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A GEOMETRIC CHARACTERIZATION OF THE

SYMMETRIZED BIDISC
JIM AGLER, ZINAIDA LYKOVA, AND N. J. YOUNG

ABSTRACT. The symmetrized bidisc
e {z4+w,zw) : 2| <1, |Jw| <1}

has interesting geometric properties. While it has a plentiful sup-
ply of complex geodesics and of automorphisms, there is neverthe-
less a unique complex geodesic R in G that is invariant under all
automorphisms of GG. Moreover, G is foliated by those complex
geodesics that meet R in one point and have nontrivial stabilizer.
We prove that these properties, together with two further geo-
metric hypotheses on the action of the automorphism group of G,
characterize the symmetrized bidisc in the class of complex mani-
folds.
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INTRODUCTION

By a domain we mean a connected open set in C" for some integer
n > 1. A domain is homogeneous if the automorphisms of the domain
act transitively. It is symmetric if every point of the domain is an
isolated fixed point of an involutive automorphism of the domain.

The nature of a bounded symmetric homogeneous domain in C" is
captured by the great classification theorem of Elie Cartan [8], an early
triumph of the theory of several complex variables [14, 16]. It states
that any such domain is isomorphic to a product of domains, each of
which is isomorphic to a domain of one of six concrete types. The
theorem is fundamental to the complex geometry and function theory
of bounded symmetric homogeneous domains.

In this paper we are interested in irreducible domains €2 which nar-
rowly miss being homogeneous, in the sense that the action of the
automorphisms of €2 splits the domain into a one-parameter family of
orbits. Such domains are said to have cohomogeneity 1, and have an
extensive theory [15, 11] in both the mathematical and physics litera-
tures.

One familiar domain that has cohomegeneity 1 is the annulus

A, o {zeC:q<|z| <q '} (0.1)
where 0 < ¢ < 1. The orbits here are the sets
{z:]z] =t}u{z:|z| =t} (0.2)

where ¢ <t < 1.
For a higher-dimensional example, consider the domain

el {(z+w,z2w) : |z| <1, |w| <1} (0.3)

in C?, known as the symmetrized bidisc. The automorphisms of G are
the maps of the form

(z 4+ w, zw) = (m(z) + m(w), m(z)m(w)) (0.4)
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for some automorphism m of the unit disc D. The orbits in G are
therefore generically 3-dimensional real manifolds, and there is a one-
parameter family of them.

Another domain, now in C?, having a one-parameter family of orbits
is the tetrablock, which comprises the points (2!, 22, 2%) € C? such that

1—a'z —2*w+2°2w #0 (0.5)

for all z,w € C such that |z] <1 and |w| < 1.

An ambitious project would be to classify bounded domains in C”",
and more generally, complex manifolds, for which the orbits under the
automorphisms of the manifold comprise a one-parameter family. By
way of a start we shall here characterize in geometric terms our ar-
chetypal example G defined in equation (0.3). This domain has been
studied by numerous authors over the past 20 years, and has proved to
be a domain with a very rich complex geometry and function theory:
see, besides many other papers, [4, 10, 13, 17, 22, 19, 25, 2|. G is signifi-
cant for the theory of invariant distances [18], because it has Lempert’s
property, that the Carathéodory and Kobayashi metrics coincide [21],
despite the fact that G is not convex (nor even biholomorphic to a
convex domain [10]). It plays a role in operator theory [7, 23| and even
has applications to a problem in the theory of robust control (for ex-
ample, [27]); indeed the control application was the original motivation
for the study of G. In an earlier paper [3] we characterized G in terms
of the Carathéodory extremal functions that it admits. Here we give
another characterization, this time in terms of its complex geodesics
and automorphisms.

An automorphism of a complex manifold is a bijective holomorphic
self-map of the manifold; such a map automatically has a holomorphic
inverse. For any complex manifold €2 we denote by Aut () the automor-
phism group of €2 with the compact-open topology. A complex geodesic
of G can be defined as the range of an analytic map f : D — G that
has an analytic left inverse, where D = {2z € C: |z| < 1}.

We draw attention to two striking geometric properties of G.

(1) There exists a unique complex geodesic R in G that is invariant
under all automorphisms of GG. Moreover, every automorphism
of R extends to a unique automorphism of G;

(2) for every s € R there exists a unique geodesic Fy in G having
a nontrivial stabilizer in Aut G and such that

F,NR = {s}.
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Moreover, the geodesics {F : s € R} foliate G.!

We call R the royal variety and the sets F; the flat geodesics of G.

Could it be that properties (1) and (2) suffice to characterize G? In
the present paper we show that the answer is yes under some further
geometric hypotheses, which we now describe.

We say that a properly embedded analytic disc?> D in a complex
manifold €2 is a royal disc if it has properties analogous to those of
R in (1), that is, D is invariant under every automorphism of €2, and
every automorphism of D extends to a unique automorphism of 2. A
royal manifold is a pair (€2, D) where Q is a complex manifold and D
is a royal disc in €.

If (2, D) is a royal manifold then a collection & = {E) : A € D} of
properly embedded analytic discs® in Q is a flat fibration over D if it has
properties similar to those of {Fy : s € R} in (2), that is, ExND = {\}
for every A\ € D, &£ is a partition of 2 and, for every automorphism 6 of
Q and every A € D, 0(E\) = Ep(»). The triple (2, D,€) is then called
a flatly fibered royal manifold.

The orbits in (£2, D, &) have a natural parametrization by [0, co).
For any p €  there is a unique A € D such that u € FE); we define
the Poincaré parameter P(u) to be the Poincaré distance from u to A
in the disc E) (see Definition 2.19). Two points py, o in €2 lie in the
same orbit if and only if P(u;) = P(u2).

Flatly fibered royal manifolds can enjoy two geometric properties:
synchrony and sharpness. Synchrony is a condition which relates the
actions of Aut {2 on D and on the discs in £. To be precise, if 0 is an
automorphism of €2 which fixes a point A € D, then it follows easily
from the definition of a flat fibration over a royal manifold that the
eigenspaces of the operator ¢(\) on the tangent space T\Q2 to 2 at
A are the tangent spaces ThD and T\FE,. We say that (Q,D,€) is
synchronous if, for every A\ € D, the eigenvalue of §'(\) corresponding
to T\E) is the square of the eigenvalue of §'(\) corresponding to T)D.

Sharpness is a condition on the action of Aut D on 2 in a flatly fibered
royal manifold (2, D, £). The definition of (€2, D, E) implies that every
m € AutD induces an automorphism ©(m) of 2. For o € D, let B,
denote the automorphism

Bu(z) = —2 (0.6)

C1-—az

IThat is, every point of G lies in some F, and no point of G lies in two distinct
F‘?

2not assumed to be a geodesic

3again, not assumed to be geodesics
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of D. We say that AutQ acts sharply at a point p € Q\ D if, in local
co-ordinates,

2(O(By) (1) — p) = 1 (O(B,) (1) — ) + ot) (0.7)

ast — 0 in R.

The geometric content of the sharpness condition at p relates to the
derivative at zero of the map a — O(B,)(x) from D to 2. This map is
a priori a real-linear map from 7o to 7,€2; now ToD(= C) and T, are
both complex vector spaces, and the sharpness condition is equivalent
to the statement that the derivative at zero is also a complex linear
map.

If we denote by pf the range of this complex-linear derivative, then
it is easy to see that u* is the unique nonzero complex linear subspace
of T,£) that is contained in the 3-dimensional real tangent space at p
to the orbit of p in €.

The sharp direction p* is a covariant line bundle over © which has
interesting geometric properties. For example, in GG, the sharp direction
p* is characterized by the fact that the complex geodesic C through p
with direction u* has the closest point property, meaning that, for any
point A € C, if F,, s € R, is the flat geodesic containing pu, then the
closest point to A in Fj is p.

Our main result, Theorem 2.30 in the body of the paper, gives a
precise version of the following statement, which holds under suitable
regularity conditions.

Theorem A. Let 2 be a complex manifold. € is isomorphic to G
if and only if there exist a royal disc D in Q and a flat fibration £
of Q over D such that (Q, D,E) is a synchronous flatly fibered royal
manifold and Aut Q) acts sharply on Ey\ \ {\} for some A\ € D.

Formal definitions of synchrony and sharp action are given in Sub-
sections 2.3 and 2.5. The appropriate notion of regularity is described
in Subsection 2.1.

Remarkably, Theorem A implies that if (2, D,€) is a synchronous
flatly fibered royal domain with suitable regularity, and Aut() acts
sharply, then both D and the leaves in £ are complex geodesics of €.
It suggests that G might be characterized also in terms of the properties
of its complex geodesics, and in a future paper we shall show that it is
SO.
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In Section 3 we give in Theorem 3.2 a characterization of GG in terms
of the existence of global co-ordinates ranging over the bidisc and sat-
isfying certain partial differential equations. These co-ordinates are
related to the flat geodesics in G.

In a short final section we discuss the relevance of the notion of
symmetric space to the question of classification and show that the
annulus, the symmetrized bidisc and the tetrablock, besides being in-
homogeneous, also fail to be symmetric in E. Cartan’s sense.

If U and Q are complex manifolds, we denote by Q(U) the set of
holomorphic mappings from U into €2.

We have used the expression properly embedded analytic disc in a
complex manifold 2. By this phrase we mean a proper injective ana-
lytic map k : D — Q such that £'(z) # 0 for all z € D. The range of
such a map k will also be called a properly embedded analytic disc.

1. THE ACTION OF AUTOMORPHISMS ON G

In this section we study the orbit structure of G under the action of
Aut G.

1.1. The action of AutD on G. As we stated in the introduction (see
equation (0.4)), every automorphism m of D induces a map 7,, : G — G
via the formula

Ym (2 + w, zw) = (m(z) + m(w), m(z)m(w)) (1.1)

for z,w € D. It is easy to check that this formula defines a map
Ym € G(G) and that 7, € Aut G.

Proposition 1.1. The map v : AutD — Aut G given by

v(m) = Ym (1.2)
form € AutD is a continuous isomorphism of topological groups.

The fact that v is an isomorphism of groups is proved in [6, Theorem
5.1] or [18]. It is routine to show that 7 is continuous with respect to
the compact-open topologies on AutD and Aut G.

The following statements are elementary.

Proposition 1.2. (1) AutD and Aut G are Lie groups.
(2) For any s € G the map

es : AutD — G given by es(m) = Y (s) (1.3)
18 real-analytic.

The map ey, where s € G, will be called the evaluation map at s on
AutD.
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1.2. The action of Aut G on the royal variety. The royal variety
in GG is defined to be the set
R={s=(s"s*) €G:(s') =45’}

={(22,2%) : 2 € D}
(we use superscripts to denote the components of a point in C%). Thus
R = R(D) where

R(z) = (22, 2%) for z € D. (1.4)
Clearly

Ym(R(2)) = R(m(z)) for z € D and m € AutD. (1.5)

The observations (1.2) and (1.5) have three consequences, summa-
rized in the following proposition.

Proposition 1.3. (1) Every automorphism of G leaves R invariant.

(2) Every automorphism of G is uniquely determined by its values on
R.

(3) Every automorphism of R has a unique extension to an automor-

phism of G.

In statement (3), automorphisms of R are with respect to the struc-
ture of R as a complex manifold.

We can summarize these three statements by saying that the re-
striction map v +— 7|R is an isomorphism from Aut G to Aut R. The
following commutative diagram describes the situation, where 1z de-
notes the injection of R into G and m € AutD.

p & R B @
ml ””‘Rl wml (1.6)
p & R & @G

1.3. Orbits in G as manifolds. For any complex manifold U and

any A € U, we denote by Orby () the orbit of A under the action of
the group of automorphisms of U:

Orby(A) = {v(\) : v € AutU}.
Consider the case that U =G and A = s € G.
In view of Proposition 1.1, for any s € G,
Orbg(s) = {ym(s) : m € Aut D}, (1.7)

so that Orbg(s) is the range of the evaluation map e, of equation (1.3).
AutD is a 3-dimensional real-analytic manifold, for which we shall
need local co-ordinates.
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Lemma 1.4. For (r,a) € R x D let m,, € AutD be given by the
formula

Myo(2) =€ 12__52, z € D. (1.8)
Let
Uy={m,o:—7m<r<m acD}, (1.9)
Uy={myo:0<r<2m acD}
and define

pr:U = (mm) xD by pi(mra) = (1, @),

and similarly for oo : Uy — (0,27) x D. Then (Uy, 1) and (U, p2) are
charts in Aut D which together comprise a real-analytic atlas A for the
group manifold. The identity automorphism idp = mgo belongs to Uy .

Proof. The automorphisms of D consist of the maps m,, for r €
[—27,27] and o € D, and therefore AutD = U; UUs,. If —7 <7 <0
then

p20 01 (r,a) = (r+2m,a)
and similarly when 0 < r < w. The transition map is therefore real-
analytic from o1 (U; N Us) to wo(Uy N U,). O

Proposition 1.5. If s € R then the evaluation map e; : AutD —
Orbg(s) is a local homeomorphism and a two-to-one covering map,
given explicitly by
(e (—2a + (1 + |a|?)s' — 2as?), ¥ (aa — as! + s?))

1 — as! + aas? ‘

€s (mr,a) -

Proof. Consider a point s = (z+w), zw) € G where z,w € D and z # w.
Let v be the unique automorphism of D that maps z to w and w to
z. Note that v is not the identity automorphism idp since z # w. For
my, me € Aut D,

T (8) = Yms (8) & w(ma(2), ma(w)) = 7(ma(2), ma(w))

{ either my(z) = ma(2) and my(w) = mo(w)
or my(z) = mo(w) and my(w) = mo(z)

{ either m; = my (1.10)

orm;lomlzv.

Thus e : m — ,,(s) is two-to-one from AutD to Orbg(s).

To prove that ey is a local homeomorphism, choose any point eg(/3)
of Orbg(s), where 8 € AutD. Choose a neighborhood U of idp such
that

mytomy #v  for all my,my € U. (1.11)
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We claim that o U is a neighborhood of # on which e is injective.
Certainly it is a neighborhood of 3, and if e5|f o U is not injective then
there exist distinct points my, my € U such that es(Somy) = es(Boms).
That is, Y50Ym, () = ¥5397Ym, ($), and therefore vy, ($) = Y, (s). Hence,
by the equivalence (1.10), m; ' om; = v. This equation contradicts the
statement (1.11). Thus ey is locally injective on Aut D.

Choose a compact neighborhood V' of idp contained in U. Since a
continuous bijective map from a compact space to a Hausdorff space
is a homeomorphism, €4V is a homeomorphism onto its range. It
follows by homogeneity that eg is a local homeomorphism on AutD.
Indeed, consider any m € AutlD and its neighborhood m o V. Define
Ly @ AutD — AutD by L, (0) = m™ o6 for 6 € AutD. In the
commutative diagram

es|moV

moV es(moV)
Lm\mon w(m)|es(V)T (1.12)
vosh e

the map eg|m o V' is expressed as the composition of three homeomor-
phisms, and so is itself a homeomorphism. Thus e, is a local homeo-
morphism.

The formula for e;(m, ) is a simple calculation. O

For any s € G, the map €/ (idp) is a real-linear map from the tangent
space Tig, Aut D to T Orbg(s). The space Tiq, Aut D is the Lie algebra
of Aut D, so we shall denote it by Lie(Aut D) (though we shall not use
its Lie structure, only its real-linear structure).

For every s € G we define a real-linear subspace V(s) of C? by

o ] 1 2_ 1 2+2 2 ) 2+ 1\2 _2 2
V(s) 5 Spalg {Z (2852) ) ( s$8—>3132 N > )b ( Sgs_i_)$152 ° )} .
(1.13)

Theorem 1.6. (1) If s € R, then Orbg(s) is a one-dimensional com-
plex manifold properly embedded in G.
(2) If s € G\ R, then Orbg(s) is a three-dimensional real-analytic
manifold properly embedded in G.
Moreover, in either case, the tangent space to Orbg(s) at s is V(s)

and
V(s) = ran e (idp). (1.14)

In the sequel the notation T Orbg(s) denotes the complex tangent
space if s € R and the real tangent space if s ¢ R. Thus, for all s € G,

T Orbg(s) = rane.(idp). (1.15)
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Proof. Consider s € G. We shall calculate the rank of the real linear
operator ¢.(m) for m € AutD. Let ¢ : Orbg(s) — C? denote the
inclusion map.

Lemma 1.7. For any tangent vector (r,«) at (0,0) to (—m,7) x D,
let v,.4(s) denote the tangent vector (es o ;") (0,0)(r,a) in T,G C C2.

Then
VUrals) = ir <2‘9;2) —a (31> +a ((51);5_2282) . (1.16)

Proof. We have (r,a) € R x C. Define a path k(t) = (tr,ta) in
(—m,m) x D for |t| < e, where ¢ is small enough.
Then let

fe=toesopt i (—1,1) x D — C?
and define v, ,(s) € C? by the formula

d

&fs o’f(t)‘tzo (1‘17)

Ura(s) =

= Cioe, 007" o k(D)

dt
d

= Fle6ts© m”(t)|t:()

dt
d

= TSLO€EgO mtr,toa‘tzo

dt

t=0

d
= &L © Vmir ta (S) ’t:(y (118)

From equation (1.8), for any z € D,
d . _ 2
&m“’vta(z)h:o =irz — o+ az’.

Hence, by equations (1.1) and (1.18), if s = (21 + 22, 2122),

d <mtr,m(21) + mtr,ta(ZQ))

v S)= —
T, ( ) dt My tor (2’1 ) Mir to (Z2)

t=0
irz — o4 alz)? 4 irz — o+ @(z)?

B ((iml —a+a(2)?)z + (irzn — o+ @(zg)Q)zl)

— ir (;;) —a (521) ta ((81);;2252> . (1.19)

O
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Continuing the proof of Theorem 1.6, by the Chain Rule we have,
from equation (1.17),

r
«

Ura(s) = fi(k(0))x'(0)
= £4(0,0) : (1.20)

Thus the range of the real linear map f7(0,0) : R x C — C? is the set
ran f1(0,0) = {v, o : 7 € R,a € C}

(st 2 ((s1)? — 252
:{ZT‘(QSQ)—O(<81)+OZ<<S )3132 S):reR,aEC}.

On taking (r, ) to be successively (1,0), (0,—1) and (0, —i) we find
that, for any s € G,
van £1(0,0) = V(s),
the real vector space introduced in equation (1.13). Thus
/(s)ran el (idp) = ran £1(0,0) = V(s) (1.21)

for all s € G. In the sequel we shall suppress the inclusion map ¢/(s)
and regard ran ¢’ (idp) as a subspace of C2.

Now consider s € G\ R. By Lemma 1.8 below, dimg V(s) = 3, and
so, by equation (1.21), €.(idp) has rank 3. We claim that €.(m) has
rank 3 for all m € AutD. Indeed, on differentiating the relation

es(m) = Ym(8) = Ym © Yidy (5) = Ym 0 es(idp),
we find (since e4(idp) = s) that

e5(m) = 7, (s)e(idp).
Since 7y, is an automorphism of G, 7/,(s) is a nonsingular real linear
transformation of C?. Thus

rankg €. (m) = rankg €., (idp) = 3

for every m € AutD.

We wish to deduce that Orbg(s) is a real 3-dimensional C'*°*-manifold
which (modulo the identification map ¢/(s)) lies in C2. The following
statement is [24, Theorem 5.2].

A subset M of R"™ is a k-dimensional manifold if and only if, for
every point s € M there exist an open neighborhood V of s in R™, an
open set W in R* and an injective differentiable function f : W — R"
such that
(1) fW)=MnV,

(2) f'(y) has rank k for every y € W.
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We shall apply this criterion in the case n = 4, k = 3, M = Orbg(s).
Consider any point es(m) € Orbg(s), where m € AutD, say m €
Uj, 7 = 1 or 2. By Proposition 1.5, e, is a local homeomorphism,
and so we may choose an open neighborhood N of m in U; such that
es|N is a homeomorphism from N to an open subset of Orbg(s). Since
Orbg(s) has the relative topology induced by G, there is an open set
V in R* such that e,(N) =V N Orbg(s).

Let W = @;(N). Then the map f = e, 0 ;' satisfies conditions (1)
and (2). It follows that Orbg(s) is a real 3-dimensional C'*° manifold
in C2.

The linear map (esop; ")/ (0, 0) maps the tangent space T{g o) (—, ) X
D into the tangent space Ty Orbg(s) C C?. We have seen that the range
of (es0 ;1) (0,0) is V(s). Hence

V(s) C Ts Orbg(s).
Since both spaces have real dimension 3, the inclusion holds with equal-
ity.

In the case that s € R, say s = (2¢, (?) for some ¢ € D,

Orbg(s) = R = {(2z,2%) : z € D},

which is a one-dimensional complex manifold properly embedded in G
by the map R : D — G. The complex tangent space to R at s is
C(1,¢), and, by equation (1.13),

v = i (¢) 1= () i+ ()
()

Thus T Orbg(s) = V(s) in the sense of complex manifolds. O

Lemma 1.8. For any s € G, the real vector space V(s) defined by
equation (1.13) satisfies

: |3 if (s1)? # 4s?
dimg V(s) = { 5 if (s1)? = 4s2. (1.22)

Proof. 1t is clear from the definition (1.13) that V(s) is a real vector
subspace of C? of real dimension at most 3.
Suppose that scalars A, u, v € R satisfy

| st 2 — (s1)? 4+ 252 2+ (s1)? — 252
)\’L (282) + 12 ( Sg —)8182 ) + 11 ( SE +)8182 = 0 (123)

Multiply on the left by the row matrix (25> —s') to obtain
—((s")? = 4s*) (1 + s )u+ (1 — s*)vi) = 0. (1.24)
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Consider the first case in equation (1.22), namely, that (s')? # 4s?
(equivalently, s ¢ R). By equation (1.24)
(1+sH)u+ (1 —s*)vi=0,
whence
pAiv = —8*(u — iv).

Since s € G, we have |s?| < 1, and so necessarily p = v = 0. Since
(s')? # 4s?%, at least one of s!, s? is nonzero, and so, by equation (1.23),
A = 0. Hence the three spanning vectors for V(s) in equation (1.13) are
linearly independent. We have shown that dimg V(s) = 3 when s ¢ R.

Next consider a point s € R. On substituting s? = %(s')? in equation
(1.13) we obtain

v(s) =spane st (3) = ) (3)itar ) (3) ).

Since each of these vectors is a complex scalar multiple of the vector
(2 s)", it follows that dimg V(s) < 2.

In fact dimg V(s) = 2. For otherwise the second and third spanning
vectors for V(s) are linearly dependent over R, and so there exist u, v €
R, not both zero, such that

pd = (s +vi(d+(s)*) =0
and consequently
Ap+vi) = (s1)*(u — vi).
Thus |s'| = 2, contrary to choice of s € G. Therefore
dimg V(s) =2 when s € R.
U

1.4. The sharp direction in G. By Theorem 1.6, for any s € G\ R,
the tangent space V(s) at s to the orbit Orbg(s) is a real 3-dimensional
subspace of C2. Accordingly V(s) contains a unique 2-real-dimensional
subspace that is also a one-dimensional complex subspace of C?, equal
to V(s) NiV(s). On the other hand, for s € R, the tangent space V(s)
is already a complex subspace of C2.

Definition 1.9. For any s € G, the sharp direction at s s the unique
nonzero complex subspace of V(s) in C? and is denoted by s*. Thus

st = V(s) NiV(s).

The sharp direction is covariant with automorphisms of G, in the
following sense.
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Proposition 1.10. If vy € Aut G and s € G, then

Y(s)F =7/ (s)s".
Proof. Since «y is a differentiable self-map of Orbg(s), its derivative
7/(s) is a real-linear map between the tangent spaces V(s) and V(7(s)).
Since furthermore +/(s) is a nonsingular complex linear map from T,G ~
C? to Tys) ~ C?, it maps the complex subspace s* of C? to a nonzero

complex subspace of C2. Hence 7/(s)s* is a nonzero complex subspace
of V(7(s)). Hence +'(s)s* = ~(s)F. O

1.5. Flat geodesics and the action of AutG. In the introduction
we defined the flat geodesics of G to be the geodesics that meet the royal
geodesic R exacly once and are stabilized by a nontrivial automorphism
of G. This definition has the merit that it is geometrical in character,
but in practice (for example, to show that the flat geodesics foliate G)
it is often simpler to use the fact that the flat geodesics in G are the
sets of the form

FP Y {(B+Bz,2): 2 €D} (1.25)
for some 8 € . One can check that the point s € G lies on the unique
F? with

st — glg?

B = S eD. (1.26)
More details can be found in [18, 10, 5] and [2, Appendix A].

Let us at least sketch a proof that the set F? is indeed a flat geodesic
according to the definition in the introduction. Firstly, a straightfor-
ward calculation shows that any automorphism of G maps F” to a set
of the form F? for some # € D. Clearly F” is a complex geodesic
in G: for any 3 € D the co-ordinate function s? is a holomorphic left
inverse of the properly embedded analytic disc z + (8 + Bz, 2) in G.
It is simple to check that F® meets R exactly once, say at the point
s(8) € R. Choose a nontrivial automorphism 6 of the analytic disc
R that fixes s(f), and let v be the unique extension of 6 to a (neces-
sarily nontrivial) automorphism of G. Then v(F?) = F?, and since v
fixes s(3), it follows that F*" meets R at s(3). Distinct sets F? are
disjoint, and therefore B = . That is, F? is stabilized by a nontrivial
automorphism of G.

The converse statement, that every flat geodesic is an F?, follows
from the classification into five types of the complex geodesics in G
given in [2, Chapter 7).

We summarize the main geometric properties of flat geodesics.

Proposition 1.11. (1) Through each point s in G there passes a
unique flat geodesic F.
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(2) Every flat geodesic intersects the royal geodesic R in exactly one
point.
(3) Automorphisms of G carry flat geodesics to flat geodesics.

The following lemma is a reformulation of the first two of these facts.
Lemma 1.12. The family

F¥ {Fs:s€eR}
s a partition of G.

Definition 1.13. For any s € G, the complex tangent space at s to
the unique flat geodesic through s will be called the flat direction at s,
and will be denoted by s°.

Thus, if s' = 8 + 352, then
s = C(p, 1), (1.27)

which is a one-dimensional complex subspace of C2. The map s — s’

is a covariant line bundle which is a sub-bundle of T'G.
Facts (1)-(3) in Proposition 1.11 imply the following description of
the action of AutG on F.

Lemma 1.14. If v € AutG and s € R, then y(F,) = Fy).

Proof. Fix v € AutG and s € R. By Fact 3, there exists t € R
such that v(Fy) = F}, and Condition (i) in Proposition 1.3 implies that
v(s) € R. Therefore (s) € R N F;. Hence by Fact 2, t = ~(s). O

We shall call {F; : s € R} the flat fibration of G.
Proposition 1.15. For all s € G the spaces st and s° are unequal.

This statement will follow from explicit formulae for the sharp and
flat directions. We already know that, for s € F?, s is given by
equation (1.27).

Proposition 1.16. For any 3 € D and any s € F?,

g
& =C <116_—12521> . (1.28)
2

Proof. Consider s € G\ R. Let
(s (2= (s1)? + 252 (24 (sh)? — 257
1 =1t{gs2 ), V2= sl glg2 y Uz =1 st 4 glg2 :

By Theorem 1.6, {v1,v9,v3} constitutes a basis for T Orbg(s). Let

e, =—2s", cp=—i(l—5%), c3=1+s
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and note that ¢y, c3 are nonzero. One finds that c;v; + covg + c3v3 = 0,
and therefore

(Recy)vi 4+ (Reco)ve+ (Rees)vs = —i(Im g )vy —i(Im o) ve —i(Im c3)vs.

Hence
v (Recy)vy + (Recy)va + (Recg)vg # 0
and
v € Ts Orbg(s) NiTy Orbg(s) = st

Further calculation yields the formula
Y B 212 1 — B%Sl
o=ai- 1) ().

in agreement with equation (1.28). This proves the proposition in the
case that s € G\ R. For s = (2z,2%) € R equation (1.28) is easily
checked. 0

The fact that s* # s” can now be verified by a simple comparison of
equations (1.28) and (1.27).

Corollary 1.17. The tangent bundle of G 1is the direct sum of the
sharp bundle and the flat bundle:

T.G=5a&s for all s € G.

1.6. Synchrony in G. There is a subtle relationship between the ac-
tion of an automorphism of G on the royal variety and its action on
any flat geodesic.

For any complex manifold U and X\ in U, denote by Aut,U the
stabilizer of A in Aut U (also known as the isotropic subgroup of Aut U
at A). For any sg € R, the sets R and Fj, are embedded analytic discs
in G that intersect transversally at the point so. Every 6 in Aut,, G
determines an automorphism of the analytic variety R U Fy,. For an
automorphism of a general variety there need be no connection between
the action on two leaves beyond what is implied by the condition that
the restrictions of the automorphism to the two leaves must agree at any
common point. However, in the context of the domain G, in the light
of Condition (ii) in Proposition 1.3, the action of # on Fj, is uniquely
determined by the action of # on R. The following propositions describe
this dependence explicitly.

We denote the unit circle {z : |z| = 1} in the complex plane by T.
For n € T let p, denote the element of AutyD defined by p,(z) = nz.
Clearly AutoD = {p, : n € T}.
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Proposition 1.18. If sy € R and 0 € Auty, G, then 0'(so) has eigenspaces
Ts R and T, Fs, with corresponding eigenvalues 1 and n? for some
neT.

Proof. Since 0 leaves invariant both R and F,, it follows that €'(sg)
leaves invariant the tangent spaces Ty, R and Ty, Fy,. These two one-
dimensional tangent spaces are thus eigenspaces of 6'(sp).

Observe that v, is the restriction to G of the linear operator on C?
with matrix diag{n, n?}, and hence

Yy (50) ~ diag{n, n*}.

Let so = (2a,a?). Since 6 € Aut,, G, 0 = ~,, for some m € AutD
such that m(a) = a. Therefore b, o mob_, € AutgD, and so there
exists 7 € T such that

m = b_q 0 pyob,.
Since m + 7, is an isomorphism,

0 = Yo_o ©Vp, © Voo
It follows by the chain rule that

0'(s0) = X, (0, 0)X*
~ X diag{n, n’} X~

where X = 7, (0,0). But diag{n,n?} has eigenspaces C @& 0 and
0 @ C with corresponding eigenvalues n and n?. Therefore, 0'(sy) has

eigenspaces X (C @ 0) and X (0 & C) with corresponding eigenvalues 7
and 7%. We have

20+ (1 + |af?)s' + 2as?, s* + as' + a?)
1+ ast + a?s?

Voo (8) =

Hence
- o1 2a
X =ap, 00 ~a-laf) |1y 2o

and therefore

C 1 0 20
X (§) e () -nm x(D)-c(,2,) -nr

Thus Ts, R and Ty, Fy, are eigenspaces of €'(sg) with corresponding
eigenvalues 7, n? respectively. O

Proposition 1.19. Let so = (2a,a?) for some a € D and let m €
Aut, . If g is any proper embedding of D into G such that g(D) = Fy,
and g(a) = sg, then

Ym0 g =gomom.
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Proof. Note that
Ym © R = Rom.

This equation implies that
Vm(50) B (@) = m'() B (ev),
which is to say that m/(«) is the eigenvalue of 7/ () corresponding to
the eigenspace T5,R. Consequently, by Lemma 1.18,
m'(a)? is the eigenvalue of ¥/ (so)
corresponding to the eigenspace T, F,. (1.29)
Since g is a proper embedding and ~,,(Fy,) = Fy,, there exists b €
Aut DD such that
Ymog=gob.
As b(a) = a, this equation implies that
Tm(50)g () = ' (a)g (a),
that is, b'(«) is the eigenvalue of ! (so) corresponding to the eigenspace
Ty, Fs,. Therefore, statement (1.29) implies that
V(a) =m/(a)’ = (mom)(a),
Since b, mom € AutD, b(a) = a = (m om)(«a), and b¥'(a) = (m o
m)’(zp), it follows that b = m o m. O

We describe the phenomena described in Propositions 1.18 and 1.19
as the synchrony property of G.

2. ROYAL MANIFOLDS

Perhaps the most far-reaching feature of the complex geometry of G
is the existence of the special variety R with the properties described in
Proposition 1.3. We formalize these properties in order to characterize
G up to isomorphism.

Definition 2.1. Let Q be a complex manifold. We say that D is a
royal disc in Q if D is a properly embedded analytic disc in  and D
satisfies the three conditions of Proposition 1.3, that is,

(1) every automorphism of 2 leaves D invariant,

(2) every automorphism of 2 is uniquely determined by its values
on D,

(3) every automorphism of D has an extension to an automorphism
of ).

A royal manifold is an ordered pair (€2, D) where € is a complex man-
ifold and D is a royal disc in 2.
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The following lemma is straightforward.

Lemma 2.2. If Q is a complex manifold and A : G — § is a biholo-
morphic map, then A(R) is a royal disc in Q2 and (2, A(R)) is a royal
manifold.

The next proposition spells out the analog of formula (1.5) on a
general royal manifold.

Proposition 2.3. Let (2, D) be a royal manifold. Then AutQ is iso-
morphic to AutD. Furthermore, if d : D — ) is a properly embedded
analytic disc such that d(D) = D, then there exists a unique isomor-

phism © : AutD — Aut Q such that
©O(m)od=dom for all m € AutD. (2.1)
The counterpart of the commutative diagram (1.6) is
D % D 2 0
ml 9(m)|Dl e(m)l (2.2)
D -4 D 2 0
where ¢p is the injection of D into €.

Proof. Fix a properly embedded analytic disc d such that d(D) = D.
For each 7 € Aut (2, Condition (i) in Definition 2.1 implies that there
exists a function ¢, : D — D such that

Tod(z) =dop.(2) for z € D. (2.3)

Clearly, since 7 is an automorphism of €2 and d is a properly embedded
analytic disc, ¢, € AutD.
If 7,75 € Aut (), then for each z € D we see using equation (2.3)
that
d(SO‘rzon(z)) =7T20T710 d(z)
= 7o(11 0d(2))
= Ty(d o 7, (2))
= d(pr, (P (2)))
= d(ipr, 0 0, (2)).
This relation proves that the map ¥ : Aut Q2 — AutDD given by
W(r) = o (2.4)
is a homomorphism of automorphism groups.

If 7,7 € Aut Q and ¢, (2) = ¢, (2) for all z € D, then equation
(2.3) implies that 71(d(z)) = 72(d(z)) for all z € D, which is to say



20 JIM AGLER, ZINAIDA LYKOVA, AND N. J. YOUNG

that 7 and 7 agree on D. Hence, by Condition (ii) in Definition 2.1,
71 = To. This proves that W is injective.
Consider any b € AutD. The map

d(z) — d(b(z)) € D for ze D

is an automorphism of the complex manifold D. Condition (iii) in
Definition 2.1 implies that there exists 7 € Aut {2 such that 7(d(z)) =
dob(z) for all z € D. But then

d(b(2)) = 7(d(2)) = d(-(2))

for all z € D, so that ¢, = b. This proves that ¥ is surjective from
Aut Q onto AutD.

We have shown that ¥ is an isomorphism of groups. In particular,
the first assertion of Proposition 2.3 (that Aut {2 is isomorphic to Aut D)
is proven. To define an isomorphism O satisfying the second assertion
of the proposition, let © = ¥~1. Then © is an isomorphism from Aut D
onto Aut 2, and equation (2.1) follows from the relation (2.3).

To see that © is unique consider m € AutlD and observe that if ©
and ©y are isomorphisms satisfying equation (2.3), then ©1(m)(d(z)) =
Oy(m)(d(z)) for all z € D. Since ©1(m) and O(m) agree on D, Con-
dition (ii) in Definition 2.1 imples that ©1(m) = Os(m). As m is
arbitrary, ©; = Os. ]

In the light of Proposition 2.3 we adopt the following definition.

Definition 2.4. Let (2, D) be a royal manifold. We say that (d,©)
is a concomitant pair for (2,D) if d : D — Q is a proper analytic
embedding, d(D) = D, and © : AutD — Aut(Q is an isomorphism of
groups that satisfies, for all m € AutD,

©O(m)od=dom
as in equation (2.1).

In other words, (d, ©) is a concomitant pair for (€2, D) if the diagram
(2.2) commutes for every m € AutD.

Remark 2.5. Concomitant pairs are essentially unique in the following
sense. If (€, D) is a royal manifold and (dy, ©g) is a concomitant pair
for (2, D), then (d,©) is a concomitant pair for (€2, D) if and only if
there exists b € AutD such that d = dy o b and © = ©¢ o I, where I,
denotes the inner automorphism of Aut D defined by Iy(m) = bomob™!.

As a companion to Lemma 2.2 we have the following equally straight-
forward lemma.
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Lemma 2.6. If () is a complex manifold, A : G — Q is a biholomorphic
map, d =Ao R and

O(m)=Aoy,oA™t form € AutD, (2.5)
then (d,©) is a concomitant pair for (2, A(R)).
Definition 2.7. A concomitant pair (d, ©) for a royal manifold (2, D

is consistent with a bijective map A : G — Q if d = Ao R and ©(m) =
Ao, oA™Y for all m € AutD.

2.1. Regularity properties of royal manifolds.

Definition 2.8. Let (2, D) be a royal manifold and (d,©) a concomi-
tant pair. We say that (2, D) is a regular royal manifold if

(1) ©: AutD — Aut 2 is differentiable;
(2) for every A € Q\ D, the stabilizer of X\ in Aut) is finite, and

(3) for every A € Q\ D, €)\(idp) is an invertible real-linear map, where
ex : AutD — Q is defined by

ex(m) = O(m)(\). (2.6)

Remark 2.9. If the complex manifold €2 is isomorphic to a bounded
taut domain [18], then © is automatically differentiable — indeed, by a
theorem of H. Cartan [9], real analytic.

e\ (idp) is a real-linear map between real tangent spaces,
e\ (idp) : Lie(Aut D) — TH.

Conditions (1) to (3) are certainly necessary for € to be biholomor-

phic to G. They do not depend on the choice of concomitant pair for
(Q, D).
The following statement is simple to prove.

Proposition 2.10. IfQ and A are as in Lemma 2.6 then (2, A(R)) is
a reqular royal manifold.

There is an analog of Proposition 1.5 for G.

Proposition 2.11. If (2, D) is a regular royal manifold then, for any
A€ Q\ D, the map ey : AutD — Orbg(A) is a local homeomorphism
and an N-to-one covering map, where N is the order of the stabilizer
group of \ in Aut 2.

Proof. Let (d,0) be a concomitant pair for (€2, D) and let H be the
stabilizer of A in Aut Q2. By condition (2) in Definition 2.8, H is a finite
subgroup of Aut 2. For any mq, ms € AutD,

ex(my) = ex(my) & mytom; € O (H).
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Since O is bijective, |[©7'(H)| = N. It follows that ey is an N-to-one
map.

To prove that e, is a local homeomorphism, consider any point e, (/)
of Orbg(A), where 8 € AutD. Choose a neighborhood U of idp such
that

{mytomy :my,my € U} NO Y (H) = {idp}.

Let V' be a compact neighborhood of idp contained in U. Then SoV is a
compact neighborhood of § on which e, is injective, and so ey|foV is a
homeomorphism onto its range. Thus e, is a local homeomorphism. []

Remark 2.12. The natural analog of equation (1.22), to wit,
rankg €\ (idp) =2 if A € D,

is not required in Definition 2.8, since the condition holds automati-
cally, as is clear from Proposition 2.14 below.

Proposition 2.13. Let (2, D) be a regular royal manifold with con-
comitant pair (d,©).

(1) If A € D then Orbg(A) is a one-dimensional complex manifold
properly embedded in €.

(2) If X € Q\ D, then Orbg(\) is a three-dimensional real manifold
properly embedded in €.

In either case,
ran €} (idp) = Ty Orbg(A). (2.7)

Proof. (1) Let A € D. By conditions (1) and (3) in Definition 2.1,
Orbg(\) = D, which is by hypothesis a properly embedded analytic
disc in €2 and therefore a one-dimensional complex manifold.

(2) The proof that Orbg(\) is a 3-dimensional real manifold for any
A € Q\D is almost identical to the proof of the corresponding statement
for G in Theorem 1.6, and so we omit it. O

For a domain U in C", when necessary we shall write U, for U
considered as a 2n-dimensional real manifold and U, for U as a complex
manifold. For p € U the spaces T,U,, T,,U. are respectively the real
and complex tangent spaces to U at p. We regard elements of T,U,
as point derivations at p on the algebra C’;(U ) of germs at p of real-
valued C! functions on U,. Elements of T,U, are point derivations at p
on the algebra O,(U) of germs at p of holomorphic functions on U.. We
express the action of a point derivation § on a germ g of the appropriate
type by the notation (g, d).
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The complexification (7, M )¢ of the real tangent space at p to a real
manifold M is the complex vector space comprising the point deriva-
tions at p on the complex algebra C;(M ,C) of germs at p of complea-
valued C' functions on M. If § € (T,M)c then the functional Red on
C} (M) defined by

(9,Red) = Re (g + 10, 9)
is a point derivation, that is, a member of 7),AM/. We also define Im ¢ €
T,M to be —Re(id). In the reverse direction, for a tangent vector
0 € T,M we denote by dc the complexification of J, so that, for any
complex-valued C?' function 4 in a neighborhood of p,

(h,0c) = (Reh,6) +i (Imh, 6). (2.8)

Then, for § € (T,M)c, the relation 6 = (Red)c + i(Im )¢ holds. Note
that, for 6 € T,,M, we have Re(dc) = 9.

Furthermore, since every holomorphic function on U, is a C-valued
C*! function on U,, every tangent vector § € (T,U,)c determines by
restriction an element §|O of T,U...

We can summarize the various tangent spaces and their inclusions
in the diagram

Cy(U) = CMUU,C) = O,(U.)
. (2.9)

T,U, rem (T,U,)c T,U,

The vector spaces in the bottom row are respectively real of dimen-
sion 2n, complex of dimension 2n and complex of dimension n. The
composition of -¢ and -|O is a natural real-linear map

k:T,U, — T,U.,  where k0 = oc|O,(U,).
For § € T,U,, the complex tangent vector xd satisfies, for g € O,(U,),
{9, K0) = {g,c)
= (Reg,d) +i(Img,0), (2.10)

the last line by equation (2.8). In terms of the traditional co-ordinates
2 = 27 + 1y’ in a neighborhood of p,

()2,

Therefore k is surjective, and since both domain and codomain have
real dimension 2n, it follows that « is a real linear isomorphism.

For A € D the orbit Orbg()) is the royal disc D, which is a properly
embedded analytic disc under the complex structure induced by 2. Let

_>
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the evaluation map ey be as in Definition 2.8, so that ey (m) = O(m) ().
The derivative €} (idp) is then a real-linear map from Lie(Aut D) to
the real tangent space ThD,, and so if k : T\D, — T)\D. is the natural
embedding of real and complex tangent spaces, then

ke) (idp) : Lie(Aut D) — T)\D. (2.11)
is a real-linear map from a 3-dimensional real space to a 1-dimensional

complex space. In fact this map is surjective.

Proposition 2.14. Let (2, D) be a regular royal manifold and let X €
D. Then
s
ran ke, (idp) = ThD.. (2.12)

Proof. Let (d,©) be a concomitant pair for (£2, D).

Since A € D, there exists zp € D such that A = d(zp). Consider a
tangent vector d to AutD at idp. We shall calculate ¢! (idp)d. For any
germ g of real-valued C! functions on € at A,

(9,€;(idp)d) = (g oex,0).
For m € AutD,
goex(m)=goO(m)od(z)
= godom(z).
Hence
<ga 6//\(1(1]@)(5) = <g odo m<ZO>7 5> )
where g o d o m(zp) is understood as a real-valued function of m, with
zo fixed. Recall the local co-ordinates 7, for AutD introduced in
equation (1.8). Here we shall write « = £ + in, with £,7 € R and
shall use the local co-ordinates r, &, n for AutD. Note that idp € AutD
corresponds to the local co-ordinates r = £ = n = 0. By an elementary
calculation,

<g odinsaeo) (5 > = (god/G)io,

<g odmaa)) (3¢) > = (god) ()3 — 1)

<g o d(my,a(20)), (%)d > = (go d)/(ZO)(_i)(Zg +1).

Here (g o d)'(2p) is a real linear functional on 7,,D,. If

0 0 0
0= (51—+6ga£ + 03— )idD
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for some real 1, do, 03, then
(9. ¢\ (idn)8) = (g 0 dY (z0) (rizo + 8ol — 1) — ida(2 + 1)) . (2.13)
Now we calculate ke)(idp) € ThD.. To this end consider any h €
O\(D). By equation (2.10),
(. ke (idp)d) = (h, (€\(idp)d)c)
= (Reh, €} (idp)d) + i (Im h, €} (idp)d) .
Thus, by equation (2.13),
(h, ke\(idp)d) = (Reh, €\ (idp)d) + i (Im h, €} (idp)J)
= ((Rehod)(20) +i(Imh o d)(20)) (61020 + d2(zg — 1) — id5(z5 + 1))
= (hod)(z0) (61iz0 + 022§ — 1) —ids(25 + 1)) .

Since d is only determined up to composition with an automorphism
of D, no generality is lost by the assumption that zy = 0. Hence

(h kel (ids)8) = (6 + id5) (h o kY (0).
On the other hand,

(a0 () )= (i (£) Y= oo

and therefore

rkeh (idp)d = —(da + i63)d’(0) (d%)o :

Thus

d

ran ke (idp) = Cd'(0) (d_) =T\D..
“/o

O

2.2. Flat fibrations over royal discs. In this subsection we shall
formalize the consequences for isomorphs of G of the flat fibration of
G described in Subsection 1.5.

Definition 2.15. Let (2, D) be a royal manifold. If £ = {E\},cp 45
a family of subsets of Q) indexed by D, then we say that £ is a flat
fibration of € over D if

(1) for each A\ € D, E is a properly embedded analytic disc in Q such
that Ex N D = {\};

(2) € is a partition of Q, and

(3) if 0 € AutQ and X € D, then 0(Ey) = Ey.
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We say that (2, D, &) is a flatly fibered royal manifold if (2, D) is a
royal manifold and & is a flat fibration of Q2 over D. We define the flat
direction N° at a point X in Q to be the tangent space at X to E,, where
weDand N€ E,.

Clearly, if (Q, D,€) is a flatly fibered royal manifold then € has
complex dimension 2.

Note that if (€2, D) happens to be (G, R) then the definition of the
flat direction is consistent with that given earlier in Definition 1.13.

Lemma 2.16. Let Q) be a complex manifold, let A : G — € be a
biholomorphic map, let D = A(R) and let

Eni = A(F;)  for every s € R,
where {Fs : s € R} is the flat fibration of G. Then
&= {EA(S) S E R}

is a flat fibration of the royal manifold (2, D) over D, and (2, D, ) is
a flatly fibered royal manifold.

Proof. By Lemma 2.2, (€2, D) is a royal manifold. Since A is a bijection
from R to D, we may write £ = {E) : A € D}. Properties (1) and
(2) of Definition 2.15 for the sets E) follow from the corresponding
properties of the sets F, for G. If § € AutQ then A™1ofo A € AutG.
Consider any s € R and A = A(s) € D. We have

O(Ey) =00 A(F,) =Ao (At ofoA)(F,) = A(FrA-10p0A(s))5

the last step by virtue of property (3) for the flat geodesics as a flat
fibration of (G, R). Write § = A~ 0 §()\). Now

A(Fp-100a(s)) = M Fr-10000)) = A(Fs) = Ens) = Eo(n-
Hence
9(Ey\) = Epny forall A e D.
Thus the partition £ has the property (3) of Definition 2.15, and so
(Q,D,€) is a flatly fibered royal manifold. O

2.3. Synchrony in (). Lemma 1.19 suggests the following definition
concerning the action of Aut {2 on a flat fibration.

Definition 2.17. Let (2, D, &) be a flatly fibered royal manifold with
concomitant pair (d, ©), let \g € D and let \g = d(zg) for some zy € D.
We say that (2, D, &) is synchronous at g if, for some properly
embedded analytic disc f : D — Q such that f(z9) = Ao and f(D) =

E)xoz
O(m)of=fomom (2.14)
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for all m € Aut,, D.

Remark 2.18. If (2, D, €) is as in the definition, then the synchrony
of (2, D, ) at \g depends neither on the choice of (d, ©) nor the choice

of f.

For suppose (€2, D, £) is synchronous at Ag with respect to the con-
comitant pair (d, ©) and let (f1,©0;) be a second concomitant pair. By
Remark 2.5 there exists b € Aut D such that f; = foband ©; = ©ol,,
where I(m) =bomob™! for m € AutD. Let fi = fob, z; = b~ (2).
Then di(z1) = Ao = fi(z1). Consider m € Aut, D and ¢ € D.
Note that [,(m) € Aut,, D, and therefore, from equation (2.14) with

z = b(¢),

© o Iy(m)(f 0 b(C)) = f o I(m) o I(m) o b(C)
= fobomom(().

Hence
©1(m)(f1(¢)) = fi omom(().

This shows that synchrony at Ay does not depend on the choice of
concomitant pair.

Nor does it depend on the choice of the map f. For suppose that
f1 is a second properly embedded analytic disc of D in €2 such that
fi(z0) = Ao and f1(D) = E),. Then there exists b € AutD such that
fi = foband b(z) = 2. Consider any m € Aut,, D and ( € D. By
equation (2.14),

©(m) o f1(¢) = ©(m) (f 0 b(()) = f omom(b(()).
Since Aut,, D is conjugate in AutD to AutgD, it is an abelian group.
Hence

O(m) o f1(¢) = fobomom(C) = fromom((),

which is the desired relation for f;.

Remark 2.19. If (2, D, £) is as in the definition, then (£2, D, £) is syn-
chronous at a particular Ay € D if and only if (2, D, £) is synchronous
at A for every A € D. Consequently, it makes sense to say simply that
(Q, D, E) is synchronous.

For suppose (2, D, £) is synchronous at Ay with respect to the con-
comitant pair (d,0) where Ao = d(29), and let A; € D.

Suppose A\ = d(z1), for z; € D, and b(zy) = z1, for b € AutD. For
every m € Aut D, we have ©(m) o d = d o m. Hence

O(b)(Ao) = O(b) 0 d(2) = d(b(z0)) = d(z1) = A1
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Let
fi=00)ofob ' :D— E,,.
Then fi(z1) = A1 = d(z1). Consider m € Aut,, D and ( € D. Then
O(m)(f1(¢)) = ©(m)(O(b)(f o b7'(()))
= O(mob)(fob™'(())
= 01O omob)(f(b71(C))). (2.15)
Since m fixes 2; = b(2g), b=t omob fixes zp. By assumption, (Q, D, €) is
synchronous at Ay with respect to the concomitant pair (d, ©). Hence
O omob)(f(b(C)) = fo (b~ omob)o (b~ omob)(H(C)
= fob tomom((). (2.16)
Therefore, by equations (2.15) and (2.16),

O(m)(f1(¢)) =8(b) o fob™  omom(()
= fiomom(().
Thus (2, D, £) is synchronous at A; with respect to the concomitant
pair (d, ©).
In view of Remarks 2.18 and 2.19, the following statement follows
easily from Lemma 1.19.

Lemma 2.20. If (Q, D,E) is as in Lemma 2.16, then (0, D, E) is syn-
chronous.

2.4. The sharp direction in (). For a regular royal manifold (€2, D)
we may define the sharp direction just as we did for G in Definition
1.9. By Proposition 2.13, for A € € the space T) Orbg(A) is either a
one-dimensional complex subspace (if A € D) or a 3-dimensional real
subspace (if A € Q\ D) of ThQ. We may therefore define the space \*
to be the unique nonzero complex subspace of Ty Orbg(A). In either
case
M = T, Orbg(\) NiTy Orbg ().

Covariance of the sharp direction under automorphisms is proved in

the same way as Proposition 1.10.

Proposition 2.21. If6 € AutQ and \ € 2 then
BN = 0/ ()N

Proposition 2.22. Let A : G — Q be a biholomorphic map and let
(d, ©) be the concomitant pair for (Q, A(R)) consistent with A. Ifs € G
and A(s) = A, then

(1) A'(s)Ts Orbg(s) = T Orbg(N);
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(2) N'(s)s* = \F,
Moreover, if s ¢ R, then €.(idp) is invertible and
(3) €i(idp)el(idp) ™t = A'(s)|Ts Orbe(s);
(4) €\ (idp)es(idp) ™! : Ty Orbg(s) — Ty Orbg(A) is a real linear map
whose restriction to st is complex linear and maps s* to NF.

For s € R, the real linear map €/(idp) maps the 3-dimensional
space Lie(Aut D) to TyR, which is 2-dimensional, so we cannot form
6; (idD)_l.

Proof. (1) By assumption, d = Ao R and ©(m) = Aoy, 0o A™! € AutQ
for every m € AutD. Hence
ex(m) = 0(m)(A)

=Ao Ym © A_1<)‘>

= Aov,(s)

= ANoeg(m).
That is, ey = A o e,. Hence

ej\(idp) = A'(e; (idp))e; (idp)

= N (s)el(idp). (2.17)

Therefore
ran ¢y (idp) = ran A’'(s)e’,(idp) = A’(s) ran € (idp),
which is to say (by virtue of equations (1.15) and (2.7)) that
Ty Orbg(\) = A'(s)Ts Orbg(s).

(2) s* is a nonzero complex subspace of T, Orbg(s). Since A'(s) is a
nonsingular complex linear map, A’(s)s* is a nonzero complex linear
subspace of Ty Orbg (), hence is M.

(3) Consider s € G\R. By Theorem 1.6, the real linear map e’ (idp) has
full rank between the 3-dimensional spaces Lie(Aut D) and T Orbg(s),
and so is nonsingular. Hence, € (idp)e’,(idp) ™! exists and is a real linear
map from T Orbg(s) to T Orbg(A). By equation (2.17),

e\ (idp)e,(idp) ™t = A’(s) on T, Orbg(s). (2.18)

(4) Since A’(s) is a complex linear map on C?, it follows that €} (idp)e’ (idp) ™"
is a complex linear map on the complex linear subspace s* of C2. By
(2) and equation (2.18), €} (idp)e. (idp) ~ts* = A

U
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2.5. Sharpness of the action of Aut (2. In this section, for a flatly
fibered royal manifold (€2, D, &), we shall show that sharp action of
Aut €2, as described in the introduction, is necessary for €2 to be iso-
morphic to G. In the next subsection we shall show that the condition
is also sufficient. We first define sharpness more formally than in the
introduction. Recall that, for a flatly fibered royal manifold (92, D, ),
we defined the Poincaré parameter P(u) for p € © to be the Poincaré
distance of p from A\, where A € D and p € E) and the distance is taken
in the disc F). That is, if f : D —  is a proper analytic embedding
with range F) and f(z9) = A, f(2) = p, then

P(u) & arctanh [

. (2.19)

— Zo%

It will be convenient to use also the pseudohyperbolic variant C(u) of

P(u), defined for p € E) to be the pseudohyperbolic distance in Ey
from p to A. In other words, if f € Q(D) has range F) and f(z9) =
A, f(2) = p, then

def | & — 20
= : 2.2
Cn) * | (2:20)
Thus P and C' are related by the equations
P(p) = arctanh C'(p)
1+C(p)
= log — "L, 2.21
8T 220

Remark 2.23. Observe that P(-) and C(-) are invariant under isomor-
phisms which preserve foliations. If (£2;, D;, £;) is a flatly fibered royal
manifold for j = 1,2, if A : Q; — €5 is an isomorphism which maps
the leaves of & to those of & and if p € ©y then C(u) = C(A(w)).

Definition 2.24. Let (Q, D, &) be a regular flatly fibered royal manifold
having a concomitant pair (d,©). Let u € Q\ D and let (U,v) be a
chart in Q such that p € U. We say that Aut Q acts sharply at p with
respect to (d, ©) if

AW ((O(Bir) (1) — (1)) = i (W(O(By) (1) — w(p)) +ot) (2.22)
ast — 0 in R.

The condition (2.22) states that the tangents v; and v; € C* at t = 0
to the curves (0O (By) (1)) and ¥(O(B)(u)) in ¥(U) satisfy

2Py = iy,
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where i is (temporarily, for this sentence) the imaginary unit. This
property is clearly independent of the chart v since the derivative of
any transition function at a point is a complex-linear map.

We need to examine how sharpness depends on the concomitant pair

(d,0).

Proposition 2.25. With the notation of Definition 2.24, let (dy, ©1)
(for some b € AutD) be the concomitant pair

(dob,©0cl,) where Iy(m)=bomob ' form € AutD.

Let py = O(b) () € Q\ D. Then Aut Q) acts sharply at py with respect
to (dy,©1) if and only if AutQ acts sharply at p with respect to (d, ©).

Proof. We may choose the chart
Y1 =100(0)"" onO®)U)
at py. For small real t,
h1(m) = o O() " ((B(b)(1))
= ¥(p),
Y1(01(Bir)(112)) = ¥ 0 ©(0) ™" 0 (©(b) 0 O(Byr) 0 ©(b) ") ((B(D) (1))
= Y(O(Bi)(1))-
These equations, together with the analogous ones with ¢ replaced

by t and the fact that P(u1) = P(u), imply the statement in the
proposition. ]

Definition 2.26. Let (2, D, E) be a regular flatly fibered royal manifold
having a concomitant pair (d,©). Let p € Q\ D and let (U,v) be a
chart in Q0 such that p € U. We say that AutQ acts sharply on  if
Aut Q acts sharply with respect to (d,©) at every point of Q\ D.

Remark 2.27. (1) Propositions 2.5 and 2.25 show that the sharpness
of the action of Aut () on ) does not depend on the choice of the con-
comitant pair (d, ©).

(2) With respect to a fixed concomitant pair, for any § € Aut (2, au-
tomorphisms act sharply at p € Q\ D if and only if they act sharply
at O(p). Since every orbit in 2 meets every leaf in &, to conclude
that Aut (2 acts sharply, it is enough to show that, for some \ € D,
automorphisms act sharply at every point of E, \ {\}.

Proposition 2.28. Let Q) be a complex manifold and A : G — € be
a biholomorphic map. There exist a royal disc D in ), a flat fibration
E of Q over D and a concomitant pair (d,©) such that (2, D,E) is
a synchronous reqular flatly fibered royal manifold, (d,©) is consistent
with A and Aut Q acts sharply on Q\ D.
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Proof. Let D = A(R). By Lemmas 2.2 and 2.6, (2, D) is a royal
manifold and there is a concomitant pair (d,©) for (€2, D) such that

O(m)oA=Aon, (2.23)

for all m € AutD. Thus (d,©) is consistent with A. By Proposition
2.10, (€2, D) is a regular royal manifold. Let £ correspond under A to
the flat fibration of G. By Lemma 2.20, (2, D, &) is a synchronous
regular flatly fibered royal manifold. It remains to show that Aut (2
acts sharply on Q\ D.

Consider a point u € Q\ D, say p € E), for some A € D. Let
s = A7Y(u). We may assume (by modifying A and © and utilising
Remark 2.27) that s has the form (0,p) for some p € (0,1). Then
s lies in the flat geodesic F°, and so A7'(E)) = F°. It follows that
A~Y(X\) = (0,0) and since isomorphisms preserve the Mobius distance,

p=C(p).
Let (U,1) be a chart at p. For any o € C and all small enough real
t, in view of equation (2.23),

(O(Bia)(1)) = Y o Aoyp,(s)

= () + (0 AY () S (3)] g +olD). (220

By Lemma 1.7, with r = 0 and s = (0, p),

o= (2) -a (%),

Let A = —2(1p o A)'(s), so that A is a complex-linear map. Taking
successively a =i and o = 1 in equation (2.24) we obtain

¥ (O(Bii) (1)) — ¢(p) = i(1 = p)A(1L,0) + o(t),

¢ (O(By)(1) = ¥ () = (1 +p)A(L,0) + o(t).

Hence
(1+p) (¥ (©(Bu) (1) — ¥(p)) = i(1—p) (¥ (O(Br) (1) — ¢(w)) + o(t).
Since p = C'(p), this is to say that Aut Q acts sharply at p. O

The next statement justifies the terminology of ‘sharp action’.

Lemma 2.29. Let (2, D,€) be a reqular flatly fibered royal manifold
and suppose that Aut Q) acts sharply at a point p € Q\ D. For any
s € G such that C(s) = C(u) the map

e, (idp)e}(idp) " : T, Orbe(s) — T}, Orbo(u) (2.25)

maps s* to u* and is a comples-linear map.
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Proof. Let
X = GL(idD)G;(idD)_l.
X is a real-linear map from TG to T,£. We must show that Xs* C pf

and that X is complex-linear on s*.
We can assume that s = (0, p) where 0 < p < 1. Clearly

p=Cl(s) = C(1),
By equation (2.21),
Q2P _ 1P
L=p

The sharpness hypothesis, according to Definition 2.29, is

T2 (OB (1) = () = i (H(O(B) (1) = (1) + oft) (226)

as t — 0 in R. By Proposition 1.16,

soc(l)

We shall use the local co-ordinates (r,«) € (—m,7) x D for a neigh-
borhood of idp in Aut DD, as in Lemma 1.4. By Lemma 1.7,

/(s —1\/ —2a — 2px
i) (1) () = v 0) = (5 B,

which is in s* if and only if » = 0. Thus
¢,(idp)7's* = (p1) (0@ C).

Moreover, for all o € C,

(or)10.0) = i) (72 ). (227

Note that mg, = B, in the notation of equation (0.6). Let ¢ be a
chart on Q at u. For any a € C, as t — 0 in R,

Y (O(Bra) (1) = (1) + ¥' (e, (ido) (01 1) (0, ) + o(t)
= U(p) + ¢ (W) X (_2a 0 Qpa) +o(t)

Take in succession o = 1 and «a = ¢ and use the real-linearity of X
to obtain the relations

¥ (O(By) (1) — () = =2(1 + p)¢'() X (1,0) + o(t), (2.28)
U (O(Bu) (1) — (p) = =2(1 = p)¢'(n) Xi(1,0) + o). (2:29)
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We have
() Xi(1,0) = — 5 (V(O(Ba(1) = () +of0)
by equation (2.29)
1
~ g (V(O(B) = vl + o)

by equation (2.26)
=i’ (1) X (1,0) + o(t) by equation (2.28).

Since ¢'(u) is an invertible complex-linear map which identifies 7,
with C2, it follows that

X(i,0) = iX(1,0). (2.30)
The vectors (1,0) and (4,0) span s* over R, and
ran X C rane),(idp) € T, Orbg(u).

Equation (2.30) now shows both that ran X C p* and that X is
complex-linear on s. 0

2.6. A characterization of G. We have arrived at the main theorem
of the paper.

Theorem 2.30. A complex manifold €2 is isomorphic to G if and only
if there exist a royal disc D in Q) and a flat fibration £ of Q) over D such
that (0, D, &) is a synchronous reqular flatly fibered royal manifold and
Aut Q) acts sharply on €.

Proof. Necessity is Proposition 2.28. We prove sufficiency. Let (d, ©)
be a concomitant pair for (€2, D). Choose zyp € D and let sg = R(20)
and A\g = d(z9). We shall construct a biholomorphic map A : G — 2
satisfying A(sg) = Ag. Figure 1 represents the construction.

Choose a properly embedded analytic disc g of D into G satisfying
g(D) = Fy, and g(zp) = so. Choose also a properly embedded analytic
disc f: D — Q such that f(zy) = Ao and f(D) = E,,. For s € G we
define A(s) by the following recipe.

Since each point in G is in a flat geodesic and Aut G acts transitively
on the flat geodesics, we may choose m € Aut D such that v, (s) € Fy,
and hence there exists z € D such that

S =Ymog(2). (2.31)
Let
A(s) =O(m)o f(z) (2.32)
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F1GURE 1. The construction of A : G —

Certainly A(s) € Q. To see that this recipe does define A as a map
from G to €, consider z1, 2o € D and mq, ms € AutD such that
Ymy © g(’zl) = Ymgy © g(’zQ)' (233)

We wish to show that

@(ml) e} f(Zl) = @(mg) @) f(ZQ) (234)
Note first that equation (2.33) implies that if m = my' o my, then

Ym © g(21) = g(22).
Since ¢(z1),9(z2) € Fy,, Lemma 1.14 implies that m € Aut,, D. Con-
sequently, by Lemma 1.19
gomom(z) = vmo g(21) = g(22),
which implies that
zg =mom(z).

By hypothesis, (€2, D, ) is synchronous. According to Definition 2.17,
it means (since m € Aut,, D) that

O(m)o f=fomom.
Hence
O(m)o f(z1) = fomom(z)
= f(22).
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Therefore equation (2.34) is true, and so A(s) is unambiguously defined.
On taking m = idp in equation (2.32) we have

Aog(z) = f(2) (2.35)

for all z € D. In particular, A(sg) = Ao.
Consider any v € AutD. Since

Yo (8) = Yo © Ym © (2) = Yoom © 9(2),
by the definition (2.32) of A,

Aomy(s) =O(vom)o f(2)
=0(v) o O(m) o f(z)
= 0O(v) o A(s).
Thus
Ao, =0w)oA forallve AutD. (2.36)

Now fix a general point R(z) on the royal geodesic R. If m € AutD
is such that m(zg) = z, then

Ao R(z) =AoRom(z)
= Ao, 0 R(z) by equation (1.5).

By equation (2.36) and the fact that sy = R(2o),

= dom(z) by equation (2.1)
d

Thus
Ao R =d. (2.37)

Now fix z; € D and choose m such that m(zy) = z;. Since 7, o
R(zy) = R(#1), Lemma 1.14 implies that
Y (FR(z0)) = FRr(z1)s

and since ©(m)od(zp) = d(z1), Condition (3) in Definition 2.15 implies
that

O(m)(Fa(zy)) = Fagz)-
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Therefore

A(FR(zl)) =Ao ’Ym(FR(Zo))
=0O(m) o A(FR(Z()))

= O(m)(Ey(z))
= Ed(21) .

To summarize, we have shown that if F denotes the partition of GG in
Lemma 1.12 and & denotes the partition of €2 in Definition 2.15, then
A induces a map A~ : F — & given by

A™(Fr()) = Eaz)-

Furthermore, as the map R(z) — d(z) from R to D is a bijection, so
also is A™.

Consider any point A € Eq,). Then ©(m™')(\) € E,,, and so
O(m Y (\) = f(z) for some z € D. Hence A = O(m) o f(z). By
equations (2.31) and (2.32), A = Ao \,, 0g(z). Thus A € A(G), and so
A is surjective.

Suppose s1, $2 € G satisfy A(s;) = A(sg). Since A~ is a bijection, it
follows that sy, so lie in the same flat geodesic in G, say in Fg,). Let
m € AutD be such that m(zy) = z;. We have, for j = 1,2,

Yo' (85) € From-1(s1) = FRzo) = Foo-
Hence v,,'(s;) = g(¢;) for some (1, (s € D. By equation (2.32),
A(s;) = ©(m) o f(¢;).
Hence ©(m) o f(¢1) = O(m) o f({2), and therefore ; = (. Thus
$1.="Tm © 9(C1) = Ym © 9(C2) = s2.

We have shown that A : G —  is bijective. Moreover, we can observe
that

A|Frzy = O(m)ogo [~ oy | Frez.- (2.38)

There remains to prove that A and A~! are holomorphic.

We shall first show that A is smooth as a mapping between real
manifolds by giving a formula for A which is clearly differentiable. The
assumption that zp = 0, g(z) = (0,z) and so sp = (0,0) loses no
generality. It implies that Fy, = {(0, 2) : z € D}.

Consider a point

s=((+mn¢n)ed

for some ¢,n € D. To evaluate A(s) we shall choose an automorphism
m of D satisfying m’(0) > 0 such that v, 1(s) € F,,. To see that this
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is possible take m = B, for some a € D. Then m/(0) > 0. We require
V5. (s) € F,, which is to say that

B_a(¢) + B-a(n) = 0.

Expressing this relation in terms of the components s!, s? of s, we must
find @ = a(s) € D such that
2 200
gh=o 22 .
T+ a2 1+ |af?
Compare this expression with that of the flat co-ordinates for s given
in equations (1.25) and (1.26):

st =B+ Bs*,
where L
s —sts
B=p(s) = T2
One sees that it suffices to choose «(s) such that
2a(s)
S TR
A suitable choice of a(s) is
O[(S) _ _B(S)
L4+ /1= [B(s)?

as may readily be checked. Clearly 5, € D and both 3 and « are
real-analytic functions of s. Moreover

L(s) € 451 (s) = (0, B_o(¢) B—a(n))
_ (O s?+ a(s)s' + a(s)? ) |

14 a(s)s! + a(s)252
which is also real-analytic in s. By the definition of A,
A(s) = 6(BOz(S)) ofo g_l o L(s).

The map s +— B,y is real-analytic from G to AutD. Since the action
of AutD on 2 is differentiable, by the regularity assumption on the
royal manifold (£2, D), we conclude that A : G — Q is differentiable.

Consider s € G and suppose that s € Fg(.,). Let X = A'(s) viewed
as a real-linear mapping from T,G to Ty (,)€2.

Recall from Definition 1.13 that s” denotes the flat direction at s.
Equation (2.38) implies that

X(s") = A(s)” and X|s” is complex linear. (2.39)
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By equations (2.31) and (2.32), for all z € D and m € AutD,
Ao, o0g(z) =0(m)o f(z).
In view of the definitions (1.3) and (2.6), this equation can be written
ANoegry = epz) : AutD — €.
On differentiating at idp we obtain
Ao ey (idp) ey, (idp) = €}, (idp) : Lie(Aut D) — T,y Orbq(f(2)).

For z # z, the point g(z) ¢ R, and therefore, by Proposition 2.22,
e/ (idp) is invertible, and so

9(2)
A/ ¢) g(Z) = e}(z) (1dD)€;(z) (idD)il.

By the hypothesis, Aut €2 acts sharply on 2. By Lemma 2.29, it follows
that A’ o g(2) maps g(2)* into f(2)* and is complex-linear on g(z)*
whenever ¢g(z) ¢ R.

Recalling that X : T,G' — T2 is real-linear and that (by Propo-
sition 1.15) s* and s* are linearly independent, we infer from equation
(2.39) that X = A’(s) is complex linear for all s € G\ R. Therefore

A is analytic on G\ R. The restriction of A to any co-ordinate plane

P o {s € G:s'=(}, for || < 2, is analytic in s except possibly at

the sole point (¢, 3¢?) of P N'R and is continuous on F.. Hence A|P;
is analytic in s?. Likewise the restriction of A to any of the orthogonal
co-ordinate planes is analytic in s'. Thus A is analytic on G. Every
bijective holomorphic map between domains has a holomorphic inverse
(for example, [20, Chapter 10, Exercise 37]). It follows easily that a
bijective holomorphic map between a domain and a complex manifold
has a holomorphic inverse. 0

3. A CHARACTERIZATION OF (G VIA FLAT CO-ORDINATES
Recall from Subsection 1.5 that G is foliated by the sets
F*={(B+ Bz2): 2 €D}

for 3 € D [4, Theorem 2.1]. Thus the map 1 : D?* — G defined by the
formula
n(B,z) = (B+Bzz2),  B,zeD, (3.1)
is a homeomorphism of D? onto G.
We will call 3, z the flat co-ordinates for points of GG. In this section
we shall use the variables (3, z) for points in D? and the variables (s, p)
for points in G, so that

s =B+ Bz, p=z, B,z € D.
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Flat co-ordinates provide another characterization of domains bi-
holomorphic to G.
The following lemma is a consequence of the Chain Rule.

Lemma 3.1. If f = f(s,p) is a differentiable function on G, n is
defined on D? as in equation (3.1) and & = f on, then the following

relations hold.
oc _of  _of

o8~ 9s ' 95 (3:2)
g—g - z% + %, (3.3)
% = B% + ?)_j.:’ (34)
Xy g_;’; (3.5)

Theorem 3.2. If Q) is a domain in C2, then € is biholomorphic to G
if and only if there exists a differentiable homeomorphism = = (&, &s)
from D? onto Q) satisfying

& 9

GB_ZQS’ i=1,2 (3.6)
and o6
5% 0, i=1,2 (3.7)

at all (B, z) € D%

Proof. First assume that F' € Q(G) is a biholomorphic map of G onto
Q and let = = F on. Since 7 is a smooth homeomorphism of D? onto
G, Z is a smooth homeomorphism of D? onto €.

If we set F' = (f1, f2) and = = (&1, &), then f; is holomorphic and
& = fion for i = 1,2. Hence, using equations (3.2) and (3.3), we see

that
06 _ Ofi _ 04
= = z— =z2—=,
op 0s ap
which proves that equation (3.6) holds. Also, equation (3.5) implies
that the relation (3.7) holds.

Now assume that = = (§1,&) is a differentiable homeomorphism
from D? onto (2 satisfying equations (3.6) and (3.7). Define F' = (fi, f»)
by F = Zon~!. Since 7 is a differentiable homeomorphism of D? onto
G, it follows that F' is a differentiable homeomorphism of G onto ).
There remains to show that F' is holomorphic.

i=1,2,
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Since & = f; on, we have

Of | Ofi _ 96 _ 0%

9s < 05 03 0P

_(of | of, |
=z <83 +Zz 63) by equation (3.2).

z

by equations (3.3) and (3.6)

Thus of
1—|2)== =0
(112

on G. Since |z| < 1 when (s,p) € G it follows that

ofi
95 0
throughout G. Hence fi, fo are holomorphic on G. O

4. ASYMMETRY OF DOMAINS

E. Cartan’s classification theorem [8] is based on his theory of sym-
metric spaces, in the sense of the first paragraph of the paper. In C?
and C? (but not C?*) every bounded homogeneous domain is a sym-
metric space [8, 14]. In contrast, none of the ‘almost homogeneous’
domains that we consider is symmetric.

Let us say that a point A in a domain €2 is a point of symmetry of 2
if there exists a holomorphic self-map v of €2 such that 7o~y = idg and
A is an isolated fixed point of 7. Thus a domain is symmetric if every
point of the domain is a point of symmetry.

From the fact that the automorphisms of the annulus A, are the
maps wz and wz! for w € T (for example, [12, Theorem 6.2]), it is
easy to see that the only points of symmetry in A, are the points of
the unit circle. Hence A, is not a symmetric domain.

Proposition 4.1. Neither the symmetrized bidisc nor the tetrablock
contains a point of symmetry.

Proof. We sketch the proof for the tetrablock; that for the symmetrized
bidisc is similar but simpler.

Let E denote the tetrablock defined in equation (0.5). Every orbit in
E contains a point of the form (0,0, p) [26, Theorem 5.2], so it suffices
to show that no such point is a point of symmetry. By [1, Theorem
2.2], the tetrablock is foliated by the ‘flat geodesics’

def

05152 = {(61 + B2Z>ﬁ2 + 612,2) VS ]D}

where |51| + |B2] < 1. These geodesics are permuted by the au-
tomorphisms of F [26, Theorem 5.1]. Moreover the ‘royal variety’
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{z € E : z'2* = 23} is invariant under all automorphisms of E (see
the proof of [26, Theorem 4.1]).

Consider a holomorphic involution v of E that fixes (0,0,p). Then
7 fixes the flat geodesic containing (0,0, p), which is Cyy. Hence  fixes
the only common point of Cyy and the royal variety, which is easily seen
to be (0,0,0). It is shown in [26, Proof of Theorem 4.1, foot of page
766] that an automorphism v of F fixes (0,0,0) if and only if either

V(@) = (wir!, wer?, wiwoa®) (4.1)

or
V(@) = (wea?, iz’ wiwar?) (4.2)
for some wq, wo € T.
In the case that v is of the form (4.1), since v is an involution, we
have w? = w3 = 1. Thus the four involutions of this form that fix
(0,0, p) have fixed points as in the following table.

Wy We () Fixed points
1 1 T E

-1 1 (=2t 2% —23) (0,2,0)
1 -1 (2% —2% —23) (2,0,0

-1 -1 (=2t —22 2%) (0,0, 2)

where z ranges over DD. Hence in the case (4.1), (0,0,p) is not an
isolated fixed point of 7.
In case (4.2),

v o y(x) = (Wiwar!, wiwex?, (Wi )?z?)
and so the involutory property of v corresponds to the condition wywy =
1. Hence y(x) = (wz? wz', 3) for some w € T. Then the fixed points
of y are the points (z', wz!, 23) in E. Hence (2!, wx!,p) is a fixed point
of v for all ! in a neighborhood of 0, and so (0,0, p) is not an isolated
fixed point of . O
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