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Abstract

Analyzing the geometric and semantic properties of 3D
point clouds through the deep networks is still challenging
due to the irregularity and sparsity of samplings of their ge-
ometric structures. This paper presents a new method to
define and compute convolution directly on 3D point clouds
by the proposed annular convolution. This new convolu-
tion operator can better capture the local neighborhood
geometry of each point by specifying the (regular and di-
lated) ring-shaped structures and directions in the compu-
tation. It can adapt to the geometric variability and scal-
ability at the signal processing level. We apply it to the
developed hierarchical neural networks for object classi-
fication, part segmentation, and semantic segmentation in
large-scale scenes. The extensive experiments and com-
parisons demonstrate that our approach outperforms the
state-of-the-art methods on a variety of standard bench-
mark datasets (e.g., ModelNet10, ModelNet40, ShapeNet-
part, S3DIS, and ScanNet).

1. Introduction

Nowadays, the ability to understand and analyze 3D
data is becoming increasingly important in computer vision
and computer graphics communities. During the past few
years, the researchers have applied deep learning methods
to analyze 3D objects inspired by the successes of these
techniques in 2D images and 1D texts. Traditional low-
level handcrafted shape descriptors suffer from not being
able to learn the discriminative and sufficient features from
3D shapes [1]. Recently, deep learning techniques have
been applied to extract hierarchical and effective informa-
tion from 3D shape features captured by low-level descrip-
tors [20, 6]. 3D deep learning methods are widely used in
shape classification, segmentation, and recognition, etc. But
all these methods are still constrained by the representation
power of the shape descriptors.

One of the main challenges to directly apply deep learn-
ing methods to 3D data is that 3D objects can be represented
in different formats, i.e., regular / structured representation
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Figure 1: The proposed annularly convolutional neural networks
(A-CNN) model on point clouds to perform classification, part
segmentation, and semantic segmentation tasks.

(e.g., multi-view images and volumes), and irregular / un-
structured representation (e.g., point clouds and meshes).
There are extensive approaches based on regular / structured
representation, such as multi-view convolutional neural net-
works (CNNs) [32, 26, 10] and 3D volumetric / grid CNN
methods and its variants [38, 26, 28, 35, 36, 16, 9]. These
methods can be conveniently developed and implemented
in 3D data structure, but they easily suffer from the heavy
computation and large memory expense. So it is better to
define the deep learning computations based on 3D shapes
directly, i.e., irregular / unstructured representation, such as
point cloud based methods [25, 27, 13, 30, 3, 18, 19, 33, 17,
42, 34, 8, 40]. However, defining the convolution on the ir-
regular / unstructured representation of 3D objects is not an
easy task. Very few methods on point clouds have defined
an effective and efficient convolution on each point. Mean-
while, several approaches have been proposed to develop
convolutional networks on 2D manifolds [21, 4, 23, 39].
Their representations (e.g., 3D surface meshes) have point
positions as well as connectivities, which makes it relatively
easier to define the convolution operator on them.

In this work, we present a new method to define and
compute convolutions directly on 3D point clouds effec-
tively and efficiently by the proposed annular convolu-
tions. This new convolution operator can better capture lo-
cal neighborhood geometry of each point by specifying the
(regular and dilated) ring-shaped structures and directions
in the computation. It can adapt to the geometric variabil-



ity and scalability at the signal processing level. Then, we
apply it along with the developed hierarchical neural net-
works to object classification, part segmentation, and se-
mantic segmentation in large-scale scene as shown in Fig. 1.
The key contributions of our work are as follows:

e We propose a new approach to define convolutions on
point cloud. The proposed annular convolutions can
define arbitrary kernel sizes on each local ring-shaped
region, and help to capture better geometric represen-
tations of 3D shapes;

e We propose a new multi-level hierarchical method
based on dilated rings, which leads to better captur-
ing and abstracting shape geometric details. The new
dilated strategy on point clouds benefits our proposed
closed-loop convolutions and poolings;

e Our proposed network models present new state-of-
the-art performance on object classification, part seg-
mentation, and semantic segmentation of large-scale
scenes using a variety of standard benchmark datasets.

2. Related Work

Due to the scope of our work, we focus only on recently
related deep learning methods, which are proposed on dif-
ferent 3D shape representations.

Volumetric Methods. One traditional way to analyze a
3D shape is to convert it into the regular volumetric occu-
pancy grid and then apply 3D CNNs [38, 26]. The major
limitation of these approaches is that 3D convolutions are
more expensive in computations than 2D cases. In order
to make the computation affordable, the volume grid size
is usually in a low resolution. However, lower resolution
means loosing some shape geometric information, espe-
cially in analyzing large-scale 3D shapes / scenes. To over-
come these problems, octree-based methods [28, 35, 36]
have been proposed to allow applying 3D CNNs on higher
/ adaptive resolution grids. PointGrid [16] is a 3D CNN
that incorporates a constant number of points within each
grid cell and allows it to learn better local geometric de-
tails. Similarly, Hua et al. [9] presented a 3D convolution
operator based on a uniform grid kernel for semantic seg-
mentation and object recognition on point clouds.

Point Cloud based Methods. PointNet [25] is the first
attempt of applying deep learning directly on point clouds.
PointNet model is invariant to the order of points, but it
considers each point independently without including lo-
cal region information. PointNet++ [27] is a hierarchical
extension of PointNet model and learns local structures of
point clouds at different scales. But [27] still considers ev-
ery point in its local region independently. In our work, we
address the aforementioned issues by defining the convolu-
tion operator that learns the relationship between neighbor-
ing points in a local region, which helps to better capture
the local geometric properties of the 3D object.

Klokov et al. [13] proposed a new deep learning archi-
tecture called Kd-networks, which uses kd-tree structure
to construct a computational graph on point clouds. KC-
Net [30] improves PointNet model by considering the lo-
cal neighborhood information. It defines a set of learn-
able point-set kernels for local neighboring points and
presents a pooling method based on a nearest-neighbor
graph. PCNN [3] is another method to apply convolu-
tional neural networks to point clouds by defining extension
and restriction operators, and mapping point cloud func-
tions to volumetric functions. SO-Net [17] is a permutation
invariant network that utilizes spatial distribution of point
clouds by building a self-organizing map. There are also
some spectral convolution methods on point clouds, such
as SyncSpecCNN [42] and spectral graph convolution [34].
Point2Sequence [19] learns the correlation of different areas
in a local region by using attention mechanism, but it does
not propose a convolution on point clouds. PointCNN [18]
is a different method that proposes to transform neighboring
points to the canonical order and then apply convolution.

Recently, there are several approaches proposed to pro-
cess and analyze large-scale point clouds from indoor and
outdoor environments. Engelmann et al. [8] extended Point-
Net model to exploit the large-scale spatial context. Ye et
al. [40] proposed a pointwise pyramid pooling to aggregate
features at local neighborhoods as well as two-directional
hierarchical recurrent neural networks (RNN5) to learn spa-
tial contexts. However, these methods do not define convo-
lutions on large-scale point clouds to learn geometric fea-
tures in the local neighborhoods. TangentConv [33] is an-
other method that defines the convolution on point clouds by
projecting the neighboring points on tangent planes and ap-
plying 2D convolutions on them. The orientation of the tan-
gent image is estimated according to the local point / shape
curvature, but as we know the curvature computation on the
local region of the point clouds is not stable and not robust
(see the discussion in Sec. 3.4), which makes it orientation-
dependent. Instead, our method proposes an annular convo-
lution, which is invariant to the orientations of local patches.
Also, ours does not require additional input features while
theirs needs such features (e.g., depth, height, etc.).

Mesh based Methods. Besides point cloud based meth-
ods, several approaches have been proposed to develop
convolutional networks on 3D meshes for shape analy-
sis. Geodesic CNN [21] is an extension of the Euclidean
CNNs to non-Euclidean domains and is based on a lo-
cal geodesic system of polar coordinates to extract local
patches. Anisotropic CNN [4] is another generalization of
Euclidean CNNs to non-Euclidean domains, where classi-
cal convolutions are replaced by projections over a set of
oriented anisotropic diffusion kernels. Mixture Model Net-
works (MoNet) [23] generalizes deep learning methods to
non-Euclidean domains (graphs and manifolds) by com-



bining previous methods, e.g., classical Euclidean CNN,
Geodesic CNN, and Anisotropic CNN. MoNet proposes a
new type of kernel in parametric construction. Direction-
ally Convolutional Networks (DCN) [39] applies convolu-
tion operation on the triangular mesh of 3D shapes to ad-
dress part segmentation problem by combining local and
global features. Lastly, Surface Networks [14] propose up-
grades to Graph Neural Networks to leverage extrinsic dif-
ferential geometry properties of 3D surfaces for increasing
their modeling power.

3. Method

In this work, we propose a new end-to-end frame-
work named as annularly convolutional neural networks (A-
CNN) that leverages the neighborhood information to bet-
ter capture local geometric features of 3D point clouds. In
this section, we introduce main technique components of
the A-CNN model on point clouds that include: regular and
dilated rings, constraint-based k-nearest neighbors (k-NN)
search, ordering neighbors, annular convolution, and pool-
ing on rings.

3.1. Regular and Dilated Rings on Point Clouds

To extract local spatial context of the 3D shape, Point-
Net++ [27] proposes multi-scale architecture. The major
limitation of this approach is that multiple scaled regions
may have overlaps (i.e., same neighboring points could be
duplicately included in different scaled regions), which re-
duces the performance of the computational architecture.
Overlapped points at different scales lead to redundant in-
formation at the local region, which limits a network to
learn more discriminative features.

In order to address the above issue, our proposed frame-
work is aimed to leverage a neighborhood at different scales
more wisely. We propose two ring-based schemes, i.e., reg-
ular rings and dilated rings. Comparing to multi-scale strat-
egy, the ring-based structure does not have overlaps (no du-
plicated neighboring points) at the query point’s neighbor-
hood, so that each ring contains its own unique points, as
illustrated in Sec. 1 of Supplementary Material.

The difference between regular rings and dilated rings is
that dilated rings have empty space between rings. The idea
of proposed dilated rings is inspired by dilated convolutions
on image processing [43], which benefits from aggregat-
ing multi-scale contextual information. Although each ring
may define the same number of computation / operation pa-
rameters (e.g., number of neighboring points), the coverage
area of each ring is different (i.e., dilated rings will have
larger coverage than the regular rings) as depicted in Fig. 2.
Regular rings can be considered as dilated rings with the
dilation factor equal to 0.

The proposed regular rings and dilated rings will con-
tribute to neighboring point search, convolution, and pool-

(a) Regular Rings

(b) Dilated Rings

Figure 2: The comparison of the regular and dilated ring-shaped
structures (such as with two rings). We can see that comparing two
sectors (e.g., black solid points) in the regular and dilated rings,
the dilated rings cover larger space by using the same number of
neighbors as in regular rings. Moreover, each ring contains unique
neighboring points comparing to the other ring.

ing in the follow-up processes. First, for k-NN algorithm,
we constrain search areas in the local ring-shaped neigh-
borhood to ensure no overlap. Second, the convolutions de-
fined on rings cover larger areas with the same kernel sizes
without increasing the number of convolution parameters.
Third, the regular / dilated ring architectures will help to
aggregate more discriminative features after applying max-
pooling at each ring of the local region. We will discuss
them in more detail in the following subsections.

To justify the aforementioned statements, we will com-
pare multi-scale approach with our proposed multi-ring
scheme on object classification task in the ablation study
(Sec. 5.4). The results show that ring-based structure cap-
tures better local geometric features than previous multi-
scale method, since it achieves higher accuracy.

3.2. Constraint-based K-NN Search

In the original PointNet++ model, the ball query algo-
rithm returns the first K neighbors found inside a search ball
specified by a radius R and query point q;, so that it can-
not guarantee that the closest points will always be found.
However, our proposed k-NN search algorithm guarantees
returning closest points inside the searching area by using
the Euclidean metric. Each ring is defined by two parame-
ters: the inner radius R;,, ., and the outer radius R,y te, (in
Fig. 2); therefore, the constraint-based k-NN search ensures
that the closest and unique points will be found in each ring.

3.3. Ordering Neighbors

In order to learn relationships between neighboring
points in a local regions, we need first to order points in a
clockwise / counterclockwise manner and then apply annu-
lar convolutions. Our proposed ordering operator consists
of two main steps: projection and ordering. The importance
of the projection before ordering is that the dot product has
its restriction in ordering points. By projecting points on



a tangent plane at a query point q;, we effectively order
neighbors in clockwise / counterclockwise direction by tak-
ing use of cross product and dot product together. The de-
tailed explanations of normal estimation, orthogonal pro-
jection, and ordering are given in the following subsections.

3.3.1 Normal Estimation on Point Clouds

Normal is an important geometric property of a 3D shape.
We use it as a tool for projecting and ordering neighboring
points at a local domain. The simplest normal estimation
method approximates the normal n; at the given point q; by
calculating the normal of the local tangent plane 7; at that
point, which becomes a least-square plane fitting estimation
problem [29]. To calculate normal n;, one needs to compute
eigenvalues and eigenvectors of the covariance matrix C as:

1 & .
C= }jz:;(xj —qi) (x5 —aqi), "

C-v, =\, vyv€e€{0,1,2}

where K is the number of neighboring points x;s around
query point q; (e.g., K = 10 in our experiments), A, and
v, are the th eigenvalue and eigenvector of the covari-
ance matrix C, respectively. The covariance matrix C is
symmetric and positive semi-definite. The eigenvectors v,
form an orthogonal frame, in respect to the local tangent
plane 7;. The eigenvector v that corresponds to the small-
est eigenvalue )\ is the estimated normal n,.

3.3.2 Orthogonal Projection

After extracting neighbors x;,j € {1,..., K} for a query
point q;, we calculate projections p;s of these points on a
tangent plane 7; described by a unit normal n; (estimated
in Sec. 3.3.1) as:

p; :Xj_((xj_qi)‘ni)'nia JE {]waK} (2
Fig. 3 (a) illustrates the orthogonal projection of neighbor-
ing points on a ring.

3.3.3 Counterclockwise Ordering

Firstly, we use the geometric definition of the dot product to
compute the angle between two vectors c (i.e., starts from
the query point q; and connects with a randomly starting
point, such as p;) and p; — q; (i.e., starts from the query
point q; and connects with other neighboring points p;):

C'(pj —q;)

—— 3)
[lellllp; — aill

cos(Op,;) =

We know that cos(fp;) lies in [—1,1], which corre-
sponds to angles between [0°,180°]. In order to sort
the neighboring points around the query point between
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Figure 3: The illustration of the proposed annular convolution on
a ring. (a) Projection: q; is a query point. After applying the
constraint-based k-NN search, neighboring points X = {x;|j =
1,..., K} are extracted on a ring. Given the normal n; at query
point q;, we project the searched points on the tangent plane 7;.
(b) Counterclockwise Ordering: After projection, we randomly
pick a starting point as our reference direction c and order points
in counterclockwise. It is worth mentioning that we order origi-
nal points [x1, X2, ..., Xj, ..., Xx | based on their projections. (c)
Annular Convolution: Depending on the kernel size, we copy sev-
eral original points from the beginning position and concatenate
them to the end of the ordered points. Finally, we apply annular
convolution with the given kernel.

[0°,360°), we must to decide which semicircle the consid-
ered point p; belongs to as follows:
signp, = (¢ X (pj —q;)) - ng, 4

where signp, > 01is 6, € [0°,180°], and signy, < 0is

0p, € (180°,360°).
Then, we can recompute the cosine value of the angle as:
—cos(0p,;) — 2

cos(0p,)

signp; <0

signpj > 0. ©)

Now the values of the angles lie in (—3, 1], which maps
angles between [0°, 360°).

Finally, we sort neighboring points x; by descending the
value of /. to obtain the counterclockwise order. Fig. 3
(b) illustrates the process of ordering in a local neighbor-
hood. The neighboring points can be ordered in the clock-
wise manner, if we sort neighboring points x; by ascending
the value of /..

Our experiments show in Sec. 5.4 that ordering points
in the local regions is an important step in our framework
and our model achieves better classification accuracy with
ordered points than without ordering them.

3.4. Annular Convolution on Rings

Through the previous computation, we have the ordered
neighbors represented as an array [Xp, X, ..., Xx|. In or-



der to develop the annular convolution, we need to loop
the array of neighbors with respect to the size of the kernel
(e.g., 1 x 3,1 x b, ..) on each ring. For example, if the
convolutional kernel size is 1 x 3, we need to take the first
two neighbors and concatenate them with the ending ele-
ments in the original array to construct a new circular array
[X1,X2, ..., X, X1, X2]. Then, we can perform the standard
convolutions on this array as shown in Fig. 3 (c).

There are some nice properties of the proposed annu-
lar convolutions as follows: (1) The annular convolution is
invariant to the orientation of the local patch. That is be-
cause the neighbors are organized and ordered in a closed
loop in each ring by concatenating the beginning with the
end of the neighboring points’ sequence. Therefore, we
can order neighbors based on any random starting position,
which does not negatively affect the convolution results.
Compared with some previous convolutions defined on 3D
shapes [4, 39, 33], they all need to compute the real princi-
pal curvature direction as the reference direction to define
the local patch operator, which is not robust and cumber-
some. In particular, 3D shapes have large areas of flat and
spherical regions, where the curvature directions are arbi-
trary. (2) As we know, in reality, the normal direction flip-
ping issues are widely existing in point clouds, especially
the large-scale scene datasets. Under the annular convolu-
tion strategy, no matter the neighboring points are ordered
in clockwise or counterclockwise manner, the results are the
same. (3) Another advantage of annular convolution is that
we can define an arbitrary kernel size, instead of just 1 x 1
kernels [25, 27]. Therefore, the annular convolution can
provide the ability to learn the relationship between ordered
points inside each ring as shown in Fig. 3 (c).

Annular convolutions can be applied on both regular and
dilated rings. By applying annular convolutions with the
same kernel size on different rings, we can cover and con-
volve larger areas by using the dilated structure, which helps
us to learn larger spatial contextual information in the local
regions. The importance of annular convolutions is shown
in the ablation study in Sec. 5.4.

3.5. Pooling on Rings

After applying a set of annular convolutions sequentially,
the resulting convolved features encode information about
its closest neighbors in each ring as well as spatial remote-
ness from a query point. Then we aggregate the convolved
features across all neighbors on each ring separately. We
apply the max-pooling strategy in our framework. Our pro-
posed ring-based scheme allows us to aggregate more dis-
criminative features. The extracted max-pooled features
contain the encoded information about neighbors and the re-
lationship between them in the local region, unlike the pool-
ing scheme in PointNet++ [27], where each neighbor is con-
sidered independently from its neighbors. In our pooling
process, the non-overlapped regions (rings) will aggregate

different types of features in each ring, which can uniquely
describe each local region (ring) around the query point.
The multi-scale approach in PointNet++ does not guaran-
tee this and might aggregate the same features at different
scales, which is redundant information for a network. The
(regular and dilated) ring-based scheme helps to avoid ex-
tracting duplicate information but rather promotes extract-
ing multi-level information from different regions (rings).
This provides a network with more diverse features to learn
from. After aggregating features at different rings, we con-
catenate and feed them to another abstract layer to further
learn hierarchical features.

4. A-CNN Architecture

Our proposed A-CNN model follows a design where the
hierarchical structure is composed of a set of abstract layers.
Each abstract layer consists of several operations performed
sequentially and produces a subset of input points with
newly learned features. Firstly, we subsample points by
using Farthest Point Sampling (FPS) algorithm [22] to ex-
tract centroids randomly distributed on the surface of each
object. Secondly, our constraint-based k-NN extracts neigh-
bors of a centroid for each local region (i.e., regular / dilated
rings) and then we order neighbors in a counterclockwise
manner using projection. Finally, we apply sequentially a
set of annular convolutions on the ordered points and max-
pool features across neighbors to produce new feature vec-
tors, which uniquely describe each local region.

Given the point clouds of 3D shapes, our proposed end-
to-end network is able to classify and segment the objects.
In the following, we discuss the classification and segmen-
tation network architectures on 3D point clouds.

4.1. Classification Network

The classification network is illustrated at the top of
Fig. 4. It consists of two major parts: encoder and clas-
sification. The encoder extracts features from each ring in-
dependently inside every layer and concatenates them at the
end to process further to extract high-level features. The
proposed architecture includes both regular rings and di-
lated rings. We end up using two rings per layer, because
it gives us pretty good experimental results as shown in the
Sec. 5. It can be easily extended to more than two rings per
layer, if necessary.

We use regular rings in the first layer and dilated rings in
the second layer in the encoder. Annular convolutions with
the kernel sizes 1 x 3 and stride 1 are applied in the first two
layers, followed by a batch normalization [12] (BN) and a
rectified linear unit [24] (ReLU). Different rings of the same
query point are processed in parallel. Then, the aggregated
features from each ring concatenate together to propagate to
the next layer. The last layer in the encoder performs con-
volutions with kernel sizes 1 x 1 followed by BN and ReLU
layers, where only spatial positions of the sampled points
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Figure 4: The architecture of A-CNN. Both classification and segmentation networks share encoder part for the feature extraction. Normals
are used only to determine the order of neighboring points in the local regions (dashed arrows mean no backpropagation during training)
and not used as additional features, unless it is mentioned explicitly in the experiments. N, N1, No (where N > N; > Ny) are the
numbers of points as input, after the first and second layer, respectively. K and K’ are the unordered and ordered points inside the local
rings, respectively. c is the number of classification classes. m is the number of segmentation classes. “FPS” stands for Farthest Point

Sampling algorithm. “mlp” stands for multi-layer perceptron. convixs(Fi, Fa, ..

., F%,) stands for annular convolutions with the kernel

size 1 x 3 applied sequentially with corresponding feature map sizes Fj,i € 1,...,n.

are considered. After that aggregated high-level features
are fed to the set of fully-connected layers with integrated
dropout [31] and ReLU layers to calculate probability of
each class. The output size of the classification network is
equal to the number of classes in the dataset.

4.2. Segmentation Network

The segmentation network shares encoder part with the
classification network as shown in Figure 4. In order to pre-
dict the segmentation label per point, we need to upsample
the sampled points in the encoder back to the original point
cloud size. As pointed out by [44], the consecutive feature
propagation proposed by [27] is not the most efficient ap-
proach. Inspired from [44], we propagate features from dif-
ferent levels from the encoder directly to the original point
cloud size, and concatenate them by allowing the network
to learn the most important features from different levels as
well as to learn the relationship between them.

The output of each level has different sizes due to the
hierarchical feature extractions, so we have to restore hier-
archical features from each level back to the original point
size by using an interpolation method [27]. The interpola-
tion method is based on the inverse squared Euclidean dis-
tance weighted average of the three nearest neighbors as:

3
D) () = S £ 5y W)
(%) j;f ( ])Z?:1wj(x)

where w;(x) = ——L—~ is an inverse squared Euclidean
J d(x,x;)

; (6)

distance weight.

Then, we concatenate upsampled features from different
levels and pass them through 1 x 1 convolution to reduce
feature space and learn the relationship between features
from different levels. Finally, the segmentation class dis-
tribution for each point is calculated.

5. Experiments

We evaluate our A-CNN model on various tasks such
as point cloud classification, part segmentation, and large-
scale scene segmentation. In the following subsections, we
demonstrate more details on each task. It is noted that for
the comparison experiments, best results in the tables are
shown in bold font.

All models in this paper are trained on a single NVIDIA
Titan Xp GPU with 12 GB GDDRS5X. The training time of
our model is faster than that of PointNet++ model. More
details about the network configurations, training settings
and timings in our experiments can be found in Sec. 2 and
Tab. 2 of Supplementary Material. The source code of the
framework will be made available later.

5.1. Point Cloud Classification

We evaluate our classification model on two datasets:
ModelNet10 and ModelNet40 [38]. ModelNet is a large-
scale 3D CAD model dataset. ModelNetl0 is a subset of
ModelNet dataset that consists of 10 different classes with
3991 training and 908 testing objects. ModelNet40 includes



Table 1: Classification results on ModelNetl0 and ModelNet40
datasets. AAC is accuracy average class, OA is overall accuracy.

ModelNet10  ModelNet40

AAC ‘ OA ‘ AAC ‘ OA
different methods with additional input or more points
AO-CNN [36] - - - 90.5
O-CNN [35] - - - 90.6
PointNet++ [27] - - - 91.9
SO-Net [17] 955 | 957 | 90.8 | 93.4
MVCNN-MultiRes [26] - - 914 | 938
VRN Ensemble [5] - 97.1 - 95.5

point cloud based methods with 1024 points

PointNet [25] - - 86.2 | 89.2
Kd-Net (depth 15) [13] 935 | 94.0 | 885 | 91.8
Pointwise CNN [9] - - 81.4 | 86.1
KCNet [30] - 94.4 - 91.0
PointGrid [16] - - 88.9 | 92.0
PCNN [3] - 94.9 - 92.3
PointCNN [18] - - 88.1 | 92.2
Point2Sequence [19] 95.1 | 953 | 904 | 92.6
A-CNN (our) 953 | 955 | 90.3 | 92.6

40 different classes with 9843 objects for training and 2468
objects for testing. Point clouds with 10,000 points and
normals are sampled from meshes, normalized into a unit
sphere, and provided by [27].

For experiments on ModelNet10 and ModelNet40, we
sample 1024 points with normals, where normals are only
used to order points in the local region. For data augmenta-
tion, we randomly scale object sizes, shift object positions,
and perturb point locations. For better generalization, we
apply point shuffling in order to generate different centroids
for the same object at different epochs.

In Tab. 1, we compare our method with several state-of-
the-art methods in the shape classification results on both
ModelNet10 and ModelNet40 datasets. Our model achieves
better accuracy among the point cloud based methods
(with 1024 points), such as PointNet [25], PointNet++ [27]
(5K points + normals), Kd-Net (depth 15) [13], Point-
wise CNN [9], KCNet [30], PointGrid [16], PCNN [3],
and PointCNN [18]. Our model is slightly better than
Point2Sequence [19] on ModelNet10 and shows compara-
ble performance on ModelNet40.

Meanwhile, our model performs better than other volu-
metric approaches, such as O-CNN [35] and AO-CNN [36];
while we are a little worse than SO-Net [17], which uses
denser input points, i.e., 5000 points with normals as the in-
put (1024 points in our A-CNN); MVCNN-MultiRes [26],
which uses multi-view 3D volumes to represent an object
(i.e., 20 views of 30 x 30 x 30 volume); the VRN Ensem-
ble [5], which involves an ensemble of six models.

We also provide some feature visualization results in
Sec. 3 of Supplementary Material, including global feature
(e.g., t-SNE clustering) visualization and local feature (e.g.,
the magnitude of the gradient per point) visualization.

Our

Ground Truth

PointNet++

(a) Rocket (b) Table (c) Skateboard

(d) Bag
Figure 5: Qualitative results on ShapeNet-part dataset. We com-
pare our results with PointNet++ [27] and ground truth.

5.2. Point Cloud Segmentation

We evaluate our segmentation model on ShapeNet-
part [41] dataset. The dataset contains 16,881 shapes from
16 different categories with 50 label parts in total. The main
challenge of this dataset is that all categories are highly im-
balanced. There are 2048 points sampled for each shape
from the dataset, where most shapes contain less than six
parts. We follow the same training and testing splits pro-
vided in [25, 41]. For data augmentation, we perturb point
locations with the point shuffling for better generalization.

We evaluate our segmentation model with two differ-
ent inputs. One of the models is trained without feed-
ing normals as additional features and the other model is
trained with normals as additional features. The quan-
titative results are provided in Tab. 2, where mean IoU
(Intersection-over-Union) is reported. The qualitative re-
sults are visualized in Fig. 5. Our approach with point loca-
tions only as input outperforms PointNet [25], Kd-Net [13],
KCNet [30], and PCNN [3]; and shows slightly worse per-
formance comparing to PointGrid [16] (volumetric method)
and PointCNN [18]. Meanwhile, our model achieves the
best performance with the input of point locations and nor-
mals, compared with PointNet++ [27], SyncSpecCNN [42],
SO-Net [17], SGPN [37], O-CNN [35], RSNet [11], and
Point2Sequence [19]. The more detailed quantitative results
(e.g., per-category IoUs) and more visualization results are
provided in Sec. 5 of Supplementary Material.

5.3. Semantic Segmentation in Scenes

We also evaluate our segmentation model on two large-
scale indoor datasets Stanford 3D Large-Scale Indoor
Spaces (S3DIS) [2] and ScanNet [7]. S3DIS contains 6
large-scale indoor areas with 271 rooms sampled from 3
different buildings, where each point has the semantic label
that belongs to one of the 13 categories. ScanNet includes
1513 scanned indoor point clouds, where each voxel has
been labeled with one of the 21 categories.

We employ the same training and testing strategies as
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PointNet [25] on S3DIS, where we use 6-fold cross valida-
tion over all six areas. The evaluation results are reported
in Tab. 2, and qualitative results are visualized in Fig. 6.
Our model demonstrates better segmentation results com-
pared with PointNet [25], MS+CU (2) [8], G+RCU [8], 3P-
RNN [40], SPGraph [15], and TangentConv [33]. However,
our model performs slightly worse than PointCNN [18]
due to their non-overlapping block sampling strategy with
paddings which we do not use. Meanwhile, our approach
shows the best segmentation results on ScanNet [7] and
achieves the state-of-the-art performance, compared with
PointNet [25], PointNet++ [27], TangentConv [33], and
PointCNN [18] according to Tab. 2.

More qualitative visualization results and data prepara-
tion details on both datasets are provided in Sec. 4 and Sec.
5, respectively, of Supplementary Material and Video.

Table 2: Segmentation results on ShapeNet-part, S3DIS, and Scan-
Net. “mean” is mean IoU (%), OA is overall accuracy.

ShapeNet-part S3DIS | ScanNet
without normals | with normals OA OA
mean mean

PointNet [25] 83.7 - 78.5 73.9
PointNet++ [27] - 85.1 - 84.5
SyncSpecCNN [42] - 84.7 -
O-CNN [35] - 85.9
Kd-Net [13] 823 -
KCNet [30] 84.7 -
SO-Net [17] - 84.9
SGPN [37] - 85.8 -
MS+CU (2) [8] - - 79.2
G+RCU [8] - - 81.1
RSNet [11] - 84.9 -
3P-RNN [40] - - 86.9
SPGraph [15] - - 85.5 -
TangentConv [33] - - * 80.9
PCNN [3] 85.1 - -
Point2Sequence [19] - 85.2
PointGrid [16] 86.4 - - -
PointCNN [18] 86.1 - 88.1 85.1
A-CNN (our) 85.9 86.1 87.3 85.4

Note: * TangentConv [33] OA on S3DIS Area 5 is 82.5% (as reported
in their paper), which is worse compared with our OA of 85.5%.

5.4. Ablation Study

The goal of our ablation study is to show the importance
of the proposed technique components (in Sec. 3) in our A-
CNN model. We evaluate three proposed components, such
as rings without overlaps (Sec. 3.1), ordering (Sec. 3.3), and

(c) Our
Figure 6: Qualitative results on S3DIS dataset. We compare our results with PointNet [25] and ground truth. The auditorium is a challenging
room type and appears only in Area 2. Our model produces much better segmentation result, compared with the result of PointNet.

(d) Ground Truth

annular convolution (Sec. 3.4) on the classification task of
ModelNet40 dataset as shown in Tab. 3. In the first exper-
iment, we replace our proposed constraint-based k-NN on
ring regions with ball query in [27], but keep ordering and
annular convolutions on. In the second and third experi-
ments, we turn off either annular convolutions or ordering,
respectively; and keep the rest two components on. Our ex-
periments show that the proposed ring-shaped scheme con-
tributes the most to our model. It is because multi-level
rings positively affect annular convolutions. Finally, A-
CNN model with all three components (i.e., rings without
overlaps, ordering, and annular convolutions) achieves the
best results. We also discover that reducing overlap / redun-
dancy in multi-scale scheme can improve existing methods.
We evaluate the original PointNet++ [27] with and without
overlap as shown in Sec. 1 of Supplementary Material.
Table 3: Ablation experiments on ModelNet40 dataset. AAC is
accuracy average class, OA is overall accuracy.

AAC | OA
A-CNN (without rings / with overlap) | 89.2 | 91.7
A-CNN (without annular conv.) 89.2 | 91.8
A-CNN (without ordering) 89.6 | 92.0
A-CNN (with all components) 90.3 | 92.6

6. Conclusion

In this work, we propose a new A-CNN framework on

point clouds, which can better capture local geometric in-
formation of 3D shapes. Through extensive experiments on
several benchmark datasets, our method has achieved the
state-of-the-art performance on point cloud classification,
part segmentation, and large-scale semantic segmentation
tasks. Since our work does not solely focus on large-scale
scene datasets, we will explore some new deep learning ar-
chitectures to improve the current results. We will also in-
vestigate to apply the proposed framework on large-scale
outdoor datasets in our future work.
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Supplementary Material:
A-CNN: Annularly Convolutional Neural Networks on Point Clouds

1. Ball Query vs Ring-based Scheme

The comparison of multi-scale method proposed in [12]
and our ring-based scheme is depicted in Fig. 1. It is noted
that comparing to multi-scale regions, the ring-based struc-
ture does not have overlaps (no neighboring point duplica-
tion) at the query point’s neighborhood. It means that each
ring contains its own unique points.

Ball Query Constraint-based k-NN

"
:

(a) Local Region b) Multi-Scale [12] c) Regular Rings (d) Dilated Rings

Figure 1: A schematic comparison for searching neighbors in a lo-
cal region with IV, points between multi-scale approach from [12]
and our proposed approaches with regular and dilated rings. The
number of neighboring points per region (e.g., k1 and k2) is the
same between different methods. Regions in multi-scale archi-
tecture have neighboring overlaps (red points belong to different
regions near the same query point q), while regular and dilated
rings have the unique neighbors.

Table 1: Experiments on redundancy on ModelNet40 dataset.
AAC is accuracy average class, OA is overall accuracy.

AAC | OA

PointNet++ (multi-scale / with overlap) 86.5 | 90.2
PointNet++ (multi-ring / without overlap) | 87.3 | 90.6
A-CNN (with all components) 90.3 | 92.6

We have discovered that reducing redundancy can im-
prove the existing multi-scale approach in [12]. We test
redundancy issue on original PointNet++ model [12] with
and without overlap / redundancy. We compare the orig-
inal PointNet++ multi-scale model with ball queries (with
redundant points) against PointNet++ with our proposed
regular rings (without redundant points). Our experiments
show that the proposed multi-ring (i.e., without redundant
points) outperforms the multi-scale scheme (i.e., with re-
dundant points) on ModelNet40 according to Tab. 1.

2. Training Details

We use A-CNN-3L network configuration in Tab. 2 for all
experiments on point cloud classification tasks and A-CNN-
4L network configuration in Tab. 2 for both part segmenta-
tion and semantic segmentation tasks. We use regular rings
in L; and dilated rings in Lo in our A-CNN-3L architecture.

Similarly, we use regular rings in L; and dilated rings in Lo
and L3 in our A-CNN-4L architecture.

We use Adam optimization method with learning rate
0.001 and decay rate 0.7 in classification and decay 0.5
in segmentation tasks. We have trained our classification
model for 250 epochs, our part segmentation model for 200
epochs, and our large-scale semantic segmentation models
for 50 epochs on each area of S3DIS and for 200 epochs on
ScanNet. The training time of our model is faster than that
of PointNet++ model, since we use ring-based neighboring
search, which is more efficient and effective than ball query
in PointNet++ model. For instance, the training time on the
segmentation model for 200 epochs is about 19 hours on a
single NVIDIA Titan Xp GPU with 12 GB GDDR5X, and
PointNet++ model needs about 32 hours for the same task.
The size of our trained model is 22.3 MB and the size of
PointNet++ model is 22.1 MB.

3. Feature Visualization

Local Feature Visualization. Fig. 2 and Fig. 3 visualize
the magnitude of the gradient per point in the classification
task on ModelNet10 and ModelNet40 datasets. Blue color
represents low magnitude of the gradients and red color rep-
resents high magnitude of the gradients. The points with
higher magnitudes get greater updates during training and
the learning contribution of them is higher. Therefore, this
feature visualization could be thought as the object saliency.
For example, in ModelNet40 dataset our model considers
wings and tails as important regions to classify an object as
an airplane; bottle neck is important for a bottle; the flow-
ers and leaves are important for a plant; tube or middle part
(usually narrow parts) is important for a lamp; legs are im-
portant to classify an object as a stool.

Global Feature Visualization. Fig. 4 and Fig. 5 shows
the t-SNE clustering visualization [10] of the learned global
shape features from the proposed A-CNN model for the
shape classification tasks in ModelNetl0 and ModelNet40
test splits. We reduce 1024-dim feature vectors to 2-dim
features. We can see that similar shapes are well clustered
together according to their semantic categories. For ex-
ample, in ModelNet10 dataset the clusters of desk, dresser,
night stand, and table classes are closer and even intersect
with each other, because the objects from these classes look
similar. The perplexity parameters for ModelNetl0 and
ModelNet40 datasets are set as 15 and 50, respectively, to



Table 2: Network configurations.

Ly Lo L3 Ly
C 512 128 1 -
A-CNN-3L rings | [[0.0,0.1], [0.1, 0.2]] [[0.1,0.2],[0.3,0.4]] - -
(classification) & [16, 48] [16, 48] 128 -
F [[32,32,64], [64,64,128]] [[64,64,128], [128,128,256]] [256,512,1024] -
C 512 128 32 1
A-CNN-4L rings | [[0.0,0.1], [0.1, 0.2]] [[0.1, 0.2], [0.3, 0.4]] [[0.2, 0.4], [0.6, 0.8]] -
(segmentation) & [16, 48] [16, 48] [16, 48] 32
F [[32,32,64], [64,64,128]] [[64,64,128], [128,128,256]] [[128,128,256], [256,256,512]] [512,768,1024]

Note: Both of the models represent encoder part. A-CNN-3L model consists of three layers. A-CNN-4L model consists of four layers. For each layer,
C' is the number of centroids, rings is the inner and outer radiuses of a ring: [R;nner, Router], k is number of neighbors, F' is feature map size. For
example, our A-CNN-4L model at the first layer L1 has 512 centroids; two regular rings where first ring constrained by radiuses of 0.0 and 0.1 and the
second ring has radiuses of 0.1 and 0.2; k-NN search returns 16 points in the first ring, and 48 points in the second ring; the feature map size in the first
ring is equal to [32, 32, 64] and in the second ring is [64, 64, 128]. Convolutional kernel size across different rings and layers is the same and equal to
1 x 3. Also, we have to double the number of centroids in each layer in model A-CNN-4L on ScanNet as the number of points in each block is twice

more than that in S3DIS.
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Figure 2: The magnitude of the gradient per point in the classifi-
cation task on ModelNet10 dataset.

reduce spare space between clusters.

4. Data Preparation Details

S3DIS data preparation. To prepare training and test-
ing datasets, we divide every room into blocks with a size
of 1 m x I m x 2 m and with a stride of 0.5 m. We has
sampled 4096 points from each block. The height of each
block is scaled to 2 m to ensure that our constraint-based k-
NN search works optimally with the provided radiuses. In
total, the prepared dataset contains 23,585 blocks across all
six areas. Each point is represented as a 6D vector (XY Z:
normalized global point coordinates and centered at origin,
RGB: colors). We do not use the relative position of the
block in the room scaled between 0 and 1 as used in [11],
because our model already achieves better results without
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Figure 3: The magnitude of the gradient per point in the classifi-
cation task on ModelNet40 dataset.

using this additional information. We calculate point nor-
mals for each room by using the Point Cloud Library (PCL)
library [13]. The calculated normals are only used to order
points in the local region. For data augmentation, we use the
same data augmentation strategy as used in the point cloud
segmentation on ShapeNet-part dataset which is point per-
turbation with point shuffling.

ScanNet data preparation. ScanNet divides original
1513 scanned scenes in 1201 and 312 for training and test-
ing, respectively. We sample blocks from the scenes fol-



Table 3: Segmentation results on ShapeNet-part dataset (input is XYZ only). Per-category and mean IoUs (%) are reported.

mean | areo bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet [11] 83.7 | 834 787 825 749 896 730 915 859 80.8 953 652 93.0 812 579 728 80.6
Kd-Net [4] 823 | 80.1 746 743 703 886 735 902 872 810 949 574 867 781 518 699 803
KCNet [14] 847 | 82.8 815 864 77.6 903 76.8 910 872 845 955 692 944 816 60.1 752 813
PCNN [1] 85.1 | 824 80.1 855 795 90.8 732 913 860 850 957 732 948 833 510 750 818
PointGrid [6] 86.4 | 857 825 81.8 779 921 824 927 858 842 953 652 934 817 569 735 84.6
PointCNN [8] 86.1 | 84.1 865 860 80.8 90.6 79.7 923 884 853 961 772 952 842 642 80.0 83.0
A-CNN (our) 859 | 839 867 835 795 913 770 915 860 850 955 726 949 838 57.8 766 83.0

Table 4: Segmentation results on ShapeNet-part dataset (input is XYZ + normals)

. Per-category and mean IoUs (%) are reported.

mean | areo bag cap car chair ear  guitar knife lamp laptop motor mug pistol rocket skate table
phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet++ [12] 85.1 | 824 79.0 877 773 908 71.8 91.0 859 837 953 71.6 941 813 587 764 826
SyncSpecCNN [19] 847 | 81.6 817 819 752 902 749 93.0 86.1 847 956 667 927 816 606 829 82.1
SO-Net [7] 849 | 828 77.8 88.0 773 90.6 735 90.7 839 828 948 69.1 942 809 531 729 83.0
SGPN [17] 85.8 | 804 786 788 715 836 780 909 830 788 958 778 938 874 60.1 923 894
RSNet [3] 849 | 827 864 841 782 904 693 914 870 835 954 660 926 81.8 56.1 758 822
O-CNN (+ CRF) [16] 859 | 855 871 847 770 91.1 851 919 874 833 954 569 962 816 535 741 844
Point2Sequence [9] 852 | 826 818 875 773 908 77.1 91.1 869 839 957 708 946 793 581 752 828
A-CNN (our) 86.1 | 842 840 88.0 79.6 913 752 916 871 855 954 753 949 825 678 775 833

Note: “CRF” stands for conditional random field method for final result refinement in O-CNN method.
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Figure 4: The t-SNE clustering visualization of the learned global
shape features from the proposed A-CNN model for the shapes in
ModelNet10 test split.

lowing the same procedure as in [12], where every block
has a size of 1.5 m x 1.5 m with 8192 points. We esti-
mate point normals using the PCL library [13]. Each point
is represented as a 6D vector (XY Z: coordinates of the
block centered at origin, N, N, N : normals) without RG B
information. For data augmentation, we use the point per-
turbation with point shuffling.

5. More Experimental Results

Point Cloud Segmentation. Tab. 3 and Tab. 4 show the
quantitative results of part segmentation on ShapeNet-part
dataset with two different inputs. Tab. 3 reports results when
the input is point position only. Tab. 4 reports results when
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Figure 5: The t-SNE clustering visualization of the learned global
shape features from the proposed A-CNN model for the shapes in

ModelNet40 test split.

the input is point position with its normals.

For ShapeNet-part dataset, we visualize more results
(besides the segmentation results shown in the paper) in
Fig. 6. We compare our results with PointNet++ [12], and
our A-CNN model can produce better segmentation results
than PointNet++ model.

Semantic Segmentation in Scenes. For S3DIS dataset,
we pick rooms from all six areas: area 1 (row 1), area 2 (row
2), area 3 (row 3), area 4 (row 4), area 5 (row 5), and area 6
(row 6); and compare them with PointNet [11] results and
ground truth. The results are shown in Fig. 7. The detailed
quantitative evaluation results for each shape class are re-
ported in Tab. 5. Our model demonstrates good semantic
segmentation results and achieves the state-of-the-art per-



Table 5: Segmentation results on S3DIS dataset. “acc” is overall accuracy and “mean” is average IoU over 13 classes.

acc mean | ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [11] 78.5 47.6 88.0 887 693 424 23.1 475 51.6 541 420 9.6 38.2 294 352
MS+CU (2)[2] | 79.2 478 88.6 958 673 369 24.9 48.6 523 519 451 106 36.8 24.7 375
G+RCU [2] 81.1 497 90.3 92.1 679 447 242 523 512 581 474 69 39.0 30.0 41.9
RSNet [3] - 56.5 92.5 928 786 328 34.4 51.6 68.1 597 60.1 164 50.2 449 52.0
3P-RNN [18] 86.9 563 92.9 938 731 425 25.9 47.6 592 604 66.7 2438 57.0 36.7 51.6
SPGraph [5] 85.5 62.1 89.9 95.1 764 628 47.1 55.3 684 735 692 632 459 8.7 52.9
PointCNN [8] 88.1 654 94.8 97.3 758 63.3 51.7 58.4 572 71.6 69.1 39.1 61.2 52.2 58.6
A-CNN (our) 873 629 92.4 964 792 595 34.2 56.3 650 665 78.0 285 56.9 48.0 56.8
formance on segmenting walls and chairs. Meanwhile, [8] Y.Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. PointCNN:

our model performs slightly worse than PointCNN [8] on
other categories due to their non-overlapping block sam-
pling strategy with paddings which we do not use. Sup-
plementary Video is included for dynamically visualizing
each area in detail.

For ScanNet dataset, we pick six challenging scenes and
visualize the results of our A-CNN model, PointNet++ [12],
and ground truth side by side. The visualization results
are provided in Fig. 8. Our approach outperforms Point-
Net++ [12] and other baseline methods, such as Point-
Net [11], TangentConv [15], and PointCNN [8] according
to Tab. 2 in the main paper.
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Figure 6: More segmentation results on ShapeNet-part dataset. Second and fourth columns show the differences between ground truth and
prediction (red points are mislabeled points) of PointNet++ and our method.
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(a) Input (b) PointNet [11] (¢) Our (d) Ground Truth

Figure 7: The visualization results on S3DIS dataset. We compare our model with PointNet [11] and the ground truth. The challenging
sample rooms have been picked from the all six areas: area 1 (row I), area 2 (row 2) area 3 (row 3), area 4 (row 4), area 5 (row 5), and area
6 (row 6).
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Figure 8: The visualization results on ScanNet dataset. We compare our model with PointNet++ [12] and the ground truth. The challenging
sample rooms have been picked from the ScanNet dataset.



