NeuralHMC: An Efficient HMC-Based Accelerator
for Deep Neural Networks

Chuhan Min
University of Pittsburgh
Pittsburgh, PA, US.A
chm114@pitt.edu

ABSTRACT

In Deep Neural Network (DNN) applications, energy consumption
and performance cost of moving data between memory hierarchy
and computational units are significantly higher than that of the
computation itself. Process-in-memory (PIM) architecture such as
Hybrid Memory Cube (HMC), becomes an excellent candidate to
improve the data locality for efficient DNN execution. However,
it’s still hard to efficiently deploy large-scale matrix computation
in DNN on HMC because of its coarse grained packet protocol. In
this work, we propose NeuralHMC, the first HMC-based accelerator
tailored for efficient DNN execution. Experimental results show
that NeuralHMC reduces the data movement by 1.4X to 2.5x (de-
pending on the DNN data reuse strategy) compared to Von Neumann
architecture. Furthermore, compared to state-of-the-art PIM-based
DNN accelerator, NeuralHMC can promisingly improve the system
performance by 4.1x and reduces energy by 1.5X, on average.

KEYWORDS

Hybrid Memory Cube; processing-in-memory; simulation

ACM Reference Format:

Chuhan Min and Jiachen Mao, Hai Li, Yiran Chen. 2019. NeuralHMC: An
Efficient HMC-Based Accelerator for Deep Neural Networks. In ASPDAC
’19: 24th Asia and South Pacific Design Automation Conference (ASPDAC
’19), January 21-24, 2019, Tokyo, Japan. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3287624.3287642

1 INTRODUCTION

Deep Neural networks (DNNs) have demonstrated great potential
in tasks such as object detection, recognition, and classification.
In many benchmark suites [9, 15], DNN models even obtained an
accuracy higher than the level that humans can achieve. However, a
typical DNN contains thousands of network layers and hundreds of
millions of parameters [12, 14]. Data movement between different
DNN layers incurs large number of memory accesses.

To overcome the memory bottleneck during DNN execution,
many DNN accelerators are proposed to improve data reuse [4, 11]
and data locality [3]. To improve data reuse, an on-chip scratchpad

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC 19, January 21-24, 2019, Tokyo, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6007-4/19/01...$15.00
https://doi.org/10.1145/3287624.3287642

Jiachen Mao, Hai Li, Yiran Chen
Duke University
Durham, North Carolina, U.S.A
jiachen.mao, hai.li, yiran.chen@duke.edu

memory is introduced in [3] to support data reuse of local accel-
erators. In [11], many processing elements (PEs) are organized as
a systolic array to allow temporal data reuse among the PEs. To
improve data locality, Processing-in-Memory (PIM) structure is
recently adopted in DNN acceleration, eliminating the costly data
movement between memory and computation host. PRIME [5], for
example, utilizes resistive memory to store the data and performs
the DNN executions directly on the local data.

In an attempt to further improve data locality, memory manufac-
turers have invented 3D-stacked memory where multiple layers of
memory arrays are stacked on top of each other [6]. One prominent
example is Hybrid Memory Cube (HMC), which was announced
by Micron Technology in 2011 [6]. Inherited from the concept of
PIM, some 3D-stacked memory architectures [6] also include a
logic layer that can integrate general-purpose computational logic
directly within main memory to take advantages of high internal
bandwidth during computation.

Although HMC-based PIM designs significantly reduce data
movements between the memory and the computation host, chal-
lenges still exist before applying them to DNN applications:

e HMC utilize a Network-on-Chip (NoC) to connect their in-
ternal structural elements. As pointed out in [7], inter-vault
data movement overhead increases with the degree of com-
putational parallelism.

e Unique features of HMC (e.g., packet-based protocol, unidi-
rectional lane, internal queuing characteristics, etc.) largely
constrain the memory bandwidth utilization.

In this work, we propose NeuralHMC, the first HMC-based acceler-
ator for efficient DNN execution. Our major contributions are:

e We analyze data movement overhead of multiple NoC de-
signs with different DNN data reuse strategies and adopt the
optimal one in NeuralHMC for parallel multi-HMC scheme.

e We propose a weight sharing MAC to reduce weight data ac-
cess and a packet scheduling method with pipelined decoder
to maximize memory bandwidth utilization.

e We add multi-HMC support in HMC-MAC simulator and
test NeuralHMC with respect to energy consumption and
performance. Experimental results shows that NeuralHMC
achieves both higher energy efficiency and better execution
performance when compared with the state-of-the-art PIM
accelerator design built with DDRx [4].

The rest of this paper is organized as follows: Section 2 intro-
duces HMC architecture; Section 3 illustrates the motivation of
NeuralHMC; Section 4 describes the design details of NeuralHMC;
Section 5 shows the experimental setup and evaluation result; Sec-
tion 6 concludes this work.

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

Table 1: HMC Specification.

Configuration

Memory density 8GB (8 memory layer)

Memory per bank 16MB

of external links 2,4

Link lane speed (Gb/s) 12.5, 15, 25, 28, 30
of quadrants 4

of vaults/quadrant 8

of partitions/vault 8

of memory banks/partition 2

Max DRAM data bandwidth 320GB/s (2.56Tb/s)
Max vault data bandwidth 10GB/s (80Gb/s)
Max cubes connectable 8

2 BACKGROUND
2.1 Overview of HMC

Figure 1 illustrates a typical organization of HMC architecture.

HMC consists of up to eight DRAM dies stacked on top of a logic
die and vertically connected by 512 Through-Silicon Vias (TSVs). As
shown in Figure 1, each layer in HMC is divided into 16 partitions
and every partition is a vault with a corresponding vault controller
in the logic layer. A vault employs a 32-byte DRAM data bus using 32
TSVs. A group of eight vaults composes a quadrant that is connected
to a shared external full duplex serialized link. Our work adopts
HMC?2.0 specification as shown in Table 1.

\ quadrant vault

buffer

PE Array

Figure 1: HMC module architecture.

e HMC Controller
Q [0
STEei NoC

N e A

= Ll Vault Vault
b—--—- 6 Controller Controller

é DRAM DRAM

Bank Bank

Inter-HMC Communication Intra-HMC Communication

Figure 2: HMC communication.

Chuhan Min and Jiachen Mao, Hai Li, Yiran Chen

2.2 HMC Communication

The HMC interface utilizes a packet-based communication protocol.
An HMC has two or four external links to connect to other HMCs
or hosts. Each independent link is connected to a quadrant that is
internally connected to other quadrants, which routes the packets
to their corresponding vaults. As a result of that, accessing a local
vault in the same quadrant has a shorter latency than accessing a
vault in another quadrant.

There exist two levels of communications in the whole HMC
architecture, including (1) inter-HMC communication that is per-
formed on the switch path and (2) intra-HMC communication that
is handled by the HMC controller.

For inter-HMC communication, as depicted in the left part of
Figure 2, each HMC has four serialized links with a packet-based
protocol. Traditionally, the off-chip controller generates the packet
of memory requests in a coarse-grained manner. Such a scheme,
however, results in low communication bandwidth utilization and
large performance degradation in multi-HMC environment because
(1) the communication latency differs between the near and the
distant quadrants and (2) packets have to be decoded before access-
ing the destination quadrant. A customized switch design is highly
desired to reduce the overhead of inter-HMC data movement and
to improve the scalability of multi-HMC.

For intra-HMC communication, the vault controllers are con-
nected by an internal NoC, which is shown in the right part of
Figure 2. At 1.25GHz execution frequency [16], HMC supplies a
maximum bit-rate of 30 Gbit/s and 480 Gbit/s in transmission (Tx)
and receive (Rx) directions, respectively, at each of the 16 link lanes.
As a result, total 384 bits can be transferred between memory dies
and switch per cycle. The TSV bit-width is assumed to be 32 bits
(e.g., 32 TSV data lanes) and the bit-rate is 2.5 Gbit/s. Hence, the
bandwidth of the TSV bus is 64 bits per cycle at the execution
frequency of 1.25GHz.

In NeuralHMC, a packet scheduling scheme is introduced to im-
prove the efficiency of HMC communication, which will be detailed
in Section 4 and different external NoC designs are examined with
DNN data reuse strategies in Section 5.

3 MOTIVATION
3.1 Dataflows in DNN Accelerators

It has been proven that the execution of a DNN is composed of
many multiplications and additions, which can be accelerated us-
ing dedicated accelerators [17]. The dataflow graph for the DNN
computations can be mapped onto a PE array in multiple ways,
leading to different dataflow characteristics. We follow the taxon-
omy introduced in Eyeriss [4]. Eyeriss divides a DNN accelerator
design into the following three key components:

e Weight Stationary (WS): In a WS accelerator, each PE fetches
a unique weight from the global buffer (GB) and retains it
until the PE completes all the calculations involving that
weight. GB transfers input activations via a broadcast to each
PE. The PEs may forward psums back to the GB (awaiting
to be redistributed later), or accumulate them locally within
the PE array.

e Output Stationary (OS): An OS accelerator maps an output
pixel on to a PE in every iteration. Each PE fetches both

NeuralHMC: An Efficient HMC-Based Accelerator for DNNs

weights and input activations from the GB and accumulates
partial sums internally. When the accumulation completes or
an output activation is generated, each PE sends the output
activation to the GB.

e Row Stationary (RS): A RS accelerator maps a row of partial
sum calculations to a column of the PE array to facilitate
data reuse of weights and input activations. Partial sums
are accumulated by forwarding the computation along the
column, and the PEs at the top of the column send the final
output activations to the GB.

3.2 Potential of DNN Execution on HMC

A recent work named HMC-MAC [10] was proposed to offload
multiply-accumulate (MAC) functions to logic layer in HMC with-
out major modifications of HMC structure and control logic in
the vault. According to their simulation result, the execution time
of MAC operations is stabilized around 50ns. Because the MAC
operation in [10] is carried out in parallel under the HMC-MAC
architecture with the support of parallel vault operations, bank in-
terleaving and data block accesses. According to HMC specification,
up to 128KB of data, which is the product of the number of vaults
(32), the number of banks (16) and the maximum block size (256B),
can be processed in parallel in a HMC.

Such high efficiency of HMC execution inspires us to exploit the
execution efficiency of HMC on DNN-related applications, which
has rarely been exploited in previous arts. Take the specification
of AlexNet [12] as an example, the numbers of parameters of each
layer and the associated MAC operations are summarized in Ta-
ble 2. Assume the bit width of the MAC is 16B (data type: long
long), the computation time of 106M MAC ops in CONV1 layer is
within a second (not including the data movement to the PEs). This
observation shows that HMC-MAC is an effective PIM architecture
to accelerate the MAC operations in DNN applications. When the
scale of the neural networks increases, a larger parallelism can be
exploited with a multi-HMC structure.

3.3 Challenge of DNN Execution on HMC

However, the above estimation in Section 3.2 is too optimistic and
ignores the communication cost and data access latency from/to
the PEs. As aforementioned in Section 2, HMC utilizes a packet-
based protocol. The total data access latency largely depends on
the packet processing and response generation steps in the HMC
communication.

Dense matrix multiplication in DNN execution exhibits a high
fine-grained parallelism and is computation-extensive, e.g., the ratio
between computations and memory accesses is high. As illustrated
in [10], to ensure one memory request can only access a single
vault, one memory request is regenerated into multiple requests. In
consequence, final result is the accumulation over multiple vaults
per request. When a regenerated memory request arrives at the
vault controller, this memory request is stored in the request buffer
and then converted into a DRAM command. The vault controller

Table 2: AlexNet Architecture Overview.
Layer name CONVI CONV2 CONV3 CONV4 CONV5 FC6 FC7 FC8

Parameter # 35K 307K 884K 1.3M 442K 37M 16M 4M
of MAC Operations 106M 448M 150M 224M 150M 37M 16M 4M

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

Cluster Index |~ = = 5o ~wiqi <57 ~ ~ | Weight Register File

Index Weight

0 2.7
Feature Map
------------ 5 | i

Data Width: 32 Bit
g

| A Update Result” |

4 Pipelined Multipliers -
Result Register

2.2 06.85

1
L

3.1x 1.5=4.65

Figure 3: Weight sharing pipelined MAC design.

works as a conventional memory controller and issues this DRAM
command. In addition, memory requests that access the same ad-
dress are processed in the order of their arrival to guarantee the
memory data coherency, similarly to the FR-FCFS scheduling. Con-
strained from the memory power consumption, there can exist only
two active HMCs. As a result, the parallelism of packet decoder
is limited. Hence, in Section 4.3, we optimize the multi-HMC by
decoupling packet decoding and memory access with an always-on
HMC.

4 ACCELERATOR DESIGN OF NEURALHMC
4.1 Weight Sharing Pipelined MAC Design

The size of weights in modern large-scale DNNSs is growing fast,
which accounts for a large amount of memory access and thus
introduces long memory access latency. To tackle this problem, in
this work, we innovatively adopt the weight sharing technology
in [8] to our DNN accelerator design. Weight sharing quantifies
the original DNN weights into several clusters and the clusters
can be represented as cluster index, which is typically 5 bits for
fully-connected layers and 8 bits for convolutional layers. Research
shows that weight sharing incur no accuracy loss under most sce-
narios [8]. Such representation reduces the original 32 bits floating
points weights to 5 or 8 bits cluster index, saving much memory
consumption.

Figure 3 depicts the details of our proposed weight sharing
pipelined MAC design. First, we use the cluster index to locate
the quantized weights in the weight register file in O(1) time com-
plexity. The weight register file is implemented in the logic layer
and connected to the FIFO. Then, as shown in Figure 3, the feature
map and the quantized weight are fed into the pipelined multipliers.
Because multiplication require 4X of cycles required for adder, we
leverage 4 multipliers to amortize the workload so that the whole
MAC can generate one result for each cycle. After the available mul-
tiplier get the result, it will be added with the former accumulated
results in an efficient way.

4.2 Asynchronous Packet Communication

The HMC controller uses three types of packets: flow control, re-
quest, and response packets. The packet control layout is shown
in Figure 4. The communication between the host and the PIM is
asynchronous with the assistant of flow control packet. As also
demonstrated in Figure 4, the total size of register for instruction
in the targeted PIM equals multiplication of register size, number
of register files and number of active threads. The size of register

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

Offload | Physical| Active | Target Regist
Packet | Start |Thread| PIM sg:s e .
ID PC | Mask | ID alue
PIM | Queue (Reg Slze)x(# of Reg.)
ID Index

Figure 4: Flow control packet layout.

denotes the number of instructions in PIM instruction set. In this
way, the flow packet can deliver instruction directly to PIM so long
as the ISA is compatible between CPU and PIM.

A flow control packet is transmitted via a master-slave link. We
aim to reduce data transferring cost between the CPU and the
PIM and allow them to operate independently and simultaneously.
When offloading computations to PIM, the flow packet is generated
with the corresponding thread id of the CPU encapsulated in packet
header. Figure 5 illustrates the asynchronous communication be-
tween the host and the PIM. Calculations on the CPU and the PIM
are performed simultaneously in Figure 5. Furthermore, the data
transmission between the CPU and the PIM can be hidden behind
the calculations. After the computation completes, the PIM will
update the flow packet in the tail and transmit it via the link layer
to the CPU. Upon receiving the flow packet from PIM, the CPU
checks the completion bit in the tail and thread id in the header.

The consecutive memory data of an HMC-MAC memory request
may access more than one vault when the execution count is rela-
tively big. In such a case, each memory request will regenerate its
memory request as one memory request can access only one vault.
Decoding a packet might introduce extra processing latency if it
retrieves multiple memory requests in serial. The packet decoder in
the off-chip controller is also enhanced to support packets: it firstly
decodes the universal header to obtain the size of the packet (which
indicates the number of the memory requests) as well as the request
type; it then retrieves the address and granularity information of
each memory request.

Two optimizations are conducted to reduce the decoding latency:

e Multiple memory requests can be decoded in parallel while
the offset of each memory request in a packet can be effi-
ciently calculated in advance because the size of the ADDR
field in the packet tail is fixed;

Allocation
CPU [load for cPU Calculate| _ _ _ Paramete Calculate _____
on CPU Sync on CPU
and PIM ; | ; k
L L
] T
1 1
: A !
1 1
¥, [Calculate { Calculate | |
PIM In 20 € out Yin 20 out

Figure 5: Asynchronous parameter communication between
host and PIM.

Chuhan Min and Jiachen Mao, Hai Li, Yiran Chen

Algorithm 1 Packet Scheduling Algorithm

procedure PACKET SCHEDULING ALGORITHM
(Global_Cycle, Request_Time, Active_ HMC, Sleep_ HMC)

1: while Req_Queue # () and Active_ HMC < HMC_Cap do
2: Global_Cycle + +.

3 for Req in Req_Queue do

4 Req_Waiting + +

5 if exist ReqWaiting > Starvation_Thd then

6: Victim_HMC « dequeue Req

7: wakeup(Victim_HMC)

8: Sleep_ HMC « Sleep_ HMC — Victim_HMC

9: Active_ HMC « Active_ HMC U Victim_HMC

10: if Req_Queue # () and IFree_ HMC € Active_ HMC then
11: Victim_HMC <« LRU(Free_ HMC)
12: sleep(Victim_HMC)

13: Active. HMC « Active HMC — Victim_HMC

14: Sleep_ HMC « Sleep_ HMC U Victim_HMC

Return =0

e A packet can be decoded before it is received completely in
a pipeline manner: decoding the memory requests received
from the previous packet and receiving the next packet can
be performed at the same time.

4.3 Packet Scheduling Algorithm

In a traditional multi-HMC system, the memory power budget
allows only two active HMCs at the same time [6]. We denote
the ready packet as the packet destined to the active HMC. The
starvation time is defined as the waiting time for the next ready
packet in queue.

Assuming there are two packets — one is destined to HMC 0 and
the other destined to HMC 1. HMC 0 is initially active while HMC 1
is in sleep mode. After the completion of the first packet, the second
memory request must wait until the power manager turns off HMC
0 and then turns on HMC 1. In this situation, the decoding process
is serialized, incuring long memory access latency.

Therefore, we proposed Algorithm 1 in NeuralHMC to deal with
the aforementioned situation. In the above situation, when the
request queue is drained and the waiting time for the next ready
request (Req_waiting in Algorithm 1) exceeds the starvation time
(Starvation_Thd in Algorithm 1), the second packet is issued to
active HMC 0. The header of the next not-ready packet (CUBID)
is decoded in HMC 0 and then the sleep of HMC 0 is issued. In
the next cycle, the activation of the target HMC (HMC 1) is issued.
During the activation of the target HMC, the packet is forwarded
to HMC 2 that is always active and the packet body is decoded. The
data in HMC 1 is then retrieved once it’s activated. In this way, the
packet decoding and the memory access are decoupled from each
other, the packet decoding is pipelined with the activation/sleep of
HMC.

In traditional HMC-MAC implementation, the multi-request
packets are regenerated as multiple fine-grained packets to perform
accumulation. This packet regeneration process incurs additional
computation cost. In our DNN accelerator design, we optimize this

NeuralHMC: An Efficient HMC-Based Accelerator for DNNs

Table 3: Power Consumption

Power

Puram(B) =7.9W + B x 21.5Ws/GB
P=Pjram(B)+Kx165p] X f

Component

DRAM power
Cube power

packet regeneration process by avoiding across vault memory ac-
cess in the first place when composing a packet in on-chip HMC
controller. By keeping a page table of starting address of each vault
in on-chip controller, the maximum number of MAC operation is
computed given the start address of the memory operand.

5 EXPERIMENTS

5.1 Experimental Setup

The power model adopted in NeuralHMC is based on [1], which
can be summarized in Table 3. Here B is the requested bandwidth,
K is the number of clusters and f is the clock frequency. Experi-
ments in this section are performed on an a cycle-accurate simulator
HMC-MAC [10], which has been modified to adopt multi-HMC
backend in HMC-Sim [13]. In the multi-HMC simulator, an undi-
rected graph depicts the link connections among the HMCs and
the host. The memory trace file is generated by Gem5 [2] — a full
system memory simulator, then loaded into HAC-MAC by the trace
loader module. The activating/sleep latency is set to 2us and the
timing configuration of the simulator is shown in Table 4.

5.2 Evaluation of Single-HMC in Neural HMC

In single-HMC schemes, we evaluate our proposed weight-sharing
pipelined MAC optimization in HMC-MAC.

Figure 6 depicts the scalability of the single-HMC’s throughput
when MAC ops/fmap increases. We evaluated 3 neural network
layer types in DNN, including convolution layer (CONV), fully-
connected layer (FC) and 1x1 convolution layer (1x1-CONV). With
the MAC operations per feature map scaling, the throughput does
not scale in linear. In CONV, FC and 1x1-CONYV, number of MAC
operations per output ranges from 100 to 1000. The saturation of
the throughput when the MAC ops/fmap increases is because the
computation parallelism is also constrained by the number of vaults
(i.e. MAC units).

Figure 7 is the breakdown of the operations in AlexNet execu-
tions, including the MAC operations, the data accesses from global
buffer (GB) to PE and the data access from PE to PE. The results of
three data reuse strategies - WR, RS, and OS are all included. Note
that only RS involves the data transfer from PE to PE. Because the
partial sums are accumulated by forwarding the computation along
the column. The accumulation result is transferred to GB per MAC

Table 4: HMC timing configuration.

tCK 0.8ns
tRAS, tRCD, tRRD, tRC, tRP 27,13, 4,10, 10
tCCD, tRTP, tWTR, tWR, tRFC 4,7, 10,74, 24
tRTRS, tCMD, tXP, tRP, tRC 1, 1, 4, 10, 40
RL, WL, BL 13,3, 1

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

350 |
== CONV

wn O
oS O

sl FC

1x1-CONV

W
S

_—— NN W
(= (=3
S S

Throughput (Mop/Second)
W
S

=]

1 10 100 1000
of MAC

Figure 6: Throughput vs. MAC ops per feature map.

operation. From Figure 7, we find that RS has the smallest number
of overall operations across most convolution layers among three
data reuse strategies. Because both WS and OS involves parameter
multi-cast and uni-cast, while in RS only accumulation result is
transferred to GB.

Figure 8 shows the NoC latencies in different NoC topology with
WS and RS. Bus achieves the lowest latency in WS among all three
topology. It is because bus is very efficient in broadcasting and
WS repeats broadcasting the activations to PEs in convolutions. In
RS, however, crossbar exhibits the lowest latency. In RS, the NoC
latency is generally longer than that in WS in spite of a relatively
high data reuse level. The Mesh performance is non-optimal in all
cases because it needs to serialize all the scatter traffic.

5.3 Evaluation of Multi-HMC in Neural HMC

Figure 9 shows the speedup and energy consumption of an 8-HMCs
architecture. Our baseline is Eyeriss [4] — an spatial DNN accelera-
tor with 128 processing elements. We use RS data reuse strategy

1 =mMAC = GB-PE ® PE-PE

—

_ = =
(= S

of Operations (Billion)

RO =
O =)
|

(=]
S

WS RS OS/WS RS OS] WS RS OS WS RS OS WS RS OS

CONV1 CONV2 CONV3 CONV4 CONVS5

Figure 7: Operation breakdown in AlexNet.

—| M Bus Crossbar |—

(5]
wn

B Mesh

n o un o

NoC Latency (Cycle)
S = = NN W
o =)

n

o
o

PE#:16 PE#32 PE#:64
WS Latency

PE#:16 PE#:32 PE#:64
RS Latency

Figure 8: NoC latencies with RS and WS.

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

6
5 m Speedup
4 = Energy Reduction
3
2
s
0
AlexNet VGG16 GoogleNet ResNet Average

Figure 9: Total speedup and energy reduction.

- = 1.2
15007 & GB-PE m PE-PE g

o)
1000 2.0.8

%3
S
S
d

Bandwidth (Gbps / 16 PEs)

(=]

1 2345678
of HMC

WS RS oS
Figure 10: Inter-vault band- Figure 11: Performance of
width breakdown. scalability.

and crossbar NoC topology in both baseline and proposed accelera-
tor. In above four benchmarks (i.e., AlexNet, VGG16, GoogleNet,
ResNet-50), the speedup of GoogleNet can be up to 5.6X and energy
consumption reduction is up to 1.85X%.

In all benchmarks shown in Figure 9, the energy consumption
reduction is not as high as speedup. The reason lies in the constraint
of the MAC logic in TSV and the control logic in vault controller.
Even for the AlexNet, our proposed architecture still outperforms
the Eyeriss implementation in both speed and energy consumption.
Thanks to our NeuralHMC accelerator architecture and weight
sharing MAC, an average speedup over all benchmarks is 4.1x and
an energy reduction of 1.5X.

We evaluate the inter-vault bandwidth of the three data reuse
dataflow in ResNet-50 as shown in Figure 10. The PE-PE bandwidth
is 300Gops by assuming there are 16PEs (1 HMC) in RS. The GB-
PE bandwidth is 1000Gops in both WS and OS. The performance
scalability of multi-HMC is illustrated in Figure 11. As we can
observe in Figure 11, the speedup scales in linear when the number
of the HMCs is smaller than 5. With proposed packet scheduling,
the decoding process is pipelined and the performance degradation
is offset with an active HMC. However, keep increasing the number
of HMCs will not maintain linear performance improvement. This
is mainly because the parameters are not evenly distributed in
multiple HMCs.

6 CONCLUSION

In this work, we propose a neural network accelerator based on
processing-in-memory multi-HMC called NeuralHMC. NeuralHMC
is optimized to perform MAC operation in DNN application. The
optimizations include: (1) using a weight sharing MAC to reduce

Chuhan Min and Jiachen Mao, Hai Li, Yiran Chen

weight data access, (2) packet scheduling in multi-HMC architec-
ture to pipeline packet decoding, (3) avoiding packet regeneration
in vault controller by calculating the maximum MAC count in on-
chip controller. Experimental results show that our proposed Neu-
ralHMC can improve the system performance by 4.1 in speedup
and 1.5X in energy reduction compared to the DNN accelerator
design built with conventional low-power DRAM memory. Further-
more, our NeuralHMC outperforms the baseline for all the DNN
architectures and neural network layer types, showing excellent
generality for different DNN implementations.

ACKNOWLEDGMENTS

This research was funded in part by National Science Foundation
1615475, 1725456 and Department of Energy DE-SC0018064.

REFERENCES

[1] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. 2014. Dynamic power man-
agement of off-chip links for hybrid memory cubes. In Proceedings of the 2014
ACM/EDAC/IEEE Design Automation Conference. 1-6.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011).

[3] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelera-
tor for ubiquitous machine-learning. ACM Sigplan Notices 49, 4 (2014).

[4] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2017).

[5] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory. In Proceedings of
the 43rd International Symposium on Computer Architecture. 27-39.

[6] Hybrid Memory Cube Consortium et al. 2015. HMC specification 2.0.

[7] Ramyad Hadidi, Bahar Asgari, Jeffrey Young, Burhan Ahmad Mudassar, Kartikay

Garg, Tushar Krishna, and Hyesoon Kim. 2018. Performance Implications of

NoCs on 3D-Stacked Memories: Insights from the Hybrid Memory Cube. In

Proceedings of the 2018 IEEE International Symposium on Performance Analysis of

Systems and Software. 99-108.

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-

Image Translation with Conditional Adversarial Networks. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition. 5967-5976.

Dong-Ik Jeon, Kyeong-Bin Park, and Ki-Seok Chung. 2018. HMC-MAC:

Processing-in Memory Architecture for Multiply-Accumulate Operations with

Hybrid Memory Cube. IEEE Computer Architecture Letters 17, 1 (2018).

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer Architecture. 1-12.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

[13] John D Leidel and Yong Chen. 2016. Hmc-sim-2.0: A simulation platform for

exploring custom memory cube operations. In Proceedings of the 2016 IEEE Inter-

national Parallel and Distributed Processing Symposium Workshops. 621-630.

Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen.

2017. Modnn: Local distributed mobile computing system for deep neural network.

In Proceedings of the 2017 Design, Automation & Test in Europe Conference &

Exhibition. 1396-1401.

Yao Qian, Yuchen Fan, Wenping Hu, and Frank K Soong. 2014. On the training

aspects of deep neural network (DNN) for parametric TTS synthesis. In Proceed-

ings of the 2014 IEEE International Conference on Acoustics, Speech and Signal

Processing. 3829-3833.

Patrick Siegl, Rainer Buchty, and Mladen Berekovic. 2017. A bandwidth accurate,

flexible and rapid simulating multi-HMC modeling tool. In Proceedings of the

2017 International Symposium on Memory Systems. 71-82.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.

2015. Optimizing fpga-based accelerator design for deep convolutional neural

networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 161-170.

[8

[

[10

[11

[14

[15

(16

=
=

