
Confidence Intervals for

Projections of Partially Identified Parameters∗

Hiroaki Kaido† Francesca Molinari‡ Jörg Stoye§

February 21, 2019

Abstract

We propose a bootstrap-based calibrated projection procedure to build confidence
intervals for single components and for smooth functions of a partially identified param-
eter vector in moment (in)equality models. The method controls asymptotic coverage
uniformly over a large class of data generating processes. The extreme points of the
calibrated projection confidence interval are obtained by extremizing the value of the
function of interest subject to a proper relaxation of studentized sample analogs of the
moment (in)equality conditions. The degree of relaxation, or critical level, is calibrated
so that the function of θ, not θ itself, is uniformly asymptotically covered with prespec-
ified probability. This calibration is based on repeatedly checking feasibility of linear
programming problems, rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is gener-
ally nonlinear and potentially intricate. We provide an algorithm, based on the response
surface method for global optimization, that approximates the solution rapidly and accu-
rately, and we establish its rate of convergence. The algorithm is of independent interest
for optimization problems with simple objectives and complicated constraints. An empir-
ical application estimating an entry game illustrates the usefulness of the method. Monte
Carlo simulations confirm the accuracy of the solution algorithm, the good statistical as
well as computational performance of calibrated projection (including in comparison to
other methods), and the algorithm’s potential to greatly accelerate computation of other
confidence intervals.
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form inference.
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1 Introduction

This paper provides novel confidence intervals for projections and smooth functions of a

parameter vector θ P Θ � Rd, d   8, that is partially or point identified through a finite

number of moment (in)equalities. In addition, we develop a new algorithm for computing

these confidence intervals and, more generally, for solving optimization problems with “black

box” constraints, and obtain its rate of convergence.

Until recently, the rich literature on inference for moment (in)equalities focused on con-

fidence sets for the entire vector θ, usually obtained by test inversion as

Cnpc1�αq � tθ P Θ : Tnpθq ¤ c1�αpθqu , (1.1)

where the test statistic Tnpθq aggregates violations of the sample analog of the moment

(in)equalities and the critical value c1�αpθq controls asymptotic coverage, often uniformly

over a large class of data generating processes (DGPs). However, applied researchers are

frequently interested in a specific component (or function) of θ, e.g., the returns to education.

Even if not, they may simply want to report separate confidence intervals for components of

a vector, as is standard practice in other contexts. Thus, consider inference on the projection

p1θ, where p is a known unit vector. To date, it is common to report as confidence set the

corresponding projection of Cnpc1�αq or the interval

CIprojn �
�

inf
θPCnpc1�αq

p1θ, sup
θPCnpc1�αq

p1θ

�
, (1.2)

which will miss any “gaps” in a disconnected projection but is much easier to compute.

This approach yields asymptotically valid but typically conservative and therefore needlessly

large confidence regions. The potential severity of this effect is easily appreciated in a point

identified example. Given a
?
n-consistent estimator θ̂n P Rd with limiting covariance matrix

equal to the identity matrix, the usual 95% confidence interval for θk equals rθ̂n,k�1.96, θ̂n,k�
1.96s. Yet the analogy to CIprojn would be projection of a 95% confidence ellipsoid, which

with d � 10 yields rθ̂n,k � 4.28, θ̂n,k � 4.28s and a true coverage of essentially 1.

Our first contribution is to provide a bootstrap-based calibrated projection method to

largely anticipate and correct for the conservative effect of projection. The method uses an

estimated critical level ĉn,1�α calibrated so that the projection of Cnpĉn,1�αq covers p1θ (but

not necessarily θ) with probability at least 1�α. As a confidence region for the true p1θ, one

may report this projection, i.e.

tp1θ : θ P Cnpĉn,1�αqu, (1.3)
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or, for computational simplicity and presentational convenience, the interval

CIn �
�

inf
θPCnpĉn,1�αq

p1θ, sup
θPCnpĉn,1�αq

p1θ

�
. (1.4)

We prove uniform asymptotic validity of both over a large class of DGPs.

Computationally, calibration of ĉn,1�α is relatively attractive: We linearize all constraints

around θ, so that coverage of p1θ can be calibrated by analyzing many linear programs.

Nonetheless, computing the above objects is challenging in moderately high dimension. This

brings us to our second contribution, namely a general method to accurately and rapidly

compute confidence intervals whose construction resembles (1.4). Additional applications

within partial identification include projection of confidence regions defined in Chernozhukov,

Hong, and Tamer (2007), Andrews and Soares (2010), or Andrews and Shi (2013), as well as

(with minor tweaking; see Appendix B) the confidence interval proposed in Bugni, Canay, and

Shi (2017, BCS henceforth) and further discussed later. In an application to a point identified

setting, Freyberger and Reeves (2017, Supplement Section S.3) use our method to construct

uniform confidence bands for an unknown function of interest under (nonparametric) shape

restrictions. They benchmark it against gridding and find it to be accurate at considerably

improved speed. More generally, the method can be broadly used to compute confidence

intervals for optimal values of optimization problems with estimated constraints.

Our algorithm (henceforth called E-A-M for Evaluation-Approximation-Maximization) is

based on the response surface method, thus it belongs to the family of expected improvement

algorithms (see e.g. Jones, 2001; Jones, Schonlau, and Welch, 1998, and references therein).

Bull (2011) established convergence of an expected improvement algorithm for unconstrained

optimization problems where the objective is a “black box” function. The rate of convergence

that he derives depends on the smoothness of the black box objective function. We substan-

tially extend his results to show convergence, at a slightly slower rate, of our similar algorithm

for constrained optimization problems in which the constraints are sufficiently smooth “black

box” functions. Extensive Monte Carlo experiments (see Appendix C and Section 5 of Kaido,

Molinari, and Stoye (2017)) confirm that the E-A-M algorithm is fast and accurate.

Relation to existing literature. The main alternative inference prodedure for projec-

tions – introduced in Romano and Shaikh (2008) and significantly advanced in BCS – is based

on profiling out a test statistic. The classes of DGPs for which calibrated projection and the

profiling-based method of BCS (BCS-profiling henceforth) can be shown to be uniformly valid

are non-nested.1

Computationally, calibrated projection has the advantage that the bootstrap iterates over

linear as opposed to nonlinear programming problems. While the “outer” optimization prob-

lems in (1.4) are potentially intricate, our algorithm is geared toward them. Monte Carlo

1See Kaido, Molinari, and Stoye (2017, Section 4.2 and Supplemental Appendix F) for a comparison of the
statistical properties of calibrated projection and BCS-profiling, summarized here at the end of Section 3.2.

[2]



simulations suggest that these two factors give calibrated projection a considerable compu-

tational edge over profiling, though profiling can also benefit from the E-A-M algorithm.

Indeed, in Appendix C we replicate the Monte Carlo experiment of BCS and find that adapt-

ing E-A-M to their method improves computation time by a factor of about 4, while switching

to calibrated projection improves it by a further factor of about 17.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011, PPHI henceforth) also use

linearization but, subject to this approximation, directly bootstrap the sample projection.

This is valid only under stringent conditions.2 Other related articles that explicitly consider

inference on projections include Beresteanu and Molinari (2008), Bontemps, Magnac, and

Maurin (2012), Kaido (2016), and Kline and Tamer (2016). None of these establish uniform

validity of confidence sets. Chen, Christensen, and Tamer (2018) establish uniform validity

of MCMC-based confidence intervals for projections, but aim at covering the projection of

the entire identified region ΘIpP q (defined later) and not just of the true θ. Gafarov, Meier,

and Montiel-Olea (2016) use our insight in the context of set identified spatial VARs.

Regarding computation, previous implementations of projection-based inference (e.g.,

Ciliberto and Tamer, 2009; Grieco, 2014; Dickstein and Morales, 2018) reported the smallest

and largest value of p1θ among parameter values θ P Cnpc1�αq that were discovered using,

e.g., grid-search or simulated annealing with no cooling. This becomes computationally cum-

bersome as d increases because it typically requires a number of evaluation points that grows

exponentially with d. In contrast, using a probabilistic model, our method iteratively draws

evaluation points from regions that are considered highly relevant for finding the confidence

interval’s end point. In applications, this tends to substantially reduce the number of evalu-

ation points.

Structure of the paper. Section 2 sets up notation and describes our approach in detail,

including computational implementation of the method and choice of tuning parameters.

Section 3.1 establishes uniform asymptotic validity of CIn, and Section 3.2 shows that our

algorithm converges at a specific rate which depends on the smoothness of the constraints.

Section 4 reports the results of an empirical application that revisits the analysis in Kline

and Tamer (2016, Section 8). Section 5 draws conclusions. The proof of convergence of our

algorithm is in Appendix A. Appendix B shows that our algorithm can be used to compute

BCS-profiling confidence intervals. Appendix C reports the results of Monte Carlo simulations

comparing our proposed method with that of BCS. All other proofs, background material for

our algorithm, and additional results are in the Online Appendix.3

2The published version of PPHI, i.e. Pakes, Porter, Ho, and Ishii (2015), does not contain the inference
part. Kaido, Molinari, and Stoye (2017, Section 4.2) show that calibrated projection can be much simplified
under the conditions imposed by PPHI.

3Appendix D provides convergence-related results and background material for our algorithm and describes
how to compute ĉn,1�αpθq. Appendix E presents the assumptions under which we prove uniform asymptotic
validity of CIn. Appendix F verifies, for a number of canonical partial identification problems, the assumptions
that we invoke to show validity of our inference procedure and for our algorithm. Appendix G contains the
proof of Theorem 3.1. Appendix H collects Lemmas supporting this proof.
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2 Detailed Explanation of the Method

2.1 Setup and Definition of CIn

Let Xi P X � RdX be a random vector with distribution P , let Θ � Rd denote the parameter

space, and let mj : X � Θ Ñ R for j � 1, . . . , J1 � J2 denote known measurable functions

characterizing the model. The true parameter value θ is assumed to satisfy the moment

inequality and equality restrictions

EP rmjpXi, θqs ¤ 0, j � 1, ..., J1 (2.1)

EP rmjpXi, θqs � 0, j � J1 � 1, ..., J1 � J2. (2.2)

The identification region ΘIpP q is the set of parameter values in Θ satisfying (2.1)-(2.2). For

a random sample tXi, i � 1, ..., nu of observations drawn from P , we write

m̄n,jpθq � n�1
°n
i�1mjpXi, θq, j � 1, . . . , J1 � J2 (2.3)

σ̂n,j � pn�1
°n
i�1rmjpXi, θqs2 � rm̄n,jpθqs2q1{2, j � 1, . . . , J1 � J2 (2.4)

for the sample moments and the analog estimators of the population moment functions’

standard deviations σP,j . The confidence interval in (1.4) then is

CIn � r�sp�p, Cnpĉn,1�αqq, spp, Cnpĉn,1�αqqs (2.5)

with

spp, Cnpĉn,1�αqq � sup
θPΘ

p1θ s.t.
?
n
m̄n,jpθq
σ̂n,jpθq ¤ ĉn,1�αpθq, j � 1, . . . , J (2.6)

and similarly for p�pq. Henceforth, to simplify notation, we write ĉn for ĉn,1�α. We also

define J � J1 � 2J2 moments, where m̄n,J1�J2�kpθq � �m̄J1�kpθq for k � 1, . . . , J2. That is,

we treat moment equality constraints as two opposing inequality constraints.

For a class of DGPs P that we specify below, define the asymptotic size of CIn by4

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pp1θ P CInq. (2.7)

We next explain how to control this size and then how to compute CIn.

2.2 Calibration of ĉnpθq

Calibration of ĉn requires careful analysis of the moment restrictions’ local behavior at each

point in the identification region. This is because the extent of projection conservatism

4Here we focus on the confidence interval CIn defined in (1.4). See Appendix G.2.3 for the analysis of the
confidence region given by the mathematical projection in (1.3).
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depends on (i) the asymptotic behavior of the sample moments entering the inequality re-

strictions, which can change discontinuously depending on whether they bind at θ or not,

and (ii) the local geometry of the identification region at θ, i.e. the shape of the constraint

set formed by the moment restrictions. Features (i) and (ii) can be quite different at different

points in ΘIpP q, making uniform inference challenging. In particular, (ii) does not arise if

one only considers inference for the entire parameter vector, and hence is a new challenge

requiring new methods.

To build an intuition, fix P P P and θ P ΘIpP q. The projection of θ is covered when

#
infϑPΘ p

1ϑ
s.t.

?
nm̄n,jpϑq
σ̂n,jpϑq ¤ ĉnpϑq,@j

+
¤ p1θ ¤

#
supϑPΘ p

1ϑ
s.t.

?
nm̄n,jpϑq
σ̂n,jpϑq ¤ ĉnpϑq,@j

+

ðñ
#

infλP?npΘ�θq p1λ
s.t.

?
nm̄n,jpθ�λ{

?
nq

σ̂n,jpθ�λ{
?
nq ¤ ĉn pθ � λ{?nq ,@j

+
¤ 0 ¤

#
supλP?npΘ�θq p1λ

s.t.
?
nm̄n,jpθ�λ{

?
nq

σ̂n,jpθ�λ{
?
nq ¤ ĉn pθ � λ{?nq ,@j

+

ðù
#

infλP?npΘ�θqXρBd p1λ
s.t.

?
nm̄n,jpθ�λ{

?
nq

σ̂n,jpθ�λ{
?
nq ¤ ĉn pθ � λ{?nq ,@j

+
¤ 0 ¤

#
supλP?npΘ�θqXρBd p1λ

s.t.
?
nm̄n,jpθ�λ{

?
nq

σ̂n,jpθ�λ{
?
nq ¤ ĉn pθ � λ{?nq ,@j

+
.

(2.8)

Here, we first substituted ϑ � θ � λ{?n and took λ to be the choice parameter; intuitively,

this localizes around θ at rate 1{?n. We then make the event smaller by adding the constraint

λ P ρBd, with Bd � r�1, 1sd and ρ ¥ 0 a tuning parameter. We motivate this step later.

Our goal is to set the probability of (2.8) equal to 1 � α. To ease computation, we

approximate (2.8) by linear expansion in λ of the constraint set. For each j, add and subtract?
nEP rmjpXi, θ � λ{?nqs{σ̂n,jpθ � λ{?nq and apply the mean value theorem to obtain

?
nm̄n,j pθ � λ{?nq
σ̂n,j pθ � λ{?nq � �

Gn,j

�
θ � λ{?n��DP,jpθ̄qλ�

?
nγ1,P,jpθq

�σP,j pθ � λ{?nq
σ̂n,j pθ � λ{?nq . (2.9)

Here Gn,jp�q �
?
npm̄n,jp�q�EP rmjpXi, �qsq{σP,jp�q is a normalized empirical process indexed

by θ P Θ, DP,jp�q � ∇θtEP rmjpXi, �qs{σP,jp�qu is the gradient of the normalized moment,

γ1,P,jp�q � EP pmjpXi, �qq{σP,jp�q is the studentized population moment, and the mean value

θ̄ lies componentwise between θ and θ � λ{?n.5

We formally establish that the probability of the last event in (2.8) can be approximated

by the probability that 0 lies between the optimal values of two stochastic linear programs.

The components that characterize these programs can be estimated. Specifically, we replace

DP,jp�q with a uniformly consistent (on compact sets) estimator, D̂n,jp�q,6 and the process

Gn,jp�q with its simple nonparametric bootstrap analog, Gb
n,jp�q � n�1{2 °n

i�1pmjpXb
i , �q �

m̄n,jp�qq{σ̂n,jp�q.7 Estimation of γ1,P,jpθq is more subtle because it enters (2.9) scaled by
?
n,

5The mean value θ̄ changes with j but we omit the dependence to ease notation.
6See Online Appendix F for such estimators in some canonical moment (in)equality examples.
7BCS approximate Gn,jp�q by n�1{2 °n

i�1rpmjpXi, �q�m̄n,jp�qq{σ̂n,jp�qsχi with tχi � Np0, 1quni�1 i.i.d. This
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so that a sample analog estimator will not do. However, this specific issue is well understood

in the moment inequalities literature. Following Andrews and Soares (2010, AS henceforth)

and others (Bugni, 2010; Canay, 2010; Stoye, 2009), we shrink this sample analog toward

zero, leading to conservative (if any) distortion in the limit. Formally, we estimate γ1,P,jpθq
by ϕpξ̂n,jpθqq, where ϕ : RJr�8s ÞÑ RJr�8s is one of the Generalized Moment Selection (GMS

henceforth) functions proposed by AS,

ξ̂n,jpθq �
$&
%κ

�1
n

?
nm̄n,jpθq{σ̂n,jpθq j � 1, . . . , J1

0 j � J1 � 1, . . . , J,
(2.10)

and κn Ñ 8 is a user-specified thresholding sequence.8 In sum, we replace the random

constraint set in (2.8) with the (bootstrap based) random polyhedral set9

Λbnpθ, ρ, cq �
 
λ P ?npΘ� θq X ρBd : Gb

n,jpθq � D̂n,jpθqλ� ϕjpξ̂n,jpθqq ¤ c, j � 1, . . . , J
(
.

(2.11)

The critical level ĉnpθq to be used in (2.6) then is

ĉnpθq � inf

"
c P R� : P �

�
min

λPΛbnpθ,ρ,cq
p1λ ¤ 0 ¤ max

λPΛbnpθ,ρ,cq
p1λ



¥ 1� α

*
(2.12)

� inf
 
c P R� : P �pΛbnpθ, ρ, cq X tp1λ � 0u � Hq ¥ 1� α

(
, (2.13)

where P � denotes the law of the random set Λbnpθ, ρ, cq induced by the bootstrap sampling

process, i.e. by the distribution of pXb
1, . . . , X

b
nq conditional on the data. Expression (2.13)

uses convexity of Λbnpθ, ρ, cq and reveals that the probability inside curly brackets can be

assessed by repeatedly checking feasibility of a linear program.10 We describe in detail in

Online Appendix D.4 how we compute ĉnpθq through a root-finding algorithm.

We conclude by motivating the “ρ-box constraint” in (2.8), which is a major novel con-

tribution of this paper. The constraint induces conservative bias but has two fundamental

benefits: First, it ensures that the linear approximation of the feasible set in (2.8) by (2.11)

is used only in a neighborhood of θ, and therefore that it is uniformly accurate. More subtly,

approximation is equally valid in our approach, and can be faster as it avoids repeated evaluation of mjpXb
i , �q.

8A common choice of ϕ is given component-wise by

ϕjpxq �
#

0 if x ¥ �1

�8 if x   �1.

Restrictions on ϕ and the rate at which κn diverges are imposed in Assumption E.2. While for concreteness
here we write out the “hard thresholding” GMS function, Theorem 3.1 below applies to all but one of the
GMS functions in AS, namely to ϕ1 �ϕ4, all of which depend on κ�1

n

?
nm̄n,jpθq{σ̂n,jpθq. We do not consider

GMS function ϕ5, which depends also on the covariance matrix of the moment functions.
9Here, we implicitly assume that Θ is a polyhedral set. If it is instead defined by smooth convex

(in)equalities, these can be linearized too.
10We implement a program in Rd for simplicity but, because p1λ � 0, one could reduce this to Rd�1.
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it ensures that coverage induced by a given c depends continuously on estimated parameters

even in certain intricate cases. This renders calibrated projection valid in cases that other

methods must exclude by assumption.11

2.3 Computation of CIn and of Similar Confidence Intervals

Projection based methods as in (1.2) and (1.4) have nonlinear constraints involving a critical

value which in general is an unknown function, with unknown gradient, of θ. Similar con-

siderations often apply to critical values used to build confidence intervals for optimal values

of optimization problems with estimated constraints. When the dimension of the parameter

vector is large, directly solving optimization problems with such constraints can be expensive

even if evaluating the critical value at each θ is cheap.

This concern motivates this paper’s second main contribution, namely a novel algorithm

for constrained optimization problems of the following form:

p1θ� � sup
θPΘ

p1θ

s.t. gjpθq ¤ cpθq, j � 1, ..., J, (2.14)

where θ� is an optimal solution of the problem and gjp�q, j � 1, ..., J as well as cp�q are

fixed functions of θ. In our own application, gjpθq �
?
nm̄n,jpθq{σ̂n,jpθq and, for calibrated

projection, cpθq � ĉnpθq.12

The key issue is that evaluating cp�q is costly.13 Our algorithm does so at relatively few

values of θ. Elsewhere, it approximates cp�q through a probabilistic model that gets updated

as more values are computed. We use this model to determine the next evaluation point but

report as tentative solution the best value of θ at which cp�q was computed, not a value at

which it was merely approximated. Under reasonable conditions, the tentative optimal values

converge to p1θ� at a rate (relative to iterations of the algorithm) that is formally established

in Section 3.2.

After drawing an initial set of evaluation points that we set to grow linearly with d, the

algorithm has three steps called E, A, and M below.

11In (2.11), set pGbn,1p�q,Gbn,2p�qq � Np0, I2q, p � D̂n,1 � D̂n,2 � p0, 1q, ϕ1p�q � ϕ2p�q � 0, and α � .05.

Then simple algebra reveals that (with or without ρ-box) ĉnp�q � Φ�1p?.95q � 1.95. If D̂n,1 � p0, 1 � δq
and D̂n,2 � p0, 1 � δq, then without ρ-box we have ĉnp�q � Φ�1p.95q{?2 � 1.16 for any small δ ¡ 0, and we
therefore cannot expect to get ĉnp�q right if gradients are estimated. With ρ-box, ĉnp�q Ñ 1.95 as δ Ñ 0, so
the problem goes away. This stylized example is relevant because it resembles polyhedral identified sets where
one face is near orthogonal to p. It violates assumptions in BCS and PPHI.

12We emphasize that, in analyzing the computational problem, we take the data, including bootstrap data,
as given. Thus, while an econometrician would usually think of

?
nm̄n,jpθq{σ̂n,jpθq and ĉnpθq as random

variables, for this section’s purposes they are indeed just functions of θ.
13For simplicity and to mirror our motivating application, we suppose that gjp�q is easy to compute. The

algorithm is easily adapted to the case where it is not. Indeed, in Appendix B, we show how E-A-M can
be employed to compute BCS-profiling confidence intervals, where the profiled test statistic itself is costly to
compute and is approximated together with the critical value.

[7]



Initialization: Draw randomly (uniformly) over Θ a set pθp1q, ..., θpkqq of initial evaluation

points. Evaluate cpθp`qq for ` � 1, ..., k � 1. Initialize L � k.

E-Step: Evaluate cpθpLqq and record the tentative optimal value

p1θ�,L � max
 
p1θp`q : ` P t1, ..., Lu, ḡpθq ¤ cpθp`qq(, (2.15)

with ḡpθq � maxj�1,...,J gjpθq.
A-step: Approximate θ ÞÑ cpθq by a flexible auxiliary model. We use a Gaussian-process

regression model (or kriging), which for a mean-zero Gaussian process ζp�q indexed by θ and

with constant variance ς2 specifies

Υp`q � µ� ζpθp`qq, ` � 1, ..., L, (2.16)

Corrpζpθq, ζpθ1qq � Kβpθ � θ1q, θ, θ1 P Θ, (2.17)

where Υp`q � cpθp`qq and Kβ is a kernel with parameter vector β P�d
h�1rβh, βhs � Rd��; e.g.,

Kβpθ � θ1q � expp�°d
h�1 |θh � θ1h|2{βhq. The unknown parameters pµ, ς2q can be estimated

by running a GLS regression of Υ � pΥp1q, ...,ΥpLqq1 on a constant with the given correlation

matrix. The unknown parameters β can be estimated by a (concentrated) MLE.

The (best linear) predictor of the critical value and its gradient at θ are then given by

cLpθq � µ̂� rLpθq1R�1
L pΥ� µ̂1q, (2.18)

∇θcLpθq � µ̂�QLpθqR�1
L pΥ� µ̂1q, (2.19)

where rLpθq is a vector whose `-th component is Corrpζpθq, ζpθp`qqq as given above with

estimated parameters, QLpθq � ∇θrLpθq1, and RL is an L-by-L matrix whose p`, `1q entry

is Corrpζpθp`qq, ζpθp`1qqq with estimated parameters. This surrogate model has the property

that its predictor satisfies cLpθp`qq � cpθp`qq, ` � 1, ..., L. Hence, it provides an analytical

interpolation, with analytical gradient, of evaluation points of cp�q.14 The uncertainty left in

cp�q is captured by the variance

ς̂2s2
Lpθq � ς̂2

�
1� rLpθq1R�1

L rLpθq �
p1� 11R�1

L rLpθqq2
11R�1

L 1

�
. (2.20)

M-step: With probability 1� ε, obtain the next evaluation point θpL�1q as

θpL�1q P arg max
θPΘ

EILpθq � arg max
θPΘ

pp1θ � p1θ�,Lq�
�

1� Φ
� ḡpθq � cLpθq

ς̂sLpθq
		
, (2.21)

14See details in Jones, Schonlau, and Welch (1998). We use the DACE MATLAB kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in our empirical application and Monte Carlo experiments.
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where EILpθq is the expected improvement function.15 This step can be implemented by

standard nonlinear optimization solvers, e.g. MATLAB’s fmincon or KNITRO (see Appendix

D.3 for details). With probability ε, draw θpL�1q randomly from a uniform distribution over

Θ. Set LÐ L� 1 and return to the E-step.

The algorithm yields an increasing sequence of tentative optimal values p1θ�,L, L � k �
1, k � 2, ..., with θ�,L satisfying the true constraints in (2.14) but the sequence of evaluation

points leading to it obtained by maximization of expected improvement defined with respect

to the approximated surface. Once a convergence criterion is met, p1θ�,L is reported as the

end point of CIn. We discuss convergence criteria in Appendix C.

The advantages of E-A-M are as follows. First, we control the number of points at which

we evaluate the critical value; recall that this evaluation is the expensive step. Also, the initial

k evaluations can easily be parallelized. For any additional E-step, one needs to evaluate cp�q
only at a single point θpL�1q. The M-step is crucial for reducing the number of additional

evaluation points. To determine the next evaluation point, it trades off “exploitation” (i.e. the

benefit of drawing a point at which the optimal value is high) against “exploration” (i.e. the

benefit of drawing a point in a region in which the approximation error of c is currently large)

through maximizing expected improvement.16 Finally, the algorithm simplifies the M-step

by providing constraints and their gradients for program (2.21) in closed form, thus greatly

aiding fast and stable numerical optimization. The price is the additional approximation

step. In the empirical application in Section 4 and in the numerical exercises of Appendix C,

this price turns out to be low.

2.4 Choice of Tuning Parameters

Practical implementation of calibrated projection and the E-A-M algorithm is detailed in

Kaido, Molinari, Stoye, and Thirkettle (2017). It involves setting several tuning parameters,

which we now discuss.

Calibration of ĉn in (2.13) must be tuned at two points, namely the use of GMS and the

choice of ρ. The trade-offs in setting these tuning parameters are apparent from inspection

of (2.11). GMS is parameterized by a shrinkage function ϕ and a sequence κn that controls

the rate of shrinkage. In practice, choice of κn is more delicate. A smaller κn will make

Λbn larger, hence increase bootstrap coverage probability for any given c, hence reduce ĉn

and therefore make for shorter confidence intervals – but the uniform asymptotics will be

misleading, and finite sample coverage therefore potentially off target, if κn is too small. We

follow the industry standard set by AS and recommend κn �
?

log n.

15Heuristically, EILpθq is the expected improvement gained from analyzing parameter value θ for a Bayesian
whose current beliefs about c are described by the estimated model. Indeed, for each θ, the maximand in
(2.21) multiplies improvement from learning that θ is feasible with this Bayesian’s probability that it is.

16It is also possible to draw multiple points in each iteration (Schonlau, Welch, and Jones, 1998), as we do
in our implementation of the method.
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The trade-off in choosing ρ is similar but reversed. A larger ρ will expand Λbn and therefore

make for shorter confidence intervals, but (our proof of) uniform validity of inference requires

ρ   8. Indeed, calibrated projection with ρ � 0 will disregard any projection conservatism

and (as is easy to show) exactly recovers projection of the AS confidence set. Intuitively, we

then want to choose ρ large but not too large.

To this end, we heuristically calibrate ρ based on how much conservative distortion one

is willing to accept in well-behaved cases. This distortion – denote it η, for which we suggest

a numerical value of 0.01 – is compared against a bound on conservative distortion that is

itself likely to be conservative but data free and trivial to compute. In particular, we set

ρ � Φ�1

�
1
2 � 1

2

�
1� η{�J1�J2

d

�	1{d

. (2.22)

The underlying heuristic is as follows: If all basic solutions (i.e., intersections of exactly

d constraints) that potentially define vertices of Λbn realize inside the ρ-box, then the ρ-box

cannot affect the values in (2.12) and hence not whether coverage obtains in a given bootstrap

sample. Conversely, the probability that at least one basic solution realizes outside the ρ-box

bounds from above the conservative distortion. This probability is, of course, dependent on

unknown parameters. Our data free approximation imputes multivariate standard normal

distributions for all basic solutions and Bonferroni adjustment to handle their covariation.17

The E-A-M algorithm also has two tuning parameters. One is k, the initial number

of evaluation points. The other is ε, the probability of drawing θpL�1q randomly from a

uniform distribution on Θ instead of by maximizing EIL. In calibrated projection use of the

E-A-M algorithm there is a single “black box” function, ĉnpθq. We therefore suggest setting

k � 10d� 1, similarly to the recommendation in Jones, Schonlau, and Welch (1998, p. 473).

In our Monte Carlo exercises we experimented with larger values, e.g. k � 20d � 1, and

found that the increased number had no noticeable effect on the computed CIn. If a user

applies our E-A-M algorithm to a constrained optimization problem with many “black box”

functions to approximate, we suggest using a larger number of initial points.

The role of ε (e.g., Bull, 2011, p. 2889) is to trade off the greediness of the EIL maximiza-

tion criterion with the overarching goal of global optimization. Sutton and Barto (1998, pp.

28-29) explore the effect of setting ε � 0.1 and 0.01 on different optimization problems, and

find that for sufficiently large L, ε � 0.01 performs better. In our own simulations we have

found that drawing both a uniform point and computing the value of θ for each L (thereby

sidestepping the choice of ε) is fast and accurate, and that is what we recommend doing.

17To reproduce the expression, recall that if a � �
J1�J2
d

�
random variables in Rd are individually multivariate

standard normal, then a Bonferroni upper bound on the probability that not all of them realize inside the
ρ-box equals a

�
1 � p1� 2Φp�ρqqd�. Also, if Bonferroni is replaced with an independence assumption, the

expression changes to ρ � Φ�1
�

1
2
� 1

2
p1� ηq1{ad�. The numerical difference is negligible for moderate J1 � J2.
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3 Theoretical Results

3.1 Asymptotic Validity of Inference

In this section we establish that CIn is uniformly asymptotically valid in the sense of ensur-

ing that (2.7) equals at least 1 � α. The result applies to: (i) Confidence intervals for one

projection; (ii) joint confidence regions for several projections, in particular confidence hyper-

rectangles for subvectors; (iii) confidence intervals for smooth nonlinear functions f : Θ ÞÑ R.

Examples of the latter extension include policy analysis and estimation of partially identified

counterfactuals as well as demand extrapolation subject to rationality constraints.18

Theorem 3.1: Suppose Assumptions E.1, E.2, E.3, E.4, and E.5 hold. Let 0   α   1{2.

(I) Let CIn be as defined in (1.4), with ĉn as in (2.13). Then:

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pp1θ P CInq ¥ 1� α. (3.1)

(II) Let p1, . . . , ph denote unit vectors in Rd, h ¤ d. Then:

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P ppk1θ P CIn,k, k � 1, . . . , hq ¥ 1� α, (3.2)

where CIn,k �
�
infθPCnpĉhnq p

k1θ, supθPCnpĉhnq p
k1θ

�
and ĉhnpθq � inftc P R� : P �pΛbnpθ, ρ, cqX

tXhk�1tpk1λ � 0uu � Hq ¥ 1� αu.

(III) Let CIfn be a confidence interval whose lower and upper points are obtained solving

inf
θPΘ

{ sup
θPΘ

fpθq s.t.
?
nm̄n,jpθq{σ̂n,jpθq ¤ ĉfnpθq, j � 1, ..., J,

where ĉfnpθq � inftc ¥ 0 : P �pΛbnpθ, ρ, cq X t}∇θfpθq}�1∇θfpθqλ � 0u � Hq ¥ 1 � αu.
Suppose that there exist $ ¡ 0 and M   8 such that infPPP infθPΘIpP q }∇fpθq} ¥ $

and supθ,θ̄PΘ }∇fpθq�∇fpθ̄q} ¤M}θ� θ̄}, where ∇θfpθq is the gradient of fpθq.19 Let

0   α   1{2. Then:

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pfpθq P CIfnq ¥ 1� α. (3.3)

All assumptions can be found in Online Appendix E.1. Assumptions E.1 and E.5 are mild

regularity conditions typical in the literature; see, e.g., Definition 4.2 and the corresponding

discussion in BCS. Assumption E.2 is based on AS and constrains the GMS function ϕp�q
18In Appendix G.2.3, we show that the result actually applies to the mathematical projection in (1.3).
19Because the function f is known, these conditions can be easily verified in practice (especially if the first

one is strengthened to hold over Θ).
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as well as the rate at which κn diverges. Assumption E.4 requires normalized population

moments to be sufficiently smooth and consistently estimable. Assumption E.3 is our key

departure from the related literature. In essence, it requires that the correlation matrix of

the moment functions corresponding to close-to-binding moment conditions has eigenvalues

uniformly bounded from below.20 Under this condition, we are able to show that in the limit

problem corresponding to (2.8) –where constraints are replaced with their local linearization

using population gradients and Gaussian processes– the probability of coverage increases

continuously in c. If such continuity is directly assumed (Assumption E.6), Theorem 3.1

remains valid (Online Appendix G.2.2). While the high level Assumption E.6 is similar in

spirit to a key condition (Assumption A.2) in BCS, we propose Assumption E.3 due to its

familiarity and ease of interpretation; a similar condition is required for uniform validity of

standard point identified Generalized Method of Moments inference. In Online Appendix

F.2 we verify that our assumptions hold in some of the canonical examples in the partial

identification literature: mean with missing data, linear regression and best linear prediction

with interval data (and discrete covariates), entry games with multiple equilibria (and discrete

covariates), and semi-parametric binary regression models with discrete or interval valued

covariates (as in Magnac and Maurin, 2008).

Assumptions E.1-E.5 define the class of DGPs over which our proposed method yields

uniformly asymptotically valid coverage. This class is non-nested with the class of DGPs

over which the profiling-based methods of Romano and Shaikh (2008) and BCS are uni-

formly asymptotically valid. Kaido, Molinari, and Stoye (2017, Section 4.2 and Supplemental

Appendix F) show that in well behaved cases, calibrated projection and BCS-profiling are

asymptotically equivalent. They also provide conditions under which calibrated projection

has lower probability of false coverage in finite sample, thereby establishing that the two

methods’ finite sample power properties are non-ranked.

3.2 Convergence of the E-A-M Algorithm

We next provide formal conditions under which the sequence p1θ�,L generated by the E-A-

M algorithm converges to the true end point of CIn as L Ñ 8 at a rate that we obtain.

Although p1θ�,L � maxtp1θp`q : ` P t1, ..., Lu, ḡpθq ¤ cpθp`qqu, so that θ�,L satisfies the true

constraints for each L, the sequence of evaluation points θp`q is mostly obtained through

expected improvement maximization (M-Step) with respect to the approximating surface

cLp�q. Because of this, a requirement for convergence is that the function cp�q is sufficiently

smooth, so that the approximation error in |cpθq�cLpθq| vanishes uniformly in θ as LÑ8.21

We furthermore assume that the constraint set in (2.14) satisfies a degeneracy condition

20Assumption E.3 allows for high correlation among moment inequalities that cannot cross. This covers
equality constraints but also entry games as the ones studied in Ciliberto and Tamer (2009).

21As in Bull (2011), our convergence result accounts for the fact that the parameters of the Gaussian process
prior in (2.16) are re-estimated for each iteration of the A-step using the “training data” tθ`, cpθ`quL`�1.
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introduced to the partial identification literature by Chernozhukov, Hong, and Tamer (2007,

Condition C.3).22 In our application, the condition requires that Cnpĉnq has an interior and

that the inequalities in (2.6), when evaluated at points in a (small) τ -contraction of Cnpĉnq,
are satisfied with a slack that is proportional to τ . Theorem 3.2 below establishes that these

conditions jointly ensure convergence of the E-A-M algorithm at a specific rate. This is a

novel contribution to the literature on response surface methods for constrained optimization.

In the formal statement below, the expectation EQ is taken with respect to the law of

pθp1q, ..., θpLqq determined by the Initialization step and the M-step but conditioning on the

sample. We refer to Appendix A for a precise definition of EQ and a proof of the theorem.

Theorem 3.2: Suppose Θ � Rd is a compact hyperrectangle with nonempty interior,

that }p} � 1, and that Assumptions A.1, A.2, and A.3 hold. Let the evaluation points

pθp1q, � � � , θpLqq be drawn according to the Initialization and M-steps. Then

}p1θ� � p1θ�,L}L1
Q
� O

�� L

lnL

	�ν{d
plnLqδ

	
, (3.4)

where } � }L1
Q

is the L1-norm under Q, δ ¥ 1�χ, and the constants 0   ν ¤ 8 and 0   χ   8
are defined in Assumption A.1. If ν � 8, the statement in (3.4) holds for any ν   8.

The requirement that Θ is a compact hyperrectangle with nonempty interior can be

replaced by a requirement that Θ belongs to the interior of a closed hyperrectangle in Rd.
Assumption A.1 specifies the types of kernel to be used to define the correlation functional in

(2.17). Assumption A.2 collects requirements on differentiability of gjpθq, j � 1, . . . , J , and

smoothness of cpθq. Assumption A.3 is the degeneracy condition discussed above.

To apply Theorem 3.2 to calibrated projection, we provide low level conditions (Assump-

tion D.1 in Online Appendix D.1.1) under which the map θ ÞÑ ĉnpθq uniformly stochastically

satisfies a Lipschitz-type condition. To get smoothness, we work with a mollified version

of ĉn, denoted ĉn,τn in equation (D.1), where τn � opn�1{2q.23 Theorem D.1 in the Online

Appendix shows that ĉn and ĉn,τn can be made uniformly arbitrarily close, and that ĉn,τn

yields valid inference as in (3.1). In practice, we directly apply the E-A-M steps to ĉn.

The key condition imposed in Theorem D.1 is Assumption D.1. It requires that the GMS

function used is Lipschitz in its argument,24 and that the standardized moment functions

are Lipschitz in θ. In Online Appendix F.1 we establish that the latter condition is satisfied

by some canonical examples in the moment (in)equality literature: mean with missing data,

linear regression and best linear prediction with interval data (and discrete covariates), entry

games with multiple equilibria (and discrete covariates), and semi-parametric binary regres-

22Chernozhukov, Hong, and Tamer (2007, eq. (4.6)) impose the condition on the population identified set.
23For a discussion of mollification, see e.g. Rockafellar and Wets (2005, Example 7.19).
24This requirement rules out the GMS function in footnote 8, but it is satisfied by other GMS functions

proposed by AS.
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sion models with discrete or interval valued covariates (as in Magnac and Maurin, 2008).25

The E-A-M algorithm is proposed as a method to implement our statistical procedure,

not as part of the statistical procedure itself. As such, its approximation error is not taken

into account in Theorem 3.1. Our comparisons of the confidence intervals obtained through

the use of E-A-M as opposed to directly solving problems (2.6) through the use of MATLAB’s

fmincon in our empirical application in the next section suggest that such error is minimal.

4 Empirical Illustration: Estimating a Binary Game

We employ our method to revisit the study in Kline and Tamer (2016, Section 8) of “what

explains the decision of an airline to provide service between two airports.” We use their

data and model specification.26 Here we briefly summarize the set-up and refer to Kline and

Tamer (2016) for a richer discussion.

The study examines entry decisions of two types of firms, namely Low Cost Carriers

(LCC) versus Other Airlines (OA). A market is defined as a trip between two airports,

irrespective of intermediate stops. The entry decision Y`,i of player ` P tLCC,OAu in market

i is recorded as a 1 if a firm of type ` serves market i and 0 otherwise. Firm `’s payoff

equals Y`,ipZ 1`,iϑ` � δiY�`,i � u`,iq, where Y�`,i is the opponent’s entry decision. Each firm

enters if doing so generates non-negative payoffs. The observable covariates in the vector

Z`,i include the constant and the variables W size
i and W pres

`,i . The former is market size, a

market-specific variable common to all airlines in that market and defined as the population

at the endpoints of the trip. The latter is a firm-and-market-specific variable measuring the

market presence of firms of type ` in market i (see Kline and Tamer, 2016, p. 356 for its

exact definition). While W size
i enters the payoff function of both firms, W pres

LCC,i (respectively,

W pres
OA,i) is excluded from the payoff of firm OA (respectively, LCC). Each of market size and

of the two market presence variables are transformed into binary variables based on whether

they realized above or below their respective median. This leads to a total of 8 market types,

hence J1 � 16 moment inequalities and J2 � 16 moment equalities. The unobserved payoff

shifters u`,i are assumed to be i.i.d. across i and to have a bivariate normal distribution

with Epu`,iq � 0, V arpu`,iq � 1, and CorrpuLCC,i, uOA,iq � r for each i and ` P tLCC,OAu,
where the correlation r is to be estimated. Following Kline and Tamer (2016), we assume

that the strategic interaction parameters δLCC and δOA are negative, that r ¥ 0, and that

the researcher imposes these sign restrictions. To ensure that Assumption E.4 is satisfied,27

we furthermore assume that r ¤ 0.85 and use this value as its upper bound in the definition

25For these same examples we verify the differentiability requirement in Assumption A.2 on gjpθq.
26The data, which pertains to the second quarter of the year 2010, is downloaded from http://qeconomics.

org/ojs/index.php/qe/article/downloadSuppFile/371/1173.
27This assumption, common in the literature on projection inference, requires that DP,jpθq are Lipschitz in

θ and have bounded norm. But BptEP rmjpX, �qs{σP,jp�quq{Br includes a denominator equal to p1 � r2q2. As
r Ñ 1, this leads to a violation of the assumption and to numerical instability.
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of the parameter space.

The results of the analysis are reported in Table 1, which displays 95% nominal confidence

intervals (our CIn as defined in equations (2.5)-(2.6)) for each parameter. The output of the

E-A-M algorithm is displayed in the accordingly labeled column. The next column shows

a robustness check, namely the output of MATLAB’s fmincon function, henceforth labelled

“direct search,” that was started at each of a widely spaced set of feasible points that were

previously discovered by the E-A-M algorithm. We emphasize that this is a robustness or

accuracy check, not a horse race: Direct search mechanically improves on E-A-M because

it starts (among other points) at the point reported by E-A-M as optimal feasible. Using

the standard MultiStart function in MATLAB instead of the points discovered by E-A-M

produces unreliable and extremely slow results. In 10 out of 18 optimization problems that we

solved, the E-A-M algorithm’s solution came within its set tolerance (0.005) from the direct

search solution. The other optimization problems were solved by E-A-M with a minimal error

of less than 5%.

Table 1 also reports computational time of the E-A-M algorithm, of the subsequent direct

search, and the total time used to compute the confidence intervals. The direct search greatly

increases computation time with small or negligible benefit. Also, computational time varied

substantially across components. We suspect this might be due to the shape of the level sets

of maxj�1,...,J
?
nm̄n,jpθq{σ̂n,jpθq: By manually searching around the optimal values of the

program, we verified that the level sets in specific directions can be extremely thin, rendering

search more challenging.

Comparing our findings with those in Kline and Tamer (2016), we see that the results

qualitatively agree. The confidence intervals for the interaction effects (δLCC and δOA) and

for the effect of market size on payoffs (ϑsizeLCC and ϑsizeOA ) are similar to each other across the

two types of firms. The payoffs of LCC firms seem to be impacted more than those of OA

firms by market presence. On the other hand, monopoly payoffs for LCC firms seem to be

smaller than for OA firms.28 The confidence interval on the correlation coefficient is quite

large and includes our upper bound of 0.85.29

For most components, our confidence intervals are narrower than the corresponding 95%

credible sets reported in Kline and Tamer (2016).30 However, the intervals are not comparable

for at least two reasons: We impose a stricter upper bound on r and we aim to cover the

projections of the true parameter value as opposed to the identified set.

Overall, our results suggest that in a reasonably sized, empirically interesting problem,

calibrated projection yields informative confidence intervals. Furthermore, the E-A-M algo-

28Monopoly payoffs are those associated with a market with below-median size and below-median market
presence (i.e., the constant terms).

29Being on the boundary of the parameter space is not a problem for calibrated projection; indeed, it is
accounted for in the calibration of ĉn in equations (2.11)-(2.13).

30For the interaction parameters δ, Kline and Tamer’s upper confidence points are lower than ours; for the
correlation coefficient r, their lower confidence point is higher than ours.
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rithm appears to accurately and quickly approximate solutions to complex smooth nonlinear

optimization problems.

5 Conclusion

This paper proposes a confidence interval for linear functions of parameter vectors that are

partially identified through finitely many moment (in)equalities. The extreme points of our

calibrated projection confidence interval are obtained by minimizing and maximizing p1θ sub-

ject to properly relaxed sample analogs of the moment conditions. The relaxation amount,

or critical level, is computed to insure uniform asymptotic coverage of p1θ rather than θ it-

self. Its calibration is computationally attractive because it is based on repeatedly checking

feasibility of (bootstrap) linear programming problems. Computation of the extreme points

of the confidence intervals is furthermore attractive thanks to an application of the response

surface method for global optimization; this is a novel contribution of independent interest.

Indeed, one key result is a convergence rate for this algorithm when applied to constrained

optimization problems in which the objective function is easy to evaluate but the constraints

are “black box” functions. The result is applicable to any instance when the researcher wants

to compute confidence intervals for optimal values of constrained optimization problems. Our

empirical application and Monte Carlo analysis show that, in the DGPs that we considered,

calibrated projection is fast and accurate, and also that the E-A-M algorithm can greatly

improve computation of other confidence intervals.
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A Convergence of the E-A-M Algorithm

In this appendix, we provide details on the algorithm used to solve the outer maximization problem

as described in Section 2.3. Below, let pΩ,Fq be a measurable space and ω a generic element of Ω. Let

L P N and let pθp1q, ..., θpLqq be a measurable map on pΩ,Fq whose law is specified below. The value

of the function c in (2.14) is unknown ex ante. Once the evaluation points θp`q, ` � 1, ..., L realize,

the corresponding values of c, i.e. Υp`q � cpθp`qq, ` � 1, ..., L, are known. We may therefore define the

information set

FL � σpθp`q,Υp`q, ` � 1, ..., Lq. (A.1)

Let CL � tθp`q : ` P t1, � � � , Lu, gjpθp`qq ¤ cpθp`qq, j � 1, � � � , Ju be the set of feasible evaluation points.

Then argmaxθPCLp
1θ is measurable with respect to FL and we take a measurable selection θ�,L from

it.

Our algorithm iteratively determines evaluation points based on the expected improvement cri-

terion (Jones, Schonlau, and Welch, 1998). For this, we formally introduce a model that describes

the uncertainty associated with the values of c outside the current evaluation points. Specifically, the

unknown function c is modeled as a Gaussian process such that31

Ercpθqs � µ, Covpcpθq, cpθ1qq � ς2Kβpθ � θ1q, (A.2)

where β � pβ1, ..., βdq P Rd controls the length-scales of the process. Two values cpθq and cpθ1q are

highly correlated when θk� θ1k is small relative to βk. Throughout, we assume β
k
¤ βk ¤ βk for some

0   β
k
  βk   8 for k � 1, ..., d. We let β̄ � pβ̄1, ..., β̄dq1 P Rd. Specific suggestions on the forms of

Kβ are given in Appendix D.2.

For a given pµ, ς, βq, the posterior distribution of c given FL is then another Gaussian process

whose mean cLp�q and variance ς2s2
Lp�q are given as follows (Santner, Williams, and Notz, 2013, Section

4.1.3):

cLpθq � µ� rLpθq1R�1
L pΥ� µ1q (A.3)

ς2s2
Lpθq � ς2

�
1� rLpθq1R�1

L rLpθq � p1� 11R�1
L rLpθqq2

11R�1
L 1



. (A.4)

Given this, the expected improvement function can be written as

EILpθq � Erpp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu|FLs
� pp1θ � p1θ�,Lq�Ppcpθq ¥ max

j�1,...,J
gjpθq|FLq

� pp1θ � p1θ�,Lq�P
�
cpθq � cLpθq
ςsLpθq ¥ maxj�1,...,J gjpθq � cLpθq

ςsLpθq
���FL




� pp1θ � p1θ�,Lq�
�

1� Φ

�
ḡpθq � cLpθq
ςsLpθq




, (A.5)

The evaluation points pθp1q, ..., θpLqq are then generated according to the following algorithm (M-step

31We use P and E to denote the probability and expectation for the prior and posterior distributions of c
to distinguish them from P and E used for the sampling uncertainty for Xi.
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in Section 2.3).

Algorithm A.1: Let k P N.

Step 1: Initial evaluation points θp1q, ..., θpkq are drawn uniformly over Θ independent of c.

Step 2: For L ¥ k, with probability 1 � ε, let θpL�1q � argmaxθPΘEILpθq. With probability ε, draw

θpL�1q uniformly at random from Θ.

Below, we use Q to denote the law of pθp1q, ..., θpLqq determined by the algorithm above. We also

note that θ�,L�1 � arg maxθPCL�1
p1θ is a function of the evaluation points and therefore is a random

variable whose law is governed by Q. We let

C � tθ P Θ : ḡpθq � cpθq ¤ 0u. (A.6)

We require that the kernel used to define the correlation functional for the Gaussian process

in (2.17) satisfies some basic regularity conditions. For this, let K̂β � ³
e�2πix1ξKβpxqdx denote

the Fourier transform of Kβ . Note also that, for real valued functions f, g, fpyq � Θpgpyqq means

fpyq � Opgpyqq as y Ñ8 and lim infyÑ8 fpyq{gpyq ¡ 0.

Assumption A.1 (Kernel Function): (i) Kβ is continuous and integrable; (ii) K̂β � k̂βp}x}q for

some nonincreasing function k̂β : R� Ñ R�; (iii) As x Ñ 8 either K̂βpxq � Θp}x}�2ν�dq for some

ν ¡ 0 or K̂βpxq � Op}x}�2ν�dq for all ν ¡ 0; (iv) Kβ is k-times continuously differentiable for

k � t2νu, and at the origin K has k-th order Taylor approximation Pk satisfying |Kpxq � Pkpxq| �
Op}x}2νp� ln }x}q2χq as xÑ 0, for some χ ¡ 0.

Assumption A.1 is essentially the same as Assumptions 1-4 in Bull (2011). When a kernel satisfies

the second condition of Assumption A.1 (iii), i.e. K̂βpxq � Op}x}�2ν�dq,@ν ¡ 0, we say ν � 8.
Assumption A.1 is satisfied by popular kernels such as the Matérn kernel (with 0   ν   8 and

χ � 1{2) and the Gaussian kernel (ν � 8 and χ � 0). These kernels are discussed in Appendix D.2.

Finally, we require that the functions gj are differentiable with continuous Lipschitz gradient,32

that the function c is smooth, and we impose on the constraint set C (which is a confidence set in our

application) a degeneracy condition inspired by Chernozhukov, Hong, and Tamer (2007, Condition

C.3).33 Below HβpΘq is the reproducing kernel Hilbert space (RKHS) on Θ � Rd determined by the

kernel used to define the correlation functional in (2.17). The norm on this space is } � }Hβ
; see Online

Appendix D.2 for details.

Assumption A.2 (Continuity and Smoothness): (i) For each j � 1, . . . , J , the function gjpθq is

differentiable in θ with Lipschitz continuous gradient. (ii) The function c : Θ ÞÑ R satisfies }c}Hβ̄
¤ R

for some R ¡ 0, where β̄ � pβ̄1, � � � , β̄dq1.

Assumption A.3 (Degeneracy): There exist constants pC1,M, τ1q such that for all $ P r0, τ1s,

max
j
gjpθq � cpθq ¤ �C1$, for all θ P C�$,

dHpC�$, Cq ¤M$,

32This requirement holds in the canonical partial identification examples discussed in Online Appendix F,
using the same arguments as in Online Appendix F.1, provided σ̂n,jpθq ¡ 0.

33Chernozhukov, Hong, and Tamer (2007) impose the degeneracy condition on the population identified set.
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where C�$ � tθ P C : dpθ,ΘzCq ¥ $u.

Assumptions A.2-A.3 jointly imply a linear minorant property on maxjpgjpθq � cpθqq�:

DC2 ¡ 0, τ2 ¡ 0 : max
j
pgjpθq � cpθqq� ¥ C2 mintdpθ, Cq, τ2u. (A.7)

To see this, define fjpθq � gjpθq � cpθq, so that the l.h.s. of the above inequality is maxj fjpθq. By

Assumptions A.2-A.3 and compactness of Θ, fjp�q is differentiable with Lipschitz continuous gra-

dient. Let D̃jp�q denote its gradient and let M̃ denote the corresponding Lipschitz constant. Let

ε � C1{pMM̃Jq, where pC1,Mq are from Assumption A.3. We will show that, for constants pC2, τ2q
to be determined, (i) dpθ, Cq ¤ εñ maxj fjpθq ¥ C2dpθ, Cq and (ii) dpθ, Cq ¥ εñ maxj fjpθq ¥ C2τ2,

so that the minimum between these bounds applies to any θ.

To see (i), write θ � θ� � r, where θ� is the projection of θ onto C. Fix a sequence $m Ñ
0. By assumption A.3, there exists a corresponding sequence θ�m Ñ θ� with (for m large enough)

}θ�m � θ�} ¤M$m but also maxj fjpθ�mq ¤ �C1$m. Let tm � pθ�m � θ�q{}θ�m � θ�} be the sequence

of corresponding directions. Then for any accumulation point t of tm and any active constraint j

(i.e., fjpθ�q � 0; such j necessarily exists due to continuity of fjp�q), one has D̃jpθ�qt ¤ �C1{M .

We note for future reference that this finding implies }D̃jpθ�q} ¥ C1{M . It also implies that the

Mangasarian-Fromowitz constraint qualification holds at θ�, hence r (being in the normal cone of C
at θ�) is in the positive span of the active constraints’ gradients. Thus j can be chosen such that

fjpθ�q � 0 and D̃jpθ�qr ¥ }D̃jpθ�q}}r}{J . For any such j, write

fjpθq � fjpθ�q �
» 1

0

dfjpθ� � krq
dk

dk

� 0�
» 1

0

D̃jpθ� � krqrdk

�
» 1

0

�
D̃jpθ�qr �

�
D̃jpθ� � krq � D̃jpθ�q

�
r
	
dk

¥ }D̃jpθ�q}}r}{J �
» 1

0

p�M̃k}r}q}r}dk

¥ C1

MJ }r} � M̃}r}2{2
¥ C1

2MJ }r}.

In the inequality steps, we successively substituted bounds stated before the display, evaluated the

integral in k, and (in the last step) used }r} ¤ ε. This establishes (i), where C2 � C1{p2MJq. Next,

by continuity of maxj fjp�q and compactness of the constraint set, τ � minθtmaxj fjpθq : dpθ, Cq ¥ εu
is well-defined and strictly positive. This establishes (ii) with τ2 � τ{C2.

A.1 Proof of Theorem 3.2

For each L P N, let

rL �
� L

lnL

	�ν{d
plnLqχ. (A.8)
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Proof of Theorem 3.2. First, note that

}p1θ� � p1θ�,L}L1
Q
� EQ

� ��p1θ� � p1θ�,L
�� � � EQ

�
p1θ� � p1θ�,L

�
, (A.9)

where the last equality follows form p1θ� � p1θ�,L�1 ¥ 0,Q� a.s. Hence, it suffices to show

EQ
�
p1θ� � p1θ�,L

� � O
�� L

lnL

	�ν{d
plnLqδ

	
. (A.10)

Let pΩ,Fq be a measurable space. Below, we let L ¥ 2k. Let 0   ν   8. Let 0   η   ε and

AL P F be the event that at least tηLu of the points θpk�1q, � � � , θpLq are drawn independently from a

uniform distribution on Θ. Let BL P F be the event that one of the points θpL�1q, � � � , θp2Lq is chosen

by maximizing the expected improvement. For each L, define the mesh norm:

hL � sup
θPΘ

min
`�1,���L

}θ � θp`q}. (A.11)

For a given M̄ ¡ 0, let CL P F be the event that hL ¤ M̄pL{ lnLq�1{d. We then let

DL � AL XBL X CL. (A.12)

For each ω P DL, let

`pω,Lq � inft˜̀P N : L ¤ ˜̀¤ 2L, θp
˜̀q P arg max

θPΘ
EI˜̀�1pθqu. (A.13)

This is a (random) index that is associated with the first maximizer of the expected improvement

between L and 2L.

Let εL � pL{ lnLq�ν{dplnLqδ for δ ¥ 1 � χ and note that εL is a positive sequence such that

εL Ñ 0 and rL � opεLq. We further define the following events:

E1L � tω P Ω : 0   ḡpθp`pω,Lqqq � cpθp`pω,Lqqq ¤ ε`pω,Lqu (A.14)

E2L � tω P Ω : �ε`pω,Lq ¤ ḡpθp`pω,Lqqq � cpθp`pω,Lqqq   0u (A.15)

E3L � tω P Ω : |ḡpθp`pω,Lqqq � cpθp`pω,Lqqq| ¡ ε`pω,Lqu. (A.16)

Note that DL can be partitioned into DL X E1L, DL X E2L, and DL X E3L. By Lemmas A.2, A.3,

and A.4, there exists a constant M ¡ 0 such that, respectively,

sup
ωPDLXE1L

|p1θ� � p1θ�,`pω,Lq|{ε`pω,Lq ¤M (A.17)

sup
ωPDLXE2L

|p1θ� � p1θ�,`pω,Lq|{ε`pω,Lq ¤M (A.18)

sup
ωPDLXE3L

|p1θ� � p1θ�,`pω,Lq|{ expp�Mη`pω,Lqq ¤M, (A.19)

where ηL � εL{rL. Note that

ηL � εL{rL � plnLqδ�χ. (A.20)
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Hence, by taking M sufficiently large so that M ¡ ν{d,

expp�MηLq � exp
��MplnLqδ�χ� ¤ exp p�M lnLq � L�M � OpL�ν{dq � OpεLq, (A.21)

where the inequality follows from MplnLqδ�χ ¥M lnL by δ ¥ 1� χ. By (A.17)-(A.21),

sup
ωPDL

|p1θ� � p1θ�,`pω,Lq|{ε`pω,Lq ¤M, (A.22)

for some constant M ¡ 0 for all L sufficiently large. Since L ¤ `pω,Lq ¤ 2L, p1θ�,L is non-decreasing

in L, and εL is non-increasing in L, we have

p1θ� � p1θ�,2L ¤MpL{ lnLq�ν{dplnLqδ ¤Mp2L{ ln 2Lq�ν{dpln 2Lqδ (A.23)

where the last equality follows from L�ν{d � 2ν{dp2Lq�ν{d and lnL ¤ ln 2L.

Now consider the case ω R DL. By (A.12),

QpDc
Lq ¤ QpAcLq �QpBcLq �QpCcLq. (A.24)

Let Z` be a Bernoulli random variable such that Z` � 1 if θp`q is randomly drawn from a uniform

distribution. Then, by the Chernoff bounds (see e.g. Boucheron, Lugosi, and Massart, 2013, p.48),

QpAcLq � Qp
Ļ

`�k�1

Z`   tηLuq ¤ expp�pL� k � 1qεpε� ηq2{2q. (A.25)

Further, by the definition of BL,

QpBcLq � εL, (A.26)

and finally by taking M̄ large upon defining the event CL and applying Lemma 12 in Bull (2011), one

has

QpCcLq � OpL�γq, (A.27)

for any γ ¡ 0. Combining (A.24)-(A.27), for any γ ¡ 0,

QpDc
Lq � OpL�γq. (A.28)

Finally, noting that p1θ� � p1θ�,2L is bounded by some constant M ¡ 0 due to the boundedness of Θ,

we have

EQ
�
p1θ� � p1θ�,2L

� �
»
DL

p1θ� � p1θ�,2LdQ�
»
DcL

p1θ� � p1θ�,2LdQ

� Opp2L{ ln 2Lq�ν{dpln 2Lqδq �Op2L�γq, (A.29)

where the second equality follows from (A.23) and (A.28). Since γ ¡ 0 can be made aribitrarily large,

one may let the second term on the right hand side of (A.29) converge to 0 faster than the first term.
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Therefore

EQ
�
p1θ� � p1θ�,2L

� � Opp2L{ ln 2Lq�ν{dpln 2Lqδq, (A.30)

which establishes the claim of the theorem for 0   ν   8. When the second condition of Assumption

A.1 (iii) holds (i.e., ν � 8), the argument above holds for any 0   ν   8.

A.2 Auxiliary Lemmas for the Proof of Theorem 3.2

Let DL be defined as in (A.12). The following lemma shows that on DL X E1L, p1θ� and p1θp`pω,Lqq

are close to each other, where we recall that θp`pω,Lqq is the expected improvement maximizer (but

does not belong to C for ω P E1L).

Lemma A.1: Suppose Assumptions A.1, A.2, and A.3 hold. Let εL be a positive sequence such

that εL Ñ 0 and rL � opεLq. Then, there exists a constant M ¡ 0 such that supωPDLXE1L
|p1θ� �

p1θp`pω,Lqq|{ε`pω,Lq ¤M for all L sufficiently large.

Proof. We show the result by contradiction. Let tωLu � Ω be a sequence such that ωL P DL X E1L

for all L. First, assume that, for any M ¡ 0, there is a subsequence such that |p1θ� � p1θp`pωL,Lqq| ¡
Mε`pωL,Lq for all L. This occurs if it contains a further subsequence along which, for all L, (i)

p1θp`pωL,Lqq � p1θ� ¡Mε`pωL,Lq or (ii) p1θ� � p1θp`pωL,Lqq ¡Mε`pωL,Lq.

Case (i): p1θp`pωL,Lqq � p1θ� ¡Mε`pωL,Lq for all L for some subsequence.

To simplify notation, we select a further subsequence taLu of tLu such that for any aL   aL1 ,

`pωaL , aLq   `pωaL1 , aL1q. This then induces a sequence tθp`qu of expected improvement maximizers

such that p1θp`q � p1θ� ¡ Mε` for all `, where each ` equals `pωaL , aLq for some aL P N. In what

follows, we therefore omit the arguments of `, but this sequence’s dependence on pwaL , aLq should be

implicitly understood.

Recall that C defined in equation (A.6) is a compact set and that ΠCθ
p`q � arg minθPC }θp`q � θ}

denotes the projection of θp`q on C. Then

p1θp`q � p1θ� � pp1θp`q � p1ΠCθ
p`qq � pp1ΠCθ

p`q � p1θ�q
¤ }p}}θp`q �ΠCθ

p`q} � pp1ΠCθ
p`q � p1θ�q ¤ dpθp`q, Cq, (A.31)

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows

from p1ΠCθ
p`q � p1θ� ¤ 0 due to ΠCθ

p`q P C. Therefore, by equation (A.7), for any M ¡ 0

ḡpθp`qq � cpθp`qq� ¥ C2dpθp`q, Cq ¡ C2Mε`, (A.32)

for all ` sufficiently large, where the last inequality follows from p1θp`q�p1θ� ¡Mε`. Take M such that

C2M ¡ 1. Then pḡpθp`qq � cpθp`qqq{ε` ¡ C2M ¡ 1 for all ` sufficiently large, contradicting ωL P E1L.

Case (ii): Similar to Case (i), we work with a further subsequence along which p1θ��p1θp`q ¡Mε` for

all `. Recall that along this subsequence, θp`q R C because 0   ḡpθp`qq� cpθp`qq ¤ ε`. We will construct

θ̃p`q P C�ε` s.t. EI`�1pθ̃p`qq ¡ EI`�1pθp`qq, contradicting the definition of θp`q.
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By Assumption A.3,

dHpC�ε` , Cq ¤Mε`, (A.33)

for all ` such that ε` ¤ τ1. By the Cauchy-Schwarz inequality, for any θ̃,

p1θ� � p1θ̃ ¤ }p}}θ� � θ̃}. (A.34)

Therefore, minimizing both sides with respect to θ̃ P C�ε` and noting that }p} � 1, we obtain

p1θ� � sup
θ̃PC�ε`

p1θ̃ ¤ inf
θ̃PC�ε`

}θ� � θ̃}. (A.35)

Further, noting that θ� P C,

inf
θ̃PC�ε`

}θ� � θ̃} ¤ sup
θPC

inf
θ̃PC�ε`

}θ � θ̃} ¤ dHpC�ε` , Cq. (A.36)

By (A.33)-(A.36),

p1θ� � sup
θPC�ε`

p1θ ¤Mε`, (A.37)

for all ` sufficiently large. Therefore, for all ` sufficiently large, one has

p1θ� � sup
θPC�ε`

p1θ   p1θ� � p1θp`q, (A.38)

implying existence of θ̃p`q P C�ε` s.t.

p1θ̃p`q ¡ p1θp`q. (A.39)

By Lemma A.6, for tpθq � pḡpθq � cpθqq{s`pθq, one can write

EI`�1pθp`qq ¤ pp1θp`q � p1θ�,`�1q�
�

1� Φ
� tpθp`qq �R

ς

		
(A.40)

¤ pp1θp`q � p1θ�,`�1q�p1� Φp�R{ςqq, (A.41)

where the last inequality uses tpθp`qq ¡ 0. Lemma A.6 also yields

EI`�1pθ̃p`qq ¥ pp1θ̃p`q � p1θ�,`�1q�
�

1� Φ
� tpθ̃p`qq �R

ς

		

¡ pp1θp`q � p1θ�,`�1q�
�

1� Φ
� tpθ̃p`qq �R

ς

		
(A.42)

for all ` sufficiently large, where the second inequality follows from (A.39). Next, by Assumption A.3,

tpθ̃p`qq � ḡpθ̃p`qq � cpθ̃p`qq
s`pθ̃p`qq

¤ �C1ε`

s`pθ̃p`qq
(A.43)

for all ` sufficiently large. Note that s`pθ̃p`qq � Opr`q by (A.62) and r` � opε`q by assumption. Hence,
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tpθ̃p`qq Ñ �8. This in turn implies

EI`�1pθ̃p`qq ¡ pp1θp`q � p1θ�,`�1q�p1� Φp�R{ςqq (A.44)

for all ` sufficiently large. (A.41) and (A.44) jointly establish the desired contradiction.

The next lemma shows that on DL XE1L, p1θ� and p1θ�,p`pω,Lqq are close to each other, where we

recall that θ�,p`pω,Lqq is the optimum value among the available feasible points (it belongs to C).

Lemma A.2: Suppose Assumptions A.1, A.2, and A.3 hold. Let εL be a positive sequence such

that εL Ñ 0 and rL � opεLq. Then, there exists a constant M ¡ 0 such that supωPDLXE1L
|p1θ� �

p1θ�,`pω,Lq|{ε`pω,Lq ¤M for all L sufficiently large.

Proof. We show below p1θ�� p1θ�,`pω,Lq�1 � Opε`pω,Lqq uniformly over DLXE1L for some decreasing

sequence ε` satisfying the assumptions of the lemma. The claim then follows by re-labeling ε`.

Suppose by contradiction that, for any M ¡ 0, there is a subsequence tωaLu � Ω along which

ωaL P DaL and |p1θ��p1θ�,`pωaL ,aLq�1| ¡Mε`pωaL ,aLq for all L sufficiently large. To simplify notation,

we select a subsequence taLu of tLu such that for any aL   aL1 , `pωaL , aLq   `pωaL1 , aL1q. This then

induces a sequence such that |p1θ� � p1θ�,`�1| ¡ Mε` for all `, where each ` equals `pωaL , aLq for

some aL P N. Similar to the proof of Lemma A.1, we omit the arguments of ` below and construct a

sequence of points θ̃p`q P C�ε` such that EI`�1pθ̃p`qq ¡ EI`�1pθp`qq.
Arguing as in (A.33)-(A.36), one may find a sequence of points θ̃p`q P C�ε` such that

p1θ� � p1θ̃p`q ¤M1ε`, (A.45)

for some M1 ¡ 0 and for all ` sufficiently large. Furthermore, by Lemma A.1,

|p1θ� � p1θp`q| ¤M2ε`, (A.46)

for some M2 ¡ 0 and for all ` sufficiently large. Arguing as in (A.41),

EI`�1pθp`qq ¤ pp1θp`q � p1θ�,`�1q�
�
1� Φp�R{ςq�

� pp1θ� � p1θ�,`�1 � pp1θ� � p1θp`qqq�
�
1� Φp�R{ςq�

¤ pp1θ� � p1θ�,`�1q�1� Φp�R{ςq�� |p1θ� � p1θp`q|, (A.47)

where the last inequality follows from the triangle inequality, p1θ�� p1θ�,`�1 ¥ 0, and 1�Φp�Rς q ¤ 1.

Similarly, by Lemma A.6,

EI`�1pθ̃p`qq ¥ pp1θ̃p`q � p1θ�,`�1q�
�

1� Φ
� tpθ̃p`qq �R

ς

		

� pp1θ� � p1θ�,`�1 � pp1θ� � p1θ̃p`qqq�
�

1� Φ
� tpθ̃p`qq �R

ς

		

¥ pp1θ� � p1θ�,`�1q
�

1� Φ
� tpθ̃p`qq �R

ς

		
� pp1θ� � p1θ̃p`qq, (A.48)

where the last inequality holds for all ` sufficiently large because p1θ� � p1θ̃p`q P p0,M2ε`s and one

can find a subsequence p1θ� � p1θ�,`�1 ¡ M2ε` so that p1θ� � p1θ�,`�1 � pp1θ� � p1θ̃p`qq ¡ 0 for all `
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sufficiently large.

Subtracting (A.47) from (A.48) yields

EI`�1pθ̃p`qq � EI`�1pθp`qq

¥ pp1θ� � p1θ�,`�1q
�

Φ
��R
ς

	
� Φ

� tpθ̃p`qq �R

ς

		
� pp1θ� � p1θ̃p`qq � |p1θ� � p1θp`q|

¥ pp1θ� � p1θ�,`�1q
�

Φ
��R
ς

	
� Φ

� tpθ̃p`qq �R

ς

		
� pM1 �M2qε`, (A.49)

where the last inequality follows from (A.45) and (A.46). Note that there is a constant ζ ¡ 0 s.t.

Φ
��R
ς

	
� Φ

� tpθ̃p`qq �R

ς

	
¡ ζ, (A.50)

due to tpθ̃p`qq Ñ �8 by (A.43), (A.62), and r` � opε`q. Therefore, for all ` sufficiently large,

EI`�1pθ̃p`qq � EI`�1pθp`qq ¡Mζε` � pM1 �M2qε`. (A.51)

One may take M large enough so that, for some positive constant γ, Mζε` � pM1 �M2qε` ¡ γε` for

all ` sufficiently large, which implies EI`�1pθ̃p`qq�EI`�1pθp`qq ¡ 0 for all ` sufficiently large. However,

this contradicts the assumption that θp`q R C�ε` is the expected improvement maximizer.

The next lemma shows that on DL X E2L, p1θ� and p1θ�,p`pω,Lqq are close to each other.

Lemma A.3: Suppose Assumptions A.1, A.2, and A.3 hold. Let tεLu be a positive sequence such

that εL Ñ 0 and rL � opεLq. Then, there exists a constant M ¡ 0 such that supωPDLXE2L
|p1θ� �

p1θ�,`pω,Lq|{ε`pω,Lq ¤M for all L sufficiently large.

Proof. Note that, for any L P N, ω P DL X E2L, and ` � `pω,Lq, θp`q satisfies ḡpθp`qq � cpθp`qq ¤ 0,

hence p1θ
�,` ¥ p1θp`q, which in turn implies

0 ¤ p1θ� � p1θ�,` ¤ p1θ� � p1θp`q. (A.52)

Therefore, it suffices to show the existence of M ¡ 0 that ensures pp1θ� � p1θp`pω,Lqqq� ¤ Mε`pω,Lq

uniformly over DL X E2L for all L. Suppose by contradiction that, for any M ¡ 0, there is a

subsequence tωaLu � Ω along which ωaL P DaL X E2aL and p1θ� � p1θp`pωaL ,aLqq ¡ Mε`pωaL ,aLq for

all L sufficiently large. Again, we select a subsequence taLu of tLu such that for any aL   aL1 ,

`pωaL , aLq   `pωaL1 , aL1q. This then induces a sequence tθp`qu of expected improvement maximizers

such that pp1θ� � p1θp`qq� ¡Mε` for all `, where each ` equals `pωaL , aLq for some aL P N.

Similar to the proof of Lemma A.1, we omit the arguments of ` below and prove the claim by

contradiction. Below, we assume that, for any M ¡ 0, there is a further subsequence along which

p1θ� � p1θp`q ¡Mε` for all ` sufficiently large.

Now let ε1` � C̃ε` with C̃ ¡ 0 specified below. By Assumption A.3, for all θ̃ P C�ε1` , it holds that

ḡpθ̃q � cpθ̃q ¤ �C̃C1ε`, (A.53)

for all ` sufficiently large. Noting that �ε` ¤ ḡpθp`qq � cpθp`qq and taking C̃ such that C̃C1 ¡ 1, it
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follows that θp`q R C�ε1` for all ` sufficiently large.

Arguing as in (A.33)-(A.36), one may find a sequence of points θ̃p`q P C�ε1` such that

p1θ� � p1θ̃p`q ¤M1ε
1
` �M1C̃ε`, (A.54)

This and the assumption that one can find a subsequence such that p1θ� � p1θp`q ¡ M1C̃ε` for all `

imply

p1θ� � p1θ̃p`q   p1θ� � p1θp`q, (A.55)

for all ` sufficiently large. Now mimic the argument along (A.41)-(A.44) to deduce

EI`�1pθ̃p`qq ¡ EI`�1pθp`qq (A.56)

for all ` sufficiently large. However, this contradicts the assumption that θp`q R C�ε1` is the expected

improvement maximizer.

The next lemma shows that on DL X E3L, p1θ� and p1θ�,p`pω,Lqq are close to each other.

Lemma A.4: Suppose Assumptions A.1, A.2, and A.3 hold. Let εL � pL{ lnLq�ν{dplnLqδ for δ ¥
1�χ. Let ηL � εL{rL � plnLqδ�χ. Then there exists a constant M ¡ 0 such that supωPDLXE3L

|p1θ��
p1θ�,`pω,Lq|{ expp�Mη`pω,Lqq ¤M for all L sufficiently large.

Proof. Let tωLu � Ω be a sequence such that ωL P DL for all L. Since ωL P BL, there is ` � `pωL, Lq
such that L ¤ ` ¤ 2L and θp`q is chosen by maximizing the expected improvement. For later use,

we note that, for any M̃ ¡ 0, it can be shown that expp�M̃ηL�1q{ expp�M̃ηLq Ñ 1, which in turn

implies that there exists a constant C ¡ 1 such that

expp�M̃ηL�1q ¤ C expp�M̃ηLq, (A.57)

for all L sufficiently large.

For θ P Θ and L P N, let ILpθq � pp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu. Recall that θ� is an optimal
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solution to (2.14). Then, for all L sufficiently large,

p1θ� � p1θ�,`�1 p1q� I`�1pθ�q
p2q
¤ EI`�1pθ�q

�
1� ΦpR{ςq��1 p3q

¤ EI`�1pθp`qq
�
1� ΦpR{ςq��1

p4q
¤

�
I`�1pθp`qq �M1 expp�M̃η`�1q

	�
1� ΦpR{ςq��1

p5q
¤

�
I`�1pθp`qq �M2 expp�M̃η`q

	�
1� ΦpR{ςq��1

p6q
¤

�
I`�1pθ�,`q �M2 expp�M̃η`q

	�
1� ΦpR{ςq��1

p7q
¤

�
EI`�1pθ�,`q � 2M2 expp�M̃η`q

	�
1� ΦpR{ςq��1

p8q
¤

�
EI`�1pθp`�1qq � 2M2 expp�M̃η`q

	�
1� ΦpR{ςq��1

p9q
¤

�
I`�1pθp`�1qq � 3M2 expp�M̃η`q

	�
1� ΦpR{ςq��1

p10q
¤ 3M2 expp�M̃η`q

�
1� ΦpR{ςq��1

,

where (1) follows by construction, (2) follows from Lemma A.6 (ii), (3) follows from θp`q being the

maximizer of the expected improvement, (4) follows from Lemma A.5, (5) follows from (A.57) with

M2 � CM1, (6) follows from θ�,` � argmaxθPC`p
1θ, (7) follows from Lemma A.5, (8) follows from

θp`�1q being the expected improvement maximizer, (9) follows from Lemma A.5, and (10) follows

from I`�1pθp`�1qq � 0 due to the definition of θ�,`�1. This establishes the claim.

For evaluation points θL such that |ḡpθLq � cpθLq| ¡ εL, the following lemma is an analog of

Lemma 8 in Bull (2011), which links the expected improvement to the actual improvement achieved

by a new evaluation point θ.

Lemma A.5: Suppose Θ � Rd is bounded and p P Sd�1. Suppose the evaluation points pθp1q, � � � , θpLqq
are drawn by Algorithm A.1 and let Assumptions A.1 and A.2-(ii) hold. For θ P Θ and L P N, let

ILpθq � pp1θ�p1θ�,Lq�1tḡpθq ¤ cpθqu. Let tεLu be a positive sequence such that εL Ñ 0 and rL � opεLq.
Let ηL � εL{rL. Then, for any sequence tθLu � Θ such that |ḡpθLq � cpθLq| ¡ εL,

ILpθLq � γL ¤ EILpθLq ¤ ILpθLq � γL, (A.58)

where γL � Opexpp�MηLqq.

Proof of Lemma A.5. If sLpθLq � 0, then the posterior variance of cpθLq is zero. Hence, EILpθLq �
ILpθLq, and the claim of the lemma holds.

Suppose sLpθLq ¡ 0. We first show the upper bound. Let u � pḡpθLq � cLpθLqq{sLpθLq and

t � pḡpθLq � cpθLqq{sLpθLq. By Lemma 6 in Bull (2011), we have |u� t| ¤ R. Starting from Lemma
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A.6(i), we can write

EILpθLq ¤ pp1θL � p1θ�,Lq�
�

1� Φ
� t�R

ς

		

� pp1θL � p1θ�,Lq�p1tḡpθLq ¤ cpθLqu � 1tḡpθLq ¡ cpθLquq
�

1� Φ
� t�R

ς

		

¤ ILpθLq � pp1θL � p1θ�,Lq�1tḡpθLq ¡ cpθLqu
�

1� Φ
� t�R

ς

		
, (A.59)

where the last inequality used 1� Φpxq ¤ 1 for any x P R. Note that one may write

1tḡpθLq ¡ cpθLqu
�

1� Φ
� t�R

ς

		
� 1tḡpθLq ¡ cpθLqu

�
1� Φ

� ḡpθLq � cpθLq � sLpθLqR
ςsLpθLq

		
. (A.60)

To be clear about the hyperparameter value at which we evaluate sL, we will write sLpθL;βq. By the

hypothesis that }c}Hβ̄
¤ R and Lemma 4 in Bull (2011), we have

}c}HβL
¤ R2

d¹
k�1

pβk{βkq � S. (A.61)

Note that there are tηLu uniformly sampled points, and Kβ is associated with index ν P p0,8q. As

shown in the proof of Theorem 5 in Bull (2011), this ensures that

sup
βP
±d
k�1rβk

,βks

sLpθL;βq � OphνLplnLqχq � OprLq. (A.62)

Below, we simply write this result sLpθLq � OprLq. This, together with |ḡpθLq � cpθLq| ¡ εL and the

fact that 1� Φp�q is decreasing, yields

1tḡpθLq ¡ cpθLqu
�

1� Φ
� ḡpθLq � cpθLq � sLpθLqR

ςsLpθLq
		

¤ 1� Φ
� εL
ςsLpθLq �

R

ς

	

¤ 1� ΦpM1ηL �M2q, (A.63)

for some M1 ¡ 0 and where M2 � R{ς. Note that, by the triangle inequality,

1� ΦpM1ηL �M2q ¤ 1� ΦpM1ηLq � |p1� ΦpM1ηL �M2qq � p1� ΦpM1ηLqq|, (A.64)

and

1� ΦpM1ηLq ¤ 1

M1ηL
φpM1ηLq � Opexpp�MηLqq, (A.65)

for some M ¡ 0, where φ is the density of the standard normal distribution, and the inequality follows

from 1� Φpxq ¤ φpxq{x. The second term on the right hand side of (A.64) can be bounded as

|p1� ΦpM1ηL �M2qq � p1� ΦpM1ηLqq| ¤ φpη̃LqM2 � Opexpp�MηLqq (A.66)

by the mean value theorem, where η̃L is a point between M1ηL and M1ηL � M2. The claim of

the lemma then follows from (A.59), (A.63)-(A.66), and pp1θL � p1θ�,LL q being bounded because Θ is

bounded.
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Similarly, for the lower bound, we have

EILpθLq ¥ pp1θL � p1θ�Lq�
�

1� Φ
� t�R

ς

		

¥ pp1θL � p1θ�Lq�1tḡpθLq ¤ cpθLqu
�

1� Φ
� t�R

ς

		

¥ ILpθLq � pp1θL � p1θ�Lq�1tḡpθLq ¤ cpθLquΦ
� t�R

ς

	
. (A.67)

Note that we may write

1tḡpθLq ¤ cpθLquΦ
� t�R

ς

	
� 1tḡpθLq   cpθLquΦ

� ḡpθLq � cpθLq � sLpθLqR
ςsLpθLq

	
, (A.68)

by |ḡpθLq � cpθLq| ¡ εL. Arguing as in (A.77) and noting that Φ is increasing, one has

1tḡpθLq   cpθLquΦ
� ḡpθLq � cpθLq � sLpθLqR

ςsLpθLq
	
¤ Φ

� �εL
ςsLpθLq �M2

	

¤ Φp�M1ηL �M2q, (A.69)

for some M1 ¡ 0 and M2 ¡ 0. By the triangle inequality,

Φp�M1ηL �M2q ¤ Φp�M1ηLq � |Φp�M1ηL �M2q � Φp�M1ηLq|, (A.70)

where arguing as in (A.65),

Φp�M1ηLq � 1� ΦpM1ηLq � Opexpp�MηLqq. (A.71)

The second term on the right hand side of (A.70) can be bounded as

|Φp�M1ηL �M2q � Φp�M1ηLq|
� |p1� ΦpM1ηL �M2qq � p1� ΦpM1ηLqq| ¤ φpη̃LqM2 � Opexpp�MηLqq, (A.72)

by the mean value theorem, where η̃L is a point between M1ηL and M1ηL �M2. The claim of the

lemma then follows from (A.77)-(A.72), and pp1θL�p1θ�,LL q being bounded because Θ is bounded.

Lemma A.6: Suppose Θ � Rd is bounded and p P Sd�1 and let Assumptions A.1 and A.2-(ii)

hold. Let tpθq � pḡpθq � cpθqq{sLpθq. For θ P Θ and L P N, let ILpθq � pp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu.
Then, (i) for any L P N and θ P Θ,

pp1θ � p1θ�,Lq�
�

1� Φ
� tpθq �R

ς

		
¤ EILpθq ¤ pp1θ � p1θ�,Lq�

�
1� Φ

� tpθq �R

ς

		
. (A.73)

Further, (ii) for any L P N and θ P Θ such that sLpθq ¡ 0,

ILpθq ¤ EILpθq
�

1� Φ
�R
ς

		�1

. (A.74)

Proof. (i) Let upθq � pḡpθq�cLpθqq{sLpθq and tpθq � pḡpθq�cpθqq{sLpθq. By Lemma 6 in Bull (2011),
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we have |upθq � tpθq| ¤ R. Since 1� Φp�q is decreasing, we have

EILpθq � pp1θ � p1θ�,Lq�
�

1� Φ
�upθq

ς

		
¤ pp1θ � p1θ�,Lq�

�
1� Φ

� tpθq �R

ς

		
. (A.75)

Similarly,

EILpθq � pp1θ � p1θ�,Lq�
�

1� Φ
�upθq

ς

		
¥ pp1θ � p1θ�,Lq�

�
1� Φ

� tpθq �R

ς

		
. (A.76)

(ii) For the lower bound in (A.74), we have

EILpθq ¥ pp1θ � p1θ�,Lq�
�

1� Φ
� tpθq �R

ς

		

¥ pp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu
�

1� Φ
� tpθq �R

ς

		

¥ ILpθq
�
1� ΦpR{ςq�, (A.77)

where the last inequality follows from tpθq � pḡpθq � cpθqq{sLpθq ¤ 0 and the fact that 1 � Φp�q is

decreasing.

B Applying the E-A-M Algorithm to Profiling

We describe below how to use the E-A-M procedure to compute BCS-profiling based confidence

intervals. Let T � R denote the parameter space for τ � p1θ. The (one-dimensional) profiling

confidence region is

!
τ P T : inf

θ:p1θ�τ
Tnpθq ¤ cMR

n pτq
)
, (B.1)

where cMR
n is the critical value proposed in Bugni, Canay, and Shi (2017) and Tn is any test statistic

that they allow for. The E-A-M algorithm can be used to compute the endpoints of this set so that

the researcher may report an interval.

For ease of exposition, we discuss below the computation of the right end point of the confidence

interval, which is the optimal value of the following problem:34

max
τPT

τ (B.2)

s.t. inf
θPΘ:p1θ�τ

Tnpθq ¤ cMR
n pτq.

We then take cpτq � � infθPΘ:p1θ�τ Tnpθq � cMR
n pτq as a black-box function and apply the E-A-M

algorithm.35 We include the profiled statistic in the black-box function because it involves a non-

linear optimization problem, which is also relatively expensive. The modified procedure is as follows.

Initialization: Draw randomly (uniformly) over T � R a set pτ p1q, . . . , τ pkqq of initial evaluation

points and evaluate cpτ p`qq for ` � 1, . . . , k � 1. Initialize L � k.

34The left end point is the optimal value of a program that replaces max with min.
35One may view (B.2) as a special case of (2.14) with a scalar control variable and a single constraint

g1pτq ¤ cpτq with g1pτq � 0.
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E-Step: Evaluate cpτ pLqq and record the tentative optimal value

τ�,L � max
 
τ ` : ` P t1, . . . , Lu, cpτ p`qq ¥ 0

(
.

A-step: (Approximation) Approximate τ ÞÑ cpτq by a flexible auxiliary model. We again use the

kriging approximation, which for a mean-zero Gaussian process ζp�q indexed by τ and with

constant variance ς2 specifies

Υp`q � µ� ζpτ p`qq, ` � 1, . . . , L (B.3)

Corrpζpτq, ζpτ 1qq � Kβpτ � τ 1q, τ, τ 1 P R, (B.4)

where Kβ is a kernel with a scalar parameter β P rβ, βs � R��. The parameters are estimated

in the same way as before.

The (best linear) predictor of c and its derivative are then given by

cLpτq � µ̂� rLpτq1R�1
L pΥ� µ̂1q, (B.5)

∇τ cLpτq � µ̂�QLpτqR�1
L pΥ� µ̂1q, (B.6)

where rLpτq is a vector whose `-th component is Corrpζpτq, ζpτ p`qqq as given above with es-

timated parameters, QLpτq � ∇τrLpτq1, and RL is an L-by-L matrix whose p`, `1q entry is

Corrpζpτ p`qq, ζpτ p`1qqq with estimated parameters. The amount of uncertainty left in cpτq is

captured by the following variance:

ς̂2s2
Lpτq � ς̂2

�
1� rLpτq1R�1

L rLpτq � p1� 11R�1
L rLpτqq2

11R�1
L 1

	
. (B.7)

M-step: (Maximization): With probability 1 � ε, maximize the expected improvement function

EIL to obtain the next evaluation point, with:

τ pL�1q � arg max
τPT

EILpτq � arg max
τPT

pτ � τ�,Lq�
�

1� Φ
��cLpτq
ς̂sLpτq

		
. (B.8)

With probability ε, draw τ pL�1q randomly from a uniform distribution over T .

As before, τ�,L is reported as end point of CIn upon convergence. In order for Theorem 3.2 to

apply to this algorithm, the profiled statistic infθPΘ:p1θ�τ Tnpθq and the critical value ĉMR
n need to

be sufficiently smooth. We leave derivation of sufficient conditions for this to be the case to future

research.

C An Entry Game Model and Some Monte Carlo Simulations

We evaluate the statistical and numerical performance of calibrated projection and E-A-M in com-

parison with BCS-profiling in a Monte Carlo experiment run on a server with two Intel Xeon X5680

processors rated at 3.33GHz with 6 cores each and with a memory capacity of 24Gb rated at 1333MHz.

The experiment simulates a two-player entry game in the Monte Carlo exercise of BCS, using their
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code to implement their method.36

C.1 The General Entry Game Model

We consider a two player entry game based on Ciliberto and Tamer (2009):

Y2 � 0 Y2 � 1

Y1 � 0 0, 0 0, Z 1
2ϑ1 � u2

Y1 � 1 Z 1
1ϑ1 � u1, 0 Z 1

1pϑ1 �∆1q � u1, Z
1
2pϑ2 �∆2q � u2

Here, Y`, Z`, and u` denote player `1s binary action, observed characteristics, and unobserved

characteristics. The strategic interaction effects Z 1`∆` ¤ 0 measure the impact of the oppo-

nent’s entry into the market. We let X � pY1, Y2, Z
1
1, Z

1
2q1. We generate Z � pZ1, Z2q as

an i.i.d. random vector taking values in a finite set whose distribution pz � P pZ � zq is

known. We let u � pu1, u2q be independent of Z and such that Corrpu1, u2q � r P r0, 1s
and V arpu`q � 1, ` � 1, 2. We let θ � pϑ11, ϑ12,∆1

1,∆
1
2, rq1. For a given set A � R2, we define

GrpAq � P pu P Aq. We choose Gr so that the c.d.f. of u is continuous, differentiable, and

has a bounded p.d.f. The outcome Y � pY1, Y2q results from pure strategy Nash equilibrium

play. For some value of Z and u, the model predicts monopoly outcomes Y � p0, 1q and p1, 0q
as multiple equilibria. When this occurs, we select outcome p0, 1q by independent Bernoulli

trials with parameter µ P r0, 1s. This gives rise to the following restrictions:

Er1tY � p0, 0qu1tZ � zus �Grpp�8,�z11ϑ1q � p�8,�z12ϑ2qqpz � 0 (C.1)

Er1tY � p1, 1qu1tZ � zus �Grpr�z11pϑ1 �∆1q,�8q � r�z12pϑ2 �∆2q,�8qqpz � 0 (C.2)

Er1tY � p0, 1qu1tZ � zus �Grpp�8,�z11pϑ1 �∆1qq � r�z12ϑ2,�8qqpz ¤ 0 (C.3)

�Er1tY � p0, 1qu1tZ � zus �
�
Grpp�8,�z11pϑ1 �∆1qq � r�z12ϑ2,�8q

�Grpr�z11ϑ1,�z11pϑ1 �∆1qq � r�z12ϑ2,�z12pϑ2 �∆2qq
�
pz ¤ 0.

(C.4)

We show in Online Appendix F that this model satisfies Assumptions D.1 and E.3-2.37

Throughout, we analytically compute the moments’ gradients and studentize them using

sample analogs of their standard deviations.

C.2 A Comparison to BCS-Profiling

BCS specialize this model as follows. First, u1, u2 are independently uniformly distributed

on r0, 1s and the researcher knows r � 0. Equality (C.1) disappears because p0, 0q is never

an equilibrium. Next, Z1 � Z2 � r1; tWkudWk�0s, where Wk are observed market type indi-

36See http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411.
37The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes,

Porter, Ho, and Ishii (2011) exclude any DGP that has moment equalities.
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cators, ∆` � rδ`; 0dW s for ` � 1, 2, and ϑ1 � ϑ2 � ϑ � r0; tϑrksudWk�0s.38 The parameter

vector is θ � rδ1; δ2;ϑs with parameter space Θ � tθ P R2�dW : pδ1, δ2q P r0, 1s2, ϑk P
r0,mintδ1, δ2us, k � 1, . . . , dW u. This leaves 4 moment equalities and 8 moment inequali-

ties (so J � 16); compare equation (5.1) in BCS. We set dW � 3, P pWk � 1q � 1{4, k �
0, 1, 2, 3, θ � r0.4; 0.6; 0.1; 0.2; 0.3s, and µ � 0.6. The implied true bounds on parameters are

δ1 P r0.3872, 0.4239s, δ2 P r0.5834, 0.6084s, ϑr1s P r0.0996, 0.1006s, ϑr2s P r0.1994, 0.2010s, and

ϑr3s P r0.2992, 0.3014s.
The BCS-profiling confidence interval CIprofn inverts a test of H0 : p1θ � τ over a grid

for τ . We do not in practice exhaust the grid but search inward from the extreme points of

Θ in directions �p. At each τ that is visited, we use BCS code to compute a profiled test

statistic and the corresponding critical value ĉMR
n pτq. The latter is a quantile of the minimum

of two distinct bootstrap approximations, each of which solves a nonlinear program for each

bootstrap draw. Computational cost quickly increases with grid resolution, bootstrap size,

and the number of starting points used to solve the nonlinear programs.

Calibrated projection computes ĉnpθq by solving a series of linear programs for each

bootstrap draw.39 It computes the extreme points of CIn by solving the nonlinear program

(2.6) twice, a task that is much accelerated by the E-A-M algorithm. Projection of Andrews

and Soares (2010) operates very similarly but computes its critical value ĉprojn pθq through

bootstrap simulation without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence thresh-

old of 0.005.40 We run all methods with B � 301 bootstrap draws, and calibrated and

“uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with B � 1001.41

Some other choices differ: BCS-profiling is implemented with their own choice to multi-start

the nonlinear programs at 3 oracle starting points, i.e. using knowledge of the true DGP;

our implementation of both other methods multi-starts the nonlinear programs from 30 data

dependent random points (see Kaido, Molinari, Stoye, and Thirkettle (2017) for details).

Table 2 displays results for pδ1, δ2q and for 300 Monte Carlo repetitions of all three meth-

ods. All confidence intervals are conservative, reflecting the effect of GMS. As expected,

uncalibrated projection is most conservative, with coverage of essentially 1. Also, BCS-

profiling is more conservative than calibrated projection. The most striking contrast is in

computational effort. Here, uncalibrated projection is fastest – indeed, in contrast to received

38This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for observed
heterogeneity in interaction effects.

39We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and
described in Mattingley and Boyd (2012).

40This is only one of several individually necessary stopping criteria. Others include that the current
optimum θ�,L and the expected improvement maximizer θL�1 (see equation (2.21)) satisfy |p1pθL�1�θ�,Lq| ¤
0.005. See Kaido, Molinari, Stoye, and Thirkettle (2017) for the full list of convergence requirements.

41Based on some trial runs of BCS-profiling for δ1, we estimate that running it with B � 1001 throughout
would take 3.14-times longer than the computation times reported in Table 2. By comparison, calibrated
projection takes only 1.75-times longer when implemented with B � 1001 instead of B � 301.
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wisdom, this procedure is computationally somewhat easy. This is due to our use of the E-

A-M algorithm and therefore part of this paper’s contribution. Next, our implementation of

calibrated projection beats BCS-profiling with gridding by a factor of about 70. This can

be disentangled into the gain from using calibrated projection, with its advantage of boot-

strapping linear programs, and the gain afforded by the E-A-M algorithm. It turns out that

implementing BCS-profiling with the adapted E-A-M algorithm (see Appendix B) improves

computation by a factor of about 4; switching to calibrated projection leads to a further

improvement by a factor of about 17. Finally, Table 3 extends the analysis to all components

of θ and to 1000 Monte Carlo repetitions. We were unable to compute this for BCS-profiling.

In sum, the Monte Carlo experiment on the same DGP used in BCS yields three inter-

esting findings: (i) The E-A-M algorithm accelerates projection of the Andrews and Soares

(2010) confidence region to the point that this method becomes reasonably cheap; (ii) it also

substantially accelerates computation of profiling intervals, and (iii) for this DGP, calibrated

projection combined with the E-A-M algorithm has the most accurate size control while also

being computationally attractive.
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Tables

Table 1: Results for empirical application, with α � 0.05, ρ � 6.6055, n � 7882, κn �
?

lnn. “Direct
search” refers to fmincon performed after E-A-M and starting from feasible points discovered by
E-A-M, including the E-A-M optimum.

CIn Computational Time

E-A-M Direct Search E-A-M Direct Search Total

ϑconsLCC r�2.0603,�0.8510s r�2.0827,�0.8492s 24.73 032.46 057.51

ϑsizeLCC r0.1880, 0.4029s r0.1878, 0.4163s 16.18 230.28 246.49

ϑpresLCC r1.7510, 1.9550s r1.7426, 1.9687s 16.07 115.20 131.30

ϑconsOA r0.3957, 0.5898s r0.3942, 0.6132s 27.61 107.33 137.66

ϑsizeOA r0.3378, 0.5654s r0.3316, 0.5661s 11.90 141.73 153.66

ϑpresOA r0.3974, 0.5808s r0.3923, 0.5850s 13.53 148.20 161.75

δLCC r�1.4423,�0.1884s r�1.4433,�0.1786s 15.65 119.50 135.17

δOA r�1.4701,�0.7658s r�1.4742,�0.7477s 13.06 114.14 127.23

r r0.1855, 0.85s00 r0.1855, 0.85s00 05.37 042.38 047.78
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Table 2: Results for Set 1 with n � 4000, MCs � 300, B � 301, ρ � 5.04, κn �
?

lnn.

1� α

Median CI

CIprofn CIn CIprojn

Implementation Grid E-A-M E-A-M E-A-M

δ1 � 0.4

0.95 [0.330,0.495] [0.331,0.495] [0.336,0.482] [0.290,0.558]

0.90 [0.340,0.485] [0.340,0.485] [0.343,0.474] [0.298,0.543]

0.85 [0.345,0.475] [0.346,0.479] [0.348,0.466] [0.303,0.537]

δ2 � 0.6

0.95 [0.515,0.655] [0.514,0.655] [0.519,0.650] [0.461,0.682]

0.90 [0.525,0.647] [0.525,0.648] [0.531,0.643] [0.473,0.675]

0.85 [0.530,0.640] [0.531,0.642] [0.539,0.639] [0.481,0.671]

1� α

Coverage

CIprofn CIn CIprojn

Implementation Grid E-A-M E-A-M E-A-M

Lower Upper Lower Upper Lower Upper Lower Upper

δ1 � 0.4

0.95 0.997 0.990 1.000 0.993 0.993 0.977 1.000 1.000

0.90 0.990 0.980 0.993 0.977 0.987 0.960 1.000 1.000

0.85 0.970 0.970 0.973 0.960 0.957 0.930 1.000 1.000

δ2 � 0.6

0.95 0.987 0.993 0.990 0.993 0.973 0.987 1.000 1.000

0.90 0.977 0.973 0.980 0.977 0.940 0.953 1.000 1.000

0.85 0.967 0.957 0.963 0.960 0.943 0.927 1.000 1.000

1� α

Average Time

CIprofn CIn CIprojn

Implementation Grid E-A-M E-A-M E-A-M

δ1 � 0.4

0.95 1858.42 425.49 26.40 18.22

0.90 1873.23 424.11 25.71 18.55

0.85 1907.84 444.45 25.67 18.18

δ2 � 0.6

0.95 1753.54 461.30 26.61 22.49

0.90 1782.91 472.55 25.79 21.38

0.85 1809.65 458.58 25.00 21.00

Notes: (1) Projections of ΘI are: δ1 P r0.3872, 0.4239s, δ2 P r0.5834, 0.6084s, ζ1 P r0.0996, 0.1006s, ζ2 P
r0.1994, 0.2010s, ζ3 P r0.2992, 0.3014s. (2) “Upper” coverage is for maxθPΘI pP q p

1θ, and similarly for “Lower”.
(3) “Average time” is computation time in seconds averaged over MC replications. (4) CIprofn results from
BCS-profiling, CIn is calibrated projection, and CIprojn is uncalibrated projection. (5) “Implementation”
refers to the method used to compute the extreme points of the confidence interval.
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Table 3: Results for Set 1 with n � 4000, MCs � 1000, B � 999, ρ � 5.04, κn �
?

lnn.

1� α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

δ1 � 0.4
0.95 [0.333,0.478] [0.288,0.555] 0.988 0.982 1 1 42.41 22.23
0.90 [0.341,0.470] [0.296,0.542] 0.976 0.957 1 1 41.56 22.11
0.85 [0.346,0.464] [0.302,0.534] 0.957 0.937 1 1 40.47 19.79

δ2 � 0.6
0.95 [0.525,0.653] [0.466,0.683] 0.969 0.983 1 1 42.11 24.39
0.90 [0.538,0.646] [0.478,0.677] 0.947 0.960 1 1 40.15 28.13
0.85 [0.545,0.642] [0.485,0.672] 0.925 0.941 1 1 41.38 26.44

ζr1s � 0.1
0.95 [0.054,0.142] [0.020,0.180] 0.956 0.958 1 1 40.31 22.53
0.90 [0.060,0.136] [0.028,0.172] 0.911 0.911 1 1 36.80 24.15
0.85 [0.064,0.132] [0.032,0.167] 0.861 0.860 0.999 0.999 39.10 21.81

ζr2s � 0.2
0.95 [0.156,0.245] [0.121,0.281] 0.952 0.952 1 1 39.23 24.66
0.90 [0.162,0.238] [0.128,0.273] 0.914 0.910 0.998 0.998 41.53 21.66
0.85 [0.165,0.234] [0.133,0.268] 0.876 0.872 0.996 0.996 39.44 22.83

ζr3s � 0.3
0.95 [0.257,0.344] [0.222,0.379] 0.946 0.946 1 1 41.45 22.91
0.90 [0.263,0.338] [0.230,0.371] 0.910 0.909 0.997 0.999 42.09 22.83
0.85 [0.267,0.334] [0.235,0.366] 0.882 0.870 0.994 0.993 42.19 23.69

Notes: Same DGP and conventions as in Table 2.
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