bounds on parameters are
61 € [0.3872,0.4239], 5 € [0.5834,0.6084], 91 € [0.0996,0.1006], 92! € [0.1994,0.2010], and
I € [0.2992,0.3014].

The BCS-profiling confidence interval CIZF inverts a test of Hy : p'6 = 7 over a grid
for 7. We do not in practice exhaust the grid but search inward from the extreme points of
O in directions +p. At each 7 that is visited, we use BCS code to compute a profiled test
statistic and the corresponding critical value ¢M 2 (7). The latter is a quantile of the minimum
of two distinct bootstrap approximations, each of which solves a nonlinear program for each
bootstrap draw. Computational cost quickly increases with grid resolution, bootstrap size,
and the number of starting points used to solve the nonlinear programs.

Calibrated projection computes ¢,(f) by solving a series of linear programs for each
bootstrap draw.?? It computes the extreme points of CI, by solving the nonlinear program
(2.6) twice, a task that is much accelerated by the E-A-M algorithm. Projection of Andrews
and Soares (2010) operates very similarly but computes its critical value &% () through
bootstrap simulation without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence thresh-
old of 0.005.C We run all methods with B = 301 bootstrap draws, and calibrated and
“uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with B = 1001.%
Some other choices differ: BCS-profiling is implemented with their own choice to multi-start
the nonlinear programs at 3 oracle starting points, i.e. using knowledge of the true DGP;
our implementation of both other methods multi-starts the nonlinear programs from 30 data
dependent random points (see Kaido, Molinari, Stoye, and Thirkettle (2017) for details).

Table 2 displays results for (1, d2) and for 300 Monte Carlo repetitions of all three meth-
ods. All confidence intervals are conservative, reflecting the effect of GMS. As expected,
uncalibrated projection is most conservative, with coverage of essentially 1. Also, BCS-
profiling is more conservative than calibrated projection. The most striking contrast is in

computational effort. Here, uncalibrated projection is fastest — indeed, in contrast to received

38This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for observed
heterogeneity in interaction effects.

39We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and
described in Mattingley and Boyd (2012).

40This is only one of several individually necessary stopping criteria. Others include that the current
optimum 6% and the expected improvement maximizer 9%+ (see equation (2.21)) satisfy [p’ (%! — 0% )| <
0.005. See Kaido, Molinari, Stoye, and Thirkettle (2017) for the full list of convergence requirements.

41Based on some trial runs of BCS-profiling for 61, we estimate that running it with B = 1001 throughout
would take 3.14-times longer than the computation times reported in Table 2. By comparison, calibrated
projection takes only 1.75-times longer when implemented with B = 1001 instead of B = 301.
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wisdom, this procedure is computationally somewhat easy. This is due to our use of the E-
A-M algorithm and therefore part of this paper’s contribution. Next, our implementation of
calibrated projection beats BCS-profiling with gridding by a factor of about 70. This can
be disentangled into the gain from using calibrated projection, with its advantage of boot-
strapping linear programs, and the gain afforded by the E-A-M algorithm. It turns out that
implementing BCS-profiling with the adapted E-A-M algorithm (see Appendix B) improves
computation by a factor of about 4; switching to calibrated projection leads to a further
improvement by a factor of about 17. Finally, Table 3 extends the analysis to all components
of # and to 1000 Monte Carlo repetitions. We were unable to compute this for BCS-profiling.

In sum, the Monte Carlo experiment on the same DGP used in BCS yields three inter-
esting findings: (i) The E-A-M algorithm accelerates projection of the Andrews and Soares
(2010) confidence region to the point that this method becomes reasonably cheap; (ii) it also
substantially accelerates computation of profiling intervals, and (iii) for this DGP, calibrated
projection combined with the E-A-M algorithm has the most accurate size control while also

being computationally attractive.



Tables

Table 1: Results for empirical application, with o = 0.05, p = 6.6055, n = 7882, k,, = VInn. “Direct
search” refers to fmincon performed after E-A-M and starting from feasible points discovered by
E-A-M, including the E-A-M optimum.

Ccl, Computational Time
E-A-M Direct Search E-A-M  Direct Search  Total
V95e | [—2.0603,—0.8510] [—2.0827,—-0.8492] | 24.73 32.46 57.51
sz, [0.1880,0.4029] [0.1878,0.4163] 16.18 230.28 246.49
e [1.7510, 1.9550] [1.7426,1.9687] 16.07 115.20 131.30
G [0.3957,0.5898] [0.3942,0.6132] 27.61 107.33 137.66
stee [0.3378,0.5654] [0.3316,0.5661] 11.90 141.73 153.66
U [0.3974, 0.5808] [0.3923, 0.5850] 13.53 148.20 161.75
drcc | [—1.4423,—-0.1884] [—1.4433,—0.1786] | 15.65 119.50 135.17
doa | [-1.4701,—0.7658] [—1.4742,—0.7477] | 13.06 114.14 127.23
r [0.1855,0.85] [0.1855,0.85] 5.37 42.38 47.78




Table 2: Results for Set 1 with n = 4000, M C's = 300, B = 301, p = 5.04, x,, = VInn.
Median CI
11—« crerof CI, C1Iproi
Implementation Grid E-A-M E-A-M E-A-M
0.95 [0.330,0.495] [0.331,0.495] [0.336,0.482] [0.290,0.558]
01 =04 0.90 [0.340,0.485] [0.340,0.485] [0.343,0.474] [0.298,0.543]
0.85 [0.345,0.475] [0.346,0.479] [0.348,0.466] [0.303,0.537]
0.95 [0.515,0.655] [0.514,0.655] [0.519,0.650] [0.461,0.682]
02 = 0.6 0.90 [0.525,0.647] [0.525,0.648] [0.531,0.643] [0.473,0.675]
0.85 [0.530,0.640] [0.531,0.642] [0.539,0.639] [0.481,0.671]
Coverage
1-a CIerof CI, CIpr
Implementation Grid E-A-M E-A-M E-A-M
Lower Upper Lower Upper | Lower Upper | Lower Upper
0.95 | 0997 0990 1.000 0.993 | 0.993 0.977 | 1.000 1.000
01 =04 0.90 | 0990 0.980 0.993 0.977 | 0.987 0.960 | 1.000  1.000
0.85 | 0970 0.970 0.973 0.960 | 0.957 0.930 | 1.000  1.000
0.95 | 0987 0.993 0.990 0.993 | 0.973 0.987 | 1.000 1.000
0o = 0.6 0.90 | 0977 0973 0.980 0.977 | 0.940 0.953 | 1.000  1.000
0.85 | 0.967 0.957 0.963 0.960 | 0.943 0.927 | 1.000 1.000
Average Time
11—« crerof ClI, C1Iproi
Implementation Grid E-A-M E-A-M E-A-M
0.95 1858.42 425.49 26.40 18.22
01 =04 0.90 1873.23 424.11 25.71 18.55
0.85 1907.84 444.45 25.67 18.18
0.95 1753.54 461.30 26.61 22.49
02 = 0.6 0.90 1782.91 472.55 25.79 21.38
0.85 1809.65 458.58 25.00 21.00

Notes: (1) Projections of O are: d1 € [0.3872,0.4239], d2 € [0.5834,0.6084], 1 € [0.0996,0.1006], (2 €
[0.1994,0.2010], ¢3 € [0.2992,0.3014]. (2) “Upper” coverage is for maxgeg,(p) p'0, and similarly for “Lower”.
(3) “Average time” is computation time in seconds averaged over MC replications. (4) CIE7 results from
BCS-profiling, C1I,, is calibrated projection, and CIZ™’ is uncalibrated projection. (5) “Implementation”
refers to the method used to compute the extreme points of the confidence interval.



Table 3: Results for Set 1 with n = 4000, M C's = 1000, B = 999, p = 5.04, s, = VInn.

1—a Median CI , CI,, Coverage | CIE™ Coverage | Average Time

CcI, cprol Lower Upper | Lower  Upper c1, CIEI

0.95 | [0.333,0.478] [0.288,0.555] | 0.988  0.982 1 1 4241  22.23

01 =04 | 090 | [0.341,0.470] [0.296,0.542] | 0.976  0.957 1 1 41.56  22.11
0.85 | [0.346,0.464] [0.302,0.534] | 0.957  0.937 1 1 40.47  19.79

0.95 | [0.525,0.653] [0.466,0.683] | 0.969  0.983 1 1 42.11 24.39

02 =0.6 | 0.90 | [0.538,0.646] [0.478,0.677] | 0.947  0.960 1 1 40.15  28.13
0.85 | [0.545,0.642] [0.485,0.672] | 0.925  0.941 1 1 41.38  26.44

0.95 | [0.054,0.142] [0.020,0.180] | 0.956  0.958 1 1 40.31  22.53

¢ll'=0.1] 090 | [0.060,0.136] [0.028,0.172] | 0.911  0.911 1 1 36.80 24.15
0.85 | [0.064,0.132] [0.032,0.167] | 0.861  0.860 | 0.999 0.999 | 39.10 21.81

0.95 | [0.156,0.245] [0.121,0.281] | 0.952  0.952 1 1 39.23  24.66

¢Bl=0.2 | 090 | [0.162,0.238] [0.128,0.273] | 0.914  0.910 | 0.998 0.998 | 41.53  21.66
0.85 | [0.165,0.234] [0.133,0.268] | 0.876  0.872 | 0.996 0.996 | 39.44 22.83

0.95 | [0.257,0.344] [0.222,0.379] | 0.946  0.946 1 1 41.45 2291

¢Bl'=0.3 | 090 | [0.263,0.338] [0.230,0.371] | 0.910  0.909 | 0.997 0.999 | 42.09 22.83
0.85 | [0.267,0.334] [0.235,0.366] | 0.882  0.870 | 0.994 0.993 | 42.19  23.69

Notes: Same DGP and conventions as in Table 2.
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