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The scale and complexity of environmental and earth systems introduce an array of uncertainties that need to
be systematically addressed. In numerical modeling, the ever-increasing complexity of representation of these
systems confounds our ability to resolve relevant uncertainties. Specifically, the numerical representation of the
governing processes involve many inputs and parameters that have been traditionally treated as deterministic.
Considering them as uncertain introduces a large computational burden, stemming from the requirement of a
prohibitive number of model simulations. Furthermore, within hydrology, most catchments are sparsely mon-
itored, and there are limited, heterogeneous types of data available to confirm the model’s behavior. Here we
present a blueprint of a general approach to uncertainty quantification for complex hydrologic models, taking
advantage of recent methodological developments. We rely on polynomial chaos machinery to construct accurate
surrogates that can be efficiently sampled for the ecohydrologic model tRIBS-VEGGIE to mimic its behavior with
respect to a selected set of quantities of interest. The use of the Bayesian compressive sensing technique allows
for fewer evaluations of the computationally expensive tRIBS-VEGGIE. The approach enables inference of model
parameters using a set of observed hydrologic quantities including stream discharge, water table depth, evapo-
transpiration, and soil moisture from the Asu experimental catchment near Manaus, Brazil. The results demon-
strate the flexibility of the framework for hydrologic inference in watersheds with sparse, irregular observations
of varying accuracy. Significant computational savings imply that problems of greater computational complexity
and dimension can be addressed using accurate, computationally cheap surrogates for complex hydrologic mod-
els. This will ultimately yield probabilistic representation of model behavior, robust parameter inference, and
sensitivity analysis without the need for greater investment in computational resources.

Bayesian compressive sensing

1. Introduction

In research areas of physical hydrology and ecohydrology, computa-
tional models are used to improve the understanding and predictions of
watershed and ecosystem dynamics. Recent developments towards these
objectives include modeling at higher resolutions and investigating sen-
sitivities of hydrologic response to watershed properties and climate
forcings (e.g., Getirana et al., 2014; Guan et al., 2015; Kim and Ivanov,
2015; Krakauer et al., 2014; Ringeval et al., 2014; Rudorff et al., 2014).
Likewise, in climate assessment studies, resolving complex systems and
associated feedbacks requires the representation of relevant dynamics
at commensurate spatial and temporal scales (Abril et al., 2014; Brown
and Lugo, 1982; Cramer et al., 2004; Detwiler and Hall, 1988). Tackling
this complexity calls for models that rely on details of mechanistic inter-
actions and therefore demand large computational resources to provide
more robust assessments and predictions (Bisht et al., 2017).
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Estimates from computational models are affected by a number of
uncertainty sources that can be partitioned into reducible and irre-
ducible uncertainties (Beven, 2013; Beven et al., 2016; De Rocquigny,
2012). These uncertainties can be amplified due to the complexity and
nonlinearity of addressed problems. Therefore it is prudent to apply
a formal uncertainty quantification (UQ) machinery to evaluate them.
More broadly, one needs a holistic approach to UQ to seamlessly en-
capsulate all uncertainties of computer simulations within their specific
contexts. This is a valuable pursuit for many computational sciences, not
just hydrology, and as such, UQ has emerged in the last two decades as
an active research field, which has incorporated applied mathematics,
engineering, and physical sciences (e.g., Ghanem and Doostan, 2006;
Gilbert et al., 2016; Knio and Le Maitre, 2006; Najm, 2009; Sargsyan
et al., 2014; Xiu and Tartakovsky, 2004).

The overarching goal of UQ is to provide improvements in predic-
tions and understanding of key sources and magnitudes of uncertainty,
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which can inform decision making and control for management of natu-
ral and engineered systems (Ascough Ii et al., 2008; da Cruz et al., 1999;
Garcia et al., 2015; Morss et al., 2005). The quantification of uncertain-
ties related to a prediction of a physical system involves two associated
problems: (1) the estimation of model input variables (e.g., parameter-
ization constants, input forcings), addressed by comparing model sim-
ulations with available observational data or data products (i.e., syn-
thesized data and model estimates), and (2) the forward propagation of
uncertainty from input variables to output quantities of interest (Qols).

Quantifying uncertainties has long been a goal in hydrologic mod-
eling (Beven, 1993; Beven and Westerberg, 2011; Renard et al., 2010).
Inference of input parameters is common (e.g., Abbaspour et al., 2004;
McLaughlin and Townley, 1996; Vrugt et al., 2008), however, robust
quantification of uncertainties for complex models remains an area of
acute interest (Beven et al., 2015; Chen et al., 2011; Hall et al., 2014;
Krzysztofowicz, 2001). Firstly, traditional UQ methods carry computa-
tional burden that makes working with models of higher complexity
difficult. Secondly, simpler, lumped models in hydrology cannot pro-
vide information on variables that originate from physically rich solu-
tions; they therefore cannot take the full advantage of heterogeneous
(in terms of space-time coverage or target variables) observational data
sets that are typical of sparsely monitored watersheds. Many UQ studies
have used conceptual rainfall runoff models (e.g., Renard et al., 2010;
Vrugt et al., 2008) that permit fast computation and use of variations
of Markov Chain Monte Carlo (MCMC) sampling (Gilks et al., 1995;
Hastings, 1970) for UQ. Complex, integrated models of hydrology (e.g.,
Kollet et al., 2017; Maxwell et al., 2014), however, require much greater
computational resources making the (tens of thousands of) simulations
required via MCMC analysis computationally prohibitive. An approach
to reduce this computational burden is to construct a surrogate or meta-
model to approximate the behavior of the complex hydrologic model
(e.g., Elsheikh et al., 2014; Razavi et al., 2012).

Recent advancements in UQ applications have examples of compre-
hensive, fully integrated surface and subsurface flow models (Gilbert
et al., 2016; Miller et al., 2018). The methodologies used in these stud-
ies still required hundreds of simulations in order to accomplish rigorous
uncertainty assessments. In the case where wall-clock simulation time
for a larger-scale watershed is considerable (e.g., days to weeks), more
efficient methods are required.

This study offers an approach with a UQ framework applied to a
quasi-three-dimensional hydrologic model with surface and variably-
saturated subsurface flows, as well as vegetation biophysics that resolves
energy budgets. This framework allows the likelihood-based estimation
of input parameters using a diverse set of observations. To display the
abilities of the framework in a setting of real-world challenges, the study
domain is a small, sparsely monitored tropical catchment in the Amazon
rainforest.

Previously, large-scale studies of the Amazon have been undertaken
to understand the importance of how hydrology and carbon cycles inter-
act (e.g., Fan and Miguez-Macho, 2010; Lin et al., 2015; Miguez-Macho
and Fan, 2012a; Miguez-Macho and Fan, 2012b; Pokhrel et al., 2013).
Many of these studies have simulated the entire Amazon region, us-
ing grid cell discretization of @(10 [km]) (e.g., Beighley et al., 2009;
Coe et al., 2008; Yamazaki et al., 2011, or somewhat finer (Miguez-
Macho and Fan, 2012a; 2012b). However, as has been previously shown
(e.g., Miguez-Macho and Fan, 2012b), this discretization does not re-
solve the basic functional hydrologic units — hillslopes and, as a result,
the lateral mass fluxes from higher-elevation areas to the valleys of the
drainage network. Ignoring the connection between upstream recharge
areas and downstream discharge regions can have important conse-
quences on robustness of studies that depend on understanding space-
time variability of the hydrologic regime (Kim et al., 1999; Salvucci and
Entekhabi, 1995). Important ecohydrologic processes occur in these up-
stream, lower-order, headwater catchments (Richey et al., 2011; 2009).
Vital, smaller scale studies of these upland areas have been under-
taken (e.g., Cuartas et al., 2012; Fang et al., 2017; Fleischbein et al.,
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2006; Nobre et al., 2011), but no thorough uncertainty assessments
were performed. Limited sensitivity experiments performed carried out
in Fang et al. (2017), Vertessy and Elsenbeer (1999) were applied to
these catchments, however a sufficiently general framework of uncer-
tainty quantification and sensitivity analysis of hydrologic response of
watersheds with scarce data is still absent in the literature.

The objective of this study is to demonstrate a novel approach to
the representation and propagation of model input uncertainties by
implementing what has been termed non-intrusive spectral projection
Le Maitre and Knio (2010) to construct a surrogate model to emulate
the behavior of a complex hydrologic model. This methodology allows
us to model, at high spatial resolutions, the ecohydrologic interaction
between groundwater and surface water in a small upland catchment
in Amazonia. It also permits a general approach to account for uncer-
tainties in model parameters and initial conditions of the groundwater
surface. Specifically, this work focuses on quantifying uncertainty in the
soil parameterizations of the Asu research catchment (e.g., Cuartas et al.,
2012; Tomasella et al., 2008), focusing on the challenge of probabilistic
estimates of bulk soil properties in this sparsely-monitored watershed.

In the methodology section, we introduce (i) the mechanistic model
for this study: tRIBS-VEGGIE (TIN-based Real-time Integrated Basin Sim-
ulator—Vegetation Generator for Interactive Evolution), (ii) construc-
tion of a surrogate model for tRIBS-VEGGIE through polynomial chaos
expansions (PCEs), (iii) dimensionality reduction methods to more ef-
ficiently construct the PCE surrogate model, and (iv) accelerated infer-
ence of tRIBS-VEGGIE model parameterizations using PCE surrogates.
The case study of the Asu watershed demonstrates the construction of a
surrogate model representation and sensitivity analysis carried out with
it. This representation is then used to perform parametric inference,
highlighting the flexibility of the framework to identify uncertainties
and use diverse observational data for parameter estimation. The pa-
rameters obtained from inference are then used to compute hydrologic
output from tRIBS-VEGGIE. The benefits and limitations of this frame-
work are addressed in the end, with a focus on issues in hydrologic
modeling that benefit from an uncertainty quantification approach.

2. Methods and study design

This study provides a framework to derive uncertain model parame-
ters for a sparsely gauged catchment using a physically rich model tRIBS-
VEGGIE and its simplified mathematical representation, i.e., a surro-
gate model. The sparse availability of groundwater, soil properties, and
streamflow data in the watershed is recognized and accounted for in the
designs so that different data types can be used to inform the model’s
behavior. This section describes the data available in the catchment and
reports an approach for dealing with the lack of observational data avail-
able within the modeling and uncertainty quantification framework.

2.1. Simulation setup

The watershed domain is located approximately 76 [km] northwest
of Manaus, Brazil (Fig. 1a). The watershed is part of activities carried
under the Large-Scale Biosphere-Atmosphere (LBA) Experiment in Ama-
zonia managed by the National Institute of Amazonian Research (INPA).
This location was chosen due to the long record of available atmospheric
forcing data from a flux tower installed in 1999 as well as the avail-
ability of relevant data from streamflow gauges, soil moisture sensors,
and groundwater piezometers. This catchment is one of the most instru-
mented catchments in the Amazon Basin, surrounded by undisturbed
rainforest. This region is characterized by a tropical monsoonal climate,
with average annual rainfall of approximately 2400 [mm], average an-
nual temperature of 26 °C, and a wet season from November-May and
dry season from June-October (Cuartas et al., 2007; 2012; Nobre et al.,
2011).
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Fig. 1. The study location, labeled by the red star in (a), is approximately 76 [km] N-NW of Manaus, Brazil. Manaus lies at the confluence of the Negro and Solimé&es
rivers, and at this confluence the Amazon River begins. The vegetation types for the Asu watershed are shown in (b) as derived in Cuartas et al. (2012). The spatial

distribution of elevation within the watershed is illustrated in (c).

2.1.1. Representation of simulation domain

The simulation domain, the Asu watershed (Fig. 1b, c), represents a
zero- to third-order basin in Amazonia, previously detailed in (Cuartas
et al., 2007; 2012; Nobre et al., 2011). The total area is 12.4 [km?],
and the watershed has varying soil thickness, with a maximum be-
tween 40 and 50 [m] (Cuartas et al., 2012). To represent its subsur-
face domain, the layer thickness is fixed at 40 [m] using 35 irregu-
larly resolved mesh layers, increasing from 0.04 [m] for the surface
layer, to 2.5 [m] for the layers between 5 and 40 [m]. The thickness
of the layers increase following a geometric series such that, as the soil
depth increases, each layer is some fraction r thicker than the previ-
ous layer: Az;,; = Az;(1 +r), up to the depth z; =5 [m]. For this do-
main we chose r = 0.296, which allows for smaller soil layers near the
surface, and larger layers towards the bottom of the soil domain. This
discretization enables the capture of the dynamics of infiltration and
lateral water movement in the vadose zone, while maintaining compu-
tational efficiency. In the horizontal plane, the domain is represented
using 3 arc-second (90x90 [m]) spacing from the SRTM digital ele-
vation model (Jarvis et al., 2008), resulting in 1554 square Voronoi
cells. Overall, this gives 1,554 x 35 = 54,390 computational nodes in the
domain.

2.1.2. Soil type and land cover

Previous classification of soils for this site have been undertaken
in (Cuartas et al., 2012; Fang et al., 2017; Tomasella et al., 2008),
but focused on the near-surface soil properties at few locations that
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are hard to interpret in terms of their changes with depth (see also
Fang et al., 2017). The detailed soil classification such as the one
given in Cuartas et al. (2012) can be useful, but understanding effec-
tive, watershed-scale properties (i.e., that represent the catchment as a
whole) is frequently of more relevance, since the vast majority of basins
are ungauged and have little to no data on soil properties. In the con-
text of a sparsely gauged watershed, it can also be useful to know how
changes in model parameterizations within the watershed affect the sim-
ulation results of important hydrologic variables such as streamflow, wa-
ter table depth, evapotranspiration, etc. Recently, Fang et al. (2017) also
used a bulk soil properties case instead of the finer detailed properties
available in Cuartas et al. (2012). Consequently, while in no way re-
quired by the applied UQ framework (Section 2.3), this study assumes
that there is a single soil type in the watershed, whose effective physical
characteristics need to be estimated inversely. We represent soil prop-
erties with a high degree of uncertainty, taking into account the full
ranges of soil property values used in previous studies (Cuartas et al.,
2012; Fang et al., 2017).

Specifically, the uncertain parameterizations used for soil properties
are calculated using the pedotransfer function for Brazilian soils from
Tomasella et al. (2000). This study used multivariate linear regression
relying on texture (percentages of sand, silt, and clay), organic carbon,
moisture equivalent, and bulk density to fit a second-order polynomial
for the dependent variables of a, n, 6, and 6, of the van Genuchten soil
water retention and model (van Genuchten, 1980). Furthermore, the
study of Broedel et al. (2017) provides data on texture and bulk density
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Fig. 2. Atmospheric forcings used in simulations. (a): Monthly aggregated rain-
fall (grey bars) and air temperature (red line). (b) Monthly averaged vapor pres-
sure and wind speed. (¢): The diurnal cycle of longwave and shortwave radiation
estimated for the entire simulation period. The line of each represents the me-
dian, and the shading is between the 10- and 90-percent quantiles.

for the Asu catchment up to a depth of 14.3 [m], and the estimate for
moisture equivalent is given in Tomasella et al. (2000).

The two classes of vegetation present in the catchment are (a) terra
firme forest on the plateau and sloped areas, and (b) Campinarana for-
est (Ranzani, 1980) in the valleys and ecotone areas of the watershed
(Fig. 1b). The Type (a) forest has dense evergreen tropical vegetation
with heights of approximately 30 [m]. The Type (b) forest is less dense
with tree heights typically around 20-25 [m] (Cuartas et al., 2012). The
parameterizations for these vegetation types followed (Cuartas et al.,
2012).

2.1.3. Climate forcing

Climate forcing data are available at hourly intervals for 26,300 [h]
from January 1, 2003 to January 1, 2006. The region exhibits wet and
dry seasons spanning from approximately November-May and June-
October, respectively. Aggregated time series of data used for forcing
the model are shown in Fig. 2 (Restrepo-Coupe et al., 2013). These data
are spatially uniform across the watershed.

2.1.4. Initial and boundary conditions

For solving subsurface flow dynamics, the flux (Neumann) boundary
condition was specified at the surface (net rainfall) and bottom (zero
flux) of the domain, allowing for infiltration, runoff, and exfiltration
fluxes. For surface flow, an open boundary (in the form of free outfall)
was assumed at the downstream end (Kim et al., 2016a). The watershed
was delineated from the downstream end, therefore for all other bound-
aries of the watershed, the no-flux (solid slip wall) boundary condition
was specified.
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2.1.5. Quantities of interest

Within uncertainty quantification, a quantity of interest (Qol) is an
output from a numerical model whose response to uncertain inputs is
evaluated. Each QoI needs to be a scalar, but many Qols can be consid-
ered such that one can examine temporal or spatial responses. In practice
thousands of Qols can be defined, such as a time series of the model’s
output, or a single Qol may be selected if it is believed to carry signif-
icant information about the phenomenon being studied (e.g., the mean
water table depth). For this study, a mix of targeted quantities of inter-
est is selected to include domain-aggregated quantities of interest and
time series of both domain-aggregated and point-location Qols, which
are provided in Table 1. These Qols include: daily and monthly stream-
flow, daily streamflow in the 95th percentile, mean monthly soil water
content in the top 1 [m], evapotranspiration, mean monthly evapotran-
spiration, and depth to water table for six wells or group of wells. The
data available in the watershed means that some Qols can be used to
infer model parameters (Section 2.4). Those Qols that coincide with ob-
servations are used for parameter estimation (denoted in the “Inference”
column of Table 1), and those that are not are only used for estimation.

The number of scalars belonging to each group of Qols is given in
the fourth column of the Table 1, with a total of 499 Qols for this study.
Those Qols used in inference were constrained to periods where data
were available, e.g., the soil moisture data in the study area only exist
for January-October of 2005 (see Fig. 4) at a single soil pit location
adjacent to the flux tower at the study site (Restrepo-Coupe et al., 2013).
Therefore, the construction of a time series of monthly mean soil water
content leads to ten Qols. Although these soil moisture data are only
representative of the hydrologic behavior in the upland area near the
flux tower, it can still be included as a quantity of interest and used
in inference. Outlet streamflow was collected starting December 2004
and running through December 2005, however these data were only
sampled once daily, often with several days, or sometimes periods of
weeks between sampling. Due to the absence of continuous observed
streamflow, monthly aggregated mean streamflow was used as a Qol to
construct the surrogate model.

Water table data in the watershed were sampled between 2012-
2015, outside the time period for this study. Additionally, they were
sampled at irregular periods with days or weeks between readings.
While twelve well locations were sampled, not each location was sam-
pled during both the wet and dry season, and several wells were in close
proximity to each other. Due to these issues, wells that had at least ten
recordings in both the wet and dry seasons were kept for analysis. After
exclusion, the remaining ten wells were aggregated into groups based on
their location within computational cells in tRIBS-VEGGIE, i.e., if two
or more well locations were in the same computational cell of 90 [m] x
90 [m], the data from these locations were combined into a group for
analysis. After this aggregation, six well groups remained with water
table depths between 0.5 and 5 [m] (Fig. 4).

Even in the absence of data representative of the entire spatial and
temporal domain of the study, all (i.e., any) available data can be in-
cluded for analysis with the UQ framework. Their inclusion provides
data for inference (Section 2.4). A strength in this approach is that one
is not constrained to a single hydrologic process or specific data type
(such as the time series or mean quantities) when performing inference.
Any data available that can be represented in the hydrologic model are
suitable for use with the UQ machinery outlined in Section 2.3.

In Table 1, the distinction for the “dry” period for 7 S(ET,,) refers
to a month exhibiting a cumulative water deficit (CWD):

D . D
WD, = {Ozjzl P, —ET; if ¥ P,—ET;<0

. 1
if 72 P~ ET; >0 @

where P; and ET; are the daily accumulated daily precipitation and evap-
otranspiration, respectively, where j denotes the day in month i. The
time period for all reported Qols are the year 2005, and during this pe-
riod there was a negative CWD in August, September, and October of
2005 of —49.1, —80.6, and —87.5 [mm], respectively.
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Quantities of interest selected for this study. Those denoted 7 S(-) are time series of a spe-
cific Qol. The “Inference” column denotes whether that QoI was used in inference of model
parameters in Section 3.2, and N is the number of surrogates constructed for each Qol.

Qol Description Inference N
TS(Q) Daily time series of streamflow [m’ s7!] 365
T S(Qmontn) Monthly aggregated streamflow [m® s™'] Y 13
Qo5 Daily streamflows in the 95th percentile [m® s~!] 1
TSO) Mean monthly soil water content in top 1 [m] [mm® mm~—] Y 10
T S(ETyy) Evapotranspiration in dry periods [mm day~'] 92
T S(ET yon) Mean monthly evapotranspiration [mm day™'] Y 12
wT Depth to water table [m] Y 6

Table 2

Uncertain soil parameters X used in the workflow of Fig. 3. The frac-
tion of coarse and fine sand (F¢g, Fyg), required for the pedotrans-
fer function in Tomasella et al. (2000), is determined based on the
sampled values of F, and Fg, such that F.g = a,,(1 — F. — Fg) and
Frg = —a,)(1 — F- — F). U[A, B] denotes the uniform distribution
with support [A, B]. The anisotropy ration (a,) is defined for soil hy-
draulic conductivities and assumed uniform for the entire range of
wetness conditions.

Parameter Description Distribution
Fc Fraction of clay [%] U[45, 65]
Fg Fraction of silt [%] U[15, 25]
g Fraction of sand that is coarse [%] U[45, 55]
M, Moisture equivalent [g g~'] U[0.1, 0.25]
P Bulk density [g cm™!] U[1.1,1.2]
k, Saturated hydraulic conductivity [mm h~!'] U[2.0, 30]
a, Horizontal:vertical anisotropy ratio [-] U1, 2]

To construct computationally efficient, surrogate model represen-
tations for each Qol, one generates a set of training and validation
samples from the uncertain parameters X in Table 2. Each parameter
X; is scaled to a standard uniform variable for computational input,
& € [—1,1]. These are then run in a set of training simulations through
M to construct the computationally efficient surrogate as detailed in

Section 2.3.1. Finally, the performance of the surrogate is evaluated us-
ing the set of validation simulations.

2.2. Hydrologic model

The representation of the hydrologic response of a tropical catch-
ment strongly depends on reliable modeling of subsurface flows. tRIBS-
VEGGIE (Ivanov et al., 2008; 2010) emulates essential processes of wa-
ter and energy dynamics over the complex topography of a river basin.
Each computational element has a canopy layer that contains two “big-
leaves” (sunlit and shaded) representing the canopy. Above-ground pro-
cesses are coupled to a multi-layer soil model that computes soil mois-
ture, root water uptake, and heat transport using the one-dimensional
Richards equation (Hillel, 1980) and the heat diffusion equation, in the
direction normal to the element’s surface. Gravity-driven flow for the
unsaturated lateral exchange is assumed and the Dupuit-Forchheimer
approximation (Bear, 1979) for the saturated lateral exchange is im-
plemented. Subsurface flows are routed using the D-co flow routing al-
gorithm (Tarboton, 1997), and the flow directions change dynamically
for the saturated zone, leading to spatial dynamics that reproduce the
three-dimensional numerical solutions (Hopp et al., 2015). In this study,
vegetation dynamics are not simulated. Only the biochemical model of
photosynthesis and canopy stomatal behavior (Collatz et al., 1991; Far-
quhar et al., 1980; Leuning, 1990; 1995) is used to simulate the response
of latent heat flux to above- and below-ground conditions. The amount

| /\ Prior p(X)

4 )

Fig. 3. An overview of an uncertainty quantifica-
tion (UQ) workflow. The set of methods in each
box can be carried out on its own, or used within
the general UQ implementation scope illustrated
here. In the “Forward UQ” boxes, uncertain inputs
(X or p(X | D)) are propagated through a model.
The processes “Dimension Reduction” and “Likeli-
hood” are in ellipses, which represents that there
is a modeling decision to be made on the structure
of the surrogate model and likelihood function, re-
spectively. Box (A) is the process of constructing
a polynomial surrogate of the hydrologic model.
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Box (B) describes how hydrologic data D are used
to perform inverse inference on a set of model pa-
rameters X to obtain the parameter posterior dis-
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Prediction bilistic estimates of Qols.

Lo |

T = p(M(X)|D)

J

17



M.C. Dwelle, J. Kim and K. Sargsyan et al.

of leaf area as well as other structural characteristics of vegetation are
imposed as pre-determined model input (see Section 2.1.1).

2.2.1. Selection of uncertain inputs

One source for hydrologic uncertainties in the Amazon is the pres-
ence of deep soils which give rise to fluctuating groundwater across
climes and seasons (Cuartas et al., 2012; Miguez-Macho and Fan,
2012b). Due to difficulties in instrumenting and measuring groundwa-
ter, data are sparse: and even experimental catchments have few wells
drilled for measuring water table depth. The spatial distribution and ini-
tial states of groundwater can impact hydrologic models, such as spin
up performance of the model (e.g., Ajami et al., 2014; Seck et al., 2015)
or providing better estimates of the impacts on below-surface processes
to earth system models (Clark et al., 2015; Riley et al., 2011). Addition-
ally, accurate representation of groundwater processes at smaller scales
can provide valuable information to larger scale groundwater processes
and their impacts on earth system processes (Fan, 2015; Fan et al., 2013;
Krakauer et al., 2014; Riley and Shen, 2014).

The large soil column depths in the Amazon mean that the param-
eterizations of soil properties in a hydrologic model may have a large
effect on the simulated groundwater and vadose zone dynamics. Some
field or lab measurements may exist for the soil properties through core
testing or well pump tests, but these are limited to accessible areas
and may not necessarily represent bulk soil properties in the catchment
(Kowalsky et al., 2004; Russo and Bouton, 1992).

In this study, soil parameterizations are selected as uncertain in-
puts into tRIBS-VEGGIE. The soil properties that represent the uncertain
model parameters X are treated as random variables with distributions
provided in Table 2. To represent uncertainty in the soil water reten-
tion curve characteristics of the soil, the parameters for the pedotransfer
function (F, Fs, acs, M,, pp—see Section 2.1.2) are treated as uncertain.
Values for the saturated conductivity (k) and the anisotropy ratio (a,)
were not a part of this pedotransfer function, but represent the infiltra-
tion and lateral transport characteristics of the soil. These are therefore
also treated as uncertain with value ranges estimated using the studies
of Cuartas et al. (2012) and Fang et al. (2017).

2.2.2. Water table initializations given soil parameter uncertainty

Given that the soil parameterizations are treated as uncertain, wa-
ter table initializations that adequately represent the initial state of the
water table within the watershed are required. For example, a shallow
water table will result under a simulation with a soil type with a low hy-
draulic conductivity, and a deeper water table will result with a higher
hydraulic conductivity. Setting the water table to some fixed value for
the entire basin, then allowing steady flow conditions to develop for
a given soil type through forcing and draining requires computational
resources (e.g., Seck et al., 2015), which would be a detriment to the
desired efficiency from the UQ approach in this paper. Groundwater
well data for the watershed (e.g., Cuartas et al., 2012; Fang et al., 2017)
are available only for a few locations along a transect in the watershed.
This limitation, in both spatial and topographic spaces (e.g., elevation,
height above nearest drainage, slope, etc.) implies that the available
data are inadequate to create meaningful realizations of initial depth
to water table to be used in simulations. However, groundwater plays
an important role in seasonal flooding and ET dynamics of the Ama-
zon (Miguez-Macho and Fan, 2012a; 2012b). It must be accounted for
in any comprehensive hydrologic modeling and therefore some uncer-
tainty should be associated with the water table initialization.

In this work, uncertainty in the initial depth to water table is prop-
agated through parametric uncertainty using a subset of the uncertain
parameters in Table 2. Specifically, the initial water table depth is esti-
mated using an adapted mapping function from Sivapalan et al. (1987).
This method supposes that there is a steady state groundwater pro-
file throughout the basin and that the streamflow at initialization time
Q(t = 0) is derived from a constant, spatially uniform recharge to the
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groundwater. Furthermore, each location in the basin has a contribu-
tion g; defined by its position in the watershed drainage network:
a0

4G =" (@)

where g; is the saturated lateral flow, a, is the surface contributing area
of a computational cell, Q is the semi-steady state discharge at the basin
outlet, and A is the total basin area. This approach also assumes that
the water table is parallel to the soil surface, so the subsurface drainage
aligns with the topographical gradient. The water table depth for a single
computational cell is given by:

fa Q
AKya, W tan S |’

N==tmn [ @
where Nj,, is the initial local water table depth, K, is the surface satu-
rated hydraulic conductivity, f is the exponential decay parameter of K|,
with depth (Beven, 1982), a, is the soil anisotropy ratio (Ivanov et al.,
2004), W is the width of the saturated flow between cells, and S, is the
surface slope.

The decay parameter f is not used in the representation of the soil
hydraulic model in this work. However, the rest of the parameters of
Eq. (3) are known and therefore a value of f can be solved for a given
set of soil parameters and local watershed characteristics at any loca-
tion. Specifically, the water table depths Nj,,, are derived by taking the
temporal average of water table depths for each observation location
described in Section 2.1.5; the values of K, and a, are treated as un-
certain and obtained from sampling (see Table 2); and the rest of the
variables in Eq. (3) are derived from the basin topography. This leaves f
as the only unknown of the equation and therefore, f can be derived for
each soil type in the UQ framework through least squares optimization
to fit the data to the model in Eq. (3). The estimated value of f for each
soil type used in the UQ procedure enables the generation of an initial
spatial distribution of water table, specific to the soil parameterization
used in the simulation.

The initial water table fields generated through this process were
checked for their consistency and magnitudes, with the mean and vari-
ability in the initial water table fields given in Fig. S1. The use of the
outlined approach provides a realistic representation of the water table
depth and also offers an initialization tuned to the uncertain soil param-
eters.

2.3. Uncertainty quantification framework

tRIBS-VEGGIE has a large set of inputs that could be treated as un-
certain; these are closures for certain approximations to physical laws or
parameters describing a property of a medium, for example, important
for the movement of water in the domain (e.g., saturated conductivity
for different soil types present in the domain). In addition to these pa-
rameters, there are input fields that describe spatial or temporal states
of the simulation watershed. These parameters and fields represent the
assumptions made about the makeup and behavior of the domain. They
are inherently uncertain since it is not possible to have perfect infor-
mation about the system being modeled, and this is especially true for
natural systems. Therefore, instead of encoding assumptions into sin-
gle estimates about the system in question, we embrace the uncertainty
in our knowledge and attempt to quantify the consequences of this un-
certainty on simulation results. In this study, only parametric inputs to
tRIBS-VEGGIE will be treated as uncertain to focus on the application of
the UQ methodology, with a discussion of the use of spatial input fields
for UQ in Section 4,

2.3.1. Surrogate modeling

Let’s consider a model M (i.e., tRIBS-VEGGIE in this study) with
inputs x, where x = {x, x,,...,x)} (e.g., M =7 for this study). This
model is used to predict some output quantity of interest (Qol) y € R,
where j can be assumed to be a scalar quantity for now, but it can (and
will) be used for multiple Qols in this work. This model can be viewed
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as a simple function that maps uncertain inputs to an uncertain output:

¥ =Mx). @

We assume that M is a deterministic model that can scale in complexity
depending on the problem being solved (e.g., in its simplest form it could
be M(x) = Y x;). Where uncertainty quantification becomes interesting
is when M is complex, such as the numerical solutions to the governing
equations of fluid flow. It is not uncommon for investigations of fluid
flow to make single evaluations of the model represented by Eq. (4) and
treat it as a “black box,” i.e., the internal model dynamics are assumed
unknown and only a relationship between model inputs and outputs is
analyzed. The only requirement that is imposed on the model is that it
must be executable, i.e., provided its inputs x, the model produces its
output j.

If we believe that the model M adequately captures the dynamics
of the system being modeled, then we can also believe that the output
$ = M(x) we receive from the model gives an accurate prediction, when
the values of the input parameters/variables x are known. However, a
typical case for the majority of models of environmental systems is that
input values are uncertain, either due to natural variability in the system
(e.g., Kim et al., 2016b; Kim et al., 2016c¢) or inadequate knowledge of
parameter values, in general. In this case, it is appropriate to represent
these input parameters as uncertain, so they follow a random vector

X ~ n(x), 5)

where X = (X, X,, ..., X)) and #(x) is a vector of marginal (and there-
fore independent) probability density functions (PDF) describing the
variability in each of the M uncertain variables in X, which are known
and defined prior to modeling. Random input variables to the model
result in Qols that can also be treated as a random, i.e.:

Y = M(X). (6)

With uncertainty propagation, we are interested in determining the
probability distribution of Y. For example, if Y roughly follows a Gaus-
sian distribution, the mean and variance of Y could be considered as
estimates of the location and scale of the distribution. However, with
complex interactions occurring within the model M, the distribution
of Y could be multi-modal or have large skewness or kurtosis, making
conventional methods relying on the assumption of Gaussian behavior a
poor approximation. As an illustration, consider that if the model output
of interest has a similar variability as the prediction quantity Y in Fig. 3,
one cannot describe the output distribution through its first moments,
and the full characterization of the density function is required.

In order to investigate uncertainties and sensitivities of model out-
puts to its inputs, many model runs must be performed. This has tra-
ditionally been done using collocation methods — taking a sample
from the input distribution and identifying the output value resulting
from that sample — allowing for the construction of a probability den-
sity function of the model’s outputs. This is often done using Monte
Carlo methods, but the computational expense of Monte Carlo methods
quickly scales with the complexity of the model and is prohibitive when
multivariate problems are considered (Blatman and Sudret, 2011; Mar-
zouk and Xiu, 2009). An alternative approach is to approximate the fully
deterministic model with a polynomial expansion used to create a sur-
rogate model (also known as metamodel) (e.g., Miller et al., 2018; Najm,
2009; Ricciuto et al., 2018; Xiu and Tartakovsky, 2004). The approach
of metamodeling is used to offset the cost of forward, computationally
expensive deterministic simulations by approximating the latter with in-
expensive surrogate models. Polynomial chaos expansions (PCEs) repre-
sent one such metamodeling technique that provides an approximation
to a computer model through its spectral representation on a basis of
polynomial functions (Elsheikh et al., 2014; Najm, 2009).

Specifically, if we have a set of relationships as described in Eqs. (4)-
(6), we wish to approximate the deterministic model M with a suitable
polynomial expansion. The expansion relies on polynomial basis terms
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¥,,(X) that are orthogonal with respect to the distribution of X, meaning
ff:o ¥, (x)¥,(x)7z(x) dx = 0 for all m#n, where m and n denote indices of
a polynomial sequence and the integral represents the inner product of
polynomials with a weighting function z(x). The model output can then
be approximated with (Le Maitre and Knio, 2010; Xiu and Karniadakis,
2002):

Y=MX)~ Y ¥ (X).

aeNM

)

The uncertain input X will have an associated polynomial ¥,, where
a = (ay, @, ..., ay) is a multi-index introduced to simplify notation and
represents the ordering of terms in the polynomial. An illustration of the
multi-index and how it leads to the construction of a PCE is included in
the Supplementary Materials S.2.

One typically models the stochastic dimension M to be equal to the
number of uncertain variables X = {X, ..., X;,}. The parameters {c,}
are deterministic polynomial expansion coefficients, and {¥,(X)} are
multivariate polynomials orthogonal with respect to the random vari-
ables X. The multivariate polynomials {¥,(X)} in Eq. (7) are defined as
products of univariate polynomials (Le Maitre and Knio, 2010, App. C):

M

¥, (X) = H‘P (X).

i=1

®

Based on the marginal distributions of random variables in X, differ-
ent polynomial bases are used Xiu and Karniadakis (2002). Examples of
continuous orthogonal polynomials are provided in Table S1. The prop-
erty of orthogonality implies that the first two moments of uncertain
quantity of interest Y can be extracted analytically from the expansion
coefficients ¢, enabling very efficient moment evaluation. See S.2 for
an example.
In practice, the right hand side of Eq. (7) is a finite sum through a
truncated PCE (Lin and Karniadakis, 2009; Xiu and Karniadakis, 2002):
P
Y = MX)» MPE(X) = ) ¢;¥;(X),
j=0

®

where j is a count of the multiindices « with a predefined order; this
is discussed further in the Supplementary Materials. There are a num-
ber P + 1 polynomial basis functions. A typical truncation rule, a total
degree truncation of degree p, i.e. ZZ & < pleads to (see Xiu and Kar-
niadakis, 2002):
(M +p)!
M!p!
We select a finite number of terms by only including those with a to-
tal degree of polynomials from Eq. (8) smaller than a certain value p.
Once the selection of uncertain input variables and the polynomial basis
(Table S1) has been made, one can solve the polynomial chaos expan-
sion (Eq. (9)) non-intrusively, meaning that the pre- and post-processing
of model inputs and outputs takes place without having to make any
changes to the mechanistic model M. To do this, one treats the fully
deterministic model M as a heuristic/black-box model to inform the
metamodel MPC constructed through the polynomial chaos expansion.
The goal is to obtain the right hand side of Eq. (9), where ¢; are deter-
ministic weighting coefficients, and '¥; are the polynomial expansions of
the order associated with the index j for realized (sampled) values of X.
The values for the coefficients ¢ = {cg, ¢, ..., cp} allow the calculation
of the distribution of model output Y as it was induced from the model
input X. These coefficients are calculated by solving Eq. (9) through ei-
ther Gaussian quadrature (Smolyak, 1963), regression (Berveiller et al.,
2006; Blatman and Sudret, 2008; 2011; Tibshirani, 1996), or Bayesian
approaches (Doostan and Owhadi, 2011; Sargsyan et al., 2014). The
next step is to estimate the distribution of model output Y as informed
by the uncertain (but pre-defined through marginal PDFs) model input
X. The approximate response of Y is obtained through sampling, often
Markov-Chain Monte Carlo (MCMC) (Haario et al., 2001), because the
constructed surrogate model in Eq. (9) is much cheaper computationally

P+1= (10)
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than a complex original deterministic model M. The surrogate model
MPC is assessed using samples of the random vector X. These samples
can be taken via, e.g., random uniform, stratified, or Latin hypercube
sampling (McKay et al., 1979), where the latter is used in this work.

The above considerations result in the feasibility of calculating a
polynomial chaos expansion of the model response by using Monte-
Carlo or other sampling techniques (Eldred and Burkardt, 2009; Mar-
zouk and Xiu, 2009). In addition to the convenience of numerical ap-
proximation, the first two moments of the model output are obtained
from the coefficients of the constructed PCE such that the mean u
and variance o2 of a scalar model output can be calculated as in
Le Maitre and Knio (2010):

W€ = E[MPCX)] = ¢ an

(63)7€ = Var [MPEO0] = E[(MPCX0) - 7€)’ (12)

The previous section was undertaken with a single QoI Y. For mul-
tiple Qols Y = {Y,-},i =1,..., K, the preceding process is carried out for
each Qol, i.e., each Qol is a scalar-valued output of M which can be
represented by a surrogate. The remainder of the methodology assumes
a single QoI unless otherwise noted.

2.3.2. Bayesian compressive sensing for PCE construction

The limiting factor in the surrogate modeling approach to uncer-
tainty quantification is the amount of model simulations one can per-
form with the expensive deterministic model M in order to solve for
the coefficients in Eq. (9). There may be a large number M of uncertain
variables X to address in the model, which may result in the “curse of
dimensionality” (Caflisch, 1998; Davis and Rabinowitz, 2007), i.e., it is
not feasible to adequately sample the high-dimensional input variables
to construct the surrogate model MPC(X). Techniques that have been
used to address this issue include sparse regression techniques (e.g.,
Blatman and Sudret, 2008; Blatman and Sudret, 2011; Vidaurre et al.,
2013) and the Bayesian compressive sensing (BCS) approach for the PC
framework introduced by Sargsyan et al. (2014).

Bayesian compressive sensing (BCS) (Ji et al., 2008; Sargsyan et al.,
2014) aims to identify a sparse set of the coefficients ¢; to satisfy Eq. (9).
This is in contrast to other truncation methods used for PCEs such as
total degree, tensor product, or hyperbolic cross (see Sargsyan et al.,
2014), which treat each dimension (input variable) equally, or truncate
the expansion a priori. One would like to select a basis set containing
terms that convey meaningful contributions to model output Y, while
discarding terms that do not. For example, if one chooses uncertain in-
put variables that do not have a dependence relation to each other in the
hydrologic Qol, then one would expect basis terms that account for the
interaction of these variables to be zero. Including these terms provides
no further information or variance in the hydrologic process of inter-
est. With this motivation, this study uses Bayesian compressive sens-
ing (BCS) (Babacan et al., 2010; Ji et al., 2008; Sargsyan et al., 2014)
to find a sparse set of coefficients to satisfy Eq. (9). Details of this ap-
proach are left to Sargsyan et al. (2014) with a brief overview provided
in Appendix A.

The practical implications of employing the BCS technique is that it
can greatly reduce the size of the basis set required to construct the sur-
rogate model. Therefore, the technique limits the impact of the “curse
of dimensionality” stemming from treating a large number of parame-
ters as uncertain. The amount of this reduction is problem and model
dependent, but generally grows relative with the number of uncertain
input variables, due to the number of higher-order interaction terms that
arise. For example, a problem with 20 uncertain model parameters will
have a larger percentage reduction in required simulations of the model
M than a problem with five uncertain parameters.
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2.3.3. Sensitivity analysis

Once the surrogate model (9) has been constructed, the use of Monte
Carlo methods allows the computation of Sobol’ indices for global sen-
sitivity analysis of the model to its input uncertain variables (Saltelli,
2002; Sobol, 2001; Sudret, 2008). In the context of PCE surrogate mod-
els, estimates of Sobol’ indices is gained directly from the PC surrogate,
offering a convenient and computationally efficient way to determine
the relative importance of uncertain inputs to the variability of the quan-
tities of interest. Sobol’ indices are split into main and joint sensitivities,
where the former measures the fraction of variance in the output that
can be attributed to the uncertain model input variable X;:

_ Var[E[MEX) | X]]
T Var[MEC(x)

i 13)
where E and Var are operators for expectation and variance, respec-
tively. Similarly, the joint sensitivity measures the fraction of variance
in the output that can be explained by to the joint contribution of vari-
ables X; and X;, and is defined as

B Var [E[MFC(X) | X, X ]|

. -5
Y Var [MEC(X)

=S, (14)

An additional benefit of using PCE machinery for the surrogate model is
that the Sobol’ sensitivities in Equations (13) and (14) can be calculated
directly from the coefficients of the PCE using the relations from Egs.
(11) and (12), one can write the main and joint Sobol’ indices in terms
of the PCE coefficients. This yields an estimate for the main effect index
Smain a;
1
5 (e)
aeAMn (15)
PIPRACH

aeAa#0
where A™" = {@ € A : ; > 0, a,,; = 0}. Similarly, one can use the PCE
coefficients to account for the variance contribution between interac-
tions of X; and X; through the estimate of the total effect index S‘}"‘a]:

DA

aE.A;"“‘l
Y a(¥r)
acA,a#0

dmain
Si

(16)

&total _
Srotal =

where A" = {& € A : a; > 0}. The benefit of Egs. (15) and (16) is that,
once the PCE surrogate MPC is constructed, global sensitivity analy-
sis via Sobol’ indices can be conveniently gained by performing simple
arithmetic on the coefficients of the PCE surrogate.

For both the main and joint sensitivities, the posterior distribution of
the PC coefficients c are available. It is possible to calculate uncertainty
in the sensitivity indices by sampling from the posterior distribution
of ¢ to calculate Egs. (13)-(16), but this study will use only the mean
estimates of the coefficients for sensitivity calculations.

2.4. Parameter inference

Given a suite of results from a mechanistic model M and its con-
structed polynomial surrogate MPC, one can infer which values of un-
certain input parameters X are most likely to provide results that match
an observed quantity. An advantage of the approach outlined here is that
MPFC enables very efficient inverse analysis (Marzouk and Xiu, 2009).
More generally, inverse problems occur when there are related obser-
vations but they are not necessarily the ultimate quantity of interest.
Within hydrology, and particularly in sparsely monitored basins, there
is a long history of parameter identification through some form of in-
version (e.g., Kirchner, 2009; McLaughlin and Townley, 1996; Neuman
et al., 1980; Yeh, 1986). The use of surrogate models with dimension re-
duction as outlined in the previous sections provides a novel approach,
enabling faster computation, inversion, and the ability to solve the in-
verse problem on a larger set of uncertain model parameters.
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As an example, take u to be a vector of observed data (such as stream-
flow), and X = {X, X,, -, X, } be the vector of uncertain model input
parameters (such as soil hydraulic properties). We further assume that
the model gives an adequate approximation of the observed streamflow,
u ~ M(X). The use of Bayes’ rule allows for the computation of the pos-
terior parameter values conditioned on the observed data:

(X | w)  L(u | X)p(X), an

where p(X) is the prior distribution, L(u|X) is the likelihood function
which represents the probability of obtaining the data given the set of
parameters, and I1(X|u) is the posterior distribution for X, which repre-
sents the probability of having the parameter values given the observed
data.

To formulate a likelihood function, one must represent the discrep-
ancy between the model and observations: # = u — M. Assuming that
the components of # are independent and identically distributed ran-
dom variables with some marginal density p,, the likelihood function
can be written as

D
L | X) =[] pyus — Ma(X),
d=1

18)

where there are D conditions (e.g., time snapshots of measured stream-
flow, monthly evapotranspiration, etc.) that are being used for infer-
ence.

If one assumes, as in this study, that the errors #4 are independent
and normally distributed 74 ~ N(O, 62), Eq. (18) can be written as:

My(X))?

— L [Tew |-
<W> ety

where the logarithm of this likelihood function corresponds to the least-
squares form of the objective function often used for deterministic pa-
rameter estimation (Sargsyan et al., 2015).

If measurements are taken at different times for the observed data
series (e.g., streamflow), the variance in error may not be the same at
each sampling time and almost surely will not be equal due to temporal
variations of streamflow due to hydrologic seasonality. Therefore, it can
be valuable to introduce o2 as a scalar hyper parameter for the likeli-
hood (Sargsyan et al., 2015) and rewrite the joint posterior distribution
of Eq. (17) as

L(u| X)= , 19

202

M(X,0% |u) « P(X,)p().

[ s Md(X)) pX )

27[(72
(20)

The prior distribution for the model parameters p(X;) are based on
their a priori knowledge, e.g., that the parameters are uniform within a
range or normally distributed with some mean and variance. As the vari-
ance of the error noise, c> must be positive, we therefore use a Jeffreys
prior (Jaynes and Bretthorst, 2003):

1
=4 2
p(a)—{o

To infer values for uncertain model parameters, the posterior dis-
tribution from Eq. (20) needs to be sampled using methods such as
the Metropolis-Hastings MCMC (MacKay, 1998). Note that sampling
from posterior distribution requires repeated evaluation of the likeli-
hood, implying multiple evaluations of the model M. This tends to be
computationally expensive, and it is therefore expeditious to replace
the model M with its PCE surrogate MPC. In this way, the methodol-
ogy outlined previously in this section can be combined with those in
Sections 2.3.1 and 2.3.2 to create a computationally efficient, flexible
framework to infer uncertain parameter values for a complex, process-
based hydrologic model with multiple inputs applied to sparsely moni-
tored watershed. As in this study, the methodology is able to answer the
question of inverse inference: what is the likely distribution of the model’s

2
for o > 0 @1
otherwise.
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uncertain parameters given observed data? Importantly, it is also able to
address the question of: what are the possible outcomes for specific quanti-
ties of interest given the uncertainty in the model’s inputs?

2.5. Summary of UQ framework

Sections 2.3-2.4 presents a general framework of high flexibility to
infer model parameters for a hydrologic model in a computationally effi-
cient manner by using polynomial surrogates. Fig. 3 provides a diagram
outlining this framework. Generally, one uses a hydrologic model to con-
struct a polynomial surrogate model (Box A) that allows for fast compu-
tation of output quantities of interest from the hydrologic model. In the
case of many uncertain input parameters, dimensionality reduction tools
such as BCS are used to alleviate the burden of multi-dimensionality of
uncertain inputs for constructing the surrogate models. After a surrogate
has been constructed, one can then use it for accelerated, computation-
ally inexpensive inference of the uncertain parameters for the hydro-
logic model, provided that there are available data matching a quantity
of interest (Box B). Once the posterior distributions of the uncertain pa-
rameters have been calculated, they can then be used within a model
g(X). In theory, g(X) can be any model that uses the parameters X, but it
is prudent to use the posterior values in the same model used for infer-
ence. Within this study, g(X) is going to be tRIBS-VEGGIE (M) in order
to estimate other quantities of interest (Section 2.1.5).

A methodological step that accounts for model error is not shown in
Fig. 3 and therefore is not accounted for in this study. More specifically,
the likelihood function in Box B accounts for data error, but does not con-
sider the structural error of tRIBS-VEGGIE. Accounting for model error
is an active, ongoing area of research within UQ (e.g., Sargsyan et al.,
2018), but is beyond the scope of this study.

The strength of this approach in the context of uncertainty
quantification is the relationship between Qols—as discussed in
Section 2.3.1 and observational data. Any Qol can be used for inference,
as long as one has a preconstructed PCE surrogate for it. If one can re-
late observational data to the Qol being addressed through MFC, then
accelerated inference for diverse outputs (e.g., hydrologic, hydraulic,
ecologic, biogeochemical, etc.) is possible within complex hydrologic
models.

3. Results

This section provides an overview of the results of the construction of
the surrogate model from Section 2.3, uses the performance of the surro-
gate model against observations (Table 1, “Inference” column) to infer
parameter values, and relies on the latter to investigate the response of
hydrologic variables of interest within the catchment.

The data used to construct the surrogate and perform inference are
summarized in Fig. 4. The figure for discharge shows that the model
training simulations underestimate the aggregated observed discharge
with a small amount of uncertainty associated with the tRIBS-VEGGIE
simulations. Water table data are aggregated into groups based on ob-
served well locations (Section 2.1.5), although the simulations generally
underestimate water table depth, the uncertainty from the training sim-
ulations overlap with the observed data. Simulated evapotranspiration
falls within the uncertainty bounds of the observed data, with a slight
overestimation of ET during the wet season. Lastly, soil water content is
generally overestimated but the uncertainty in the training simulation
overlaps the observed data. Ideally, one would like the training simula-
tions to overlap the observed values used for inference, but this is not
the case for all Qols, especially those in the discharge and water table
groups. However, Section 3.2 shows how this can be overcome using the
inference techniques to better confirm tRIBS-VEGGIE with the observed
data.
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Fig. 4. Plots for observed and training simulations of dis-
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3.1. Surrogate construction

The polynomial chaos surrogates MPC were constructed as in
Eqg. (9) for the Qols in Table 1. To have a well-performing surrogate,
MPC should match the simulations of the mechanistic model tRIBS-
VEGGIE M. In Fig. 5, the absolute errors between the constructed surro-
gate (MFC) and training simulations of tRIBS-VEGGIE (M) are shown as
illustration. Simulation results used for training purposes of construct-
ing the surrogate are shown. Also shown are the results corresponding
to validation of the surrogate, i.e., a comparison of the forward tRIBS-
VEGGIE model simulations and outputs of the trained surrogate for the
same Qols.

A quantitative error measure of the surrogate accuracy is the relative
L,-norm as a representation of error, defined as:

1/2

; (22

N (M-,

P
NY
T M

where N; is the number of training (or validation) simulations per-
formed. The value used for Ny depends on the computational expense of
the model, and one would like to have at least 3—4 samples in each un-
certain parameter dimension, which in this study would result in at least
37 = 2,187 runs of tRIBS-VEGGIE. To summarize surrogate performance,
the Qols are aggregated into streamflow, water table depth, evapotran-
spiration, and soil moisture groups. These groups are used to illustrate
the relative surrogate error as a function of PC order in Fig. 6, which
shows that for training simulations, the decrease in L, ) is muted after
a PC order of 5 or 6.

We selected a surrogate order p = 6 for MPC as the optimal order
that leads to a sufficiently accurate surrogate without overfitting. Given
the seven uncertain input parameters (Table 2), Eq. (10) gives a required
P + 1 = 1,716 basis terms in MPC. Only 100 training tRIBS-VEGGIE sim-
ulations were used for BCS to construct the surrogate. An additional 10
simulations were used to validate that the constructed surrogate accu-
rately represented the Qols from tRIBS-VEGGIE. For both the training
and validation cases, simulation points were selected via Latin hyper-
cube sampling (McKay et al., 1979).

Qualitatively, Figs. 5 and 6 a both show that the surrogates performs
slightly better (i.e., lower values of L, . in Fig. 6) using training rather
than validation results. This is the desired behavior as it means that the
stopping criteria ¢ from the BCS method (Section 2.3.2, Appendix A) are

LZ,rel =
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chosen correctly. In the case where reducing ¢ improves the performance
(reduction in Ly ) at the training set, but at the expense of performance
at the validation set, overfitting has occurred in surrogate training. This
means that the surrogate is being trained to only capture the behavior
near the parameter samples at the training locations, and will not ac-
curately capture the behavior at a significant distance away from these
training samples. Evidence of overfitting would be that L, . decreases
with training data but remains the same or increases in the validation
data set. This is what occurs if higher-order terms in the expansion are
retained for most groups of Qols.

3.1.1. Sensitivity analysis

Using a constructed PCE model allows for efficient computation of
the main and joint effect sensitivity indices from Equations (13) and
(14). One can assess the sensitivity contributions for a single Qol, or for
uncertain parameters across multiple Qols.

For the first instance, the main and joint sensitivities of the uncertain
parameters for the Qols of water table group 5 and evapotranspiration
in April 2004 are shown in Fig. 6¢ and d, respectively. The main ef-
fect sensitivities — the fraction of variance described by changing each
uncertain parameter in isolation, averaged over the input distribution
of the other parameters — are given on the diagonal of these figures.
For the water table and evapotranspiration groups, one sees that kg,
is the dominant contributor in the variation of the Qols shown. This
displays that the model is qualitatively consistent, as a higher value of
saturated conductivity allows faster drainage from the soil and impacts
water available for vegetation transpiration in the case of Fig. 6d. The
lower diagonal on Fig. 6¢ and d represents the joint effect sensitivities,
e.g., in Fig. 6¢, terms in the expansion containing both k, and a, account
for approximately 9.5% of the variability seen in the fifth water table
group, while the equivalent contribution from terms containing both a,
and F is approximately 0.45%. Recalling from Egs. (15) and (16), these
sensitivities are computed directly from the PCE coefficients, so sparsity
or very low values in the lower diagonal (e.g., Fig. 6¢) represents zero
or near-zero values of the coefficients multiplying terms containing the
uncertain parameters. The implication of this sparsity is that interaction
between those parameters in the model have an insignificant impact on
the resultant value of the Qol.

These indices are computed for each Qol, and summarized sensitivi-
ties across all Qols are given in Fig. 6b. Based on the contributions to the
variances of the Qols, it is clear that kg, is the uncertain parameter with
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the largest impact on model sensitivity for the identified Qols. This con-
firms intuition since values of kg, control both infiltration excess runoff
as well as impact of lateral flows in the hydrologic system, which is not
included in the pedotransfer function of Tomasella et al. (2000). Those
parameters which are included in the pedotransfer function change the
shape of soil water retention curve. Therefore, sensitivity to these pa-
rameters (Fc, Fg, acs, M,, pp) indicates sensitivity of Qols to the water
retention characteristics of the soil.

3.2. Inference of soil properties

After the surrogate model is obtained, it is possible to calculate the
posterior distribution of model parameters through MCMC sampling,
as described in Section 2.4, by replacing M with MPC. This enables
faster computation and benefits hydrologic models that take more than
a few minutes to perform a single simulation. The marginal and pair-
wise marginal posterior distributions of the hydrologic parameters in
Table 2 are shown in Fig. 7. These marginal posterior distributions are
summarized in Table 3 by their moments, maximum a posteriori (MAP)
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estimate, i.e., the mode of the posterior distribution, and the coefficient
of variation (ratio of standard deviation to the mean value).

These posterior distributions provide information about the bulk
soil properties of the watershed, e.g., that the soil is mostly clay
and silt, with a saturated conductivity around 20 [mm/h], and an
accompanying anisotropy ratio of approximately 1.25. These val-
ues are in agreement with previous studies of the catchment (e.g.,
Cuartas et al., 2012; Tomasella et al., 2008), which found four different
soil types within the watershed. The clay contents for these four soil
types (below 1 [m]) ranged between 5 and 90% clay, where the soil
type with 80-90% clay accounting for 45% of the catchment, and the
soil type with 5% clay accounting for 30% of the catchment. Using a sin-
gle soil type in the catchment represents an aggregation of the physical
properties, whereby the posterior mean for clay content of 56% is rea-
sonable based on the observed properties. The other parameters of the
pedotransfer function fall within ranges given in Tomasella et al. (2000),
with additional qualitative agreement between the textural classifica-
tion shown for Manaus, located south of the case study Asu watershed.
The hydraulic properties of k, and a, in Cuartas et al. (2012) have sixteen
classifications based on landscape classes and depth, with the inferred
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Fig. 6. Plots of surrogate errors and sensitivities. The training and validation surrogate error is given in (a). Each color represents a different group of Qols, and
the marker shape differentiates between training and validation samples. A qualitative representation of sensitivities is given in (b). Here, the diameter of the nodes
around the circle are proportional to the main effect sensitivities, and the width and opacity of the lines connecting the nodes around the circle are proportional to
the joint sensitivities, where the main and joint sensitivities are calculated for each Qol, and the plot shows the average over all Qols. The lower triangular matrices
in (c) and (d) show the main and joint sensitivities for water table group 5 (c) and evapotranspiration in April, 2005 (d). The main effect sensitivities are on the
diagonal, and joint sensitivities between parameters are lower triangular, with a minimum sensitivity threshold of 1075.

values in this study indicating a soil type similar to the “plateau” or
“slope” landscape which are at least 15 [m] above the nearest stream
node, accounting for approximately 45% of the catchment area. Simi-
larly, Fang et al. (2017) contains hydraulic properties with a single land-
scape classification at four depths, where k; is approximately between
9 and 15 [mm/h] with q, = 1, which qualitatively agrees to the inferred
value of 15.8 [mm/h]. Additionally, one can assess the pairwise corre-
lations between parameters using Fig. 7, e.g., that the anisotropy ratio
(a,) is negatively correlated with saturated conductivity (k).

Posterior predictions of the Qols are demonstrated in Fig. 8. Here,
the joint posterior distribution from Fig. 7 is sampled in order to cal-
culate the Qol values using the surrogates constructed in Section 3.1. A
comparison can then be made between the posterior Qol values and the
observed data values. One sees that the posterior Qols for ET and soil
moisture match the data better than for discharge and depth to water
table. There are two main factors contributing to this: (1) the simu-
lated (using M) ET and soil moisture match the corresponding observa-
tions better than the simulated discharges and water table depths (see
Fig. 4), and (2) data noise for these Qols are much lower than those
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for discharge. Nonetheless, one may attempt to improve the skill, if it
is deemed unacceptably low. If one were interested in getting a better
fit to the data for a set of Qols, one could: (i) select a larger training set
to have more chances for the simulation results of M to match obser-
vations; (ii) perform inference using a subset of the observed data and
Qols, in an attempt to exclusively fit for that subset of data (e.g., see a
discussion below in relation to Fig. 9); or (iii) attempt to collect more
data to constrain the data noise. In the cases of options (ii) and (iii), the
PCE framework provides a benefit of not needing to rerun simulations of
the computationally-expensive M, but also allows fine-tuning of model
parameters for investigations into specific Qols.

Modeling factors impacting the difference between, and the uncer-
tainty of, simulated and observed quantities include spatial resolution
and soil property variability. The watershed used in this study has a
steep transition between the plateau and lowland areas (Chauvel et al.,
1987; Cuartas et al., 2012). The slopes caused by this transition, in con-
junction with the 90 [m] spatial discretization, end up creating a “res-
olution effect” for quantities such as ground water. The horizontal po-
sition of the water table well within the computational cell can impact
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Fig. 7. Posterior distributions of parameters used in inference. The vertical line in each of the diagonal is the estimated mean of the posterior distribution. Summary

statistics for the marginal distributions are given in Table 3.

Table 3
First two moments and MAP estimate of pa-
rameter posterior distributions.

X; i & MAP &/i [%]
F, 56.0 1.871 56.3 3.34

F 24.2 0.677 24.5 2.79
acs 0525  1.64E-3 0.525  0.31

M, 0.184 575E-3 0184 3.13

P 1.2 1.19E-3 1.2 9.9E-2
k, 15.8 0.645 15.9 4.09

q 1.45 6.11E-2  1.44 4.22

its agreement to observed water table depths. Additionally, the chan-
nel is represented within the model using the 90 [m] cells, and the lack
of an incised channel means that drainage from the saturated zone to
the channel is less efficient. All quantities also could have been affected
by the lack of spatial variability in soil properties. Four soil types are
reported for this watershed in Cuartas et al. (2012), with one represen-
tative soil type being used in this study. As a result, quantities that are
measured at specific locations (water table depth, evapotranspiration,
and soil moisture content) are likely affected by this modeling choice.
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The posterior Qols as a result of performing inference separately on
each group of Qols (i.e., only data of a given group are used to infer the
entire set of parameters in Table 2) are shown in Fig. 9. In this figure,
the data noise—o? in Eq. (20) was set as a hyper-parameter and was
also inferred because it provides a better fit of the mean prediction of
MPC to the data. This was done to illustrate an approach that can be un-
dertaken when data noise is large to the point of observations becoming
uninformative, e.g., in the case of discharge and ET data. In this case
a Jefferys prior (Eq. (21)) is used for o2, Performing inference on each
group of Qols is done at the expense that the parameter posterior distri-
butions become specific for each separate group of Qols. The posterior
distribution in Fig. 9 for the variables X; contain other important details
about the information that can be gained with inference. For example,
the marginal posterior distribution for the bulk density (pp) is very close
to the uniform prior distribution for most groups of Qols, since this pa-
rameter is not informed by the available data (except for soil moisture).

Whether one takes the approach shown in Fig. 8 or 9 will depend
on the questions being investigated. Generally, the Bayesian framework
prefers including all data to perform inference, as long as the data are
informative. In the case where data come from disparate sources, e.g.,
sporadic sampling of discharge vs. hourly evapotranspiration measure-
ments, one may want to separate the inference using these data, or incor-
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porate more detailed structure in the data noise representation among
groups of Qols to better inform their impact on inference.

3.3. Computing Qols from posteriors

With the framework presented in this study, one can construct a
surrogate model for quantities that have been observed (Section 3.1)
and use this surrogate to confirm the model’s behavior (Section 3.2).
This allows one to investigate a wide variety of model behaviors, such
as higher-frequency or aggregated quantities at coarser or finer tempo-
ral/spatial intervals. In this work, the parameter posterior distribution
from Fig. 9 resulted in a chain of 19,000 posterior values for each pa-
rameter in Table 2, which can be directly sampled and used as input to
a constructed surrogate (box (C) in Fig. 3).

From Table 1, the Qols held out from inference were: Qg5 — the
95th percentile of daily-averaged discharge during 2005 (representing
the probability that 18 days during the year have a mean daily discharge
larger than Qqs), 7.S(Q) — the daily time series of streamflow in 2005,

and 7 S(ET,,,) — daily evapotranspiration in months with cumulative
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water deficit as defined in Eq. (1). lllustration plots and sensitivity in-
formation for these Qols are given in Fig. 10. Note that the surrogates
for these higher-frequency and aggregated Qols were not constructed in
Section 3.1, but doing so is straightforward and follows the methodology
of Section 2.3.1.

These results are provided to illustrate the flexibility of the UQ
framework. The benefits of the approach include that one can inves-
tigate hydrologic response at higher temporal and spatial resolutions.
For example, one can see the pattern of discharge in Fig. 10 follows that
of Fig. 9, but unlike the original data sourced in Fig. 4, the illustration
provides daily estimates of discharge.

4. Discussion

Despite recent advances in computational power, simulation times
for complex, process-rich hydrologic models, even for low-order catch-
ments can be significant. When a large number of uncertain parame-
ters or, generally, uncertain model inputs are used, thousands of model
simulations may be required to perform robust, comprehensive un-
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certainty quantification, parameter inference, and sensitivity assess-
ment. Even reduced-order simulation approaches recently introduced to
earth-system and environmental modeling would be prone to computa-
tional issues. This study addresses this challenge and adopts an efficient
methodology to enable uncertainty quantification and stochastic simula-
tion with deterministic, process-based hydrologic models of higher com-
plexity. This work applies recent developments that combine reduced-
order modeling based on polynomial chaos expansions with Bayesian
compressive sensing to construct computationally cheap surrogate for-
mulations of the complex hydrologic model, while significantly reduc-
ing the number of required simulations. The surrogate representation
enables Bayesian inversion and calibration of uncertain model variables
for any model output that can be compared to observable data, even
when these are sporadic and have time-varying accuracy. Furthermore,
surrogate formulation can be used to propagate uncertainty through a
hydrologic model for any of the model’s outputs, enabling one to esti-
mate uncertainties of Qols that are difficult or too costly to measure.

A limitation of this study is the intentionally constrained nature of
possible sources of input uncertainty included in the analysis. As men-
tioned in Section 2.3, one can use both parametric and input spatial
field uncertainty within the UQ framework. The parametric type was
chosen to display a clear presentation of how uncertainty can be ad-
dressed using a complex model. This approach however does not limit
an extension of the analysis to other uncertain variables or spatial fields.
For instance, the incorporation of the uncertainty in spatial or temporal
fields is important to determine hydrologic response (Kim et al., 2019).
An approach to address this uncertainty within the framework includes
creating a stochastic model of the uncertain field using a Karhunen-
Loéve expansion (Karhunen, 1946; Zheng and Dai, 2017). This decom-
poses the uncertainty in the spatial field into a parametric stochastic
model, where the uncertain parameters can be included into X. Follow-
ing this philosophy, uncertain soil moisture, precipitation, or water table
fields could be propagated through a hydrologic model. This is beyond
the scope of the current study and will be addressed in future research.
Furthermore, there is evidence suggesting that multiple soil types are
present in the study domain (e.g., Cuartas et al., 2012; Tomasella et al.,
2008), while a single soil type was used in this work. This design choice
was undertaken for two reasons: i) to represent the more typical case
in hydrology of not having detailed soil data available, and ii) for an
unobscured, clean presentation of the methodology without extraneous
details that would arise from using multiple soil parameter sets. If finer
detail of soil representation were included, one would expect inference
and sensitivity to be weighted to the spatial coverage of soil types. For
example, the hydraulic conductivity of a soil type controlling infiltration
of precipitation into the subsurface would have a greater contribution to
the variation of streamflow if the soil type covered 50% rather than 10%
of the watershed. Another limitation is the current version of the model
used in this study, tRIBS-VEGGIE, has a limited capability to incorporate
vertical heterogeneity to the soil column.

The approach is flexible, and relies on a priori identification of input
variables of high impact before modeling. This means that although one
can change the Qols being investigated by working with the model’s
output, one cannot change the parameters that are treated as uncertain
without having to rerun training and validation simulations. Given the
reduction in computational expense due to the use of the Bayesian com-
pressive sensing methodology, it is possible to treat dozens of model
parameters as uncertain (Ricciuto et al., 2018; Sargsyan et al., 2014),
essentially assuming no a priori knowledge of impactful variables. How-
ever, in most cases in hydrology, it is beneficial to constrain the number
of uncertain parameters using expert knowledge about the governing
processes controlling Qols and the respective variables impacting these
processes. Alternatively, one can do an initial screening of model pa-
rameters with Bayesian compressive sensing. This will not produce an
accurate surrogate, but will yield accurate sensitivities, so the param-
eter space can be reduced and the procedure repeated to gain a more
accurate surrogate.
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Given the scale and complexity of environmental systems, one must
include uncertainty if one hopes to capture or discover complex hydro-
logic behavior. Uncertainties are ubiquitous within the field of hydrol-
ogy, e.g., a measurement of a basin-aggregated metric such as stream-
flow (Fig. 4) is subject to uncertainty within the catchment. Or there may
be interactions with model input variables, meaning that to best capture
reducible uncertainty about variables, description through probability
densities (Fig. 7) is preferred over scalar, deterministic values. In either
case, the presented approach offers a novel, sufficiently general way
forward to address uncertainties in hydrology, reducing or defining the
uncertainties of model inputs.

Generally, the framework outlined in this study provides flexibility
to address computationally expensive problems in hydrology (e.g. high-
resolution modeling of soil moisture (Ivanov et al., 2010; Krasnosel’skii
and Pokrovskii, 1989), representation of macroporosity (e.g., Beven and
Germann, 1982), etc.) by enabling high-fidelity simulations under un-
certainty. In the cases where these simulations are highly sensitive to
input parameters and forcings, the presented approach can be applied
to high-dimensional parameterized input X.

Relevant software tools have been developed in recent years, so that
the hydrologist need not also be an expert in uncertainty quantification
to apply these methodological approaches. Those that are freely avail-
able for research use and actively developed include the Uncertainty
Quantification Toolkit (UQTK) (Debusschere et al., 2017, version 3.0.4
used in this study), UQLab (Marelli and Sudret, 2014), and the MIT Un-
certainty Quantification Library (Parno et al., 2014).
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Appendix A. Bayesian compressive sensing for surrogate
construction

The BCS approach provides marginal posterior probability distribu-
tions of the vector of coefficients in the PCE model, ¢ = {¢j, ¢}, ....cp}.
Given available data D, Bayes’ formula (Jaynes and Bretthorst, 2003)
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for this situation can be written as

q(¢) «x Lp(e)p(c), (A1)

where g(c) is the posterior distribution, p(c) is the distribution repre-
senting prior information on the PC coefficient vector ¢, and Lp(c) is
the likelihood function, i.e., a measure of goodness-of-fit for the PCE
surrogate model MFC from Eq. (9) to the fully deterministic model M.
Assuming a Gaussian noise model with a standard deviation o represent-
ing a tolerance of the discrepancy between MPC and M for the likeli-
hood:

(M = MPC(X))°

= , (A2)

N
Lp(e) = Qao?) N P exp |- Y

k=1
where k =1,..., N correspond to realizations of the random input pa-
rameters X. Note that Eq. (A.2) implies independence of marginal like-
lihood functions.

The prior distribution p(c) represents prior information on the PC
coefficient vector ¢, the posterior distribution g(c) is the outcome of the
inference given the data set D. In the case of PCEs, the prior information
of ¢ should be flat, so no knowledge is assumed in the calculation of the
posterior distribution for c. A flat prior distribution is preferred because
the use of BCS motivates that many of the terms in ¢ will be very close
to zero, leading to a lower number of polynomial basis terms that give
valuable information for the expansion in Eq. (9).

Achieving a sparse posterior distribution is strongly supported by
sparse priors that give vanishing values for the coefficients unless there
is strong evidence to the contrary. As such, this study uses the sparse
Laplace prior Babacan et al. (2010), that assumes coefficient indepen-
dence:

ﬂ P+1 P
p(c>=<§> exp( =8 Ie;l ).
Jj=0

where f§ is a positive shape parameter that also controls the optimiza-
tion problem in Eq. (A.4). The vector ¢ that maximizes the posterior
distribution g(c) is given by the solution to

(A3)

argcmax (log Lp(e) — Bllelly), (A4)
which is the compressive sensing algorithm used in signal processing
(Candes et al., 2006), where the —f||c||; term is due to the [; norm-based
regularization approach in BCS. The regularization approach is used to
reduce overfitting while learning the coefficients c. Different approaches
would lead to different regularization terms in Eq. (A.4). Details of the
implementation of this approach are left to Sargsyan et al. (2014), but
one of the key points is the selection of stopping criterion. Specifically,
the algorithm iterates finding the basis terms ¢ until it reaches a stop-
ping criterion e comparing the relative change in the maximal value of
the evidence E — the integrated likelihood. The stopping criterion is
defined as (E" — E""1)/(E" — E') < ¢, where n is the iteration number.
As e decreases, more iterations are required, meaning that fewer basis
terms are retained in the final polynomial surrogate. A discussion on the
selection of ¢ is included in Section 3.1.

For example, in Sargsyan et al. (2014), the Community Land Model
with carbon-nitrogen cycling (Thornton et al., 2007) was modeled with
79 uncertain input parameters, where second, third, and fourth-order
polynomials lead to order 103, 10%, and 10° basis terms, respectively.
Using 10,000 model simulations, the BCS methodology demonstrated
an excellent performance skill for a very large uncertain parameter set
by avoiding the calculation of all these basis terms and selecting only
those relevant to the Qols. During testing, 17 model simulations failed
resulting in 9983 simulations used for training the surrogate model. This
displays another advantage of the BCS method, as failed simulations do
not limit the solution of the coefficients as it would in quadrature meth-
ods. The methodology also allows additional simulations to be added
if an initial simulation set is determined to be insufficient to train the
surrogate model.
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