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Summary

This paper studies the problem of stabilizing reference trajectories (also called as
the trajectory tracking problem) for underactuated marine vehicles under pre-
defined tracking error constraints. The boundary functions of the predefined
constraints are asymmetric and time-varying. The time-varying boundary func-
tions allow us to quantify prescribed performance of tracking errors on both
transient and steady-state stages. To overcome difficulties raised by underactua-
tion and nonzero off-diagonal terms in the system matrices, we develop a novel
transverse function control approach to introduce an additional control input
in backstepping procedure. This approach provides practical stabilization of any
smooth reference trajectory,whether this trajectory is feasible or not. By practical
stabilization, we mean that the tracking errors of vehicle position and orienta-
tion converge to a small neighborhood of zero. With the introduction of an error
transformation function, we construct an inverse-hyperbolic-tangent-like bar-
rier Lyapunov function to showpractical stability of the closed-loop systemswith
prescribed transient and steady-state performances. To deal with unmodeled
dynamic uncertainties and external disturbances, we employ neural network
(NN) approximators to estimate uncertain dynamics and present disturbance
observers to estimate unknowndisturbances. Subsequently,we develop adaptive
control, based on NN approximators and disturbance estimates, that guaran-
tees the prescribed performance of tracking errors during the transient stage of
on-line NN weight adaptations and disturbance estimates. Simulation results
show the performance of the proposed tracking control.

KEYWORDS

neural networks, prescribed performance guarantees, robust control, transverse function control,
uncertain underactuated systems

1 INTRODUCTION

A typical motion control of an autonomous vehicle is trajectory tracking, which is concerned with designing a feedback
control law such that the vehicle could track a time parameterized reference trajectory.1,2 The degree of difficulty on
solving the trajectory tracking control problem depends on the vehicle configuration. For a fully actuated system, this
problem has been reasonably well understood. For an underactuated vehicle that has fewer independent actuators than
the freedom degrees, trajectory tracking control still receives considerable attention due to its theoretical challenges and
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important applications. In practical applications, for example, most of marine surface vehicles are equipped only with
two propellers for surge and yaw motions, but without any actuator for direct control of sway motion.3,4 The technical
difficulty of controlling underactuated vehicle is that a smooth time-invariant feedback controller cannot asymptotically
stabilize the vehicle at an equilibrium point.5 Additionally, an underactuated vehicle typically suffers from a noninte-
grable nonholonomic constraint.6 The nonholonomic constraint makes the tracking control properties strictly depend on
the reference trajectories. Most of the studies on trajectory tracking control of underactuated vehicles traditionally con-
centrate on kinematically feasible (or admissible) trajectories. A reference trajectory is called to be kinematically feasible or
admissible if it could satisfy the nonholonomic constraints of the vehicle kinematics.3,7 In the real-time implementation,
however, a desired trajectory might be not feasible.7-9 A typical example of an infeasible trajectory (that is, the trajectory
does not satisfy the vehicle kinematics equation) for a marine vehicle9 is a fixed position and orientation, where a desired
orientation is not aligned with the ocean current direction. Hence, we are motivated to study the problem of stabilizing
any smooth reference trajectory, no matter whether the trajectory is feasible or not, for underactuated marine vehicles.
In addition to considering infeasible trajectory tracking control design, we also consider the problem of tracking error
constraints, in which the vehicle outputs are not allowed to exceed a predefined allowable distance from the reference
trajectory. Such constraints are critical for vehicle's safety and system's performance, especially in narrow waterways or
in riverine applications, since any violation of the constraints during the vehicle motions may deteriorate system's per-
formance or even cause potential collisions and vehicle damages. It is worth pointing out our main motivation is not to
obtain a stronger result of asymptotic tracking but to develop tracking controllers that are theoretically capable of stabiliz-
ing in a practical fashion for any smooth reference trajectory (either feasible or infeasible trajectory), with guaranteeing
prescribed transient performance. This is reasonable because of the infeasible trajectory, ie, trajectory that is not a solution
to system's motion equations and thus cannot be stabilized asymptotically.8,9

1.1 Related work
The main motivation of this paper arises from the recent development of feedback control with output/state constraints
and trajectory tracking control of underactuated vehicles.

1.1.1 Feedback control with output/state constraints
Many practical systems are often subject to the constraints on system outputs, inputs, or states, whichmight be presented
in the forms of safety, saturation, or performance specifications. Consequently, considering output/state constraints in
feedback control design is receiving increasing attention. Without depending on the trial-and-error method, several ele-
gant design techniques of enforcing the constraints in the feedback control synthesis have been proposed, including
funnel control,10 barrier Lyapunov function approach,11,12 and prescribed performance control (PPC) methodology.13 A
funnel control10 could ensure the evolution of the tracking error being within the predefined region by adjusting its
time-varying control gain, where the control gain is a smooth function having the following properties: if tracking error
approaches the funnel boundary, then the gain attains values large sufficiently to prevent boundary contact. In thework of
Tee et al,11 a barrier function with a remarkable property of finite escape whenever its argument approaches the boundary
of constraints is introduced in constructing a control Lyapunov function for stability analysis for nonlinear systems with
output/state constrains. By guaranteeing the barrier Lyapunov function along the system trajectory bounded, the stabil-
ity of the closed-loop system is ensured and these constraints are never violated. Time-invariant output/state constraints
were greatly extended to the time-varying constraint case,12 where time-varying output constraints could specify the tran-
sient performance bounds as the functions of time and the constraints are not violated by the use of time-varying barrier
Lyapunov functions. Barrier Lyapunov function approach provides a flexible and powerful tool in dealing with
state/output constraints and has been applied to practical systems such as robotic manipulators,14 gantry crane system,15
and fully actuated surface vessels.16,17 The PPC methodology13 was originally presented to design feedback control sys-
tems, in which explicitly predefined transient and steady-state performances of output tracking errors were satisfied.
Prescribed performance guarantees means that the tracking errors evolve always within predefined allowable regions
that are bounded by decaying functions of time, usually chosen as exponential functions. To achieve a prescribed perfor-
mance, tracking errors are transformed by a smooth and strictly increasing/decreasing function,13,18 similar to a barrier
function, which goes to infinity while its argument approaching the predefined bounds. By guaranteeing boundedness of
the transformed errors, the tracking errors evolve always within the predefined regions.
Although the constraints on system outputs/states are of practical importance for the safety and performance of control

systems, enforcing these constraints in the motion control design has not been fully addressed, especially for under-
actuated vehicles. In the work of He et al,16 a barrier Lyapunov function was applied for control of a fully actuated
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vessel with time-invariant output constraints. An asymmetric time-varying barrier Lyapunov function was developed to
address the output constraints for a fully actuated marine surface vehicle.17 Using the PPC methodology, adaptive track-
ing control with prescribed performance was proposed for a group of fully actuated marine vehicles.19,20 In the work of
Bechlioulis et al,21 the PPCmethodology was applied to solve the trajectory tracking control problem for torpedo-like and
unicycle-like vehicles with prescribed performance. For a group of underactuated surface vehicles,22 considering symmet-
ric constraints on tracking errors of the line-of-sight ranges and angles, adaptive formation control laws were designed by
employing novel barrier Lyapunov functions. Different from the studies21-23 where thematrices of vehiclemass and damp-
ing were assumed to be diagonal, we consider the case of nonzero off-diagonal terms in the systemmatrices. For detailed
comparisons and technical analyses, please see Remark 4. Additionally, we design tracking controllers that stabilize any
reference trajectory, either feasible or infeasible.

1.1.2 Trajectory tracking control of underactuated vehicles
A good number of design techniques and interesting solutions for asymptotically stabilizing feasible reference trajectories
have been presented for underactuated vehicles (eg, other works24-26). For the problem of stabilizing infeasible reference
trajectories, however, the number of available results is very limited in the literature due to the difficulty of the problem. A
transverse function approach was proposed to construct smooth feedback control laws that guarantee practical stabiliza-
tion of any (feasible or infeasible) reference trajectory (ie, stabilization of system output in a small neighborhood of the
reference trajectory) for a controllable driftless nonlinear system.7 Recently, the transverse function control approach has
been effectively applied to practically stabilize any smooth reference trajectory, whether this trajectory is feasible or not,
for underactuated mobile robots8 and marine surface vehicles,9,27-29 where the calculations of transverse functions or/and
stability analysis usually require an accurate vehicle model (see Remarks 4 and 5 presented in this paper for detailed dis-
cussions and technical analyses). In anuncertainmaritime environment, however, an accuratemodelmaynot be obtained
a priori, eg, the hydrodynamic damping effects,30-33 and the vehicle model usually suffers from external disturbances
induced by ocean currents, winds, and waves (winds generated).34-36 The presences of unmodeled dynamic uncertainties
and external disturbances may result in violating tracking error constraints or in deteriorating system's performance.37,38
In this paper, we consider unmodeled dynamics and unknown external disturbances and develop transverse function
control of underactuated vehicles under tracking error constraints. In comparison with the existing transverse function
control approaches,7-9,27-29 the proposed controllers could guarantee the prescribed transient performance of the tracking
errors, ie, the convergence speeds of the tracking errors are faster than the preselected values and themaximumovershoots
are less than the given constants.

1.2 Our contributions
The present control design is based on transverse function control approaches,9,27-29 disturbance observers,39-41 backstep-
ping procedure, barrier functions, and control Lyapunov synthesis. It is not straightforward, even for an accurately known
vehicle model, to combine the transverse function approaches developed in related works9,27-29 and the references therein
with the prescribed output-constrained control methodologies in other works11-13,21,22 to design a tracking controller for
underactuated vehicle. This is due to the fact that the approaches in related works9,27-29 and the references therein intro-
duce three transverse functions in the vehicle kinematics design, appearing in the first step of backstepping procedure,
and thus any large transverse function may violate the tracking error constraints and make the problem of prescribed
performance guarantees for the tracking errors difficult or impossible. Different from the existing transverse function
approaches, we introduce two transverse functions in the vehicle kinetics design (ie, in the second step of backstepping
procedure), and thus the additional transverse functions do not present in the tracking error equations of the vehicle posi-
tion and orientation. It is worth noticing that transverse function controllers highly depend on the selected transverse
functions. So far, the calculations of such functions in the existing literature are only applicable for controlling vehicle
kinematics, and there is no result available on the construction of transverse functions for vehicle kinetics design. The
technical contributions of the present paper are summarized as follows.

i. To overcome difficulties raised by underactuation and nonzero off-diagonal terms in the systemmatrices, we develop
the transverse function control approach to introduce an additional control input in the sway dynamics. One of
the noticeable features is that it is not required to prove the stability of the sway dynamics separately. This feature
is of great importance to robust stabilization of underactuated systems with unmodeled dynamics. Furthermore,
the present control design gives continuous feedback control laws such that practical stabilization of any smooth
trajectory, no matter whether the trajectory is feasible or not, is achieved.
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ii. Different from the existing transverse function approaches where three transverse functions were introduced in the
vehicle kinematics design, we design two novel transverse functions in the vehicle kinetics design and duly give the
determination of these two functions.

iii. With the introduction of an error transformation function, we construct a novel inverse-hyperbolic-tangent-like barrier
Lyapunov function to show the stability of the closed-loop systems and to guarantee that tracking errors always stay
within predefined constraint bounds.

iv. To provide robust stability and performance with respect to model uncertainties and external disturbances, we
develop disturbance-observer–based adaptive NN control laws such that the prescribed performance of tracking
errors is guaranteed during the transient stage of on-line NN weight adaptations and disturbance estimates.

1.3 Outline of the paper
The rest of this paper is organized as follows. Section 2 gives the problem formulation and provides some preliminary
knowledge on tracking error constraints. Section 3 proposes a constructive design of model-based tracking control laws
that ensure the stability of the closed-loop systems and guarantee the position and orientation tracking errors being always
within certain predefined bounds. To deal with unmodeled dynamics, in Section 4, approximation-based tracking control
is developed to provide robust stability and performance with respect to model uncertainties and unknown disturbances
from the maritime environments. In Section 5, simulation studies are performed to show the transient and steady-state
performances of the control systems. Finally, the conclusion is included in Section 6.

1.4 Notation
Throughout this paper, || • || is the Euclidean norm of vectors; 𝜆min(•) and 𝜆max(•) are the minimum and maximum
eigenvalues of a symmetric matrix, respectively; det(Q) is the determinant of matrixQ; In is the n × n identity matrix;∞
denotes the space of all essentially bounded functions; and (̂) and (̃)with ̃(·) = ̂(·) − (·), respectively, denote the estimates
of unknown disturbances/parameters and estimate errors.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 Underactuated marine vehicle
Consider an underactuatedmarine vehicle equipped only with two independent propellers that provide the force in surge
and the control torque in yaw. The kinematics and dynamics of the underactuated vehicle moving in a horizontal plane
are described by41,42 the following:

𝜼̇ = J(𝜓)𝝂
M𝝂̇ = −C(𝝂)𝝂 −D(𝝂)𝝂 + 𝝉 + 𝝉w(t), (1)

where 𝜼 = [x, y, 𝜓]T are the vehicle position (x, y) and orientation (𝜓) in the earth-fixed frame; 𝝂 = [u, 𝜐, r]T are the
linear velocities in surge (u) and sway (𝜐), and the angular velocity in yaw (r) in the body-fixed frame; 𝝉 = [𝜏u, 0, 𝜏r]T
are the control inputs with the surge force 𝜏u and yaw moment 𝜏r; 𝝉w = [𝜏wu, 𝜏w𝜐, 𝜏wr]T denote the unknown external
disturbances induced by ocean currents, winds, and waves (winds generated); J(𝜓) is the rotation matrix; and M =
MT > 0, C(𝝂), and D(𝝂) are the vehicle inertia matrix, the Coriolis and centripetal matrix, and hydrodynamic damping
matrix, respectively, all of which are nonzero off-diagonal. The coefficients of system (1) are given by

J(𝜓) =

[ cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

]
, M =

[m11 0 0
0 m22 m23
0 m32 m33

]

C(𝝂) =

[ 0 0 −m22𝜐 −m23r
0 0 m11u

m22𝜐 +m23r −m11u 0

]

D(𝝂) =

[ d11(u) 0 0
0 d22(𝜐, r) d23(𝜐, r)
0 d32(𝜐, r) d33(𝜐, r)

]
,
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where m11 = m − Xu̇, m22 = m − Y𝜐̇, m23 = m32 = mxg − Yṙ, m33 = Iz − Nṙ, d11(u) = −(Xu + X|u|u|u| + Xuuuu2),
d22(𝜐, r) = −(Y𝜐 + Y|𝜐|𝜐|𝜐| + Y|r|𝜐|r|), d23(𝜐, r) = −(Yr + Y|𝜐|r|𝜐| + Y|r|r|r|), d32(𝜐, r) = −(N𝜐 + N|𝜐|𝜐|𝜐| + N|r|𝜐|r|),
d33(𝜐, r) = −(Nr + N|𝜐|r|𝜐| + N|r|r|r|). Here, m is the vehicle mass; Xu̇, Y𝜐̇, Yṙ, and Nṙ are the added masses; xg is the
xb-coordination of the vehicle center of gravity; Iz is the moment of inertia in yaw; and X(·), Y(·), and N(·) are the linear
and quadratic hydrodynamic damping coefficients in surge, sway, and yaw. Noticing that the surface vehicle (1) has three
freedom degrees (surge, sway, and yaw) to be controlled and only has two independent control inputs (surge force and
yaw moment), and thus system (1) is underactuated.

Assumption 1. The external disturbance 𝝉w is time-varying, continuously differentiable, and directly unmeasurable
(or too expensive to measure). The disturbance 𝝉w and its first time derivative are bounded.

Remark 1. The vessel mass parameters are determined quite accurately using semi-empirical methods or software
packages.41,43 The damping effects are the results of several hydrodynamic phenomena, including potential damping,
skin friction, wave drift damping, and the damping due to vortex shedding, which might make accurate modeling
for hydrodynamic damping effects difficult.41,43 Many practical disturbance terms, including wind disturbance, wave
disturbance, ocean currents, are bounded and satisfy ||𝝉̇w|| < 𝜏w.34,41,44

2.2 Control objectives
Let 𝜼d = [xd, yd, 𝜓d]T denote the desired trajectory. Define the output tracking errors as follows:

e1 = x − xd
e2 = 𝑦 − 𝑦d (2)
e3 = 𝜓 − 𝜓d,

where e1, e2 are the position tracking errors, and e3 is the orientation tracking error.We consider the following time-varying
constraint problem: the system output 𝜼 is required to keep within a time-varying constrained distance from the reference
trajectory 𝜼d. More specifically, the output tracking error ei needs to satisfy the following constrained condition:

−ei(t) < ei(t) < ei(t), ∀t > 0, i = 1, 2, 3, (3)

where −ei(t) and ei(t), respectively, are the predefined lower and upper bounds of the tracking error ei(t) with ei(t) > 0,
ei(t) > 0, and −ei(0) < ei(0) < ei(0), and thus constraint (3) includes the equilibrium point at the origin. Constraint (3) is
imposed to bind the distance of the vehicle outputs from the desired positions and orientation. This constraint problem
is of great importance in practice because it is often desired to steer the vehicle to keep within an allowable distance from
a reference trajectory, especially in narrow waterways or in riverine applications.
It is important to notice that the time-varying boundary functions of the tracking error constraint (3), which include

time-invariant ones as a special class, allow us to quantify a prescribed performance of tracking errors on both tran-
sient and steady-state stages. For example, if the constraint boundary functions are taken as the prescribed performance
function presented in the works of Bechlioulis et al,13,21{

ei(t) = ei(t) = 𝛿i𝜌i(t), i = 1, 2, 3
𝜌i(t) = (𝜌i0 − 𝜌i∞) exp(−𝜅it) + 𝜌i∞,

(4)

where 𝜌i(t) is called as a performance function,13 and 𝛿i, 𝜌i0, 𝜌i∞, and 𝜅 i are positive design constants with 𝜌i0 > 𝜌i∞ ≠ 0
and −𝛿i𝜌i(0) < ei(0) < 𝛿i𝜌i(0), then the output tracking error constraint (3) with Equation (4) could characterize pre-
scribed transient and steady-state performances of tracking errors as follows. The prescribed performances are that (i)
the decrease of tracking error ei is faster than the exponentially decaying function exp(−𝜅it); (ii) the maximum overshoot
of the tracking error ei is 𝛿i𝜌i0; and (iii) the steady-state tracking error is within the range ( − 𝛿i𝜌i∞, 𝛿i𝜌i∞). Additionally,
the transient performance with respect to the convergence rate and the maximum overshoot, and the steady-state perfor-
mance with respect to the maximum allowable size of tracking error ei could be improved by adjusting the preselected
parameters 𝜅 i, 𝛿i, 𝜌i0, and 𝜌i∞.

Assumption 2. The desired trajectories 𝜼( 𝑗)d and the constraint boundary functions e( 𝑗)i , ē( 𝑗)i given in (3) exist and are
known functions for all j = 0, 1, 2, where 𝜼( 𝑗)d denotes the jth time derivative of 𝜼d. At the initial time t = 0, the
tracking errors ei(t) satisfy −ei(0) < ei(0) < ei(0), i = 1, 2, 3.
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Control objectives: Under Assumptions 1 and 2, the objective of this paper is to design feedback control laws 𝜏u, 𝜏r for
underactuated marine vehicle (1) with nonzero off-diagonal terms in the system matrices such that

• the vehicle outputs 𝜼 = [x, y, 𝜓]T track the desired trajectory 𝜼d, and all the signals in the closed-loop system are
uniformly ultimately bounded; and

• the tracking error constraint (3) is never violated.

2.3 Inverse-error-transformation-functions and barrier Lyapunov functions
Define 𝛾ei(t) = ei(t)∕ei(t). To simplify the notation, the time t is dropped sometimes without any confusion. To establish
the relationship between the tracking error ei with its boundary functions ei, ēi, motivated by the PPC methodology,

13 we
introduce the following tracking error transformation function:

ei = eiTi(z1i, 𝛾ei), i = 1, 2, 3, (5)

where z1i is called as the transformed error,13 and the transformation function Ti(·) is a smooth and strictly increasing
function with respect to z1i and has the following properties:⎧⎪⎪⎨⎪⎪⎩

−𝛾ei < Ti(z1i, 𝛾ei) < 1, ∀z1i ∈ ∞

limz1i→−∞Ti(z1i, 𝛾ei) = −𝛾ei
limz1i→+∞Ti(z1i, 𝛾ei) = 1
Ti(z1i, 𝛾ei) = 0, iff z1i = 0,

(6)

which implies that 𝜕Ti(·)
𝜕z1i

> 0, and thus, the inverse function of Ti(·) with respect to z1i exists. From (5) and (6), we have

z1i = T−1
i

(
ei
ei
, 𝛾ei

)
, i = 1, 2, 3, (7)

where T−1
i (·) is the inverse function of Ti(·).

Remark 2. The definition of the transformation function Ti(·) was introduced originally in the work of Bechlioulis
and Rovithakis.13 In condition (6), we further extend the properties of the transformation function Ti(·) in the works
of Bechlioulis et al13,21 by imposing the requirement: Ti(z1i, 𝛾ei) = 0, if and only if (iff) z1i = 0. This property is of
great importance, which guarantees that asymptotic convergence of the tracking error ei to the origin if z1i converges
to an equilibrium point at the origin (please see Remark 3 for a more detailed discussion). Additionally, the constraint
boundary functions ei and ei in the aforementioned works

13,21 are highly correlated and are required to stratify 𝛾ei =
ei
ei
= 1, eg, condition (4), or 𝛾ei = constant, whereas the lower and upper bounds in constraint (3) could be any smooth

time-varying functions and thus the variable 𝛾ei is also time-varying.

Remark 3. It is interesting to notice that the inverse function T−1
i (·) given in (7) is a barrier function, which possesses

the property of finite escape whenever the argument ei
ei
approaches the boundary of the open set ( − 𝛾ei, 1) containing

the origin, ie, z1i = T−1
i

(
ei
ei
, 𝛾ei

)
→ ∞ as ei

ei
→ 1, and z1i = T−1

i

(
ei
ei
, 𝛾ei

)
→ −∞ as ei

ei
→ −𝛾ei. Therefore, the barrier

function T−1
i (·) could be used to guarantee the constraint (3) is not violated.

In order to ensure that, if the barrier function T−1
i (·) converges, then it converges to an equilibrium point at the

origin, we impose the transformation function Ti(·) in (6) to satisfy Ti(0, 𝛾ei) = 0, ie, T−1
i (0, 𝛾ei) = 0. It should be

noticed that the barrier function z1i = T−1
i (·) is not positive definite. In order to obtain an everywhere nonnegative

function that allows Lyapunov-based analysis and control synthesis to be developed, we define the quadratic function
of barrier function T−1

i (·) in the following form:

V0 =
1
2
z21i =

1
2

[
T−1
i

(
ei
ei
, 𝛾ei

)]2
. (8)

It is clear that the function V0 is continuously differentiable, positive semidefinite on the open set ( − 𝛾ei, 1) containing
the origin, and thus it could be considered as a Lyapunov function candidate. By guaranteeing boundedness of barrier
Lyapunov function V0 in (8) along system trajectories, we could show that the constraint (3) is never violated, and this
is a key basis of our control design methodology.
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Inspiring in part by the hyperbolic-tangent-type function,13,21 in this paper, we could take the transformation function
Ti(·) as

Ti(z1i, 𝛾ei) =
ez1i − e−z1i

ez1i + 𝛾−1ei e
−z1i

. (9)

It is easily verified that Ti(·) in (9) satisfies condition (6), whose inverse function is given by

z1i = T−1
i

(
ei
ei
, 𝛾ei

)
= 1
2
ln
( ei + ei
𝛾ei(ei − ei)

)
, (10)

where ln(·) denotes the natural logarithm. For the symmetric constraint case, eg, prescribed performance condition (4), it
follows 𝛾ei =

ei
ēi
= 1, and thus the transformation function Ti(·) could be taken as a hyperbolic tangent function,13,21 which

has the form
T(z1i) = tanh(z1i) =

ez1i − e−z1i
ez1i + e−z1i

.

3 CONTROL DESIGN FOR KNOWN VEHICLE MODEL

In this section, we consider the case where the hydrodynamic damping terms d11, d22, d23, d32, d33 are known. Under
tracking error constraint (3), we propose a constructive design technique of model-based tracking controllers that force
system (1) to follow the desired trajectory 𝜼d. The control design is based on transverse function control approach,
disturbance observers, backstepping procedure, barrier functions, and Lyapunov synthesis.
Expanding system (1) yields

ẋ = u cos(𝜓) − 𝜐 sin(𝜓)
𝑦̇ = u sin(𝜓) + 𝜐 cos(𝜓)
𝜓̇ = r

u̇ = 𝜙u − 𝑓u +
1
m11

𝜏u + 𝜏wu

𝜐̇ = 𝜙𝜐 − 𝑓𝜐 −
m23

m̄33
𝜏r + 𝜏w𝜐

ṙ = 𝜙r − 𝑓r +
m22

m̄33
𝜏r + 𝜏wr,

(11)

where 𝜙u = m22
m11

𝜐r + m23

m11
r2, 𝜙𝜐 = m̄12

m̄33
ur + m̄13

m̄33
u𝜐, 𝜙r = m̄22

m̄33
u𝜐 + m̄23

m̄33
ur, m̄12 = −m11m33 + m2

23, m̄13 = m22m23 − m11m23,
m̄22 = m11m22 − m2

22, m̄23 = m11m23 − m22m23, m̄33 = m22m33 − m2
23, 𝜏wu = 𝜏wu∕m11, 𝜏w𝜐 = (m33𝜏w𝜐 − m23𝜏wr)∕m̄33,

𝜏wr = (m22𝜏wr −m23𝜏w𝜐)∕m̄33, and

𝑓u =
1
m11

d11(u)u

𝑓𝜐 = − 1
m̄33

(m23d32𝜐 −m33d22𝜐 +m23d33r −m33d23r)

𝑓r = − 1
m̄33

(m23d22𝜐 −m22d32𝜐 −m22d33r +m23d23r),

(12)

in which fu, f𝜐, and fr are hydrodynamic damping effects.
For system (11), we will employ control Lyapunov synthesis and backstepping procedure to design control laws 𝜏u

and 𝜏r to achieve our control objective. The control design procedure includes two steps. In the first step, the first three
equations of system (11) are designed by viewing u, 𝜐 as virtual control inputs for the (x, y)-subsystem, and by viewing r as
a virtual control input for the𝜓-subsystem. In the second step, the actual control inputs 𝜏u and 𝜏r are designed to stabilize
the (u, 𝜐)-subsystem and r-subsystem at the origin. Using such design procedure, the control objective would be achieved
if system (1) was fully actuated meaning that there are three independent control inputs in (u, 𝜐, r)-subsystem. However,
system (1) does not have an independent actuator in the sway motion. Additionally, the vehicle inertia matrixM is not
assumed to be diagonal and thus the yawmoment control 𝜏r acts directly on the sway and yawmotions, which makes the
stabilization of both 𝜐-subsystem and r-subsystem difficult. To tackle this difficulty, we develop the transverse function
approaches presented in the works of Morin and Samson7,8 to introduce an additional control input in the second step of



1584 DAI ET AL.

the backstepping design. Define the following error coordinate transformations:

z21 = u − 𝛼1

z22 = 𝜐 − 𝛼2 − h1(𝛽)
z23 = r − 𝛼3 − h2(𝛽),

(13)

where 𝛼i, i = 1, 2, 3 are virtual control inputs, h1(𝛽) and h2(𝛽) are bounded differentiable functions with respect to 𝛽 for
all 𝛽 ∈ R, and hi(𝛽) (i = 1, 2) are called as transverse functions,7-9 and 𝛽̇ is called as the additional control input.7-9 The
transverse function hi(𝛽) will be further defined and computed in (30) and (31). The additional control input 𝛽̇ will be
specified in (39).

Remark 4. For a vehicle equipped with a rudder, the yawmoment control 𝜏r directly enters the sway dynamics due to
nonzero off-diagonal terms in the system matrices. To avoid that the yaw moment control 𝜏r enters the sway dynam-
ics, two methods are usually applied in the literature of motion control of underactuated vehicles. The first is to
assume that the off-diagonal terms of system matrices is zero, eg,6,21-24,35,46,47 so that the coupling terms between the
sway dynamics and the yaw dynamics are avoided. Another commonly used method is the use of coordinate trans-
formations (changing the vehicle positions), eg, other works,27,28,48 to change the vehicle dynamic model into a form
without off-diagonal terms. Consequently, the yaw moment control 𝜏r acts only on the yaw dynamics and there is no
sway force acting on the sway dynamics. The vehicle's center of oscillation is controlled, through changing the vehi-
cle positions, rather than controlling the vehicle's center of gravity. Since there is no control input evolved in the sway
dynamic equation, in general, either the sway velocity is assumed to be passive-bounded,22,49,50 or the stability analysis
for the sway dynamics is implemented separately,27-29,51 where the stability analysis usually requires exact information
on the hydrodynamic damping term. Different from the existing methods, in this paper, we expand directly system
(1) without changing the vehicle positions and obtain system (11), where we allow the yaw moment control 𝜏r to act
directly on the sway dynamics and the yaw dynamics as well. We present the transverse function approach7,8 to intro-
duce an additional control input 𝛽̇ in the sway and yaw error system (27). By designing the control input [𝜏r, 𝛽̇]T for
stabilizing z3-system (27) at the origin, the stability analysis for the sway dynamics is not required to prove separately.
It is worth pointing out that the present feedback controllers do not require another propeller to realize the additional
control input 𝛽̇∗ because the actual control input 𝜏∗r in (38) is affected greatly by designing the matrix Q−1 given in
(32). That is, it is clear that 𝜏∗r in (38) is influenced by 𝛽∗ due to h̄∗0 = 𝜀2 arctan(𝛽∗).

Remark 5. The transverse function control approaches have been effectively applied in solving the trajectory tracking
control problem for underactuated vehicles,9,27-29 where three transverse functions were introduced in the tracking
errors ei, i = 1, 2, 3, in the first step of backstepping procedure, and thus they causes the difficulty of guarantee-
ing prescribed performance of tracking errors because any large transverse function might break the tracking error
constraints. Additionally, the stability of the sway dynamics is proved separately in other works9,27-29 and the stability
analysis usually requires exact information on the hydrodynamic damping term (please see Remark 4 for a detailed
discussion). Different from the existing transverse function approaches,9,27-29 we introduce two transverse functions
h1(𝛽) and h2(𝛽) in the second step of backstepping procedure, and thus the two additional functions do not present in
the tracking error equations ei, see the error coordinate transformation (13). Accordingly, we give a specific calcula-
tion for the two additional functions, see equation (30). Furthermore, we develop the transverse function approach for
designing adaptive control that provides robust performance with respect to model uncertainties and disturbances.

Step 1: Under Assumption 2, the derivatives of ei, i = 1, 2, 3 in (2) along system (11) are

ė1 = u cos(𝜓) − 𝜐 sin(𝜓) − ẋd (14)

ė2 = u sin(𝜓) + 𝜐 cos(𝜓) − 𝑦̇d (15)

ė3 = r − 𝜓̇d. (16)

To design virtual control inputs 𝛼i, i = 1, 2, 3 that guarantee constraint (3) is not violated, we choose the barrier Lyapunov
function candidate in the form (8) with Equation (10). Consider the following logarithm Lyapunov function candidate:

V1 =
1
2

3∑
i=1
z21i =

1
2

3∑
i=1

[
1
2
ln
( ei + ei
𝛾ei(ei − ei)

)]2
, (17)
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whose derivative along systems (13)-(16) yields

V̇1 =
3∑
i=1
z1i (piėi + li) = z11[p1(𝛼1 cos(𝜓) − 𝛼2 sin(𝜓) − ẋd) + l1]

+ z12[p2(𝛼1 sin(𝜓) + 𝛼2 cos(𝜓) − 𝑦̇d) + l2]
+ z21(z11p1 cos(𝜓) + z12p2 sin(𝜓)) − z11p1h1 sin(𝜓)
+ z22(−z11p1 sin(𝜓) + z12p2 cos(𝜓)) + z12p2h1 cos(𝜓)
+ z13[p3(𝛼3 − 𝜓̇d) + l3] + z23z13p3 + z13p3h2, (18)

where pi and li, i = 1, 2, 3 are given by

pi =
1
2

[
1

ei + ei
+ 1
ei − ei

]
(19)

li =
1
2

[ ėi
ei + ei

− ėi
ei − ei

− 𝛾̇ei

𝛾ei

]
, (20)

in which pi and li are available for feedback control design. Substituting (5) into (19) yields

pi =
1
2ei

[
1

𝛾ei + Ti(z1i, 𝛾ei)
+ 1
1 − Ti(z1i, 𝛾ei)

]
. (21)

From the definition of Ti(·) in (6), it follows that pi is bounded and pi > 0. Consider the following virtual control:

𝛼1 = cos(𝜓)Ψ1 + sin(𝜓)Ψ2 (22)

𝛼2 = − sin(𝜓)Ψ1 + cos(𝜓)Ψ2 (23)

𝛼3 = p−13 (−k13z13 − l3) + 𝜓̇d, (24)
where Ψ1 = p−11 (−k11z11 − l1) + 𝑥̇d, Ψ2 = p−12 (−k12z12 − l2) + 𝑦̇d with k1i, i = 1, 2, 3 being positive design parameters to be
specified later. Then, substituting virtual control laws (22)-(24) into Equation (18) gives

V̇1 = − k11z211 − k12z212 − k13z213 + z21(z11p1 cos(𝜓) + z12p2 sin(𝜓))
− z11p1h1 sin(𝜓) + z12p2h1 cos(𝜓) + z22(−z11p1 sin(𝜓) + z12p2 cos(𝜓))
+ z23z13p3 + z13p3h2. (25)

Step 2: In this step, we will design the actual control inputs 𝜏u, 𝜏r, and additional control 𝛽̇. For system (11),
differentiating both sides of (13) with Assumption 2 gives

ż21 = 𝜙u − 𝑓u +
1
m11

𝜏u − 𝛼̇1 + 𝜏wu (26)

ż3 = 𝚽𝜐r − F𝜐r +Q
[
𝜏r
𝛽̇

]
− 𝜶̇23 + 𝝉w𝜐r, (27)

where z3 = [z22, z23]T, Φ𝜐r = [𝜙𝜐, 𝜙r]T, F𝜐r = [f𝜐, fr]T, 𝜶̇23 = [𝛼̇2, 𝛼̇3]T , 𝝉w𝜐r = [𝜏w𝜐, 𝜏wr]T ,

Q =
⎡⎢⎢⎣
−m23

m̄33
− 𝜕h1

𝜕𝛽

m22
m̄33

− 𝜕h2
𝜕𝛽

⎤⎥⎥⎦ , (28)

and 𝛼̇1, 𝜶̇23 are available for controller implementation because every term in the first time derivative of 𝛼i in (22)-(24)
are computable with ṗ−1i = −ṗi∕p2i , i = 1, 2, 3 and pi defined in (19). It is clear for system (27) that the designed control
laws are closely related to the selection of Q according to feedback linearization technique. Consequently, we will give
systematic method to construct the invertible matrix Q and the transverse function hi(𝛽) (i = 1, 2). It follows from (28)
the determinant of matrix Q is

det(Q) = 1
m̄33

(
m23

𝜕h2
𝜕𝛽

+m22
𝜕h1
𝜕𝛽

)
, (29)

where the functions 𝜕h1
𝜕𝛽

and 𝜕h2
𝜕𝛽

are required to make the matrix Q invertible. To satisfy the nonzero of det(Q) for all

𝛽 ∈ R, we could consider 𝜕h1
𝜕𝛽

= c cos
2(𝛽)

m22
, 𝜕h2

𝜕𝛽
= c sin

2(𝛽)
m23

with constant c > 0, which yields h1 = c
2m22

(𝛽 + sin(𝛽) cos(𝛽)),
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h2 = c
2m23

(𝛽− sin(𝛽) cos(𝛽)), det(Q) = c
m̄33

> 0. However, the boundedness of h1 and h2 can not be guaranteed as 𝛽 tends to
infinity. To ensure the boundedness of h1 and h2 for all 𝛽 ∈ R, we would employ a differentiable bounded function h̄0(𝛽),
for example, to replace 𝛽 in the functions h1 and h2, whose derivatives give

𝜕h1
𝜕𝛽

= c cos
2(h̄0)
m22

𝜕h̄0
𝜕𝛽
, 𝜕h2

𝜕𝛽
= c sin

2(h̄0)
m23

𝜕h̄0
𝜕𝛽
, and then

we have det(Q) = c
m̄33

𝜕h̄0
𝜕𝛽
. Thus, the matrixQ is invertible if 𝜕h̄0

𝜕𝛽
≠ 0 holds for all 𝛽 ∈ R. For instance, h̄0(𝛽) could be taken

as arctan(𝛽), tanh(𝛽), etc. Therefore, an example of the calculations of transverse functions hi (i = 1, 2) are given by

h1 =
𝜀1

2m22
(h̄0 + sin(h̄0) cos(h̄0))

h2 =
𝜀1

2m23
(h̄0 − sin(h̄0) cos(h̄0)), (30)

where h̄0 = 𝜀2 arctan(𝛽). Then, we have
𝜕h1
𝜕𝛽

= 𝜀1𝜀2cos2(h̄0)
m22(1 + 𝛽2)

𝜕h2
𝜕𝛽

= 𝜀1𝜀2sin2(h̄0)
m23(1 + 𝛽2)

det(Q) = 𝜀1𝜀2

m̄33(1 + 𝛽2)
> 0,

(31)

where 𝜀1 > 0 and 𝜀2 > 0 are design constants. Note that det(Q) ≠ 0, ∀𝛽 ∈ R, Q =
[
X 𝜕h

𝜕𝛽

]
, X =

[
−m23

m̄33

m22
m̄33

]T
,

𝜕h
𝜕𝛽

=
[
− 𝜕h1

𝜕𝛽
− 𝜕h2

𝜕𝛽

]T
, and then the vector X and 𝜕h

𝜕𝛽
form a basis ofR2. That is, the gradient of h(𝛽) =

[
−h1(𝛽) − h2(𝛽)

]T is
transversal to the direction given by vector X. Therefore, the bounded function h(𝛽) is said to be a transverse function.7 It
is worth pointing out that the calculation of such transverse function is not unique.
From (28) and (31), we have

Q− 1 =
⎡⎢⎢⎣
− m̄33sin

2(h̄0)
m23

m̄33cos2(h̄0)
m22

−m22(1+𝛽2)
𝜀1𝜀2

−m23(1+𝛽2)
𝜀1𝜀2

⎤⎥⎥⎦ . (32)

Remark 6. From Equations (30) and (13), it is clear that decreasing the design parameters 𝜀1 and 𝜀2 could reduce
the velocity errors z22 and z23 significantly. However, we do not suggest the use of very small parameters 𝜀1 and 𝜀2 in
practical applications because this might result in a very small det(Q) in Equation (31) and high-gain control inputs
with powerful actuators may require duly. Therefore, the design parameters 𝜀1 and 𝜀2 should be adjusted carefully in
practical applications for achieving suitable transient performance and control inputs.

To estimate the unknown disturbance 𝜏wu in system (26), we could design the disturbance observer as follows:{
𝜉̇1 = z21 − kd1

(
𝜙u − 𝑓u + 1

m11
𝜏u − 𝛼̇1 + 𝜏wu

)
𝜏wu = 𝜉1 + kd1z21,

(33)

where 𝜉1 is the observer state, 𝜏wu is the estimate of 𝜏wu, and kd1 > 0 is a design parameter. From systems (26) and (33),
we have the following observer error dynamics:

̇̃𝜏wu = z21 − kd1𝜏wu − ̇̄𝜏wu, (34)

where the observer error 𝜏wu = 𝜏wu − 𝜏wu. For system (27), the disturbance observer is taken as⎧⎪⎨⎪⎩
𝝃̇2 = z3 −Kd2

{
Φ𝜐r − F𝜐r +Q

[
𝜏r

𝛽̇

]
− 𝜶̇23

}
−Kd2𝝉̂w𝜐r

𝝉̂w𝜐r = 𝝃2 +Kd2z3,
(35)

which yields the observer error dynamics
̇̃𝝉w𝜐r = z3 −Kd2𝝉̃w𝜐r − 𝝉̇w𝜐r, (36)

whereKT
d2 = Kd2 > 0 is a design parameter and 𝝉̃w𝜐r = 𝝉̂w𝜐r−𝝉w𝜐r. Based on disturbance observers (33) and (35), feedback

control laws 𝜏∗u , 𝜏∗r , and additional control 𝛽̇∗ are given by

𝜏∗u = m11(−k31z21 − 𝜙u + 𝑓u − 𝜏wu + 𝛼̇1 − z11p1 cos𝜓 − z12p2 sin𝜓) (37)
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𝜏∗r = −
m̄33sin2

(
h̄∗0
)

m23
z̄∗22 +

m̄33cos2
(
h̄∗0
)

m22
z̄∗31 (38)

𝛽̇∗ = −m22(1 + 𝛽∗2)
𝜀1𝜀2

z̄∗22 −
m23(1 + 𝛽∗2)

𝜀1𝜀2
z̄∗31, (39)

where h̄∗0 = 𝜀2 arctan(𝛽∗), z̄∗22 = −k21z22−𝜙𝜐+𝑓𝜐+𝛼̇2−𝜏w𝜐+z11p1 sin𝜓−z12p2 cos𝜓 , z̄∗31 = −k22z23−𝜙r+𝑓r+𝛼̇3−𝜏wr−z13p3
with k31 > 0, k21 > 0, and k22 > 0 being design parameters to be specified later. Let K2 = diag[k21, k22]. Substituting
control laws (37), (38), additional control 𝛽̇∗ (39) into systems (26) and (27) yields the following closed-loop error system:

ż21 = −k31z21 − 𝜏wu − z11p1 cos𝜓 − z12p2 sin𝜓 (40)

ż3 = −K2z3 − 𝝉̃w𝜐r +
[
z11p1 sin𝜓 − z12p2 cos𝜓

−z13p3

]
. (41)

Consider the following Lyapunov function candidate

V∗
2 = V1 +

1
2
z221 +

1
2
zT3 z3 +

1
2
𝜏2wu +

1
2
𝝉̃Tw𝜐r 𝝉̃w𝜐r, (42)

whose derivative along systems (40), (41), (34), (36), (25) is

V̇∗
2 = −k11z211 − k12z212 − k13z213 − k31z221 − zT3K2z3

− kd1𝜏2wu − z11p1h1 sin(𝜓) + z12p2h1 cos(𝜓)
+ z13p3h2 − 𝝉̃Tw𝜐rKd2𝝉̃w𝜐r − 𝜏wu ̇̄𝜏wu − 𝝉̃Tw𝜐r 𝝉̇w𝜐r. (43)

By completion of squares, we have

−z11p1h1 sin(𝜓) ≤ 𝜅1

2
z211 +

p̄21
2𝜅1

(
𝜀1𝜀2𝜋

4m22

)2
z12p2h1 cos(𝜓) ≤ 𝜅1

2
z212 +

p̄22
2𝜅1

(
𝜀1𝜀2𝜋

4m22

)2
z13p3h2(𝛽) ≤

𝜅1

2
z213 +

p̄23
2𝜅1

(
𝜀1𝜀2𝜋

4m23

)2
−𝜏wu ̇̄𝜏wu ≤

𝜅1𝜏
2
wu

2
+

̄̄𝜏
2
wu

2𝜅1

−𝝉̃Tw𝜐r 𝝉̇w𝜐r ≤
𝜅1𝝉̃

T
w𝜐r 𝝉̃w𝜐r

2
+

𝜏2w𝜐r

2𝜅1
,

with constants 𝜅1 > 0, where ̄̄𝜏wu, 𝜏w𝜐r, p̄i (i = 1, 2, 3) are positive constants denoting the bounds of ̇̄𝜏wu, 𝝉̇w𝜐r, pi according
to Assumption 1, Equation (21). Notice that we only require the existence of the bounds of ̇̄𝜏wu, 𝝉̇w𝜐r, and pi, without the
need for explicit knowledge of these bounds. Thus, we have the following inequality:

V̇∗
2 ≤ −𝜌∗1V

∗
2 + 𝛿∗1 , (44)

where

𝛿∗1 = (𝜀1𝜀2𝜋)2

32𝜅1

(
p̄21 + p̄22
m2
22

+
p̄23
m2
23

)
+

̄̄𝜏
2
wu + 𝜏2w𝜐r

2𝜅1
(45)

𝜌∗1 = min{2k11 − 𝜅1, 2k12 − 𝜅1, 2k13 − 𝜅1, 2𝜆min(K2), 2k31, 2kd1 − 𝜅1, 𝜆min(2Kd2 − 𝜅1I2)}. (46)
Next, we present the proposedmodel-based control such that the stability and the transient and steady-state performances
of the closed-loop system can be guaranteed.

Theorem 1. Under Assumptions 1 and 2, consider underarcuated marine vehicle (1) whose model dynamics are avail-
able for control design, tracking control laws 𝜏∗u , 𝜏∗r given in (37), (38), and disturbance observers (33), (35). If the design
parameters are chosen appropriately such that

2k11 − 𝜅1, 2k12 − 𝜅1, 2k13 − 𝜅1 > 0, K2 > 0, k31 > 0,
2kd1 − 𝜅1 > 0, 2Kd2 − 𝜅1I2 > 0 (47)
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with constant 𝜅1 > 0, then, for any initial condition satisfying condition (3), we have

i. all the signals in the closed-loop system remain bounded;
ii. the tracking errors always evolve within the predefined time-varying asymmetric bounds, ie, −ei(t) < ei(t) < ei(t),

∀t > 0, i = 1, 2, 3, and especially, the prescribed transient and steady-state performances of the tracking errors in
the sense of (3) and (4) are guaranteed; and

iii. the tracking errors ei, i = 1, 2, 3 and disturbance observer errors 𝜏wu, 𝜏w𝜐, 𝜏wr converge exponentially to a small
neighborhood of zero, whose size is adjustable by tuning the design parameters 𝜀1, 𝜀2, and 𝜅1.

Proof. See Appendix.

4 CONTROL DESIGN FOR MODEL UNCERTAINTIES

In this section, we develop approximation-based control design technique for system (1) in presences of unmodeled
dynamic uncertainties and time-varying disturbances. In Section 3, we assume that hydrodynamic damping effects are
accurately known a priori. Inmaritime environments, however, the exact knowledge of the hydrodynamic dampingmight
be not available for feedback control design. Subsequently, we make the following assumption on system (1).

Assumption 3. Assume that the hydrodynamic damping effects fu, f𝜐, and fr given in (12) are unmodeled dynamic
uncertainties.

Thanks to the universal approximation abilities of radial basis function (RBF) NNs,52,53 the continuous functions fu, f𝜐,
and fr could be approximated to any accuracy and could be represented as follows:

𝑓u(Z1) = W∗T
1 S1(Z1) + 𝜖1(Z1)

𝑓𝜐(Z2) = W∗T
2 S2(Z2) + 𝜖2(Z2)

𝑓r(Z2) = W∗T
3 S3(Z2) + 𝜖3(Z2),

(48)

where Z1 = u ∈ ΩZ1 ⊂ R1 and Z2 = [𝜐, r]T ∈ ΩZ2 ⊂ R2 are the NN input vectors, and ΩZ1 and ΩZ2 denote compact sets;
W∗

i , i = 1, 2, 3, are the true/optimal constant weight vectors; 𝜖i(·) are approximation errors, and |𝜖i| < 𝜖∗i with constant
𝜖∗i > 0; and Si(·) are RBF vectors. The RBFs are typically taken as Gaussian functions and Gaussian RBF vector Si(·) are
bounded, that is, ||Si(·)|| ≤ s∗ with constant s∗ > 0. Considering Equation (48) and system (26), we have

ż21 = 𝜙u −W∗T
1 S1(Z1) +

1
m11

𝜏u + kwudwu − 𝛼̇1, (49)

where

dwu = k−1wu
[
1
m11

𝜏wu − 𝜖1(Z1)
]

(50)

is a lumped disturbance and kwu > 0 is a design parameter. To estimate the unknown term dwu for system (49), we could
design the following disturbance observer:{

𝜉3 = kwuz21 − kd3
[
𝜙u − ŴT

1 S1(Z1) +
1
m11

𝜏u − 𝛼̇1

]
− kd3kwu𝑑wu

𝑑wu = 𝜉3 + kd3z21,
(51)

where 𝜉3 is the observer state, ŴT
1 S1(Z1) is NN approximator of the unknown function fu(Z1)with Z1 ∈ ΩZ1 , and kd3 > 0

is a design parameter. From systems (49), (51), and Equation (48), the observer error dynamics is
̇̃𝑑wu = kwuz21 − kd3kwu𝑑wu + kd3W̃T

1 S1(Z1) − 𝑑̇wu (52)

with 𝑑wu = 𝑑wu − dwu and W̃1 = Ŵ1 −W∗
1 . For system (27), we design the following disturbance observer:

⎧⎪⎪⎨⎪⎪⎩

̇𝝃4 = Kw𝜐rz3 −Kd4

[
Φ𝜐r − 𝜶̇23 +Kw𝜐rd̂w𝜐r

]
−Kd4

{
−

[
ŴT

2 S2(Z2)
ŴT

3 S3(Z2)

]
+Q

[
𝜏r

𝛽̇

]}
d̂w𝜐r = 𝝃4 +Kd4z3,

(53)
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which gives the observer error dynamics

̇̃dw𝜐r = Kw𝜐rz3 −Kd4Kw𝜐rd̃w𝜐r +Kd4

[ W̃T
2 S2(Z2)

W̃T
3 S3(Z2)

]
− ḋw𝜐r, (54)

where 𝝃4 = [𝜉41, 𝜉42]T is the observer states, Kw𝜐r = diag[kw𝜐, kwr] > 0 and KT
d4 = Kd4 > 0 are design parameters,

dw𝜐r = K−1
w𝜐r𝝉w𝜐r −K−1

w𝜐r

[
𝜖2(Z2)
𝜖3(Z2)

]
and W̃𝑗 = Ŵ𝑗 −W∗

𝑗
, 𝑗 = 2, 3.

Remark 7. In system (50), the external disturbance 𝜏uw and NN approximation error 𝜖1(Z1) are lumped together, and
then disturbance observer (51) is employed to estimate the lumped disturbance duw. By estimating the lumped dis-
turbance, we incorporate the NN approximator ŴT

1 S1(Z1) into the disturbance observer (51) to compensate for the
unknown vessel dynamics such that both tracking errors and observer errors could converge to a small neighborhood
of zero by appropriately choosing design parameters. The motivation for using disturbance observers (51) and (53)
mainly lies in the following: (i) both the external disturbances and NN approximation errors are estimated by the
disturbance observers, and then compensated for in a feedforward control loop; and (ii) the disturbance feedforward
compensation term can be considered as a “patch” to the baseline feedback control that is designed for the nomi-
nal systems (ie, without the external disturbances and NN approximation errors). This disturbance-observer–based
compensation is added to improve the robustness against the disturbances.

The disturbance-observer–based adaptive control laws 𝜏u, 𝜏r could be given by

𝜏u = m11
(
−k41z21 − 𝜙u + ŴT

1 S1(Z1) − kwu𝑑wu + 𝛼̇1 − z11p1 cos𝜓 − z12p2 sin𝜓
)

(55)

𝜏r = −m̄33sin2(h̄0)
m23

z̄22 +
m̄33cos2(h̄0)

m22
z̄31, (56)

where h̄0 = 𝜀2 arctan(𝛽), z̄22 = −k51z22 − 𝜙𝜐 + ŴT
2 S2(Z2) + 𝛼̇2 − kw𝜐𝑑w𝜐 + z11p1 sin𝜓 − z12p2 cos𝜓 , z̄31 = −k52z23 − 𝜙r +

ŴT
3 S3(Z2) + 𝛼̇3 − kwr𝑑wr − z13p3 with design parameters k41 > 0, k51 > 0, k52 > 0, and

𝛽̇ = −m22(1 + 𝛽2)
𝜀1𝜀2

z̄22 −
m23(1 + 𝛽2)

𝜀1𝜀2
z̄31. (57)

Consider the following adaptive laws:
̇̂Wi = −Γi[Si(Zi)z2i + 𝜎iŴi], i = 1, 2, 3, (58)

where Γi = ΓTi > 0 are adaptation matrices and 𝜎i > 0 are the 𝜎-modification parameters. Then, we obtain the following
closed-loop error systems

ż21 = −k41z21 + W̃T
1 S1(Z1) − kwu𝑑wu − z11p1 cos𝜓 − z12p2 sin𝜓 (59)

ż3 = −K5z3 −Kw𝜐rd̃w𝜐r +
[ W̃T

2 S2(Z2)
W̃T

3 S3(Z2)

]
+
[
z11p1 sin𝜓 − z12p2 cos𝜓

−z13p3

]
, (60)

whereK5 = diag[k51, k52]. Consider the following Lyapunov function candidate:

V2 = V1 +
1
2
z221 +

1
2
zT3 z3 +

1
2
𝑑2wu +

1
2
d̃Tw𝜐rd̃w𝜐r +

1
2

3∑
i=1
W̃i

TΓ−1
i W̃i, (61)

whose derivative along systems (59), (60), (52), (54), (58), and (25) yields

V̇2 ≤ −𝜌1V2 + 𝛿1. (62)

Accordingly, we have the following theorem that summarizes the stability and transient behaviors of the closed-loop
adaptive systems.

Theorem 2. Consider underarcuatedmarine vehicle (1) satisfying Assumptions 1 to 3, adaptive control laws 𝜏u, 𝜏r given
in (55), (56), NN weight updating law (58), and disturbance observers (51), (53). If there exists sufficiently large compact
sets ΩZ1 ,ΩZ2 such that Z1 ∈ ΩZ1 ,Z2 ∈ ΩZ2 for all t ≥ 0, then, for the initial conditions satisfying condition (3), we have
the following.

i. All the signals in the closed-loop system remain bounded.
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ii. The tracking errors always evolve within the predefined time-varying asymmetric bounds, ie, −ei(t) < ei(t) < ei(t),
∀t > 0, i = 1, 2, 3, and especially, the prescribed transient and steady-state performances of the tracking errors in
the sense of (3) and (4) are guaranteed.

iii. The tracking errors ei, i = 1, 2, 3 and observer errors 𝑑wu, d̃w𝜐r converge to a small neighborhood of zero by
appropriately choosing design parameters.

Proof. The proof is similar to that of Theorem 1 and is therefore omitted.

5 SIMULATION STUDIES

To show the performance of the proposed tracking controllers, we perform numerical simulation on a Cybership-II model
with vehicle massm = 23.8 kg and length L = 1.255 m.43 The Cybership-II dynamics is described by system (1) and the
system parameters are taken from the work of Skjetne et al43 and also presented in Table 1. All quantities in Table 1 are
expressed in the international system of units (SI). Without loss of generality, the unmeasurable external disturbances
are given by 𝝉w = 0.5M[1.5 + sin(t), 1.5 + cos(t), 1.5 + sin(t)]T , which is borrowed from section 7.5 in the work of Do and
Pan.3 The choice of such disturbances indicates there exist both constant bias and time-varying external disturbances that
act on surge, sway, and yaw dynamics of the vehicle. In practical maritime environments, the external disturbances may
be different. We take the aforementioned disturbances for an illustration of the robustness properties of our proposed
controllers. The desired trajectory in the phase space is a straight line and an ellipse. When t ≤ tc, the desired trajectory
is a straight line that is given by xd = 3t, yd = 𝜓d = 0; and when t > tc, the reference trajectory is an ellipse that is
described by xd = 3tc + 30 sin(0.1(t − tc)), 𝑦d = 20 − 20 cos(0.1(t − tc)), 𝜓d = 0.1(t − tc), where tc ≥ 0 is a time constant.
The tracking error e is subject to the following asymmetric constraints:

−ei(t) < ei(t) < ei(t), ∀t > 0, i = 1, 2, 3, (63)

where e1 = (1−0.1) exp(−0.5t)+0.1, e1 = (1−0.1) exp(−0.5t)+0.1, e2 = (5−0.1) exp(−0.5t)+0.1, e2 = (1−0.1) exp(−0.5t)+
0.1, e3 = (3 − 0.05) exp(−0.5t) + 0.05, e3 = (6 − 3.2) exp(−0.5t) + 3.2, which mean the prescribed performance of tracking
errors for vehicle (1) are that (i) the decrease of tracking error ei is faster than exp(−0.5t), and (ii) the steady-state errors
are smaller than 0.1, 0.1, and 3.2, respectively. Let tc = 10 seconds, the initial states of the vehicle 𝜼(0) = [0, 3, −2]T,
𝝂(0) = [0.5, 2, −0.5]T, and the initial condition 𝛽̇(0) = 0.
Model-based control: Suppose that all hydrodynamic damping terms in system (1) are accurately known a priori, but

the disturbance 𝝉w is not available for feedback control inputs 𝜏u, 𝜏r. Thus, we apply model-based tracking controllers
(37) and (38) with additional control 𝛽̇∗ in (39), and disturbance observers (33), (35) to achieve trajectory tracking control
of system (1) with guaranteeing the prescribed performance. The controller parameters are kd1 = 2, Kd2 = diag[2, 2],
k11 = 0.1, k12 = 0.4, k13 = 0.8, K2 = diag[2, 5], k31 = 10, 𝜀1 = 6, and 𝜀2 = 4. The initial states of the disturbance
observers are 𝜉1(0) = 0 and 𝝃2(0) = [9, 2]T.
Adaptive NN control: Assume that both hydrodynamic damping terms d11, d22, d23, d32, d33, and the disturbance 𝝉w

are unknown. Disturbance-observer–based adaptive controllers (55), (56) with additional control 𝛽̇ in (57), NN weight
updating law (58), and disturbance observers (51), (53) are applied to obtain the control objectives. We use the Gaussian
RBF NNWT

1 S1 (Z1)with nine nodes, where the centers of the receptive field are evenly spaced on [ −2.4, 0], the widths of

TABLE 1 Vehicle parameters

Parameter Value Parameter Value Parameter Value

m 23.8 Xu -0.7225 Y|r|r -3.450
L 1.255 X|u|u -1.3274 N𝜐 0.1052
Iz 1.7600 Xuuu -5.8664 N|𝜐|𝜐 5.0437
xg 0.0460 Y𝜐 -0.8612 N|r|𝜐 0.130
Xu̇ -2.0 Y|𝜐|𝜐 -36.2823 Nr -1.900
Y𝜐̇ -10.0 Y|r|𝜐 -0.805 N|𝜐|r 0.080
Yṙ -0.0 Yr 0.1079 N|r|r -0.750
Nṙ -1.0 Y|𝜐|r -0.845
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the receptive field are 0.4. Both Gaussian RBF NNsWT
𝑗
S𝑗 (Z2), j = 2, 3 contain 60 nodes, in which the centers are evenly

spaced on [0, 1.5] × [ −3, 4] and the widths are 0.6. The design parameters of the adaptive controllers are k11 = 0.1, k12 =
0.1, k13 = 0.4, k41 = 2,K5 = diag[3, 3], Γ1 = 2, Γ2 = 10, Γ3 = 4, 𝜎1 = 𝜎2 = 0.2, 𝜎3 = 0.4, kd3 = 4,Kd4 = diag[3, 1],
kwu = 2, Kw𝜐r = diag[6, 10], 𝜀1 = 6, and 𝜀2 = 4. The initial NN weight estimates are Ŵ1(0) = Ŵ2(0) = Ŵ3(0) = 0, the
initial states of the disturbance observers are 𝜉1(0) = −2 and 𝝃4(0) = [6, 9]T.
Simulation results for both model-based control (MBC) and adaptive NN control (ANNC) are presented in Figures 1

to 6. The vehicle position outputs shown in Figure 1 follow the desired reference trajectory (xd, yd) successfully for both
controllers. It can be seen from Figures 2 to 4 that the tracking errors of vehicle position and orientation are always within
the predefined bound (63). The control inputs 𝜏u, 𝜏r are given in Figures 5 and 6, respectively. It follows fromFigures 2 to 4
that the prescribed transient and steady-state tracking performances of vehicle (1) are achieved using ANNC, even though
no accurate vehicle model of the vehicle is available. Hence, the proposed ANNC is robust stability and performance with
respect to model uncertainties and external disturbances. Compared with the tracking errors in Figures 2 to 4, it is clear
that adaptive control yields slower exhibit damped oscillations and steady-state errors and requires larger control input
signals shown in Figures 5 and 6. This is because adaptive control has to adapt to unmodeled dynamic uncertainties
through online adjustment of NN weights. It should be noticed that the prescribed performance of tracking errors is still
guaranteed, as shown in Figures 2 to 4, during the transient stage of the parameter adaptations and disturbance estimates.
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FIGURE 1 Position output (x, y) follows the reference trajectory (xd, yd) (“- -”) in the phase space: MBC (“-.-”), ANNC (“–”).
ANNC, adaptive neural network control; MBC, model-based control [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Tracking error e1: MBC (“-.-”) and ANNC (“–”). ANNC, adaptive neural network control; MBC, model-based control [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Tracking error e2: MBC (“-.-”) and ANNC (“–”). ANNC, adaptive neural network control; MBC, model-based control [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Tracking error e3: MBC (“-.-”) and ANNC (“–”). ANNC, adaptive neural network control; MBC, model-based control [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Control input 𝜏u: MBC (“-.-”) and ANNC (“–”). ANNC, adaptive neural network control; MBC, model-based control [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Control input 𝜏r : MBC (“-.-”) and ANNC (“–”). ANNC, adaptive neural network control; MBC, model-based control [Colour
figure can be viewed at wileyonlinelibrary.com]

6 CONCLUSION

This paper has developed a constructive design technique of trajectory tracking control, under predefined tracking error
constraints, for off-diagonal underactuatedmarine vehicles with uncertain damping effects and unknown external distur-
bances. The keys to the design technique include (i) the use of transverse function approach that introduces an additional
control input to overcome the difficulties raised by underactuation and nonzero off-diagonal system matrices; (ii) the
integration of backstepping procedure, barrier function, and Lyapunov synthesis for constructing stable feedback con-
trol with prescribed performance guarantees; and (iii) the introduction of NN approximation and disturbance estimates
techniques for the compensation of uncertain hydrodynamic damping and external disturbances. Two novel transverse
functions have been designed for controlling vehicle kinetics and the calculations of the transverse functions have been
given duly. The design technique yields continuous control laws that guarantee practical stabilization of any smooth ref-
erence trajectory, whether this trajectory is feasible or not. An important feature of the design technique is that it is not
required to prove the stability of the sway dynamics separately. This feature is of great significance to robust stabilization
of uncertain underactuated systems, and then adaptive control has been developed to ensure the prescribed performance
of tracking errors during the transient stage of on-line NN weight adaptations and disturbance estimates.
The present control design is based on control Lyapunov synthesis, backstepping technique, and disturbance observers,

which provides a smooth/continuous tracking controller with smooth disturbance observer that achieves practical stabil-
ity of closed-loop systems with guaranteed prescribed performance, where the external disturbances are assumed to be
time-varying, continuously differentiable, and unmeasurable. Stochastic disturbances or the disturbances with abrupt
changes might occur in marine practical applications. Opportunities for future work include performance-guaranteed
control design of underactuated marine surface vehicles with nondifferentiable disturbances.
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APPENDIX

PROOF OF THEOREM 1

i. Solving inequality (44), we obtain
V∗
2 ≤ 𝜚∗1 + c∗0e

−𝜌∗1 t, ∀t ≥ 0, (A1)

where constants 𝜚∗1 = 𝛿∗1∕𝜌
∗
1 > 0 and c∗0 = V∗

2 (0) − 𝜚∗1. It follows from (17), (42), and (A1) that

1
2
(
z211 + z212 + z213 + z221 + ||z3||2 + 𝜏2wu + ||𝝉̃w𝜐r||2) ≤ V∗

2 ≤ c∗0e
−𝜌∗1 t + 𝜚∗1, ∀t ≥ 0,

which means that
1
2
z21i ≤ c∗0e

−𝜌∗1 t + 𝜚∗1 ≤ c∗1, ∀t ≥ 0, i = 1, 2, 3, (A2)
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where c∗1 = c∗0 + 𝜚∗1 > 0. From (A2), if c∗0 = V∗
2 (0) − 𝜚∗1 = 0, then the following inequality |z1i| ≤

√
2𝜚∗1 holds. If

c∗0 = V∗
2 (0) − 𝜚∗1 ≠ 0, from (A2), we can conclude that, given any 𝜁1 >

√
2𝜚∗1, there exists tz1 such that, for any t > tz1, the

inequality |z1i| ≤ 𝜁1 holds, where tz1 = − 1
𝜌1
ln
(

𝜁21−2𝜚
∗
1

2c∗0

)
,V∗

2 (0) ≠ 𝜚∗1. Therefore, when t tends to infinity, it follows

|z1i| ≤√2𝜚∗1, (A3)

which means that z1i is uniformly ultimately bounded. A similar conclusion can be made on z21, z3, 𝜏wu, and 𝝉̃w𝜐r. From
Equations (5) and (6), it is clear that the boundedness of z1i guarantees that the tracking error ei is uniformly ultimately
bounded. Since 𝜼d is bounded using Assumption 2, we have that system state 𝜼 is bounded. According to Equation (13),
it follows that u, 𝜐, and r are bounded due to the boundedness of 𝛼i, i = 1, 2, 3 in (22)-(24), and hj(𝛽), j = 1, 2 in (30).
Under Assumption 2, 𝛼̇i, i = 1, 2, 3 are also bounded because every term in the first time derivative of 𝛼i (22)-(24) is
bounded. Considering 𝜏w𝑗 = 𝜏w𝑗−𝜏w𝑗 , j = u, 𝜐, r and the bounded external disturbances 𝜏w𝑗 according to Assumption 1, it
is clear that the disturbance estimates 𝜏w𝑗 are bounded. Subsequently, the observer states 𝜉1 in (33) and 𝝃2 in (35) are also
bounded because the boundedness of 𝜏wu, 𝝉̂w𝜐r, z21, and z3, and then it can be concluded that the control inputs 𝜏∗u in (37)
and 𝜏∗r in (38) are also bounded. Therefore, all the signals in the closed-loop system are uniformly ultimately bounded.
ii. From Equations (5) and (9), we have

ei
ei

= Ti(z1i, 𝛾ei) =
ez1i − e−z1i

ez1i + 𝛾−1ei e
−z1i

, i = 1, 2, 3. (A4)

Note that Ti(·) in (A4) is a strictly increasing function with respect to z1i, and then it is clear from (A2) that

−𝛾ei <
1 − e2

√
2c∗1

1 + 𝛾−1ei e
2
√
2c∗1

≤
ei
ēi

≤
1 − e−2

√
2c∗1

1 + 𝛾−1ei e
−2
√
2c∗1

< 1

for all t > 0, which yields −ei(t) < ei(t) < ei(t), ∀t > 0, i = 1, 2, 3 because of 𝛾ei = ei∕ei, and ei > 0. If ei(t) = ei(t) = 𝛿i𝜌i(t),
i = 1, 2, 3, then we have |ei| < 𝛿i𝜌i(t) = 𝛿i(𝜌i0 − 𝜌i∞) exp(−𝜅it) + 𝛿i𝜌i∞,∀t > 0,
which means that the prescribed transient and steady-state performances in the sense of (3) and (4) are guaranteed.
iii. From inequalities (A3) and (A2), it is clear that when t tends to infinity, we obtain

|z1i| ≤√2𝜚∗1, |𝜏w𝑗| ≤√2𝜚∗1, i = 1, 2, 3, 𝑗 = u, 𝜐, r, (A5)

which means that the errors z1i and 𝜏w𝑗 converge exponentially to a small residual set
√
2𝜚∗1. Consequently, we can con-

clude from (A4) and (A5) that the tracking errors ei, i = 1, 2, 3, converge exponentially to a small neighborhood of zero.
It follows from (45) and (A1) that (i) the size of

√
2𝜚∗1 depends on the bounds of 𝜏̇w𝑗 , and design parameters 𝜀1, 𝜀2, 𝜅1;

(ii) when the external disturbances 𝜏wj are constant or slowly varying, ie, 𝜏̇w𝑗 = 0, the disturbance observer error 𝜏w𝑗
could converge exponentially to zero; (iii) increasing the design parameter 𝜅1 may result in smaller 𝛿∗1 ; and (iv) decreas-
ing 𝜀1, 𝜀2 will help to reduce 𝛿∗1 . Thus, decreasing 𝜀1, 𝜀2 and increasing 𝜅1 could significantly improve tracking accuracy
on the steady-state stage. This completes the proof.
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