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a b s t r a c t 

The scale and complexity of environmental and earth systems introduce an array of uncertainties that need to 

be systematically addressed. In numerical modeling, the ever-increasing complexity of representation of these 

systems confounds our ability to resolve relevant uncertainties. Specifically, the numerical representation of the 

governing processes involve many inputs and parameters that have been traditionally treated as deterministic. 

Considering them as uncertain introduces a large computational burden, stemming from the requirement of a 

prohibitive number of model simulations. Furthermore, within hydrology, most catchments are sparsely mon- 

itored, and there are limited, heterogeneous types of data available to confirm the model’s behavior. Here we 

present a blueprint of a general approach to uncertainty quantification for complex hydrologic models, taking 

advantage of recent methodological developments. We rely on polynomial chaos machinery to construct accurate 

surrogates that can be efficiently sampled for the ecohydrologic model tRIBS-VEGGIE to mimic its behavior with 

respect to a selected set of quantities of interest. The use of the Bayesian compressive sensing technique allows 

for fewer evaluations of the computationally expensive tRIBS-VEGGIE. The approach enables inference of model 

parameters using a set of observed hydrologic quantities including stream discharge, water table depth, evapo- 

transpiration, and soil moisture from the Asu experimental catchment near Manaus, Brazil. The results demon- 

strate the flexibility of the framework for hydrologic inference in watersheds with sparse, irregular observations 

of varying accuracy. Significant computational savings imply that problems of greater computational complexity 

and dimension can be addressed using accurate, computationally cheap surrogates for complex hydrologic mod- 

els. This will ultimately yield probabilistic representation of model behavior, robust parameter inference, and 

sensitivity analysis without the need for greater investment in computational resources. 
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. Introduction 

In research areas of physical hydrology and ecohydrology, computa-

ional models are used to improve the understanding and predictions of

atershed and ecosystem dynamics. Recent developments towards these

bjectives include modeling at higher resolutions and investigating sen-

itivities of hydrologic response to watershed properties and climate

orcings (e.g., Getirana et al., 2014; Guan et al., 2015; Kim and Ivanov,

015; Krakauer et al., 2014; Ringeval et al., 2014; Rudorff et al., 2014 ).

ikewise, in climate assessment studies, resolving complex systems and

ssociated feedbacks requires the representation of relevant dynamics

t commensurate spatial and temporal scales ( Abril et al., 2014; Brown

nd Lugo, 1982; Cramer et al., 2004; Detwiler and Hall, 1988 ). Tackling

his complexity calls for models that rely on details of mechanistic inter-

ctions and therefore demand large computational resources to provide

ore robust assessments and predictions ( Bisht et al., 2017 ). 
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Estimates from computational models are affected by a number of

ncertainty sources that can be partitioned into reducible and irre-

ucible uncertainties ( Beven, 2013; Beven et al., 2016; De Rocquigny,

012 ). These uncertainties can be amplified due to the complexity and

onlinearity of addressed problems. Therefore it is prudent to apply

 formal uncertainty quantification (UQ) machinery to evaluate them.

ore broadly, one needs a holistic approach to UQ to seamlessly en-

apsulate all uncertainties of computer simulations within their specific

ontexts. This is a valuable pursuit for many computational sciences, not

ust hydrology, and as such, UQ has emerged in the last two decades as

n active research field, which has incorporated applied mathematics,

ngineering, and physical sciences (e.g., Ghanem and Doostan, 2006;

ilbert et al., 2016; Knio and Le Maître, 2006; Najm, 2009; Sargsyan

t al., 2014; Xiu and Tartakovsky, 2004 ). 

The overarching goal of UQ is to provide improvements in predic-

ions and understanding of key sources and magnitudes of uncertainty,
nuary 2019 
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hich can inform decision making and control for management of natu-

al and engineered systems ( Ascough Ii et al., 2008; da Cruz et al., 1999;

arcía et al., 2015; Morss et al., 2005 ). The quantification of uncertain-

ies related to a prediction of a physical system involves two associated

roblems: (1) the estimation of model input variables (e.g., parameter-

zation constants, input forcings), addressed by comparing model sim-

lations with available observational data or data products (i.e., syn-

hesized data and model estimates), and (2) the forward propagation of

ncertainty from input variables to output quantities of interest (QoIs).

Quantifying uncertainties has long been a goal in hydrologic mod-

ling ( Beven, 1993; Beven and Westerberg, 2011; Renard et al., 2010 ).

nference of input parameters is common (e.g., Abbaspour et al., 2004;

cLaughlin and Townley, 1996; Vrugt et al., 2008 ), however, robust

uantification of uncertainties for complex models remains an area of

cute interest ( Beven et al., 2015; Chen et al., 2011; Hall et al., 2014;

rzysztofowicz, 2001 ). Firstly, traditional UQ methods carry computa-

ional burden that makes working with models of higher complexity

ifficult. Secondly, simpler, lumped models in hydrology cannot pro-

ide information on variables that originate from physically rich solu-

ions; they therefore cannot take the full advantage of heterogeneous

in terms of space-time coverage or target variables) observational data

ets that are typical of sparsely monitored watersheds. Many UQ studies

ave used conceptual rainfall runoff models (e.g., Renard et al., 2010;

rugt et al., 2008 ) that permit fast computation and use of variations

f Markov Chain Monte Carlo (MCMC) sampling ( Gilks et al., 1995;

astings, 1970 ) for UQ. Complex, integrated models of hydrology (e.g.,

ollet et al., 2017; Maxwell et al., 2014 ), however, require much greater

omputational resources making the (tens of thousands of) simulations

equired via MCMC analysis computationally prohibitive. An approach

o reduce this computational burden is to construct a surrogate or meta-

odel to approximate the behavior of the complex hydrologic model

e.g., Elsheikh et al., 2014; Razavi et al., 2012 ). 

Recent advancements in UQ applications have examples of compre-

ensive, fully integrated surface and subsurface flow models ( Gilbert

t al., 2016; Miller et al., 2018 ). The methodologies used in these stud-

es still required hundreds of simulations in order to accomplish rigorous

ncertainty assessments. In the case where wall-clock simulation time

or a larger-scale watershed is considerable (e.g., days to weeks), more

fficient methods are required. 

This study offers an approach with a UQ framework applied to a

uasi-three-dimensional hydrologic model with surface and variably-

aturated subsurface flows, as well as vegetation biophysics that resolves

nergy budgets. This framework allows the likelihood-based estimation

f input parameters using a diverse set of observations. To display the

bilities of the framework in a setting of real-world challenges, the study

omain is a small, sparsely monitored tropical catchment in the Amazon

ainforest. 

Previously, large-scale studies of the Amazon have been undertaken

o understand the importance of how hydrology and carbon cycles inter-

ct (e.g., Fan and Miguez-Macho, 2010; Lin et al., 2015; Miguez-Macho

nd Fan, 2012a; Miguez-Macho and Fan, 2012b; Pokhrel et al., 2013 ).

any of these studies have simulated the entire Amazon region, us-

ng grid cell discretization of  (10 [ km ]) (e.g., Beighley et al., 2009;

oe et al., 2008; Yamazaki et al., 2011 , or somewhat finer ( Miguez-

acho and Fan, 2012a; 2012b ). However, as has been previously shown

e.g., Miguez-Macho and Fan, 2012b ), this discretization does not re-

olve the basic functional hydrologic units — hillslopes and, as a result,

he lateral mass fluxes from higher-elevation areas to the valleys of the

rainage network. Ignoring the connection between upstream recharge

reas and downstream discharge regions can have important conse-

uences on robustness of studies that depend on understanding space-

ime variability of the hydrologic regime ( Kim et al., 1999; Salvucci and

ntekhabi, 1995 ). Important ecohydrologic processes occur in these up-

tream, lower-order, headwater catchments ( Richey et al., 2011; 2009 ).

ital, smaller scale studies of these upland areas have been under-

aken (e.g., Cuartas et al., 2012; Fang et al., 2017; Fleischbein et al.,
14 
006; Nobre et al., 2011 ), but no thorough uncertainty assessments

ere performed. Limited sensitivity experiments performed carried out

n Fang et al. (2017) , Vertessy and Elsenbeer (1999) were applied to

hese catchments, however a sufficiently general framework of uncer-

ainty quantification and sensitivity analysis of hydrologic response of

atersheds with scarce data is still absent in the literature. 

The objective of this study is to demonstrate a novel approach to

he representation and propagation of model input uncertainties by

mplementing what has been termed non-intrusive spectral projection

e Maître and Knio (2010) to construct a surrogate model to emulate

he behavior of a complex hydrologic model. This methodology allows

s to model, at high spatial resolutions, the ecohydrologic interaction

etween groundwater and surface water in a small upland catchment

n Amazonia. It also permits a general approach to account for uncer-

ainties in model parameters and initial conditions of the groundwater

urface. Specifically, this work focuses on quantifying uncertainty in the

oil parameterizations of the Asu research catchment (e.g., Cuartas et al.,

012; Tomasella et al., 2008 ), focusing on the challenge of probabilistic

stimates of bulk soil properties in this sparsely-monitored watershed. 

In the methodology section, we introduce (i) the mechanistic model

or this study: tRIBS-VEGGIE (TIN-based Real-time Integrated Basin Sim-

lator —Vegetation Generator for Interactive Evolution), (ii) construc-

ion of a surrogate model for tRIBS-VEGGIE through polynomial chaos

xpansions (PCEs), (iii) dimensionality reduction methods to more ef-

ciently construct the PCE surrogate model, and (iv) accelerated infer-

nce of tRIBS-VEGGIE model parameterizations using PCE surrogates.

he case study of the Asu watershed demonstrates the construction of a

urrogate model representation and sensitivity analysis carried out with

t. This representation is then used to perform parametric inference,

ighlighting the flexibility of the framework to identify uncertainties

nd use diverse observational data for parameter estimation. The pa-

ameters obtained from inference are then used to compute hydrologic

utput from tRIBS-VEGGIE. The benefits and limitations of this frame-

ork are addressed in the end, with a focus on issues in hydrologic

odeling that benefit from an uncertainty quantification approach. 

. Methods and study design 

This study provides a framework to derive uncertain model parame-

ers for a sparsely gauged catchment using a physically rich model tRIBS-

EGGIE and its simplified mathematical representation, i.e., a surro-

ate model. The sparse availability of groundwater, soil properties, and

treamflow data in the watershed is recognized and accounted for in the

esigns so that different data types can be used to inform the model’s

ehavior. This section describes the data available in the catchment and

eports an approach for dealing with the lack of observational data avail-

ble within the modeling and uncertainty quantification framework. 

.1. Simulation setup 

The watershed domain is located approximately 76 [km] northwest

f Manaus, Brazil ( Fig. 1 a). The watershed is part of activities carried

nder the Large-Scale Biosphere-Atmosphere (LBA) Experiment in Ama-

onia managed by the National Institute of Amazonian Research (INPA).

his location was chosen due to the long record of available atmospheric

orcing data from a flux tower installed in 1999 as well as the avail-

bility of relevant data from streamflow gauges, soil moisture sensors,

nd groundwater piezometers. This catchment is one of the most instru-

ented catchments in the Amazon Basin, surrounded by undisturbed

ainforest. This region is characterized by a tropical monsoonal climate,

ith average annual rainfall of approximately 2400 [mm], average an-

ual temperature of 26 °C, and a wet season from November–May and

ry season from June–October ( Cuartas et al., 2007; 2012; Nobre et al.,

011 ). 
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Fig. 1. The study location, labeled by the red star in (a), is approximately 76 [km] N-NW of Manaus, Brazil. Manaus lies at the confluence of the Negro and Solimões 

rivers, and at this confluence the Amazon River begins. The vegetation types for the Asu watershed are shown in (b) as derived in Cuartas et al. (2012) . The spatial 

distribution of elevation within the watershed is illustrated in (c). 
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.1.1. Representation of simulation domain 

The simulation domain, the Asu watershed ( Fig. 1 b, c), represents a

ero- to third-order basin in Amazonia, previously detailed in ( Cuartas

t al., 2007; 2012; Nobre et al., 2011 ). The total area is 12.4 [km 

2 ],

nd the watershed has varying soil thickness, with a maximum be-

ween 40 and 50 [m] ( Cuartas et al., 2012 ). To represent its subsur-

ace domain, the layer thickness is fixed at 40 [m] using 35 irregu-

arly resolved mesh layers, increasing from 0.04 [m] for the surface

ayer, to 2.5 [m] for the layers between 5 and 40 [m]. The thickness

f the layers increase following a geometric series such that, as the soil

epth increases, each layer is some fraction r thicker than the previ-

us layer: Δ𝑧 𝑖 +1 = Δ𝑧 𝑖 (1 + 𝑟 ) , up to the depth 𝑧 𝑖 = 5 [m]. For this do-

ain we chose 𝑟 = 0 . 296 , which allows for smaller soil layers near the

urface, and larger layers towards the bottom of the soil domain. This

iscretization enables the capture of the dynamics of infiltration and

ateral water movement in the vadose zone, while maintaining compu-

ational efficiency. In the horizontal plane, the domain is represented

sing 3 arc-second (90 ×90 [m]) spacing from the SRTM digital ele-

ation model ( Jarvis et al., 2008 ), resulting in 1554 square Voronoi

ells. Overall, this gives 1 , 554 × 35 = 54 , 390 computational nodes in the

omain. 

.1.2. Soil type and land cover 

Previous classification of soils for this site have been undertaken

n ( Cuartas et al., 2012; Fang et al., 2017; Tomasella et al., 2008 ),

ut focused on the near-surface soil properties at few locations that
15 
re hard to interpret in terms of their changes with depth (see also

ang et al., 2017 ). The detailed soil classification such as the one

iven in Cuartas et al. (2012) can be useful, but understanding effec-

ive, watershed-scale properties (i.e., that represent the catchment as a

hole) is frequently of more relevance, since the vast majority of basins

re ungauged and have little to no data on soil properties. In the con-

ext of a sparsely gauged watershed, it can also be useful to know how

hanges in model parameterizations within the watershed affect the sim-

lation results of important hydrologic variables such as streamflow, wa-

er table depth, evapotranspiration, etc. Recently, Fang et al. (2017) also

sed a bulk soil properties case instead of the finer detailed properties

vailable in Cuartas et al. (2012) . Consequently, while in no way re-

uired by the applied UQ framework ( Section 2.3 ), this study assumes

hat there is a single soil type in the watershed, whose effective physical

haracteristics need to be estimated inversely. We represent soil prop-

rties with a high degree of uncertainty, taking into account the full

anges of soil property values used in previous studies ( Cuartas et al.,

012; Fang et al., 2017 ). 

Specifically, the uncertain parameterizations used for soil properties

re calculated using the pedotransfer function for Brazilian soils from

omasella et al. (2000) . This study used multivariate linear regression

elying on texture (percentages of sand, silt, and clay), organic carbon,

oisture equivalent, and bulk density to fit a second-order polynomial

or the dependent variables of 𝛼, n, 𝜃r and 𝜃s of the van Genuchten soil

ater retention and model ( van Genuchten, 1980 ). Furthermore, the

tudy of Broedel et al. (2017) provides data on texture and bulk density
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Fig. 2. Atmospheric forcings used in simulations. ( a ): Monthly aggregated rain- 

fall (grey bars) and air temperature (red line). ( b ) Monthly averaged vapor pres- 

sure and wind speed. ( c ): The diurnal cycle of longwave and shortwave radiation 

estimated for the entire simulation period. The line of each represents the me- 

dian, and the shading is between the 10- and 90-percent quantiles. 
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2

or the Asu catchment up to a depth of 14.3 [m], and the estimate for

oisture equivalent is given in Tomasella et al. (2000) . 

The two classes of vegetation present in the catchment are (a) terra

rme forest on the plateau and sloped areas, and (b) Campinarana for-

st ( Ranzani, 1980 ) in the valleys and ecotone areas of the watershed

 Fig. 1 b). The Type (a) forest has dense evergreen tropical vegetation

ith heights of approximately 30 [m]. The Type (b) forest is less dense

ith tree heights typically around 20–25 [m] ( Cuartas et al., 2012 ). The

arameterizations for these vegetation types followed ( Cuartas et al.,

012 ). 

.1.3. Climate forcing 

Climate forcing data are available at hourly intervals for 26,300 [h]

rom January 1, 2003 to January 1, 2006. The region exhibits wet and

ry seasons spanning from approximately November–May and June–

ctober, respectively. Aggregated time series of data used for forcing

he model are shown in Fig. 2 ( Restrepo-Coupe et al., 2013 ). These data

re spatially uniform across the watershed. 

.1.4. Initial and boundary conditions 

For solving subsurface flow dynamics, the flux (Neumann) boundary

ondition was specified at the surface (net rainfall) and bottom (zero

ux) of the domain, allowing for infiltration, runoff, and exfiltration

uxes. For surface flow, an open boundary (in the form of free outfall)

as assumed at the downstream end ( Kim et al., 2016a ). The watershed

as delineated from the downstream end, therefore for all other bound-

ries of the watershed, the no-flux (solid slip wall) boundary condition

as specified. 
16 
.1.5. Quantities of interest 

Within uncertainty quantification, a quantity of interest (QoI) is an

utput from a numerical model whose response to uncertain inputs is

valuated. Each QoI needs to be a scalar, but many QoIs can be consid-

red such that one can examine temporal or spatial responses. In practice

housands of QoIs can be defined, such as a time series of the model’s

utput, or a single QoI may be selected if it is believed to carry signif-

cant information about the phenomenon being studied (e.g., the mean

ater table depth). For this study, a mix of targeted quantities of inter-

st is selected to include domain-aggregated quantities of interest and

ime series of both domain-aggregated and point-location QoIs, which

re provided in Table 1 . These QoIs include: daily and monthly stream-

ow, daily streamflow in the 95th percentile, mean monthly soil water

ontent in the top 1 [m], evapotranspiration, mean monthly evapotran-

piration, and depth to water table for six wells or group of wells. The

ata available in the watershed means that some QoIs can be used to

nfer model parameters ( Section 2.4 ). Those QoIs that coincide with ob-

ervations are used for parameter estimation (denoted in the “Inference ”

olumn of Table 1 ), and those that are not are only used for estimation.

The number of scalars belonging to each group of QoIs is given in

he fourth column of the Table 1 , with a total of 499 QoIs for this study.

hose QoIs used in inference were constrained to periods where data

ere available, e.g., the soil moisture data in the study area only exist

or January-October of 2005 (see Fig. 4 ) at a single soil pit location

djacent to the flux tower at the study site ( Restrepo-Coupe et al., 2013 ).

herefore, the construction of a time series of monthly mean soil water

ontent leads to ten QoIs. Although these soil moisture data are only

epresentative of the hydrologic behavior in the upland area near the

ux tower, it can still be included as a quantity of interest and used

n inference. Outlet streamflow was collected starting December 2004

nd running through December 2005, however these data were only

ampled once daily, often with several days, or sometimes periods of

eeks between sampling. Due to the absence of continuous observed

treamflow, monthly aggregated mean streamflow was used as a QoI to

onstruct the surrogate model. 

Water table data in the watershed were sampled between 2012–

015, outside the time period for this study. Additionally, they were

ampled at irregular periods with days or weeks between readings.

hile twelve well locations were sampled, not each location was sam-

led during both the wet and dry season, and several wells were in close

roximity to each other. Due to these issues, wells that had at least ten

ecordings in both the wet and dry seasons were kept for analysis. After

xclusion, the remaining ten wells were aggregated into groups based on

heir location within computational cells in tRIBS-VEGGIE, i.e., if two

r more well locations were in the same computational cell of 90 [m] ×
0 [m], the data from these locations were combined into a group for

nalysis. After this aggregation, six well groups remained with water

able depths between 0.5 and 5 [m] ( Fig. 4 ). 

Even in the absence of data representative of the entire spatial and

emporal domain of the study, all (i.e., any) available data can be in-

luded for analysis with the UQ framework. Their inclusion provides

ata for inference ( Section 2.4 ). A strength in this approach is that one

s not constrained to a single hydrologic process or specific data type

such as the time series or mean quantities) when performing inference.

ny data available that can be represented in the hydrologic model are

uitable for use with the UQ machinery outlined in Section 2.3 . 

In Table 1 , the distinction for the “dry ” period for   ( 𝐸𝑇 dry ) refers

o a month exhibiting a cumulative water deficit (CWD): 

𝑊 𝐷 𝑖 = 

{ ∑𝐷 

𝑗=1 𝑃 𝑗 − 𝐸𝑇 𝑗 if 
∑𝐷 

𝑗=1 𝑃 𝑗 − 𝐸𝑇 𝑗 < 0 
0 if 

∑𝐷 

𝑗=1 𝑃 𝑗 − 𝐸𝑇 𝑗 > 0 
, (1) 

here P j and ET j are the daily accumulated daily precipitation and evap-

transpiration, respectively, where j denotes the day in month i . The

ime period for all reported QoIs are the year 2005, and during this pe-

iod there was a negative CWD in August, September, and October of

005 of − 49.1, − 80.6, and − 87.5 [mm], respectively. 
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Table 1 

Quantities of interest selected for this study. Those denoted   ( ⋅) are time series of a spe- 

cific QoI. The “Inference ” column denotes whether that QoI was used in inference of model 

parameters in Section 3.2 , and N is the number of surrogates constructed for each QoI. 

QoI Description Inference N 

  ( 𝑄 ) Daily time series of streamflow [m 3 s −1 ] 365 

  ( 𝑄 month ) Monthly aggregated streamflow [m 3 s −1 ] Y 13 

Q 0.95 Daily streamflows in the 95th percentile [m 3 s −1 ] 1 

  ( 𝜃1m ) Mean monthly soil water content in top 1 [m] [ mm 3 mm −3 ] Y 10 

  ( 𝐸𝑇 dry ) Evapotranspiration in dry periods [ mm day −1 ] 92 

  ( 𝐸𝑇 month ) Mean monthly evapotranspiration [ mm day −1 ] Y 12 

WT Depth to water table [m] Y 6 

Table 2 

Uncertain soil parameters X used in the workflow of Fig. 3 . The frac- 

tion of coarse and fine sand ( F CS , F FS ), required for the pedotrans- 

fer function in Tomasella et al. (2000) , is determined based on the 

sampled values of F C and F S , such that 𝐹 𝐶𝑆 = 𝛼𝑐𝑠 (1 − 𝐹 𝐶 − 𝐹 𝑆 ) and 

𝐹 𝐹𝑆 = (1 − 𝛼𝑐𝑠 )(1 − 𝐹 𝐶 − 𝐹 𝑆 ) . U [ A, B ] denotes the uniform distribution 

with support [ A, B ]. The anisotropy ration ( a r ) is defined for soil hy- 

draulic conductivities and assumed uniform for the entire range of 

wetness conditions. 

Parameter Description Distribution 

F C Fraction of clay [%] U [45, 65] 

F S Fraction of silt [%] U [15, 25] 

𝛼cs Fraction of sand that is coarse [%] U [45, 55] 

M e Moisture equivalent [g g −1 ] U [0.1, 0.25] 

𝜌b Bulk density [g cm −1 ] U [1.1, 1.2] 

k s Saturated hydraulic conductivity [mm h −1 ] U [2.0, 30] 

a r Horizontal:vertical anisotropy ratio [-] U [1, 2] 
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To construct computationally efficient, surrogate model represen-

ations for each QoI, one generates a set of training and validation

amples from the uncertain parameters X in Table 2 . Each parameter

 i is scaled to a standard uniform variable for computational input,

𝑖 ∈ [−1 , 1] . These are then run in a set of training simulations through

 to construct the computationally efficient surrogate as detailed in
17 
ection 2.3.1 . Finally, the performance of the surrogate is evaluated us-

ng the set of validation simulations. 

.2. Hydrologic model 

The representation of the hydrologic response of a tropical catch-

ent strongly depends on reliable modeling of subsurface flows. tRIBS-

EGGIE ( Ivanov et al., 2008; 2010 ) emulates essential processes of wa-

er and energy dynamics over the complex topography of a river basin.

ach computational element has a canopy layer that contains two “big-

eaves ” (sunlit and shaded) representing the canopy. Above-ground pro-

esses are coupled to a multi-layer soil model that computes soil mois-

ure, root water uptake, and heat transport using the one-dimensional

ichards equation ( Hillel, 1980 ) and the heat diffusion equation, in the

irection normal to the element’s surface. Gravity-driven flow for the

nsaturated lateral exchange is assumed and the Dupuit–Forchheimer

pproximation ( Bear, 1979 ) for the saturated lateral exchange is im-

lemented. Subsurface flows are routed using the D- ∞ flow routing al-

orithm ( Tarboton, 1997 ), and the flow directions change dynamically

or the saturated zone, leading to spatial dynamics that reproduce the

hree-dimensional numerical solutions ( Hopp et al., 2015 ). In this study,

egetation dynamics are not simulated. Only the biochemical model of

hotosynthesis and canopy stomatal behavior ( Collatz et al., 1991; Far-

uhar et al., 1980; Leuning, 1990; 1995 ) is used to simulate the response

f latent heat flux to above- and below-ground conditions. The amount
Fig. 3. An overview of an uncertainty quantifica- 

tion (UQ) workflow. The set of methods in each 

box can be carried out on its own, or used within 

the general UQ implementation scope illustrated 

here. In the “Forward UQ ” boxes, uncertain inputs 

( X or 𝑝 ( 𝑿 ∣  ) ) are propagated through a model. 

The processes “Dimension Reduction ” and “Likeli- 

hood ” are in ellipses, which represents that there 

is a modeling decision to be made on the structure 

of the surrogate model and likelihood function, re- 

spectively. Box (A) is the process of constructing 

a polynomial surrogate of the hydrologic model. 

Box (B) describes how hydrologic data  are used 

to perform inverse inference on a set of model pa- 

rameters X to obtain the parameter posterior dis- 

tribution 𝑝 ( 𝑿 ∣  ) . The resultant posterior distri- 

bution can be used in a set of procedures in box 

(C) that propagate uncertainty propagation in the 

original model  (or  

PC ) in order to get proba- 

bilistic estimates of QoIs. 
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f leaf area as well as other structural characteristics of vegetation are

mposed as pre-determined model input (see Section 2.1.1 ). 

.2.1. Selection of uncertain inputs 

One source for hydrologic uncertainties in the Amazon is the pres-

nce of deep soils which give rise to fluctuating groundwater across

limes and seasons ( Cuartas et al., 2012; Miguez-Macho and Fan,

012b ). Due to difficulties in instrumenting and measuring groundwa-

er, data are sparse: and even experimental catchments have few wells

rilled for measuring water table depth. The spatial distribution and ini-

ial states of groundwater can impact hydrologic models, such as spin

p performance of the model (e.g., Ajami et al., 2014; Seck et al., 2015 )

r providing better estimates of the impacts on below-surface processes

o earth system models ( Clark et al., 2015; Riley et al., 2011 ). Addition-

lly, accurate representation of groundwater processes at smaller scales

an provide valuable information to larger scale groundwater processes

nd their impacts on earth system processes ( Fan, 2015; Fan et al., 2013;

rakauer et al., 2014; Riley and Shen, 2014 ). 

The large soil column depths in the Amazon mean that the param-

terizations of soil properties in a hydrologic model may have a large

ffect on the simulated groundwater and vadose zone dynamics. Some

eld or lab measurements may exist for the soil properties through core

esting or well pump tests, but these are limited to accessible areas

nd may not necessarily represent bulk soil properties in the catchment

 Kowalsky et al., 2004; Russo and Bouton, 1992 ). 

In this study, soil parameterizations are selected as uncertain in-

uts into tRIBS-VEGGIE. The soil properties that represent the uncertain

odel parameters X are treated as random variables with distributions

rovided in Table 2 . To represent uncertainty in the soil water reten-

ion curve characteristics of the soil, the parameters for the pedotransfer

unction ( F C , F S , 𝛼CS , M e , 𝜌b —see Section 2.1.2 ) are treated as uncertain.

alues for the saturated conductivity ( k s ) and the anisotropy ratio ( a r )

ere not a part of this pedotransfer function, but represent the infiltra-

ion and lateral transport characteristics of the soil. These are therefore

lso treated as uncertain with value ranges estimated using the studies

f Cuartas et al. (2012) and Fang et al. (2017) . 

.2.2. Water table initializations given soil parameter uncertainty 

Given that the soil parameterizations are treated as uncertain, wa-

er table initializations that adequately represent the initial state of the

ater table within the watershed are required. For example, a shallow

ater table will result under a simulation with a soil type with a low hy-

raulic conductivity, and a deeper water table will result with a higher

ydraulic conductivity. Setting the water table to some fixed value for

he entire basin, then allowing steady flow conditions to develop for

 given soil type through forcing and draining requires computational

esources (e.g., Seck et al., 2015 ), which would be a detriment to the

esired efficiency from the UQ approach in this paper. Groundwater

ell data for the watershed (e.g., Cuartas et al., 2012; Fang et al., 2017 )

re available only for a few locations along a transect in the watershed.

his limitation, in both spatial and topographic spaces (e.g., elevation,

eight above nearest drainage, slope, etc.) implies that the available

ata are inadequate to create meaningful realizations of initial depth

o water table to be used in simulations. However, groundwater plays

n important role in seasonal flooding and ET dynamics of the Ama-

on ( Miguez-Macho and Fan, 2012a; 2012b ). It must be accounted for

n any comprehensive hydrologic modeling and therefore some uncer-

ainty should be associated with the water table initialization. 

In this work, uncertainty in the initial depth to water table is prop-

gated through parametric uncertainty using a subset of the uncertain

arameters in Table 2 . Specifically, the initial water table depth is esti-

ated using an adapted mapping function from Sivapalan et al. (1987) .

his method supposes that there is a steady state groundwater pro-

le throughout the basin and that the streamflow at initialization time

 ( 𝑡 = 0) is derived from a constant, spatially uniform recharge to the
18 
roundwater. Furthermore, each location in the basin has a contribu-

ion q i defined by its position in the watershed drainage network: 

 𝑖 = 

𝑎 𝑐 𝑄 

𝐴 

, (2) 

here q i is the saturated lateral flow, a c is the surface contributing area

f a computational cell, Q is the semi-steady state discharge at the basin

utlet, and A is the total basin area. This approach also assumes that

he water table is parallel to the soil surface, so the subsurface drainage

ligns with the topographical gradient. The water table depth for a single

omputational cell is given by: 

 iwt = − 

1 
𝑓 
ln 

[ 
𝑓𝑎 𝑐 𝑄 

𝐴𝐾 0 𝑎 𝑟 𝑊 tan 𝑆 0 

] 
, (3)

here N iwt is the initial local water table depth, K 0 is the surface satu-

ated hydraulic conductivity, f is the exponential decay parameter of K 0 

ith depth ( Beven, 1982 ), a r is the soil anisotropy ratio ( Ivanov et al.,

004 ), W is the width of the saturated flow between cells, and S 0 is the

urface slope. 

The decay parameter f is not used in the representation of the soil

ydraulic model in this work. However, the rest of the parameters of

q. (3) are known and therefore a value of f can be solved for a given

et of soil parameters and local watershed characteristics at any loca-

ion. Specifically, the water table depths N iwt are derived by taking the

emporal average of water table depths for each observation location

escribed in Section 2.1.5 ; the values of K 0 and a r are treated as un-

ertain and obtained from sampling (see Table 2 ); and the rest of the

ariables in Eq. (3) are derived from the basin topography. This leaves f

s the only unknown of the equation and therefore, f can be derived for

ach soil type in the UQ framework through least squares optimization

o fit the data to the model in Eq. (3) . The estimated value of f for each

oil type used in the UQ procedure enables the generation of an initial

patial distribution of water table, specific to the soil parameterization

sed in the simulation. 

The initial water table fields generated through this process were

hecked for their consistency and magnitudes, with the mean and vari-

bility in the initial water table fields given in Fig. S1. The use of the

utlined approach provides a realistic representation of the water table

epth and also offers an initialization tuned to the uncertain soil param-

ters. 

.3. Uncertainty quantification framework 

tRIBS-VEGGIE has a large set of inputs that could be treated as un-

ertain; these are closures for certain approximations to physical laws or

arameters describing a property of a medium, for example, important

or the movement of water in the domain (e.g., saturated conductivity

or different soil types present in the domain). In addition to these pa-

ameters, there are input fields that describe spatial or temporal states

f the simulation watershed. These parameters and fields represent the

ssumptions made about the makeup and behavior of the domain. They

re inherently uncertain since it is not possible to have perfect infor-

ation about the system being modeled, and this is especially true for

atural systems. Therefore, instead of encoding assumptions into sin-

le estimates about the system in question, we embrace the uncertainty

n our knowledge and attempt to quantify the consequences of this un-

ertainty on simulation results. In this study, only parametric inputs to

RIBS-VEGGIE will be treated as uncertain to focus on the application of

he UQ methodology, with a discussion of the use of spatial input fields

or UQ in Section 4 , 

.3.1. Surrogate modeling 

Let’s consider a model  (i.e., tRIBS-VEGGIE in this study) with

nputs x , where 𝐱 = { 𝑥 1 , 𝑥 2 , … , 𝑥 𝑀 

} (e.g., 𝑀 = 7 for this study). This

odel is used to predict some output quantity of interest (QoI) 𝑦̂ ∈ ℝ ,

here 𝑦̂ can be assumed to be a scalar quantity for now, but it can (and

ill) be used for multiple QoIs in this work. This model can be viewed
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s a simple function that maps uncertain inputs to an uncertain output:

̂ =  ( 𝐱) . (4)

e assume that  is a deterministic model that can scale in complexity

epending on the problem being solved (e.g., in its simplest form it could

e  ( 𝐱) = 

∑
𝑥 𝑖 ). Where uncertainty quantification becomes interesting

s when  is complex, such as the numerical solutions to the governing

quations of fluid flow. It is not uncommon for investigations of fluid

ow to make single evaluations of the model represented by Eq. (4) and

reat it as a “black box, ” i.e., the internal model dynamics are assumed

nknown and only a relationship between model inputs and outputs is

nalyzed. The only requirement that is imposed on the model is that it

ust be executable, i.e., provided its inputs x , the model produces its

utput 𝑦̂ . 

If we believe that the model  adequately captures the dynamics

f the system being modeled, then we can also believe that the output

̂ =  ( 𝐱) we receive from the model gives an accurate prediction, when

he values of the input parameters/variables x are known. However, a

ypical case for the majority of models of environmental systems is that

nput values are uncertain, either due to natural variability in the system

e.g., Kim et al., 2016b; Kim et al., 2016c ) or inadequate knowledge of

arameter values, in general. In this case, it is appropriate to represent

hese input parameters as uncertain, so they follow a random vector 

 ∼ 𝜋( 𝐱) , (5)

here 𝑿 = ( 𝑋 1 , 𝑋 2 , … , 𝑋 𝑀 

) and 𝜋( x ) is a vector of marginal (and there-

ore independent) probability density functions (PDF) describing the

ariability in each of the M uncertain variables in X , which are known

nd defined prior to modeling. Random input variables to the model

esult in QoIs that can also be treated as a random, i.e.: 

 =  ( 𝑿 ) . (6)

With uncertainty propagation, we are interested in determining the

robability distribution of Y . For example, if Y roughly follows a Gaus-

ian distribution, the mean and variance of Y could be considered as

stimates of the location and scale of the distribution. However, with

omplex interactions occurring within the model  , the distribution

f Y could be multi-modal or have large skewness or kurtosis, making

onventional methods relying on the assumption of Gaussian behavior a

oor approximation. As an illustration, consider that if the model output

f interest has a similar variability as the prediction quantity Y in Fig. 3 ,

ne cannot describe the output distribution through its first moments,

nd the full characterization of the density function is required. 

In order to investigate uncertainties and sensitivities of model out-

uts to its inputs, many model runs must be performed. This has tra-

itionally been done using collocation methods — taking a sample

rom the input distribution and identifying the output value resulting

rom that sample — allowing for the construction of a probability den-

ity function of the model’s outputs. This is often done using Monte

arlo methods, but the computational expense of Monte Carlo methods

uickly scales with the complexity of the model and is prohibitive when

ultivariate problems are considered ( Blatman and Sudret, 2011; Mar-

ouk and Xiu, 2009 ). An alternative approach is to approximate the fully

eterministic model with a polynomial expansion used to create a sur-

ogate model (also known as metamodel ) (e.g., Miller et al., 2018; Najm,

009; Ricciuto et al., 2018; Xiu and Tartakovsky, 2004 ). The approach

f metamodeling is used to offset the cost of forward, computationally

xpensive deterministic simulations by approximating the latter with in-

xpensive surrogate models. Polynomial chaos expansions (PCEs) repre-

ent one such metamodeling technique that provides an approximation

o a computer model through its spectral representation on a basis of

olynomial functions ( Elsheikh et al., 2014; Najm, 2009 ). 

Specifically, if we have a set of relationships as described in Eqs. (4) –

6) , we wish to approximate the deterministic model  with a suitable

olynomial expansion. The expansion relies on polynomial basis terms
19 
m 

( X ) that are orthogonal with respect to the distribution of X , meaning
∞
−∞ Ψ𝑚 ( 𝐱 )Ψ𝑛 ( 𝐱 ) 𝜋( 𝐱 ) d 𝐱 = 0 for all m ≠ n , where m and n denote indices of

 polynomial sequence and the integral represents the inner product of

olynomials with a weighting function 𝜋( x ). The model output can then

e approximated with ( Le Maître and Knio, 2010; Xiu and Karniadakis,

002 ): 

 =  ( 𝑿 ) ≈
∑

𝜶∈ℕ 𝑀 

𝑐 𝛼Ψ𝛼( 𝑿 ) . (7) 

he uncertain input X will have an associated polynomial Ψ𝜶 , where

= ( 𝛼1 , 𝛼2 , … , 𝛼𝑀 

) is a multi-index introduced to simplify notation and

epresents the ordering of terms in the polynomial. An illustration of the

ulti-index and how it leads to the construction of a PCE is included in

he Supplementary Materials S.2. 

One typically models the stochastic dimension M to be equal to the

umber of uncertain variables 𝑿 = 

{
𝑋 1 , … , 𝑋 𝑀 

}
. The parameters { c 𝛼}

re deterministic polynomial expansion coefficients, and { Ψ𝛼( X )} are

ultivariate polynomials orthogonal with respect to the random vari-

bles X . The multivariate polynomials { Ψ𝛼( X )} in Eq. (7) are defined as

roducts of univariate polynomials ( Le Maître and Knio, 2010 , App. C):

𝛼( 𝑿 ) = 

𝑀 ∏
𝑖 =1 

Ψ𝑖,𝛼𝑖 
( 𝑋 𝑖 ) . (8)

ased on the marginal distributions of random variables in X , differ-

nt polynomial bases are used Xiu and Karniadakis (2002) . Examples of

ontinuous orthogonal polynomials are provided in Table S1. The prop-

rty of orthogonality implies that the first two moments of uncertain

uantity of interest Y can be extracted analytically from the expansion

oefficients 𝒄 𝜶 , enabling very efficient moment evaluation. See S.2 for

n example. 

In practice, the right hand side of Eq. (7) is a finite sum through a

runcated PCE ( Lin and Karniadakis, 2009; Xiu and Karniadakis, 2002 ): 

 =  ( 𝑿 ) ≈  

PC ( 𝑿 ) = 

𝑃 ∑
𝑗=0 

𝑐 𝑗 Ψ𝑗 ( 𝑿 ) , (9) 

here j is a count of the multiindices 𝛼 with a predefined order; this

s discussed further in the Supplementary Materials. There are a num-

er 𝑃 + 1 polynomial basis functions. A typical truncation rule, a total

egree truncation of degree p , i.e. 
∑𝑀 

𝑖 =1 𝛼𝑖 ≤ 𝑝 leads to (see Xiu and Kar-

iadakis, 2002 ): 

 + 1 = 

( 𝑀 + 𝑝 )! 
𝑀! 𝑝 ! 

, (10) 

e select a finite number of terms by only including those with a to-

al degree of polynomials from Eq. (8) smaller than a certain value p .

nce the selection of uncertain input variables and the polynomial basis

Table S1) has been made, one can solve the polynomial chaos expan-

ion ( Eq. (9) ) non-intrusively, meaning that the pre- and post-processing

f model inputs and outputs takes place without having to make any

hanges to the mechanistic model  . To do this, one treats the fully

eterministic model  as a heuristic/black-box model to inform the

etamodel  

PC constructed through the polynomial chaos expansion. 

The goal is to obtain the right hand side of Eq. (9) , where c j are deter-

inistic weighting coefficients, and Ψj are the polynomial expansions of

he order associated with the index j for realized (sampled) values of X .

he values for the coefficients 𝐜 = { 𝑐 0 , 𝑐 1 , … , 𝑐 𝑃 } allow the calculation

f the distribution of model output Y as it was induced from the model

nput X . These coefficients are calculated by solving Eq. (9) through ei-

her Gaussian quadrature ( Smolyak, 1963 ), regression ( Berveiller et al.,

006; Blatman and Sudret, 2008; 2011; Tibshirani, 1996 ), or Bayesian

pproaches ( Doostan and Owhadi, 2011; Sargsyan et al., 2014 ). The

ext step is to estimate the distribution of model output Y as informed

y the uncertain (but pre-defined through marginal PDFs) model input

 . The approximate response of Y is obtained through sampling, often

arkov-Chain Monte Carlo (MCMC) ( Haario et al., 2001 ), because the

onstructed surrogate model in Eq. (9) is much cheaper computationally
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han a complex original deterministic model  . The surrogate model

 

PC is assessed using samples of the random vector X . These samples

an be taken via, e.g., random uniform, stratified, or Latin hypercube

ampling ( McKay et al., 1979 ), where the latter is used in this work. 

The above considerations result in the feasibility of calculating a

olynomial chaos expansion of the model response by using Monte-

arlo or other sampling techniques ( Eldred and Burkardt, 2009; Mar-

ouk and Xiu, 2009 ). In addition to the convenience of numerical ap-

roximation, the first two moments of the model output are obtained

rom the coefficients of the constructed PCE such that the mean 𝜇

nd variance 𝜎2 of a scalar model output can be calculated as in

e Maître and Knio (2010) : 

𝑃𝐶 = 𝔼 
[
 

𝑃𝐶 ( 𝑿 ) 
]
= 𝑐 0 (11)

 𝜎2 ) 𝑃𝐶 = Var 
[
 

𝑃𝐶 ( 𝑿 ) 
]
= 𝔼 

[(
 

𝑃𝐶 ( 𝑿 ) − 𝜇𝑃𝐶 
)2 ] = 

𝑃 ∑
𝑗=1 

𝑐 2 
𝑗 
. (12)

The previous section was undertaken with a single QoI Y . For mul-

iple QoIs 𝒀 = 

{
𝑌 𝑖 

}
, 𝑖 = 1 , … , 𝐾, the preceding process is carried out for

ach QoI, i.e., each QoI is a scalar-valued output of  which can be

epresented by a surrogate. The remainder of the methodology assumes

 single QoI unless otherwise noted. 

.3.2. Bayesian compressive sensing for PCE construction 

The limiting factor in the surrogate modeling approach to uncer-

ainty quantification is the amount of model simulations one can per-

orm with the expensive deterministic model  in order to solve for

he coefficients in Eq. (9) . There may be a large number M of uncertain

ariables X to address in the model, which may result in the “curse of

imensionality ” ( Caflisch, 1998; Davis and Rabinowitz, 2007 ), i.e., it is

ot feasible to adequately sample the high-dimensional input variables

o construct the surrogate model  

PC ( 𝑿 ) . Techniques that have been

sed to address this issue include sparse regression techniques (e.g.,

latman and Sudret, 2008; Blatman and Sudret, 2011; Vidaurre et al.,

013 ) and the Bayesian compressive sensing (BCS) approach for the PC

ramework introduced by Sargsyan et al. (2014) . 

Bayesian compressive sensing (BCS) ( Ji et al., 2008; Sargsyan et al.,

014 ) aims to identify a sparse set of the coefficients c j to satisfy Eq. (9) .

his is in contrast to other truncation methods used for PCEs such as

otal degree, tensor product, or hyperbolic cross (see Sargsyan et al.,

014 ), which treat each dimension (input variable) equally, or truncate

he expansion a priori . One would like to select a basis set containing

erms that convey meaningful contributions to model output Y , while

iscarding terms that do not. For example, if one chooses uncertain in-

ut variables that do not have a dependence relation to each other in the

ydrologic QoI, then one would expect basis terms that account for the

nteraction of these variables to be zero. Including these terms provides

o further information or variance in the hydrologic process of inter-

st. With this motivation, this study uses Bayesian compressive sens-

ng (BCS) ( Babacan et al., 2010; Ji et al., 2008; Sargsyan et al., 2014 )

o find a sparse set of coefficients to satisfy Eq. (9) . Details of this ap-

roach are left to Sargsyan et al. (2014) with a brief overview provided

n Appendix A . 

The practical implications of employing the BCS technique is that it

an greatly reduce the size of the basis set required to construct the sur-

ogate model. Therefore, the technique limits the impact of the “curse

f dimensionality ” stemming from treating a large number of parame-

ers as uncertain. The amount of this reduction is problem and model

ependent, but generally grows relative with the number of uncertain

nput variables, due to the number of higher-order interaction terms that

rise. For example, a problem with 20 uncertain model parameters will

ave a larger percentage reduction in required simulations of the model

 than a problem with five uncertain parameters. 
20 
.3.3. Sensitivity analysis 

Once the surrogate model (9) has been constructed, the use of Monte

arlo methods allows the computation of Sobol’ indices for global sen-

itivity analysis of the model to its input uncertain variables ( Saltelli,

002; Sobol, 2001; Sudret, 2008 ). In the context of PCE surrogate mod-

ls, estimates of Sobol’ indices is gained directly from the PC surrogate,

ffering a convenient and computationally efficient way to determine

he relative importance of uncertain inputs to the variability of the quan-

ities of interest. Sobol’ indices are split into main and joint sensitivities,

here the former measures the fraction of variance in the output that

an be attributed to the uncertain model input variable X i : 

 𝑖 = 

Var 
[
𝔼 
[
 

PC 
𝐜 ( 𝑿 ) ∣ 𝑋 𝑖 

]]
Var 

[
 

PC 
𝐜 ( 𝑿 ) 

] , (13)

here 𝔼 and Var are operators for expectation and variance, respec-

ively. Similarly, the joint sensitivity measures the fraction of variance

n the output that can be explained by to the joint contribution of vari-

bles X i and X j , and is defined as 

 𝑖𝑗 = 

Var 
[
𝔼 
[
 

PC 
𝐜 ( 𝑿 ) ∣ 𝑋 𝑖 , 𝑋 𝑗 

]]
Var 

[
 

PC 
𝐜 ( 𝑿 ) 

] − 𝑆 𝑖 − 𝑆 𝑗 . (14)

n additional benefit of using PCE machinery for the surrogate model is

hat the Sobol’ sensitivities in Equations (13) and (14) can be calculated

irectly from the coefficients of the PCE using the relations from Eqs.

11) and (12) , one can write the main and joint Sobol’ indices in terms

f the PCE coefficients. This yields an estimate for the main effect index
̂
 

main 
𝑖 

as: 

̂
 

main 
𝑖 

= 

∑
𝜶∈ 

main 
𝑖 

𝑐 2 
𝜶

⟨
Ψ2 
𝜶

⟩
∑

𝜶∈ , 𝜶≠0 
𝑐 2 
𝜶

⟨
Ψ2 
𝜶

⟩ , (15) 

here  

main 
𝑖 

= 

{
𝜶 ∈ A ∶ 𝛼𝑖 > 0 , 𝛼𝑖 ≠𝑗 = 0 

}
. Similarly, one can use the PCE

oefficients to account for the variance contribution between interac-

ions of X i and X j through the estimate of the total effect index 𝑆̂ 

total 
𝑖 

: 

̂
 

total 
𝑖 

= 

∑
𝜶∈ 

total 
𝑖 

𝑐 2 
𝜶

⟨
Ψ2 
𝜶

⟩
∑

𝜶∈ , 𝜶≠0 
𝑐 2 
𝜶

⟨
Ψ2 
𝜶

⟩ , (16) 

here  

total 
𝑖 

= 

{
𝜶 ∈ A ∶ 𝛼𝑖 > 0 

}
. The benefit of Eqs. (15) and (16) is that,

nce the PCE surrogate  

PC is constructed, global sensitivity analy-

is via Sobol’ indices can be conveniently gained by performing simple

rithmetic on the coefficients of the PCE surrogate. 

For both the main and joint sensitivities, the posterior distribution of

he PC coefficients c are available. It is possible to calculate uncertainty

n the sensitivity indices by sampling from the posterior distribution

f c to calculate Eqs. (13) –(16) , but this study will use only the mean

stimates of the coefficients for sensitivity calculations. 

.4. Parameter inference 

Given a suite of results from a mechanistic model  and its con-

tructed polynomial surrogate  

PC , one can infer which values of un-

ertain input parameters X are most likely to provide results that match

n observed quantity. An advantage of the approach outlined here is that

 

PC enables very efficient inverse analysis ( Marzouk and Xiu, 2009 ).

ore generally, inverse problems occur when there are related obser-

ations but they are not necessarily the ultimate quantity of interest.

ithin hydrology, and particularly in sparsely monitored basins, there

s a long history of parameter identification through some form of in-

ersion (e.g., Kirchner, 2009; McLaughlin and Townley, 1996; Neuman

t al., 1980; Yeh, 1986 ). The use of surrogate models with dimension re-

uction as outlined in the previous sections provides a novel approach,

nabling faster computation, inversion, and the ability to solve the in-

erse problem on a larger set of uncertain model parameters. 
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As an example, take u to be a vector of observed data (such as stream-

ow), and 𝑿 = { 𝑋 1 , 𝑋 2 , ⋯ , 𝑋 𝑀 

} be the vector of uncertain model input

arameters (such as soil hydraulic properties). We further assume that

he model gives an adequate approximation of the observed streamflow,

 ≈  ( 𝑿 ) . The use of Bayes’ rule allows for the computation of the pos-

erior parameter values conditioned on the observed data: 

( 𝑿 ∣ 𝐮 ) ∝ 𝐿 ( 𝐮 ∣ 𝑿 ) 𝑝 ( 𝑿 ) , (17)

here p ( X ) is the prior distribution, L ( u ∣X ) is the likelihood function

hich represents the probability of obtaining the data given the set of

arameters, and Π( X ∣u ) is the posterior distribution for X , which repre-

ents the probability of having the parameter values given the observed

ata. 

To formulate a likelihood function, one must represent the discrep-

ncy between the model and observations: 𝜂 = 𝐮 −  . Assuming that

he components of 𝜂 are independent and identically distributed ran-

om variables with some marginal density p 𝜂 , the likelihood function

an be written as 

 ( 𝐮 ∣ 𝑿 ) = 

𝐷 ∏
𝑑=1 

𝑝 𝜂( 𝑢 𝑑 −  𝑑 ( 𝑿 )) , (18)

here there are D conditions (e.g., time snapshots of measured stream-

ow, monthly evapotranspiration, etc.) that are being used for infer-

nce. 

If one assumes, as in this study, that the errors 𝜂d are independent

nd normally distributed 𝜂d ∼N (0, 𝜎2 ), Eq. (18) can be written as: 

 ( 𝐮 ∣ 𝑿 ) = 

1 (√
2 𝜋𝜎2 

)𝐷 

𝐷 ∏
𝑑=1 

exp 
[ 
− 

( 𝑢 𝑑 −  𝑑 ( 𝑿 )) 2 

2 𝜎2 

] 
, (19)

here the logarithm of this likelihood function corresponds to the least-

quares form of the objective function often used for deterministic pa-

ameter estimation ( Sargsyan et al., 2015 ). 

If measurements are taken at different times for the observed data

eries (e.g., streamflow), the variance in error may not be the same at

ach sampling time and almost surely will not be equal due to temporal

ariations of streamflow due to hydrologic seasonality. Therefore, it can

e valuable to introduce 𝜎2 as a scalar hyper parameter for the likeli-

ood ( Sargsyan et al., 2015 ) and rewrite the joint posterior distribution

f Eq. (17) as 

(
𝑿 , 𝜎2 ∣ 𝐮 

)
∝ 1 √

2 𝜋𝜎2 

∏
𝑑 

exp 
[ 
−( 𝑢 𝑑 −  𝑑 ( 𝑿 )) 2 

2 𝜎2 

] 
𝑝 ( 𝑋 1 ) ⋯ 𝑝 ( 𝑋 𝑛 ) 𝑝 ( 𝜎2 ) . 

(20) 

The prior distribution for the model parameters p ( X i ) are based on

heir a priori knowledge, e.g., that the parameters are uniform within a

ange or normally distributed with some mean and variance. As the vari-

nce of the error noise, 𝜎2 must be positive, we therefore use a Jeffreys

rior ( Jaynes and Bretthorst, 2003 ): 

 ( 𝜎2 ) = 

{ 

1 
𝜎2 

for 𝜎2 > 0 
0 otherwise . 

(21)

To infer values for uncertain model parameters, the posterior dis-

ribution from Eq. (20) needs to be sampled using methods such as

he Metropolis-Hastings MCMC ( MacKay, 1998 ). Note that sampling

rom posterior distribution requires repeated evaluation of the likeli-

ood, implying multiple evaluations of the model  . This tends to be

omputationally expensive, and it is therefore expeditious to replace

he model  with its PCE surrogate  

PC . In this way, the methodol-

gy outlined previously in this section can be combined with those in

ections 2.3.1 and 2.3.2 to create a computationally efficient, flexible

ramework to infer uncertain parameter values for a complex, process-

ased hydrologic model with multiple inputs applied to sparsely moni-

ored watershed. As in this study, the methodology is able to answer the

uestion of inverse inference: what is the likely distribution of the model’s
21 
ncertain parameters given observed data ? Importantly, it is also able to

ddress the question of: what are the possible outcomes for specific quanti-

ies of interest given the uncertainty in the model’s inputs ? 

.5. Summary of UQ framework 

Sections 2.3 –2.4 presents a general framework of high flexibility to

nfer model parameters for a hydrologic model in a computationally effi-

ient manner by using polynomial surrogates. Fig. 3 provides a diagram

utlining this framework. Generally, one uses a hydrologic model to con-

truct a polynomial surrogate model (Box A) that allows for fast compu-

ation of output quantities of interest from the hydrologic model. In the

ase of many uncertain input parameters, dimensionality reduction tools

uch as BCS are used to alleviate the burden of multi-dimensionality of

ncertain inputs for constructing the surrogate models. After a surrogate

as been constructed, one can then use it for accelerated, computation-

lly inexpensive inference of the uncertain parameters for the hydro-

ogic model, provided that there are available data matching a quantity

f interest (Box B). Once the posterior distributions of the uncertain pa-

ameters have been calculated, they can then be used within a model

 ( X ). In theory, g ( X ) can be any model that uses the parameters X , but it

s prudent to use the posterior values in the same model used for infer-

nce. Within this study, g ( X ) is going to be tRIBS-VEGGIE (  ) in order

o estimate other quantities of interest ( Section 2.1.5 ). 

A methodological step that accounts for model error is not shown in

ig. 3 and therefore is not accounted for in this study. More specifically,

he likelihood function in Box B accounts for data error , but does not con-

ider the structural error of tRIBS-VEGGIE. Accounting for model error

s an active, ongoing area of research within UQ (e.g., Sargsyan et al.,

018 ), but is beyond the scope of this study. 

The strength of this approach in the context of uncertainty

uantification is the relationship between QoIs —as discussed in

ection 2.3.1 and observational data. Any QoI can be used for inference,

s long as one has a preconstructed PCE surrogate for it. If one can re-

ate observational data to the QoI being addressed through  

PC , then

ccelerated inference for diverse outputs (e.g., hydrologic, hydraulic,

cologic, biogeochemical, etc.) is possible within complex hydrologic

odels. 

. Results 

This section provides an overview of the results of the construction of

he surrogate model from Section 2.3 , uses the performance of the surro-

ate model against observations ( Table 1 , “Inference ” column) to infer

arameter values, and relies on the latter to investigate the response of

ydrologic variables of interest within the catchment. 

The data used to construct the surrogate and perform inference are

ummarized in Fig. 4 . The figure for discharge shows that the model

raining simulations underestimate the aggregated observed discharge

ith a small amount of uncertainty associated with the tRIBS-VEGGIE

imulations. Water table data are aggregated into groups based on ob-

erved well locations ( Section 2.1.5 ), although the simulations generally

nderestimate water table depth, the uncertainty from the training sim-

lations overlap with the observed data. Simulated evapotranspiration

alls within the uncertainty bounds of the observed data, with a slight

verestimation of ET during the wet season. Lastly, soil water content is

enerally overestimated but the uncertainty in the training simulation

verlaps the observed data. Ideally, one would like the training simula-

ions to overlap the observed values used for inference, but this is not

he case for all QoIs, especially those in the discharge and water table

roups. However, Section 3.2 shows how this can be overcome using the

nference techniques to better confirm tRIBS-VEGGIE with the observed

ata. 
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Fig. 4. Plots for observed and training simulations of dis- 

charge, depth to water table, evapotranspiration (ET), and 

soil moisture content ( 𝜃). The discharge, ET, and 𝜃 fig- 

ures plot the mean of the time series of available data 

with the error bars being the standard deviation of the 

recorded data. The discharge plot also shows the number 

of records aggregated into each month. Water table depth 

is displayed in box and whisker plots. The whiskers rep- 

resent the 10- and 90-percent quantiles, and the box lim- 

its represent the 25- and 75-percent quantiles, with the 

median lying within the box. The diamond within each 

box is the mean water table value that is used for infer- 

ence. The shaded regions in the plot represent the train- 

ing simulations from tRIBS-VEGGIE used to construct the 

surrogate models. The different shading levels represent 

the 25/75, 10/90, and 5/95 percentiles of the 100 train- 

ing simulations. Additionally, the red line used in the time 

series plots represents the median of the training simula- 

tions. The colors within the water table plot are divided 

into two y-axes to provide better readability and clarity 

values in groups (1–5) and 6. 
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.1. Surrogate construction 

The polynomial chaos surrogates  

PC were constructed as in

q. (9) for the QoIs in Table 1 . To have a well-performing surrogate,

 

PC should match the simulations of the mechanistic model tRIBS-

EGGIE  . In Fig. 5 , the absolute errors between the constructed surro-

ate (  

PC ) and training simulations of tRIBS-VEGGIE (  ) are shown as

llustration. Simulation results used for training purposes of construct-

ng the surrogate are shown. Also shown are the results corresponding

o validation of the surrogate, i.e., a comparison of the forward tRIBS-

EGGIE model simulations and outputs of the trained surrogate for the

ame QoIs. 

A quantitative error measure of the surrogate accuracy is the relative

 2 -norm as a representation of error, defined as: 

 2 , rel = 

⎡ ⎢ ⎢ ⎣ 
∑𝑁 𝑠 

𝑖 =1 
(
 

PC 
𝑖 

−  𝑖 

)2 ∑𝑁 𝑠 

𝑖 =1  

2 
𝑖 

⎤ ⎥ ⎥ ⎦ 
1∕2 

, (22)

here N s is the number of training (or validation) simulations per-

ormed. The value used for N s depends on the computational expense of

he model, and one would like to have at least 3–4 samples in each un-

ertain parameter dimension, which in this study would result in at least

 

7 = 2 , 187 runs of tRIBS-VEGGIE. To summarize surrogate performance,

he QoIs are aggregated into streamflow, water table depth, evapotran-

piration, and soil moisture groups. These groups are used to illustrate

he relative surrogate error as a function of PC order in Fig. 6 , which

hows that for training simulations, the decrease in L 2, rel is muted after

 PC order of 5 or 6. 

We selected a surrogate order 𝑝 = 6 for  

PC as the optimal order

hat leads to a sufficiently accurate surrogate without overfitting. Given

he seven uncertain input parameters ( Table 2 ), Eq. (10) gives a required

 + 1 = 1 , 716 basis terms in  

PC . Only 100 training tRIBS-VEGGIE sim-

lations were used for BCS to construct the surrogate. An additional 10

imulations were used to validate that the constructed surrogate accu-

ately represented the QoIs from tRIBS-VEGGIE. For both the training

nd validation cases, simulation points were selected via Latin hyper-

ube sampling ( McKay et al., 1979 ). 

Qualitatively, Figs. 5 and 6 a both show that the surrogates performs

lightly better (i.e., lower values of L 2, rel in Fig. 6 ) using training rather

han validation results. This is the desired behavior as it means that the

topping criteria 𝜖 from the BCS method ( Section 2.3.2, Appendix A ) are
22 
hosen correctly. In the case where reducing 𝜖 improves the performance

reduction in L 2, rel ) at the training set, but at the expense of performance

t the validation set, overfitting has occurred in surrogate training. This

eans that the surrogate is being trained to only capture the behavior

ear the parameter samples at the training locations, and will not ac-

urately capture the behavior at a significant distance away from these

raining samples. Evidence of overfitting would be that L 2, rel decreases

ith training data but remains the same or increases in the validation

ata set. This is what occurs if higher-order terms in the expansion are

etained for most groups of QoIs. 

.1.1. Sensitivity analysis 

Using a constructed PCE model allows for efficient computation of

he main and joint effect sensitivity indices from Equations (13) and

14) . One can assess the sensitivity contributions for a single QoI, or for

ncertain parameters across multiple QoIs. 

For the first instance, the main and joint sensitivities of the uncertain

arameters for the QoIs of water table group 5 and evapotranspiration

n April 2004 are shown in Fig. 6 c and d, respectively. The main ef-

ect sensitivities — the fraction of variance described by changing each

ncertain parameter in isolation, averaged over the input distribution

f the other parameters — are given on the diagonal of these figures.

or the water table and evapotranspiration groups, one sees that k sat 

s the dominant contributor in the variation of the QoIs shown. This

isplays that the model is qualitatively consistent, as a higher value of

aturated conductivity allows faster drainage from the soil and impacts

ater available for vegetation transpiration in the case of Fig. 6 d. The

ower diagonal on Fig. 6 c and d represents the joint effect sensitivities,

.g., in Fig. 6 c, terms in the expansion containing both k s and a r account

or approximately 9.5% of the variability seen in the fifth water table

roup, while the equivalent contribution from terms containing both a r 
nd F C is approximately 0.45%. Recalling from Eqs. (15) and (16) , these

ensitivities are computed directly from the PCE coefficients, so sparsity

r very low values in the lower diagonal (e.g., Fig. 6 c) represents zero

r near-zero values of the coefficients multiplying terms containing the

ncertain parameters. The implication of this sparsity is that interaction

etween those parameters in the model have an insignificant impact on

he resultant value of the QoI. 

These indices are computed for each QoI, and summarized sensitivi-

ies across all QoIs are given in Fig. 6 b. Based on the contributions to the

ariances of the QoIs, it is clear that k sat is the uncertain parameter with
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Fig. 5. Comparison of tRIBS-VEGGIE and constructed surrogate for PC order 𝑝 = 6 . The surrogates are separated into four groups depending on the QoI. Blue circular 

and red square marks represent the 100 training and 10 validation simulations, respectively. A 𝑦 = 𝑥 line is added to each plot, such that points on the black line 

represent agreement between tRIBS-VEGGIE and the constructed surrogate. The relative errors of the surrogates for each group are: 𝐿 2 , rel ( 𝑄 ) = 0 . 081 , 𝐿 2 , rel ( 𝑊 𝑇 ) = 
0 . 10 , 𝐿 2 , rel ( 𝐸𝑇 ) = 0 . 025 , and 𝐿 2 , rel ( 𝜃) = 0 . 029 . 
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he largest impact on model sensitivity for the identified QoIs. This con-

rms intuition since values of k sat control both infiltration excess runoff

s well as impact of lateral flows in the hydrologic system, which is not

ncluded in the pedotransfer function of Tomasella et al. (2000) . Those

arameters which are included in the pedotransfer function change the

hape of soil water retention curve. Therefore, sensitivity to these pa-

ameters ( F C , F S , 𝛼CS , M e , 𝜌b ) indicates sensitivity of QoIs to the water

etention characteristics of the soil. 

.2. Inference of soil properties 

After the surrogate model is obtained, it is possible to calculate the

osterior distribution of model parameters through MCMC sampling,

s described in Section 2.4 , by replacing  with  

PC . This enables

aster computation and benefits hydrologic models that take more than

 few minutes to perform a single simulation. The marginal and pair-

ise marginal posterior distributions of the hydrologic parameters in

able 2 are shown in Fig. 7 . These marginal posterior distributions are

ummarized in Table 3 by their moments, maximum a posteriori (MAP)
23 
stimate, i.e., the mode of the posterior distribution, and the coefficient

f variation (ratio of standard deviation to the mean value). 

These posterior distributions provide information about the bulk

oil properties of the watershed, e.g., that the soil is mostly clay

nd silt, with a saturated conductivity around 20 [mm/h], and an

ccompanying anisotropy ratio of approximately 1.25. These val-

es are in agreement with previous studies of the catchment (e.g.,

uartas et al., 2012; Tomasella et al., 2008 ), which found four different

oil types within the watershed. The clay contents for these four soil

ypes (below 1 [m]) ranged between 5 and 90% clay, where the soil

ype with 80–90% clay accounting for 45% of the catchment, and the

oil type with 5% clay accounting for 30% of the catchment. Using a sin-

le soil type in the catchment represents an aggregation of the physical

roperties, whereby the posterior mean for clay content of 56% is rea-

onable based on the observed properties. The other parameters of the

edotransfer function fall within ranges given in Tomasella et al. (2000) ,

ith additional qualitative agreement between the textural classifica-

ion shown for Manaus, located south of the case study Asu watershed.

he hydraulic properties of k s and a r in Cuartas et al. (2012) have sixteen

lassifications based on landscape classes and depth, with the inferred
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Fig. 6. Plots of surrogate errors and sensitivities. The training and validation surrogate error is given in (a). Each color represents a different group of QoIs, and 

the marker shape differentiates between training and validation samples. A qualitative representation of sensitivities is given in (b). Here, the diameter of the nodes 

around the circle are proportional to the main effect sensitivities, and the width and opacity of the lines connecting the nodes around the circle are proportional to 

the joint sensitivities, where the main and joint sensitivities are calculated for each QoI, and the plot shows the average over all QoIs. The lower triangular matrices 

in (c) and (d) show the main and joint sensitivities for water table group 5 (c) and evapotranspiration in April, 2005 (d). The main effect sensitivities are on the 

diagonal, and joint sensitivities between parameters are lower triangular, with a minimum sensitivity threshold of 10 −5 . 
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alues in this study indicating a soil type similar to the “plateau ” or

slope ” landscape which are at least 15 [m] above the nearest stream

ode, accounting for approximately 45% of the catchment area. Simi-

arly, Fang et al. (2017) contains hydraulic properties with a single land-

cape classification at four depths, where k s is approximately between

 and 15 [mm/h] with 𝑎 𝑟 = 1 , which qualitatively agrees to the inferred

alue of 15.8 [mm/h]. Additionally, one can assess the pairwise corre-

ations between parameters using Fig. 7 , e.g., that the anisotropy ratio

 a r ) is negatively correlated with saturated conductivity ( k s ). 

Posterior predictions of the QoIs are demonstrated in Fig. 8 . Here,

he joint posterior distribution from Fig. 7 is sampled in order to cal-

ulate the QoI values using the surrogates constructed in Section 3.1 . A

omparison can then be made between the posterior QoI values and the

bserved data values. One sees that the posterior QoIs for ET and soil

oisture match the data better than for discharge and depth to water

able. There are two main factors contributing to this: (1) the simu-

ated (using  ) ET and soil moisture match the corresponding observa-

ions better than the simulated discharges and water table depths (see

ig. 4 ), and (2) data noise for these QoIs are much lower than those
24 
or discharge. Nonetheless, one may attempt to improve the skill, if it

s deemed unacceptably low. If one were interested in getting a better

t to the data for a set of QoIs, one could: (i) select a larger training set

o have more chances for the simulation results of  to match obser-

ations; (ii) perform inference using a subset of the observed data and

oIs, in an attempt to exclusively fit for that subset of data (e.g., see a

iscussion below in relation to Fig. 9 ); or (iii) attempt to collect more

ata to constrain the data noise. In the cases of options (ii) and (iii), the

CE framework provides a benefit of not needing to rerun simulations of

he computationally-expensive  , but also allows fine-tuning of model

arameters for investigations into specific QoIs. 

Modeling factors impacting the difference between, and the uncer-

ainty of, simulated and observed quantities include spatial resolution

nd soil property variability. The watershed used in this study has a

teep transition between the plateau and lowland areas ( Chauvel et al.,

987; Cuartas et al., 2012 ). The slopes caused by this transition, in con-

unction with the 90 [m] spatial discretization, end up creating a “res-

lution effect ” for quantities such as ground water. The horizontal po-

ition of the water table well within the computational cell can impact
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Fig. 7. Posterior distributions of parameters used in inference. The vertical line in each of the diagonal is the estimated mean of the posterior distribution. Summary 

statistics for the marginal distributions are given in Table 3 . 

Table 3 

First two moments and MAP estimate of pa- 

rameter posterior distributions. 

X i 𝜇̂ 𝜎̂ ̂MAP 𝜎̂∕ ̂𝜇 [%] 

F c 56.0 1.871 56.3 3.34 

F S 24.2 0.677 24.5 2.79 

𝛼CS 0.525 1.64E-3 0.525 0.31 

M e 0.184 5.75E-3 0.184 3.13 

𝜌b 1.2 1.19E-3 1.2 9.9E-2 

k s 15.8 0.645 15.9 4.09 

a r 1.45 6.11E-2 1.44 4.22 
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ts agreement to observed water table depths. Additionally, the chan-

el is represented within the model using the 90 [m] cells, and the lack

f an incised channel means that drainage from the saturated zone to

he channel is less efficient. All quantities also could have been affected

y the lack of spatial variability in soil properties. Four soil types are

eported for this watershed in Cuartas et al. (2012) , with one represen-

ative soil type being used in this study. As a result, quantities that are

easured at specific locations (water table depth, evapotranspiration,

nd soil moisture content) are likely affected by this modeling choice. 
25 
The posterior QoIs as a result of performing inference separately on

ach group of QoIs (i.e., only data of a given group are used to infer the

ntire set of parameters in Table 2 ) are shown in Fig. 9 . In this figure,

he data noise —𝜎2 in Eq. (20) was set as a hyper-parameter and was

lso inferred because it provides a better fit of the mean prediction of

 

PC to the data. This was done to illustrate an approach that can be un-

ertaken when data noise is large to the point of observations becoming

ninformative, e.g., in the case of discharge and ET data. In this case

 Jefferys prior ( Eq. (21) ) is used for 𝜎2 . Performing inference on each

roup of QoIs is done at the expense that the parameter posterior distri-

utions become specific for each separate group of QoIs. The posterior

istribution in Fig. 9 for the variables X i contain other important details

bout the information that can be gained with inference. For example,

he marginal posterior distribution for the bulk density ( 𝜌b ) is very close

o the uniform prior distribution for most groups of QoIs, since this pa-

ameter is not informed by the available data (except for soil moisture).

Whether one takes the approach shown in Fig. 8 or 9 will depend

n the questions being investigated. Generally, the Bayesian framework

refers including all data to perform inference, as long as the data are

nformative. In the case where data come from disparate sources, e.g.,

poradic sampling of discharge vs. hourly evapotranspiration measure-

ents, one may want to separate the inference using these data, or incor-
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Fig. 8. Plots for observed discharge, depth to water ta- 

ble, evapotranspiration (ET), and soil moisture content ( 𝜃) 

compared to surrogate calculations using the samples of 

posterior distribution from Fig. 7 , which are summarized 

in Table 3 . The dashed red line corresponds to the median 

training simulation values as in Fig. 4 , while the solid red 

line represents the median values of the surrogate simula- 

tions with the posterior parameter samples. Please refer to 

Fig. 4 for a description of other presentation details. 

Fig. 9. Plots for the four output groups of observed 

discharge, depth to water table, evapotranspiration 

(ET), and soil moisture content ( 𝜃) compared to sur- 

rogate calculations using posterior parameter val- 

ues that were inferred for each individual output 

group. This path of inference generates four sepa- 

rate posterior PDFs for X , which are shown at the 

bottom of the figure. The dashed red line corre- 

sponds to the median training simulation values as 

in Fig. 4 , while the solid red line is the median value 

of the surrogate simulations with the posterior pa- 

rameter samples. For each output group, the grey 

regions represent the 95% uncertainty bound from 

propagating the parameter posteriors for that out- 

put group (Q, WT, ET, SM) through the respective 

surrogates. 

26 
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Fig. 10. Posterior QoIs (left) and their sensitivities 

(right) corresponding to the QoIs not included in infer- 

ence in Table 1 , due to insufficiency/lack of observational 

data. The surrogates for these QoIs were constructed us- 

ing the same 100 training and 10 validation simulations 

as in Fig. 4 . In plots (c) and (e), the grayed region repre- 

sents the 5% and 95% quantiles of surrogate simulations 

evaluated using the posterior parameter distributions in 

Fig. 9 . See Fig. 6 b for details on the representation of sen- 

sitivities in (b), (d), and (f). 
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orate more detailed structure in the data noise representation among

roups of QoIs to better inform their impact on inference. 

.3. Computing QoIs from posteriors 

With the framework presented in this study, one can construct a

urrogate model for quantities that have been observed ( Section 3.1 )

nd use this surrogate to confirm the model’s behavior ( Section 3.2 ).

his allows one to investigate a wide variety of model behaviors, such

s higher-frequency or aggregated quantities at coarser or finer tempo-

al/spatial intervals. In this work, the parameter posterior distribution

rom Fig. 9 resulted in a chain of 19,000 posterior values for each pa-

ameter in Table 2 , which can be directly sampled and used as input to

 constructed surrogate (box (C) in Fig. 3 ). 

From Table 1 , the QoIs held out from inference were: Q 95 — the

5th percentile of daily-averaged discharge during 2005 (representing

he probability that 18 days during the year have a mean daily discharge

arger than Q 95 ),   ( 𝑄 ) — the daily time series of streamflow in 2005,

nd   ( 𝐸𝑇 dry ) — daily evapotranspiration in months with cumulative
27 
ater deficit as defined in Eq. (1) . Illustration plots and sensitivity in-

ormation for these QoIs are given in Fig. 10 . Note that the surrogates

or these higher-frequency and aggregated QoIs were not constructed in

ection 3.1 , but doing so is straightforward and follows the methodology

f Section 2.3.1 . 

These results are provided to illustrate the flexibility of the UQ

ramework. The benefits of the approach include that one can inves-

igate hydrologic response at higher temporal and spatial resolutions.

or example, one can see the pattern of discharge in Fig. 10 follows that

f Fig. 9 , but unlike the original data sourced in Fig. 4 , the illustration

rovides daily estimates of discharge. 

. Discussion 

Despite recent advances in computational power, simulation times

or complex, process-rich hydrologic models, even for low-order catch-

ents can be significant. When a large number of uncertain parame-

ers or, generally, uncertain model inputs are used, thousands of model

imulations may be required to perform robust, comprehensive un-
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G  
ertainty quantification, parameter inference, and sensitivity assess-

ent. Even reduced-order simulation approaches recently introduced to

arth-system and environmental modeling would be prone to computa-

ional issues. This study addresses this challenge and adopts an efficient

ethodology to enable uncertainty quantification and stochastic simula-

ion with deterministic, process-based hydrologic models of higher com-

lexity. This work applies recent developments that combine reduced-

rder modeling based on polynomial chaos expansions with Bayesian

ompressive sensing to construct computationally cheap surrogate for-

ulations of the complex hydrologic model, while significantly reduc-

ng the number of required simulations. The surrogate representation

nables Bayesian inversion and calibration of uncertain model variables

or any model output that can be compared to observable data, even

hen these are sporadic and have time-varying accuracy. Furthermore,

urrogate formulation can be used to propagate uncertainty through a

ydrologic model for any of the model’s outputs, enabling one to esti-

ate uncertainties of QoIs that are difficult or too costly to measure. 

A limitation of this study is the intentionally constrained nature of

ossible sources of input uncertainty included in the analysis. As men-

ioned in Section 2.3 , one can use both parametric and input spatial

eld uncertainty within the UQ framework. The parametric type was

hosen to display a clear presentation of how uncertainty can be ad-

ressed using a complex model. This approach however does not limit

n extension of the analysis to other uncertain variables or spatial fields.

or instance, the incorporation of the uncertainty in spatial or temporal

elds is important to determine hydrologic response ( Kim et al., 2019 ).

n approach to address this uncertainty within the framework includes

reating a stochastic model of the uncertain field using a Karhunen–

oéve expansion ( Karhunen, 1946; Zheng and Dai, 2017 ). This decom-

oses the uncertainty in the spatial field into a parametric stochastic

odel, where the uncertain parameters can be included into X . Follow-

ng this philosophy, uncertain soil moisture, precipitation, or water table

elds could be propagated through a hydrologic model. This is beyond

he scope of the current study and will be addressed in future research.

urthermore, there is evidence suggesting that multiple soil types are

resent in the study domain (e.g., Cuartas et al., 2012; Tomasella et al.,

008 ), while a single soil type was used in this work. This design choice

as undertaken for two reasons: i) to represent the more typical case

n hydrology of not having detailed soil data available, and ii) for an

nobscured, clean presentation of the methodology without extraneous

etails that would arise from using multiple soil parameter sets. If finer

etail of soil representation were included, one would expect inference

nd sensitivity to be weighted to the spatial coverage of soil types. For

xample, the hydraulic conductivity of a soil type controlling infiltration

f precipitation into the subsurface would have a greater contribution to

he variation of streamflow if the soil type covered 50% rather than 10%

f the watershed. Another limitation is the current version of the model

sed in this study, tRIBS-VEGGIE, has a limited capability to incorporate

ertical heterogeneity to the soil column. 

The approach is flexible, and relies on a priori identification of input

ariables of high impact before modeling. This means that although one

an change the QoIs being investigated by working with the model’s

utput, one cannot change the parameters that are treated as uncertain

ithout having to rerun training and validation simulations. Given the

eduction in computational expense due to the use of the Bayesian com-

ressive sensing methodology, it is possible to treat dozens of model

arameters as uncertain ( Ricciuto et al., 2018; Sargsyan et al., 2014 ),

ssentially assuming no a priori knowledge of impactful variables. How-

ver, in most cases in hydrology, it is beneficial to constrain the number

f uncertain parameters using expert knowledge about the governing

rocesses controlling QoIs and the respective variables impacting these

rocesses. Alternatively, one can do an initial screening of model pa-

ameters with Bayesian compressive sensing. This will not produce an

ccurate surrogate, but will yield accurate sensitivities, so the param-

ter space can be reduced and the procedure repeated to gain a more

ccurate surrogate. 
28 
Given the scale and complexity of environmental systems, one must

nclude uncertainty if one hopes to capture or discover complex hydro-

ogic behavior. Uncertainties are ubiquitous within the field of hydrol-

gy, e.g., a measurement of a basin-aggregated metric such as stream-

ow ( Fig. 4 ) is subject to uncertainty within the catchment. Or there may

e interactions with model input variables, meaning that to best capture

educible uncertainty about variables, description through probability

ensities ( Fig. 7 ) is preferred over scalar, deterministic values. In either

ase, the presented approach offers a novel, sufficiently general way

orward to address uncertainties in hydrology, reducing or defining the

ncertainties of model inputs. 

Generally, the framework outlined in this study provides flexibility

o address computationally expensive problems in hydrology (e.g. high-

esolution modeling of soil moisture ( Ivanov et al., 2010; Krasnosel’skii

nd Pokrovskii, 1989 ), representation of macroporosity (e.g., Beven and

ermann, 1982 ), etc.) by enabling high-fidelity simulations under un-

ertainty. In the cases where these simulations are highly sensitive to

nput parameters and forcings, the presented approach can be applied

o high-dimensional parameterized input X . 

Relevant software tools have been developed in recent years, so that

he hydrologist need not also be an expert in uncertainty quantification

o apply these methodological approaches. Those that are freely avail-

ble for research use and actively developed include the Uncertainty

uantification Toolkit (UQTk) ( Debusschere et al., 2017 , version 3.0.4

sed in this study), UQLab ( Marelli and Sudret, 2014 ), and the MIT Un-

ertainty Quantification Library ( Parno et al., 2014 ). 
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ppendix A. Bayesian compressive sensing for surrogate 

onstruction 

The BCS approach provides marginal posterior probability distribu-

ions of the vector of coefficients in the PCE model, 𝐜 = { 𝑐 0 , 𝑐 1 , … , 𝑐 𝑃 } .
iven available data  , Bayes’ formula ( Jaynes and Bretthorst, 2003 )

https://doi.org/10.13039/100000001
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or this situation can be written as 

( 𝐜 ) ∝ 𝐿  ( 𝐜 ) 𝑝 ( 𝐜 ) , (A.1) 

here q ( c ) is the posterior distribution, p ( c ) is the distribution repre-

enting prior information on the PC coefficient vector c , and 𝐿  ( 𝐜 ) is
he likelihood function, i.e., a measure of goodness-of-fit for the PCE

urrogate model  

PC from Eq. (9) to the fully deterministic model  .

ssuming a Gaussian noise model with a standard deviation 𝜎 represent-

ng a tolerance of the discrepancy between  

PC and  for the likeli-

ood: 

  ( 𝐜 ) = (2 𝜋𝜎2 ) (− 𝑁∕2) exp 

[ 

− 

𝑁 ∑
𝑘 =1 

(
 𝑘 −  

PC 
𝐜 ( 𝑿 𝑘 ) 

)2 
2 𝜎2 

] 

, (A.2) 

here 𝑘 = 1 , … , 𝑁 correspond to realizations of the random input pa-

ameters X . Note that Eq. (A.2) implies independence of marginal like-

ihood functions. 

The prior distribution p ( c ) represents prior information on the PC

oefficient vector c , the posterior distribution q ( c ) is the outcome of the

nference given the data set  . In the case of PCEs, the prior information

f c should be flat, so no knowledge is assumed in the calculation of the

osterior distribution for c . A flat prior distribution is preferred because

he use of BCS motivates that many of the terms in c will be very close

o zero, leading to a lower number of polynomial basis terms that give

aluable information for the expansion in Eq. (9) . 

Achieving a sparse posterior distribution is strongly supported by

parse priors that give vanishing values for the coefficients unless there

s strong evidence to the contrary. As such, this study uses the sparse

aplace prior Babacan et al. (2010) , that assumes coefficient indepen-

ence: 

 ( 𝐜 ) = 

( 

𝛽

2 

) 𝑃+1 
exp 

( 

− 𝛽

𝑃 ∑
𝑗=0 

|𝑐 𝑗 |) 

, (A.3) 

here 𝛽 is a positive shape parameter that also controls the optimiza-

ion problem in Eq. (A.4) . The vector c that maximizes the posterior

istribution q ( c ) is given by the solution to 

𝑟𝑔 𝑚𝑎𝑥 
𝐜 

(
log 𝐿  ( 𝐜 ) − 𝛽||𝐜 ||1 ), (A.4) 

hich is the compressive sensing algorithm used in signal processing

 Candès et al., 2006 ), where the − 𝛽‖𝐜 ‖1 term is due to the l 1 norm-based

egularization approach in BCS. The regularization approach is used to

educe overfitting while learning the coefficients c . Different approaches

ould lead to different regularization terms in Eq. (A.4) . Details of the

mplementation of this approach are left to Sargsyan et al. (2014) , but

ne of the key points is the selection of stopping criterion. Specifically,

he algorithm iterates finding the basis terms c until it reaches a stop-

ing criterion 𝜖 comparing the relative change in the maximal value of

he evidence E — the integrated likelihood. The stopping criterion is

efined as ( 𝐸 

𝑛 − 𝐸 

𝑛 −1 )∕( 𝐸 

𝑛 − 𝐸 

1 ) < 𝜖, where n is the iteration number.

s 𝜖 decreases, more iterations are required, meaning that fewer basis

erms are retained in the final polynomial surrogate. A discussion on the

election of 𝜖 is included in Section 3.1 . 

For example, in Sargsyan et al. (2014) , the Community Land Model

ith carbon-nitrogen cycling ( Thornton et al., 2007 ) was modeled with

9 uncertain input parameters, where second, third, and fourth-order

olynomials lead to order 10 3 , 10 5 , and 10 6 basis terms, respectively.

sing 10,000 model simulations, the BCS methodology demonstrated

n excellent performance skill for a very large uncertain parameter set

y avoiding the calculation of all these basis terms and selecting only

hose relevant to the QoIs. During testing, 17 model simulations failed

esulting in 9983 simulations used for training the surrogate model. This

isplays another advantage of the BCS method, as failed simulations do

ot limit the solution of the coefficients as it would in quadrature meth-

ds. The methodology also allows additional simulations to be added

f an initial simulation set is determined to be insufficient to train the

urrogate model. 
29 
upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.advwatres.2019.01.002 . 
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