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In spatially extended systems, it is common to find latent variables that are hard, or even impos-
sible, to measure with acceptable precision, but are crucially important for the proper description
of the dynamics. This substantially complicates construction of an accurate model for such systems
using data-driven approaches. The present paper illustrates how physical constraints can be em-
ployed to overcome this limitation using the example of a weakly turbulent quasi-two-dimensional
Kolmogorov flow driven by a steady Lorenz force with an unknown spatial profile. Specifically, the
terms involving latent variables in the partial differential equations governing the dynamics can be
eliminated at the expense of raising the order of that equation. We show that local polynomial
interpolation combined with sparse regression can handle data on spatiotemporal grids that are
representative of typical experimental measurement techniques such as particle image velocimetry.
However, we also find that the reconstructed model is sensitive to measurement noise and trace this
sensitivity to the presence of high order spatial and/or temporal derivatives.

I. INTRODUCTION

Due to advances in data acquisition, storage, and com-
putational power, data-driven discovery of mathemat-
ical models of physical systems, which relies primar-
ily on the empirical observations, has emerged as a vi-
able alternative to more traditional approaches based on,
e.g., first-principles derivation. While methods for con-
structing linear models of dynamical systems are very
well established [1], the progress in model discovery for
nonlinear processes is more recent, with the earliest ef-
forts focusing on nonlinear ordinary differential or differ-
ence equation models of low-dimensional dynamics [2–6].
Some progress has also been made in model discovery
for spatially-distributed systems described by nonlinear
partial differential equations (PDEs).

The earliest study by Vallette et al. [7] showed that
it is possible to estimate the coefficients in a PDE of a
known form (modified complex Ginzburg-Landau equa-
tion) from data available on a spatiotemporal grid. Their
algorithm relied on a least squares solution of a system
of linear equations constructed by evaluating individual
terms in the equation at multiple locations on the grid.
Bär et al. [8] extended this approach by constructing can-
didate PDE models from a broad set of polynomial com-
binations of the observable and its derivatives. While the
allowed terms were constrained by symmetry considera-
tions, the study made no attempt to eliminate any terms
to obtain a parsimonious description based on the data
itself. It was found that using finite differences for eval-
uating partial derivatives based on noisy data resulted
in significant errors and even applying a Savitzky-Golay
filter [9] failed to noticeably improve the results.

The earliest successful attempt to construct a parsi-
monious PDE model is due to Xu and Khanmohamadi
[10, 11], who introduced an iterative procedure to elim-
inate the terms that have a small effect on the residual.
These were also the first studies to allow spatially vary-
ing coefficients by including in the candidate model terms
polynomial in the observable (dependent variable) and its

partial derivatives as well as the independent variable(s).
The studies have also shown that, by evaluating terms us-
ing spectral derivatives (Fourier or Chebyshev, depend-
ing on boundary conditions) instead of finite differences,
the coefficients of a PDE model can be reconstructed
with high accuracy from noiseless data even in the pres-
ence of high-order derivatives. Similar sparse symbolic
regression approaches have been proposed a decade later
by Rudy et al. [12] for models with constant coefficients
and by Li et al. [13] for models with nonconstant coeffi-
cients.

We should also mention the work of Raissi et al. [14]
which has demonstrated that unknown coefficients in a
PDE model with known structure can be estimated from
spatially sparse data using statistical techniques. In com-
parison, approaches based on sparse regression [10–13]
require data on a fairly dense spatiotemporal grid. The
statistical approach is based on treating a temporally dis-
cretized, linearized version of the model as a Gaussian
processes and becomes both cumbersome and numeri-
cally expensive for models that involve more than a few
terms or variables.

The above approaches assume that all state (depen-
dent) variables that appear in the model can be either di-
rectly measured or computed directly from the measured
data. In many cases of practical interest, one might be
interested in determining the model equations using only
some of those variables. For instance, the primitive vari-
able description of fluid flows relies on two physical fields:
velocity and pressure, only the first of which can typically
be measured in experiment with meaningful accuracy.
The presence of latent variables such as pressure makes
data-driven model discovery substantially more compli-
cated or incomplete, since existing approaches based on
sparse regression [6, 10], crucially rely on direct measure-
ments of every state variable which appears in the model.
In particular, using velocity measurements alone only al-
lows reconstruction of the vorticity equation [12] which
describes the evolution of the curl of the velocity, but not
its individual components. The statistical approach [15]
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allows the coefficients in the 2D Navier-Stokes equation
to be determined without any knowledge of the pressure
[14], but assumes the form of the model is known.

Another common problem in data-driven model dis-
covery is sensitivity to noise in the data [8, 10]. It is
especially acute for spatially distributed systems due to
the difficulty in accurately estimating spatial derivatives
using noisy data. As an example, adding just 1% noise
to the data causes errors in the model parameters of or-
der 10% for the nonlinear Schrödinger, KdV, and the
vorticity equations, 50% for the Kuramoto-Sivashinsky
equation, and introduces spurious terms in the λ − ω
model [12]. It is not currently understood on a quanti-
tative level what the impact of noise is on the accuracy
of the model reconstruction, however. Neither is it clear
how the accuracy of the model reconstruction based on
gridded noisy data can be quantified in the absence of
some sort of a reference.

This work uses a representative example of a fluid flow
to address several of the open questions, mainly (1) how
can we get around the lack of direct measurements of
latent variables and (2) how can we quantify the accu-
racy of the resulting model when the measurements of
observable variables are gridded and noisy? The struc-
ture of the paper is as follows. Section II describes the
physical problem the model of which we are trying to
construct and the relevant physical constraints. Section
III describes our sparse regression approach. Section IV
discusses the use of polynomial approximations for esti-
mating spatial and temporal derivatives. The results are
presented in Sect. V and our conclusions in Sect. VI.

II. PROBLEM STATEMENT

We will focus on the Lorenz-force-driven flow in a thin
electrolyte layer supported by a stationary bottom plate
[16, 17] as it provides an excellent illustration of the
challenges in data-driven discovery of a model for a spa-
tially distributed system with latent variables. The basic
physics and symmetry of the problem imposes a number
of constraints on the form of the model and the choice
of the fundamental variables. Being a fluid flow, it is
described by two fields, velocity u and pressure p, so we
would expect the dynamics of the fluid flow to be de-
scribed by evolution equations of the general form

∂tu = Nu(u, p),

∂tp = Np(u, p), (1)

where Nu and Np are some (generally nonlinear) differ-
ential operators.

The form of these operators can be constrained by both
the physics and the symmetry of the problem; we will
start with the latter. In particular, in order to preserve
the rotational symmetry, Nu has to be a vector, and so
it can be constructed as a linear superposition of terms
each of which is a vector. Since the fluid layer is thin,

the vertical component of the velocity is small compared
to the horizontal component and we can consider u to be
two-dimensional (we can think of u as describing the flow
at the free surface of the electrolyte). Furthermore, again
due to the small thickness of the fluid layer, both u and
p can be considered functions of horizontal coordinates x
and y and time t, but not the vertical coordinate z.

There are several ways to construct a vector out of
u, p, the gradient operator ∇, and the external forcing
field f (assumed to be time-independent). The gravita-
tional acceleration g, the only other vector quantity in
the problem, cannot be included in the two-dimensional
model, since the latter does not explicitly include the
vertical direction. Using one vector object, we can con-
struct three vector fields that are linear in u, p, and f :
∇p, u, and f . More complicated vector fields can be con-
structed using powers of ∇ and/or nonlinear functions of
p, u, and f . We will only consider terms that are linear in
p and f , since ∇p and f both describe the (volumetric)
force density and they are linearly related to the time
rate of change of the momentum density ρ∂tu according
to Newton’s 2nd law.

More vector fields can be constructed using several
copies of u and ∇. Keeping terms up to third order in u
and second order in ∇, we obtain the following evolution
equation for the velocity field

∂tu = c1(u · ∇)u + c2∇2u + c3u + c4(∇ · u)u

+ c5(∇ · u)2u + c6(∇× u)2u + c7u
2u

+ c8∇p+ c9f . (2)

The evolution equation for the pressure can be con-
structed in a similar manner, with Np that should be a
scalar. The pressure should be a function of the velocity
only, so keeping the leading order (in ∇ and u) term, we
will find

∂tp = −κ∇ · u, (3)

where κ is another unknown parameter. Using the scaling
freedom in defining the latent field p explicit in the equa-
tions (2) and (3), without the loss of generality we can
set |c8| = 1. Similarly, we can set c9 = 1, which amounts
to choosing a particular scale for the (unknown) forcing.
The remaining constant (to preserve the translational
symmetry in space and time) parameters c1 through c7
(and possibly κ) need to be determined from data using
sparse regression.

The combination of symmetry and basic physics we
used constrains the form of the evolution equations rather
significantly, yielding a set of evolution equations with
rather few superfluous terms. Indeed, under certain
assumptions (e.g., lubrication approximation), a two-
dimensional model of the form

∂tu = −β(u · ∇)u + ν∇2u− αu + ρ−1(f −∇p), (4)

∂tp = −κ∇ · u, (5)

which is a special case of the general model (2)-(3), can be
derived analytically for this flow by depth-averaging the
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three-dimensional Navier-Stokes equation [16, 18]. Here
α, ν, β, ρ, and κ are constants representing, respectively,
the vertical momentum transport, the horizontal momen-
tum transport, the attenuation of inertia due to vertical
velocity stratification, the density of the fluid, and the
scale of the hydrostatic pressure.

Comparison of numerical simulations and experimen-
tal observations over a range of Reynolds numbers Re
suggests that the model (4)-(5) with constant parame-
ters α, ν, and β is qualitatively accurate [17], but there
is a systematic discrepancy that can be mostly accounted
for by making these parameters weakly dependent on the
Reynolds number Re. The assumptions made in deriving
the model mainly affect the vertical momentum transport
represented by the Rayleigh friction term −αu. This mo-
mentum transport increases with Re due to the advec-
tion, which can be accounted for by making the scalar
coefficient α velocity-dependent. This is what the last
few terms in the general model (2) represent. Specifi-
cally,

α = −c3 − c4∇ · u− c5(∇ · u)2

− c6(∇× u)2 − c7u2 (6)

can be thought of as a second-order (in u and ∇) model
of the Rayleigh friction coefficient.

III. SPARSE REGRESSION

The data characterizing both components of the veloc-
ity field u can be obtained, for instance, using particle
image velocimetry [16, 17] and is assumed to be on a uni-
form grid (i, j, k), where i, j, and k correspond to the x, y,
and t directions, respectively. However, unlike standard
sparse regression problems where all the variables are di-
rectly observable, in our problem neither the pressure p
nor the forcing f are, so both fields have to be either de-
termined independently or eliminated. In principle, for a
fully resolved incompressible (κ→∞) flow field, if f were
known, p could be obtained in a standard way by apply-
ing a divergence to (2), which yields a pressure Poisson
equation. Typical experimental data however have a res-
olution that is too poor (and noise level that is too high)
to make it possible to compute pressure in this manner.

In the following, we will focus just on the evolution
equation for the velocity field; the evolution equation for
the pressure is very simple and the coefficient κ can be
eliminated altogether by rescaling c8 and/or p. The terms
involving both latent fields can be eliminated from (2)

by applying an operator P̂ = ŜĈT̂ composed of three
operations: Ĉ = ẑ · ∇× removes the dependence on ∇p
which is curl-free, T̂ = ∂t removes the dependence on
f which is constant, and the sparsification operator Ŝ
subsamples the original data in a random fashion. The
corresponding discretization of the resulting PDE (which
is second order in time, third order in space, and fourth

order overall) has the form

q0 = Qc, (7)

where Q = [q1 . . . q7], c = [c1 · · · c7]T is a vector
composed of scalar coefficients to be determined, and the
columns

q0 = P̂ (∂tu− f +∇p), q1 = P̂ (u · ∇)u,

q2 = P̂∇2u, q3 = P̂u,

q4 = P̂ (∇ · u)u, q5 = P̂ (∇ · u)2u,

q6 = P̂ (∇× u)2u, q7 = P̂u2u

(8)

correspond to different terms in (2). Note that q0 =

P̂ ∂tu, so none of the terms qi in fact depend on either
p or f . For the number K of points in the sample ex-
ceeding the number of unknown coefficients, this yields
an overdetermined system (7) of linear equations for c,
where the “library” Q and the “target” q0 can be evalu-
ated using any algorithm sufficiently robust with respect
to noise and sparsity of the data. The particular proce-
dure used in the present paper is described in the next
section.

We performed sparse regression using a variation of the
iterative algorithm for sparse identification of nonlinear
dynamical systems (SINDy) [6], which involves comput-
ing the solution c that minimizes the residual

η = ‖q0 −Qc‖1 (9)

of the linear system (7), followed by a thresholding proce-
dure to remove dynamically irrelevant terms. Note that
the library terms qi themselves can differ by many or-
ders of magnitude (an example of this is presented be-
low). Since it is the product, ciqi, that determines a
given term’s role in the model, we employ a slightly mod-
ified thresholding procedure. We compare the norms of
the products ciqi to the residual η: the columns of Q
for which ‖ciqi‖1 < γη are removed, and the process is
repeated until all remaining terms are above the thresh-
old. Here γ is a constant that can be above or below,
but is close to, unity. This approach requires no a priori
knowledge of the system, in contrast to previous studies
[6, 13] that have defined various arbitrary thresholds as
stopping conditions for the iterative procedure.

IV. POLYNOMIAL INTERPOLATION

All of the library terms involve spatial and/or tempo-
ral derivatives of the velocity field. Using total variation
regularization of the data [19] to reduce the influence of
noise is both prohibitively expensive in higher dimensions
and unnecessary given the sparse nature of the system
(7). Additionally, although spectral derivative estimates
perform better in the noiseless case, their high frequency
components are corrupted by noise, diminishing their ac-
curacy severely [10]. Therefore, to accomplish the task
of smoothing noisy data and taking numerical deriva-
tives concurrently, a higher-dimensional generalization
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of the polynomial interpolation in [9] was used instead.
(We also investigated computation of derivatives using
discrete Fourier transform, and found the results to be
comparable). At each point chosen by the sparsification

operator Ŝ, the velocity fields were approximated by a
polynomial in x, y, and t fitted to discrete data on a
rectangular domain Ω of size 2Hx × 2Hy × 2Ht centered
at a grid point (xi, yj , tk).

In particular, the x-component of the velocity u(x, y, t)
near (xi, yj , tk) was approximated as

ũ(x, y, t) =
L∑

l=0

M∑
m=0

N∑
n=0

U lmn
ijk x̄lȳmt̄n, (10)

where the overbar denotes the shifted and rescaled co-
ordinates in which the domain Ω becomes a cube Ω′ =
[−1, 1]× [−1, 1]× [−1, 1], e.g.,

x̄ =
x− xi
Hx

, (11)

etc. The order of the polynomial in each direction should
be at least as large as the order of the highest derivative
appearing in the model equation (2) after the operator

ĈT̂ is applied, but ultimately is a tunable parameter,
with the specific choice to be discussed in more detail in
the next section.

The coefficients U lmn
ijk were found by minimizing the

cost function

F =
∑

(i,j,k)∈Ω

wijk(uijk − ũ(xi, yj , tk))2, (12)

where wijk is a weighting function. This is a standard
least squares problem whose solution is given by setting
∂F/∂U qrs

ijk = 0. This yields a system of (L + 1)(M +

1)(N + 1) linear equations

〈w u x̄q ȳr t̄s〉Ω =

L,M,N∑
l,m,n

U lmn
ijk 〈w x̄l+q ȳm+r t̄n+s〉Ω, (13)

where 〈·〉Ω denotes the average over the spatiotemporal
sub-domains for which the local fits are defined. The
weighting function wijk was used to bias the accuracy
of the approximation toward the central point of the do-
main Ω (where all of the derivatives are evaluated) and
is defined as a Gaussian

wijk = exp

(
− x̄

2 + ȳ2 + t̄2

λ2

)
, (14)

with the width λ being another tunable parameter of the
model (we set λ = 0.5). The same procedure was used
to determine the coefficients V lmn

ijk for the y-component

of the velocity v(x, y, t).
After the polynomial coefficients have been deter-

mined, the row of the library Q and the target q0 cor-
responding to the point (xi, yj , tk) can be constructed

by evaluating the respective derivatives of u and v at
(x̄, ȳ, t̄) = (0, 0, 0) using (10). For instance,

qijk2 = 6V 301
ijk + 2V 121

ijk − 2U211
ijk − 6U031

ijk . (15)

The process was repeated for each point defined by Ŝ in
order to completely evaluate the library and the target.
Ŝ was defined by randomly selecting the points on the
entire 3D grid representing the spatially and temporally
discretized trajectory. Throughout the paper, K = 250
points were used to construct the library; neither the
mean nor the standard deviation of the coefficients ci
were found to exhibit meaningful variation for a larger
number of points.

V. RESULTS

Surrogate data used for testing the sparse regression
procedure was generated using the model (2)-(3) with
the parameters c1 = −0.826, c2 = 0.0487, c3 = −0.157,
c4 = 0.164, c5 = c6 = c7 = 0, c8 = −1, and κ = 2015.
This set of parameters describes a nearly incompress-
ible flow found in the experiment described in Ref. [17],
which features a forcing field with a sinusoidal profile
in the y direction with period 2χ = 2 and amplitude
equal to 1.0649 in nondimensional units. The solution
describing a weakly turbulent flow was obtained using
a numerical integration scheme based on operator split-
ting as described in Ref. [18]. The linear terms were
evolved in time implicitly, while the nonlinear terms were
handled via a 2nd order Adams-Bashforth scheme. The
solution was integrated on a computational grid with
∆xc = ∆yc = 0.025, and ∆tc ≈ 0.02. Gaussian random
noise with variance σ was added to both components of
the flow velocity u. For reference, the maximal flow ve-
locity is O(1) in nondimensional units.

In order for the algorithm to produce meaningful re-
sults, its various tunable parameters must be properly
set. The noiseless case exhibits the least amount of sen-
sitivity to variation of fitting parameters; the only re-
striction is that the polynomial orders L, M , and N be
high enough to capture the variation in the data over Ω.
While higher order interpolation allows better approxi-
mation of the data, it is also more sensitive to noise. To
mitigate the influence of noise, a larger number of mea-
surements can be used. There are two ways to achieve
this: by increasing the size of the sampling domain Ω or
by using a finer grid on which data are measured. The
largest size of Ω is effectively limited by the characteristic
length and time scales for the problem. In the present
problem, the natural length scale is defined by χ. Con-
sequently, we will set Hx = Hy = χ/2, such that the
width of Ω in both spatial dimensions is equal to χ = 1.
There is no natural time scale, so we will choose one
based on the autocorrelation time τ ≈ 9.9. In the fol-
lowing we set Ht ≈ 0.85τ which is an optimal choice for
σ = 10−3 and M = L. Furthermore we use the finest
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FIG. 1. Residual as a function of polynomial order for N = 10
and σ = 0. Here, error bars denote standard deviation and
symbols denote mean values.

grid available to us in space, i.e., ∆x = ∆xc, while in
time we use ∆t = 25∆tc. With this choice, Ω corre-
sponds to a 40 × 40 × 34 block of data with dimensions
that are roughly comparable in the spatial and temporal
directions. At higher grid sizes evaluating the averages
in (13) becomes computationally expensive.

To investigate how the choice of polynomial order af-
fects the accuracy of the fit and hence the accuracy with
which various partial derivatives of u are evaluated, we
computed the residual (9). The dependence of η (nor-
malized by the magnitude of the target η0 = ‖q0‖1) is
shown in Fig. 1. Here and below, the averages and stan-
dard deviation are computed using an ensemble of 40
different realizations of the sampling operator Ŝ. Note
that η generally does not vanish even for the noiseless
perfect model of the problem due to discretization errors
of the numerical solution. Also note that the magnitude
of η describes the accuracy with which equation (7) is
satisfied, not the accuracy of the numerical solution to
the model (2)-(3). As expected, η decreases for low L,
but beyond some threshold (in this case L = 7), increas-
ing the polynomial order has little effect on the residual.
In particular, L = N = 10 results in both a low value of
the residual and a small error in parameter estimation in
the noiseless case, as we will see below.

To determine how the results depend on the amplitude
σ of measurement noise, we performed sparse regression
and compared the coefficients c̃i produced by SINDy with
the reference values ci used to generate the surrogate data
for κ = 2015. Of the four nonzero parameters used in
generating the data, three (c1, c2, and c3) were correctly
identified as being nonzero and estimated with a small
relative error

∆ci =

∣∣∣∣ci − c̃ici

∣∣∣∣ (16)

(of order one percent) for sufficiently small σ, as illus-
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FIG. 2. Parameter error as a function of noise amplitude for
L = N = 10. The error for c4 is not shown because SINDy
discards the corresponding term. Here and below markers are
shifted left or right to avoid overlap. Error bars indicate the
full range of data, and markers indicate mean values.

trated by Fig. 2. However, the coefficient c4 was incor-
rectly set to zero by the algorithm for all σ. Furthermore,
the accuracy in estimating all of the remaining parame-
ters decreased sharply for σ & 10−4.

The failure of sparse regression to correctly identify
the value of c4 can be understood qualitatively by re-
calling that it is the product c4q4 whose magnitude
is used to determine whether the corresponding term
should be retained or discarded. For our choice of pa-
rameters, ‖c4q4‖1 . η, suggesting that the magnitude
of this term is as small or smaller than the accuracy
to which the governing equation can be satisfied. As
mentioned previously, the parameter set used here cor-
responds to a nearly incompressible flow where ∇ · u is
nonzero but very small. Indeed, from (2) and (3) we
find q4 ∼ ∇ · u ∼ κ−1 ≈ 5 × 10−4. By eliminating the
term c4(∇ · u)u representing the effect of compressibil-
ity [18] from the model (2), sparse regression effectively
recognized this fact. The accuracy of the incompress-
ible model has been established previously by comparing
experimental and numerical results [20, 21].

To verify that this term was indeed eliminated due to
the large value of κ (and not some shortcoming of the
method), we repeated the analysis, setting κ = 1 to am-
plify the compressibility effects. In this case the term
c4(∇ · u)u is retained in the model and the value of the
parameter c4 is determined correctly for sufficiently small
σ. This is a good example illustrating when sparse re-
gression fails to identify terms that are generally required
by the physics of the problem but may be neglected under
some conditions.

To make the argument more quantitative, let us intro-
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FIG. 3. Relative accuracy of different library terms as a func-
tion of noise amplitude for L = N = 10.

duce the measure

Ri =
‖ciqi‖1

η
, (17)

of the magnitude of a particular term in the linear equa-
tion (7) relative to the corresponding residual (9). sparse
regression can correctly identify a particular term in the
model only if the corresponding Ri > 1; furthermore, we
can expect the accuracy of parameter reconstruction to
decrease as Ri approaches unity. For our choice of fitting
parameters, R4 is below unity for κ = 2015 and above
unity (R4 ≈ 20) for κ = 1. Correspondingly, the terms
with lower Ri exhibit the worst fitting accuracy; this ex-
plains the larger relative error in c3 compared with c1
and c2 in the κ = 2015 case (cf. Fig. 2), since although
R3 ≈ 30, it is much smaller than R1 and R2, which both
have Ri > 100.

Figure 2 also shows that, for the choice of fitting pa-
rameters optimized for noiseless data, the accuracy of
sparse regression sharply decreases for σ > O(10−4). To
understand why this happens, let us define the relative
accuracy with which a particular library term is evalu-
ated over the entire sample

ξi(σ) =
‖qi(0)− qi(σ)‖∞
‖qi(0)‖∞

. (18)

The effect of noise on the accuracy of all the library terms
is shown in Fig. 3. Note that the lowest accuracy (highest
ξi) corresponds to the terms q4 and q5 which are linear
and quadratic, respectively, in ∇·u, which is very small.
These terms are the most susceptible to corruption by
noise but, for large values of κ, they are eliminated by
sparse regression anyway. As might be expected, in the
absence of these two terms, the term q2, which involves
the highest order derivative (third order in space and first
in time), is the least accurate in the presence of noise.
This helps explain the difficulties sparse regression has

4 6 8 10 12 14
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FIG. 4. Residual as a function of polynomial order for N = 10
and σ = 10−3. Here, error bars denote standard deviation and
symbols denote mean values.

with identifying high order derivatives in all PDE mod-
els in the presence of noise. For instance, in a previous
study [12], the coefficient of the fourth order derivative
term in the Kuramoto-Sivashinsky was determined with
a 52% error in the presence of 1% noise. In our case, the
terms q3 and q7 which involve the lowest order deriva-
tive (first in space and time), have the smallest error,
suggesting that the order of the derivative is one of the
main factors which determine the accuracy of regression
in the presence of noise.

The effect of noise can be offset, to some extent by a
different choice of parameters. In particular, the order
of the polynomial interpolation can be reduced to de-
crease noise sensitivity. The dependence of the residual
η on L is shown in Fig. 4 for noise amplitude σ = 10−3

at which our previous choice of parameters lead to un-
acceptably large errors. At this value of σ, we find a
minimum around L = 5 (with a significant increase in η
compared to the noiseless case), which represents a bal-
ance between the accuracy of the interpolation in cap-
turing the spatial variation of the data at higher L and
the noise sensitivity at lower L. In fact, we found that
setting L = M = N = 6 is the best choice for minimizing
both the residual and the error in parameter estimation.

Using the fitting parameters optimized for higher noise
levels, sparse regression identifies the correct model
(aside from the negligible term q4) with all the model
parameters estimated to within ∼10% for 0.3% noise
and to within ∼30% for 1% noise, as illustrated by Fig.
5. This is comparable to the accuracy achieved for the
Kuramoto-Sivashinsky equation [12], which also includes
a fourth order derivative. The trade-off of this choice
of fitting parameters is the decrease in the accuracy of
model parameter estimation at lower noise levels. Fur-
thermore, R3 becomes close to unity, so sparse regression
yields false negatives for a noticeable fraction of the tri-
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FIG. 5. Parameter error as a function of the noise amplitude
for L = N = 6. The error for c4 is not shown because SINDy
discards the corresponding term. Error bars indicate the full
range of data, and markers indicate mean values.

als (the data shown in Fig. 5 was calculated after dis-
carding the results for which SINDy eliminated the term
q3). In comparison, false negatives did not appear for
L = N = 10 until fairly high levels of noise. These false
negatives occur for lower L and/or N because the mag-
nitude of the residual is determined by the error in the
term(s) most affected by the insufficiently accurate ap-
proximation (here, the term q2 which involves the high-
est order derivative). For the lower L, the variation in
the data is not fully resolved, meaning that R3 is pushed
closer to unity (and hence c3 can be estimated with less
accuracy).

VI. CONCLUSIONS

This paper presents an approach that allows sparse
regression to be extended for data-driven discovery of
PDE-based models which involve unobservable and/or
unknown (latent) variables. Our approach relies on two
key ideas: (1) using spatial symmetry as well as other
physical constraints to select the terms that can appear
in the model and (2) applying a differential operator de-
signed to remove terms which involve the latent variables.
We illustrated these ideas by using sparse regression to
construct a two-dimensional model for a weakly com-
pressible Kolmogorov-like flow in a thin electrolyte layer
driven by a steady Lorentz force with an unknown spatial
profile. In this particular case, two latent variables – the
forcing field which is a vector and the pressure which is a
scalar – have been eliminated by applying, respectively, a
temporal derivative and a curl to a nonlinear model with
nine different terms allowed by symmetry.

It should be noted that this approach does have lim-
itations. The terms in the model that involve latent
variables have been eliminated rather than reconstructed.

This is why supplementing the data-driven approach with
additional physical constraints, which play a “construc-
tive” role, is essential. It may not be possible to find a
differential operator than eliminates the latent variables
(although one could also use an integral operator). Also,
our approach might not work for models that involve
“cross-terms” which include both observable and latent
variables.

While previous studies have demonstrated the power
of sparse regression for data-driven model discovery, they
left a number of questions unanswered. In particular,
how should one choose the threshold that determines
which terms in the model are relevant? Since those stud-
ies mainly focused on reconstructing well-known models,
the threshold could be chosen in an ad hoc fashion such
that the a priori known model was recovered. In case
the form of the model is not known a priori, the proper
choice is less clear, since sparse regression will recover dif-
ferent models for different choices of the threshold. We
have shown that a self-consistent choice should be based
on the residual η of the linear system (7): in most cases
sparse regression can be considered to have successfully
reconstructed the model once the corresponding norm
of every remaining term ciqi is larger than the resid-
ual. However, while the residual is the proper metric for
determining the relevance of different terms, fine-tuning
the threshold does have an effect on the reconstructed
model, mainly affecting the terms with Ri = O(1). For γ
somewhat smaller than unity, sparse regression can pro-
duce false positives, e.g., the term c4(∇ · u)u is retained
even in the essentially incompressible case when ∇ · u is
very small and R4 is just below unity. However, the value
(and sign) of the coefficient c4 is found to vary drastically

for different realizations of the sampling operator Ŝ, sug-
gesting that this term is not dynamically relevant. For
γ somewhat larger than unity, this term is correctly re-
moved by the thresholding procedure for sufficiently low
noise. However, this choice also causes the term c3u to
be removed for some realizations of Ŝ at higher noise am-
plitudes, when R3 becomes comparable to unity as well.
In case a relevant term (such as c3u) is removed by the
thresholding procedure, the residual increases noticeably,
which allows detection of false negatives. Manually in-
cluding the term c3u in such cases decreases the residual
by about 10%, indicating that it is dynamically relevant
despite being smaller than the residual. Fine-tuning γ
based on these metrics can allow more robust results in
border-line cases.

Our study has also highlighted the major weakness of
all spatially local approaches to sparse regression. Re-
gardless of whether one uses a polynomial interpolation
of the data, total variation regularization, or some other
similar approach to construct the linear system whose
solution determines the model, the procedure is inher-
ently sensitive to noise, especially when higher order
derivatives are involved. This difficulty is well-illustrated
by both the failure of previous studies to reconstruct
with acceptable accuracy the fourth-order Kuramoto-
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Sivashinsky equation in the presence of as little as 1%
noise and a similar loss in the accuracy for the model
considered here, whose latent-variable-free form also in-
volves fourth order derivatives. In both cases, as the
noise amplitude increases, the term involving the high-
est order derivative becomes the largest contributor to
the residual at which point its coefficient cannot be reli-
ably determined anymore. Since experiments commonly

involve substantially higher amounts of noise, a more ro-
bust alternative to such local methods is needed.
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