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Iterative Learning-Based Path Optimization for
Repetitive Path Planning, with Application to 3D

Crosswind Flight of Airborne Wind Energy Systems
Mitchell Cobb1, Kira Barton2, Hosam Fathy3, and Chris Vermillion4

Abstract—This paper presents an iterative learning approach
for optimizing course geometry in repetitive path following
applications. In particular, we focus on airborne wind energy
(AWE) systems. Our proposed algorithm consists of two key
features: First, a recursive least squares fit is used to construct
an estimate of the behavior of the performance index. Second,
an iteration-to-iteration path adaptation law is used to adjust
the path shape in the direction of optimal performance. We
propose two candidate update laws, both of which parallel the
mathematical structure of common iterative learning control
(ILC) update laws but replace the tracking-dependent terms with
terms based on the performance index. We apply our formulation
to the iterative crosswind path optimization of an AWE system,
where the goal is to maximize the average power output over
a figure-8 path. Using a physics based AWE system model, we
demonstrate that the proposed adaptation strategy successfully
achieves convergence to near-optimal figure-8 paths for a variety
of initial conditions under both constant and real wind profiles.

I. INTRODUCTION

Numerous engineering applications require the generation
and repeated traversal of a path, where the choice of path
can have a dramatic impact on performance. These include
the control of redundant robotic manipulator paths for energy
usage (see [1],[2]), optimization of bipedal walking gaits (see
[3], [4]), trajectory optimization of automated racing vehicles
(see [5], [6]), and flight path optimization for airborne wind
energy (AWE) systems (see [7], [8]). In many applications
of path optimization, the path is optimized offline. When the
path is repeated, however, there exists an opportunity to adapt
this path from one iteration to the next. Leveraging previous
iterations’ results to determine the best course of action at the
current iteration can be especially useful in the presence of
model uncertainties and slowly varying environmental distur-
bances.
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Airborne wind energy (AWE) systems represent one tech-
nology for which dynamic models are far from perfect and
iteration-to-iteration adaptation can be invaluable. AWE sys-
tems represent an alternative to traditional wind turbines,
where the tower is replaced by tethers and a lifting body
(either a rigid wing, kite, or aerostat) that either houses on-
board turbine(s) or enables ground-based energy generation
through cyclic spooling motion (spooling out under high
tensions and in under low tensions). Fig. 1 shows a variety of
AWE system designs that have been developed and deployed
over the past decade. In addition to accessing altitudes far
in excess of conventional wind turbines, AWE systems can
execute repeated crosswind motions that increase the wind
speed presented to the turbine (see [9]). Given the limitations
of existing dynamic modeling tools, [10], [11], and [12]
have investigated on-line adaptation of some attributes of the
crosswind flight path. However, [10], [11] seek to optimize
the flight path location whereas this work seeks to optimize
the flight path shape. Additionally, [12] performs a model-
based, offline optimization, whereas the work presented herein
performs online optimization based on a relatively simple
response surface (metamodel).

While the proposed path adaptation structure of this work
follows an iterative learning control (ILC) update structure,
there are several important differences. In contrast to ILC
applications that focus exclusively on tracking (see [15] for
an overview), the present work focuses on maximizing a
performance index. Even when compared to more recent point-
to-point ILC approaches (see [16]-[17]), which only penalize
tracking at prescribed waypoints and therefore allow for the
maximization (or minimization) of performance objectives
between waypoints, the present work differs in two significant
ways:

1) While the aforementioned references focus on perfor-
mance between prescribed waypoints, the present work
focuses on applying iterative learning to the parameters
of the path itself.

2) In the present work, the path is specified entirely in space,
not in time, thereby allowing the total iteration time to
vary from one iteration to the next.

Motivated by the AWE application, this paper presents an
iterative learning framework for adapting the parameters that
define a repetitive path, with the objective of maximizing a
performance index. The framework is validated through simu-
lation on an AWE system model, where the performance index
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Fig. 1: Two examples of AWE system designs: Image credit
Altaeros, Inc. [13] (top left), and WindLift, Inc. [14] (top right,
bottom). Obtained with permission.

is driven by iteration-averaged power output. The proposed
adaptation algorithm consists of two steps:

1) An estimation component that uses a recursive least
squares (RLS) estimator to update an estimated model
of the performance index vs. path parameters;

2) A path parameter update law whose structure parallels
that of an iterative learning control (ILC) update. The up-
date law also contains a persistent excitation component
that ensures adequate exploration of the space of available
path geometries.

Given that this work uses iterative learning to maximize an
economic index (average power generation), one might draw
parallels to the learning model predictive control (LMPC) of
[5] and [6] attempt to optimize performance over a given
“track”. Although LMPC seeks to minimize an economic
objective (time) in a repeated task (automated racing), it does
not treat the optimization of the path itself. This makes sense in
the autonomous racing example of [5] and [6], where the track
is fixed. However, in applications such as the AWE system,
there exists considerable opportunity to enhance performance
by iteratively adapting the path itself.

In order to validate our approach on the AWE application,
we consider a simplified physics-based model of an AWE
system wherein the system is constrained to move on the
surface of a sphere. The translational kinematics of this model
are extremely similar to the unicycle model of [18], but the dy-
namics differ significantly. Both the translational and rotational
accelerations are driven by aerodynamic forces, rather than
modeled as static functions of the position and orientation,
as in [18]. The model in this work consists of a fuselage,
whose orientation is controlled by a rudder and dictates the
direction of motion through a nonholonomic constraint, as well

as a large main wing which is used to generate translational
motion. These model simplifications enable us to work with
a relatively simple lower level path following controller while
preserving the fundamentals of the path optimization problem,
which is the main focus of this work.

To apply our proposed path adaptation framework to the
AWE application, we parameterize a figure-8 crosswind path
in terms of basis parameters, which describe the width and
height of the figure-8 path on the surface of the sphere. It is
these basis parameters, which are directly related to the path
geometry, that are adapted at each iteration.

In summary, the present paper makes several contributions
relative to the existing literature:

• We describe an iterative learning framework for adapting
the parameters that define a repetitive path, with the
goal of maximizing an economic performance index. This
differs sharply from traditional ILC work that focuses
on reducing tracking error for a predefined reference
trajectory. The focus on maximizing a performance index
rather than merely tracking a reference requires additional
components in the control formulation, beyond the ILC
update law itself, as described in Section III-A.

• We present a physics-based AWE system model that
accurately captures translational dynamics of the airborne
system while imposing a unicycle constraint that simpli-
fies the lower-level path following problem.

• We demonstrate the efficacy of the proposed path adapta-
tion algorithm on the medium-fidelity model under both
a constant and realistic wind profile based on real wind
data.

This work represents an extension the authors’ previous
conference publication, [19]. However, it is differentiated
from that work by several significant changes and additions,
specifically:

• The dynamic model has been enhanced to reflect the 3D
dynamics of the system. It is also provided in full detail.

• The lower-level controller now utilizes a pure-pursuit,
path-following strategy that is capable of tracking a larger
set of course geometries under variable wind conditions.

• We show that, under ideal conditions, the iterative update
is guaranteed to converge.

• We validate the optimization strategy in a realistic wind
profile, based on NREL data.

This paper is organized as follows: Section II describes the
overall problem formulation, including a detailed description
of AWE system model. Section III describes the general path
geometry adaptation algorithm, initial convergence analysis,
and application to the AWE system. This section describes
both the upper-level path adaptation algorithm and lower-
level path following algorithm for the AWE application. Sec-
tion IV presents simulation results for the AWE application,
demonstrating convergence to near-optimal figure-8 paths for a
variety of initial conditions under both a constant wind profile
and a realistic wind profile, based on data obtained from the
National Renewable Energy Lab (NREL).
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II. PROBLEM FORMULATION AND AWE SYSTEM
MODEL

A. Generic Problem

Consider a mobile dynamic system composed of a plant and
a lower-level closed loop path following controller, which are
described, respectively, by:

ẋ(t) = f(x(t),u(t), de(t)), (1)
u(t) = g(x(t), ~p(s) ). (2)

Here, x ∈ RN represents the system state, u ∈ Rp represents
the control input vector, ~p(s) ∈ Rm, represents the path to
be followed in m spatial dimensions, and de(t) represents a
measurable external environmental signal. In this work, bold
face font indicates a generic vector while the arrow specifically
indicates a spatial vector in R3. The path is specified only
in terms of the variable s ∈ R, defined on some range
s ∈ [si, sf ], termed the “path variable”. In this work we
address sequences of closed paths, intended for continuous
or discontinuous operation, where ~p(si) = ~p(sf ).

We seek to find a path, ~p ∗(s), that maximizes a performance
index, J(~p(s),x(0), de(t)), subject to the constraints that the
system follows the prescribed path. In doing so, we assume
that the lower-level controller has been fully defined, as in (2).
This problem is stated mathematically in (3) - (4), where (3)
prescribes a generic performance index and (4) requires the
system track the prescribed path, ~p:

maximize
~p(s)

J
(
~p(s),x(0), de(t)

)
=

∫ Tf

Ti

l(x(t), ~p(s), de(t))dt

(3)
subject to : Equations (1) and (2),

min
s

{
d(~r(t), ~p(s))

}
≤ dt ∀ t. (4)

Here, x(0) is the initial state of the system, d(~r(t), ~p) is the
distance between the position, ~r(t) ⊂ x, and all points on the
path ~p(s) ⊂ R3, dt is a distance tolerance for path tracking,
and Ti and Tf are the times when the system begins and
finishes the course, or path. In order to obtain a closed-form,
iteration-to-iteration path adaptation law, it will be useful for
us to approximate the hard path tracking constraint of (4) with
a path tracking penalty, resulting in the following modified
optimization problem:

maximize
~p(s)

J
(
~p(s),x(0), de(t)

)
= (5)∫ Tf

Ti

l(x(t), ~p(s), de(t))dt

− κ

Tf

∫ Tf

0

F (~r(t), ~p(t), de(t))dt,

subject to : Equations (1) and (2), (6)

where κ is a scalar weight and F (~r(t), ~p(t), de(t)) is a non-
negative, scalar-valued function that captures the difficulty
of tracking the prescribed path. It is important to note that
for the present application, where the external disturbance,

de(t), is wind, this external disturbance not only impacts
lower-level path following ability (which demands a carefully
designed lower-level controller that is robust to variations in
wind) but also impacts energy generation (which demands a
carefully designed controller for adapting the crosswind path
parameters). This impact on energy generation is precisely
the reason for the inclusion of de in the objective function.
Note that the idealized, theoretical results presented later in
section III-B assume that both the initial condition, x(0),
and the environmental conditions, de(t), are constant from
iteration to iteration. However, we include a discussion of how
critical design parameters can be modified to ensure robustness
in the presence of iteration-varying initial conditions and
environmental conditions.

B. Overview of the AWE Application

In this work, we will consider an AWE system comprised
of rigid airfoils with on-board rotors as depicted in Fig. (2b).
Flying the system in repetitive crosswind motions has been
shown to dramatically enhance the wind speed presented to
the on-board turbines (deemed the apparent wind speed),
thereby resulting in substantially increased power production
over stationary operation (see [9]). Specifically, the apparent
wind velocity is given by the vector difference equation

~vapp(t) = ~vw(t)− ~v(t), (7)

where ~vw is the velocity of the wind and ~v is the velocity of
the lifting body. If the apparent wind speed is less than the
turbines’ rated wind speed, then the mean power output over
one iteration (figure-8 “lap”), P , can be approximated as:

P =
k

Tf

∫ Tf

Ti

|~vapp(t)|3dt, (8)

where k is a lumped power coefficient.

C. 3D “Unifoil” Model

Successful crosswind flight for AWE systems hinges upon
three requirements, namely:

1) Generating an efficient round-trip, or closed, crosswind
path;

2) Controlling the lifting body’s attitude (orientation) so that
it maximizes the apparent wind speed;

3) Simultaneously controlling the lifting body’s position and
attitude so that it tracks this path.

In order to simplify the lower-level tracking control problem
(related to requirements 2 and 3), while preserving fundamen-
tal attributes of the upper-level crosswind path optimization
problem (which relates directly to requirement 1), we propose
a model that we term the “unifoil” model. This model fully
characterizes the longitudinal dynamics of the airborne system,
which are critical to power production, while imposing a
kinematic constraint (a “unicycle” constraint) whereby the
AWE system moves in the direction that it is pointed. This
allows us to solve the path following problem relatively easily,
which in turn allows us to focus on validating the use of an
iterative learning process to optimize that path.



4

This model is based on the design of a rigid wing system
with on-board turbines, similar to the system shown in the
bottom of Fig. (1) and shown schematically in Fig. (2b). The
AWE system is characterized by five elements:

1) A single large wing;
2) A horizontal stabilizer, whose lift and drag properties are

lumped with the main wing;
3) A vertical stabilizer (with rudder), positioned several

meters behind and perpendicular to the wing, and;
4) An aerodynamically negligible fuselage that rigidly con-

nects the wing and the rudder.
5) Counter-rotating on-board turbines.
The lower level controller actuates the main wing to gen-

erate translational motion from the aerodynamic forces on the
airfoil. It actuates the rudder to generate a turning or yawing
moment. The system’s kinematics are simplified through the
following constraints, which are reflective of a system with
(i) stiff tethers, (ii) limited sideslip, and (iii) a high lift/weight
ratio:

1) The distance from the origin is fixed, or equivalently,
the system is constrained to lie on a sphere centered at
the origin. This is also equivalent to assuming that the
tether(s) are always perfectly taut.

2) The system only translates on the sphere in the direction
that the fuselage is pointing, which is taken to be the
direction of the body-fixed x-axis. This is the familiar
no-slip kinematic constraint.

3) The body-fixed x-z plane (i.e., the longitudinal plane)
is constrained to be perpendicular to the sphere. This
assumption approximately holds when lift forces signif-
icantly exceed gravitational forces. In these cases, the
airborne system requires minimal roll, relative to the
sphere, in order to stay aloft.

It should be emphasized that this model does account for a
non-zero aerodynamic sideslip angle (i.e., the angle between
the apparent wind vector and the longitudinal plane); however,
it does not allow for geometric slip (i.e., the airborne system
only moves in the direction that it is pointing). Under these
constraints, the system can be completely described by three
variables, along with their associated derivatives. These are
the azimuth angle, Θ, zenith angle, Φ, and the heading on
the sphere, Γ, which is the complement of the velocity angle
used in [20]. A schematic depiction of the system is given in
Fig. (2). The first step in determining the aerodynamic forces
on the wing and stabilizers is to describe the apparent wind
vector from the ground-fixed coordinate frame, ~vG

app(t), in the
body-fixed coordinate frame.

1) Apparent Wind: The orientation of the model is de-
scribed by the set of three Euler angles: roll, φ(t), pitch, θ(t),
and yaw, ψ(t). The rotation matrix, which relates a vector in
the ground-fixed coordinate system to a vector in the body-
fixed coordinate system, RG→B(φ(t), θ(t), ψ(t)) ∈ R3×3, has
the common form available in [21]. Therefore the apparent
wind vector in the body-fixed coordinate frame, ~vBapp(t) is
given by ~vBapp(t) = RG→B(t)~vG

app(t).
Turning is accomplished though lateral force on the vertical

stabilizer, induced by deflection of the rudder, through a

Fig. 2: Schematic of numerical AWE model. Subfigure (a)
shows a wide-angle view of the system. It includes the
polar ground-fixed coordinate system, (r,Θ,Φ), the Cartesian
ground fixed coordinate system, (xG, yG, zG), an example
system path, ~p(s), the tether, the sphere on which the system
operates, and the heading angle, Γ. Subfigure (b) shows a
close up of the system including the wing, fuselage, horizontal
stabilizers, and vertical stabilizer/rudder. body-fixed coordinate
system, (xB , yB , zB), on-board turbines, and the control in-
puts, ur and uw. Subfigure (c) shows the relationship between
ur, αr, and γr, and subfigure (d) shows the relationship
between uw, αw, and γw.

control input ur. The lateral force imparted on the vertical
stabilizer is a function of the effective angle of attack of
the stabilizer, which is a function of the angle between the
apparent wind and stabilizer, along with the rudder deflection:

αr(t) = γr(t) + krur(t). (9)

The angle of attack of the main wing is governed by the
angle of the apparent wind relative to the tangent plane to
the sphere on which the AWE system is flying, γw, and the
pitch angle of the AWE system relative to the sphere, uw. The
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latter can ultimately be controlled via elevators. Ultimately, the
wing’s angle of attack is given by:

αw(t) = γw(t) + uw(t). (10)

The aforementioned angles are depicted relative to the body
fixed reference frame at the bottom of Fig. (2).

The wing (which is rigidly attached to the fuselage and
stabilizers) is allowed to rotate about its span, which is aligned
with the body fixed y-axis. Therefore the angular deflection
from the wing control signal, uw(t) occurs in the x-z body-
fixed plane as depicted in Fig. (2b). Likewise, the rudder is
allowed to rotate about its span, which is aligned with the
body fixed z-axis. Therefore the angular deflection from the
rudder control signal, ur(t) occurs in the x-y body-fixed plane
as depicted in Fig. (2b). The additive terms, γw,r(t), are the
two angles of incidence between the apparent wind and the
fuselage. They are calculated from the body-fixed components
of the apparent wind vector as

γw(t) = tan−1
(
vBapp,z(t)

vBapp,x(t)

)
(11)

γr(t) = tan−1
(
vBapp,y(t)

vBapp,x(t)

)
. (12)

2) Translational Forces: In light of the no-slip constraint,
the total accelerations in the body-fixed z and y directions are
equal to zero, and the total acceleration in the body-fixed x
direction, aB , is expressed as:

aB =gBx +
ρ

2m
||~vBapp||2(

Aw
refC

w
L (αw) sin(γw)−Aw

refC
w
D(αw) cos(γw)

+Ar
refk

r
L1αr sin(γr)−Ar

ref

(
krD0 + krD2α

2
r

)
cos(γr)

− nturbAt
refC

t
D cos(γw)

)
(13)

where the time dependence has been suppressed for notational
simplicity. In this expression, gBx is the projection of the
gravitational vector onto the body fixed x-axis, m is the total
mass of the system, nturb is the number of turbines, ρ is
the density of air, Aw,r,t

ref represents the reference area of
the wing/horizontal stabilizer, rudder/vertical stabilizer, and
turbine, respectively, Cw,t

D,L represents the coefficients of lift
and drag of the wing or turbine, respectively and krL,D are
the coefficients to the linear and quadratic fits of the vertical
stabilizer/rudder lift coefficient and drag coefficient polars. The
coefficients of lift are a function of the angle of attack and
are obtained from a lookup table generated in XFLR5 [22].
The specifications for the main wing and the stabilizer/rudder
used in this work are available on [23] as airfoils NACA 2412
and HT05 respectively. Both were chosen for their extremely
high lift-to-drag characteristics which are necessary to achieve
significantly increased power production as well as nimble
handling without full control of the roll, which is restricted
by the third constraint.

To account for induced drag due to wingtip vorticies (which
is unaccounted for in 2D XFLR5 predictions), the drag coef-
ficients used in simulation have been corrected according to:

Cw,r
D (αw,r) = min{C̃w,r

D (αw,r)}+

(
Cw,r

L (αw,r)− CL0

)2
π e ARw,r

(14)
where C̃w,r

D is the set of estimated drag coefficients produced
by XFLR5’s 2D analysis, CL0 is the coefficient of lift at
the angle of attack where the estimated coefficient of drag
is minimized, e is the Oswald efficiency, and ARw,r is the
aspect ratio of the airfoil in question.

3) Rotational Moments: For the purposes of this work, the
rudder couples with the nonholonomic no-slip constraint to
produce rotational motion. The total rotational moment about
the body fixed z-axis is calculated as:

Mz =
1

2
ρ||vBapp||2lfAr

ref

(
krL0 + krL1α

)
cos(γr) (15)

where lf , the length of the fuselage, determines the moment
arm. The quantities krL,0 and krL,1 are coefficients of the linear
fit of the lift coefficients Cr

L(αr) obtained from XFLR. Note
that the moment induced by aerodynamic drag on the vertical
is assumed to be negligible. Additionally, because the vertical
stabilizer and rudder are symmetric, kL0 is zero.

4) Position and Orientation in the Ground-Fixed Coordi-
nate System: In order to translate these body-fixed forces
and moments into a set of ground-fixed coordinates and
orientations, we employ the same mathematical structure as
[18], specifically:

Θ̇(t) =
vBx (t)

r cos
(
Φ(t)

) sin
(π

2
− Γ(t)

)
(16)

Φ̇(t) = −v
B
x (t)

r
cos
(π

2
− Γ(t)

)
(17)

Γ̈(t) = −Mz

J
(18)

where the velocity in the body-fixed x-direction, vBx (t), is
given by integrating equation (13). The Euler angles are
immediately derived from the Cartesian representation of the
body-fixed unit vectors as detailed in [24].

5) Plant Parameter Values Used In Simulation: Table I
provides the values of the plant parameters used in this work.

III. CONTROL DESIGN FRAMEWORK

In this section, we propose two iterative path adaptation
laws for repetitive path following, then proceed to show how
these adaptation laws can be tailored to the AWE application.
Because the path adaptation laws focus on optimizing the path,
not tracking the path, either one must be accompanied by a
lower-level path tracking controller. This section also provides
details of how this lower-level tracking controller has been
designed for the AWE application.
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Var. Description Value Units
ρ Air density 1.225 kg·m−3

m Total system mass 100 kg
J Rotational inertia about zB 1062 kg· m2

r0 Tether length 100 m
Lw Chord length of main wing 1 m
Lr Chord length of vert. stabilizer + rudder 1 m
Sw Span of main wing 7 m
Sr Span of vertical stabilizer + rudder 1.5 m
Aw

ref Ref. area of main wing 7 m2

Ar
ref Ref. area of vert. stabilizer + rudder 1.5 m2

- Diameter of single turbine 0.25 m
At

ref Ref. area of single turbine 0.049 m2

nturb Number of turbines 4 -
ARw Aspect ratio of main wing 5 -
ARr Aspect ratio of vert. stabilizer + rudder 1.5 -
lf Length of fuselage 7 m
vw Constant wind speed 7 m·s−1

TABLE I: Parameter values used in simulation results.

A. General Iterative Path Adaptation Structure

The purpose of the path adaptation algorithm is to use
previous iterations’ paths and corresponding performances to
adjust future paths to achieve convergence to an optimal path.
In applications where the next iteration starts at the exact
time that the current iteration ends, the optimization and path
adaptation must take place very quickly, so that the new path
geometry is available at the beginning of each iteration. In
order to accomplish this, we parameterize our path in terms
of a small set of basis parameters, b ∈ Rn. That is, we replace
~p(s) in equations 1, 4, and 5, with ~p(s,b). We then apply one
of the following iterative adaptation laws:

Option 1: Error-based adaptation

bj+1 = Kbbj +Ke

(
b̂∗j − bj

)
+ pj , (19)

Option 2: Gradient-based adaptation

bj+1 = Kbbj +Ke∇Ĵ(bj) + pj . (20)

In both update laws, bj ∈ Rn represents the basis parame-
ters at iteration j, and matrices Kb ∈ Rn×n and Ke ∈ Rn×n

represent learning gains.
In (19), referred to as the error-based update law, b̂∗j

represents the estimated optimal basis parameters at the current
iteration. In (20), referred to as the gradient-based update law,
∇Ĵ(b j) represents the gradient of the estimated response
surface, Ĵ , at the current basis parameters, bj , of iteration
j.

With the exception of the term pj , the structure of the error-
based update law, (19), parallels the structure of traditional
ILC, with bj taking the place of the control input sequence and
b̂∗j −bj taking the place of the error term. When taking Kb =
I , the first two terms of the adaptation law reflect movement
in the design space, towards the perceived optimizer, b̂∗j .

Likewise, the gradient-based update law of (20), parallels
the structure of gradient-based ILC [25], with bj taking the
place of the control input sequence and ∇Ĵ(b j) taking the
place of the gradient of a (squared) tracking error cost function
with respect to the control input sequence. When taking Kb =
I , the first two terms of the adaptation law reflect movement
in the direction of perceived increasing performance index.

The term p j ∈ Rn in both update laws is a persistent exci-
tation term that is designed to ensure adequate exploration of
the domain of available basis parameters. This term ultimately
ensures convergence of bj to a region around the true optimal
basis parameters, b∗.

By restricting the set of possible path geometries through
this parameterization of the generic path, ~p(s), we may sac-
rifice the global optimality of the final result. However, with
a proper choice of parameterization, this loss of optimality
may be negligible. Furthermore, by reducing the design space
through parameterization, the problem gains some structure,
and the optimization becomes feasible. In the case of the
parameterization chosen in this work (detailed later), it also
becomes computationally lightweight.

To implement the course geometry adaptation strategy, three
mathematical operations must take place at each iteration:

1) The estimated response surface, Ĵ(b j), must be updated
based on performance at iteration j.

2) The estimated optimal basis parameters, b̂∗j , or the esti-
mated gradient of the response surface, ∇Ĵ(bj), must be
calculated from the estimated response surface.

3) The path geometry for the next iteration, ~pj+1(s), must
be updated according to the expression for ~p(s) and the
appropriate choice of (19) or (20).

We now consider how to quickly and efficiently perform the
first two operations.

1) Estimating the Response Surface: To estimate Ĵ(b j),
we model the performance index as the inner product of a
regressor vector, h(b) ∈ Rq , and a coefficient vector, β ∈ Rq ,
as follows:

Ĵ(bj) = h(bj)
Tβj . (21)

Here, Ĵ(bj) represents an approximation of the performance
index, and the regressor vector structure, h(bj), is selected
to encode the anticipated dependency of J on the basis
parameters (e.g., if we expect that J is quadratic with respect
to the basis parameters, then terms h(bj) should include the
squares of basis parameters). The coefficients to the estimated
response surface, β are then identified at each iteration,
j, using recursive least squares (RLS), with an exponential
forgetting factor, λ, as follows:

Vj =
1

λ

(
Vj−1 −

Vj−1h(bj)h(bj)
TVj−1

1 + h(bj)TVj−1h(bj)

)
, λ ≤ 1

βj = βj−1 + Vjh(bj)
(
J(bj)− h(bj)

Tβj−1
)

(22)

where Vj is the inverse of the weighted sample covariance
matrix. In this work, Vj and βj are initialized by first testing
five user-specified points in design space and then solving the
least squares problem.

Given a parameter estimate, βj , the corresponding optimizer
or gradient of h(bj)

Tβj , denoted by b̂∗j , or ∇Ĵ(bj), is
computed either analytically or numerically.

Note that this method of parameterizing the response sur-
face implicitly assumes that the initial condition, x(0), and
environmental conditions, de(t) are constant from iteration
to iteration, as mentioned earlier. This realization further
motivates the introduction of the forgetting factor, λ, which
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heavily weights recently acquired data in the estimate, βj

thus ensuring that the estimated response surface is weighted
towards data acquired using similar course geometries and
under similar wind conditions. We provide guidelines for
tuning λ later in the paper.

2) Design of Persistent Excitation Term: The term p j

in (19) and (20) is used to ensure adequate exploration of
the design space, such that the estimated response surface,
Ĵ , ultimately converges to within a finite error of the true
response surface. Specifically, to guarantee convergence of the
RLS estimator, we must choose p j such that the following
uniform persistent excitation condition holds [26]:

Definition 1. (Uniform persistent excitation) The signal b̂ with
bi ∈ b̂, is uniformly persistently exciting if there exists an
integer T > 0 such that:

k+T∑
i=k

(h(bi))(h(bi))
T � 0, (23)

for all k.

Here, the symbol � indicates that the left hand side is a
positive definite matrix. In the update law of (19) and (20), p j

is the only term that can be freely specified at each iteration.
Thus, pj must be carefully designed to ensure that the above
persistent excitation condition holds. In section III-D3 we will
describe how p j has been chosen for the AWE application.

B. Convergence Analysis - Ideal Case

In this subsection, we present initial convergence analyses,
based on the basis parameter update laws of (19) and (20).
Our analysis provides sufficient conditions under which bj

converges to a finite set containing b∗. For simplicity, we
consider the case where the learning gains take the form
Kb = I , Ke = keI .

In performing our analysis, we make the following assump-
tions regarding the structure of h(b) and pj :
• Assumption 1: The initial condition, x(0), and external

disturbance, de(t), are iteration-invariant, and the only
uncertainties are parametric:

J(b,x(0), de(t)) = J(b) = h(b)Tβ∗ for some β∗.
(24)

• Assumption 2: The performance index, J(b) is convex
and differentiable everywhere, possesses a unique max-
imizer, and the gradient is Lipschitz continuous with
constant L, that is:

‖∇J(bj+1)−∇J(bj)‖ ≤ L‖bj+1 − bj‖. (25)

• Assumption 3: The excitation signal at each iteration, p j ,
is chosen such that there exists an integer T > 0 for
which:
k+T∑
i=k

[h(ξ+

i∑
k=0

(∆k+pj+k))][h(ξ+

i∑
k=0

(∆k+pj+k))]T�0,

(26)
∀ ξ ∈ Rnb , ∆k ∈ Rnb : ‖∆k‖ ≤ ∆max, k = 0 . . . T .

Assumption 1 guarantees that the regressor vector structure
(h(b)) characterizes the actual performance index. Assump-
tion 2 bounds the iteration-to-iteration variation in the perfor-
mance index. Satisfaction of Assumption 3 ensures the neces-
sary persistent excitation, which guarantees that β converges
by the definition of persistent excitation.

Under the aforementioned assumptions, it is possible to
guarantee convergence of Ĵ(bj) to J(b) and bj to a finite
set containing b∗, through the following propositions, which
correspond to the error-based and gradient-based adaptation
laws, respectively.

Proposition 1. (Convergence of error-based iterative path
adaptation law) Suppose that Assumptions 1, 2, and 3 are
satisfied, and that ‖pj‖ ≤ pmax,∀j ≥ 0. Then under the basis
parameter update law of (19) with Kb = I , Ke = keI , and
ke < 1, the following results hold:
• lim

j→∞
‖b∗j − bj‖ = 0.

• The set B = {b : ‖b∗ − b‖ ≤ pmax

ke
} is attractive, (i.e.,

b converges to a ball of radius pmax

ke
around b∗).

Proof. Defining δi , ke(b̂j
∗
−bj), bj+1 is related to bj by:

bj+i = bj +

i∑
k=0

(δj+k + pj+k). (27)

Taking ξ = bj and ∆k = δj+k for k = 0 . . . i, it follows from
Assumption 3 that there exists T > 0 for which equation (23)
holds for all j. Thus, uniform persistent excitation is achieved,
which by Assumption 3 guarantees that βj converges. This
fact, in combination with Assumption 1 guarantees that:

lim
j→∞
‖βj − β∗‖ = 0. (28)

According to Assumption 2, there exists a unique maximizer,
b∗, that can be computed from β∗; therefore, it immediately
follows that:

lim
j→∞
‖b∗j − b‖ = 0. (29)

Next, note that the update law of (19) can be rewritten as:

bj+1 = (1− ke)bj + ke(b
∗ + εj) + pj , (30)

where εj , b̂∗j −b∗. This can be represented in the z domain
by:

b(z) =
ke

z + ke − 1

(
b∗(z) + ε(z)

)
+

1

z + ke − 1
p(z). (31)

Given that lim
j→∞

εj = 0, b∗ is a constant, and the poles in

(31) are located at z = 1 − ke, (which for 0 < ke < 1
indicates input-output stable and overdamped dynamics), the
steady state-dynamics satisfy:

‖bss − b∗‖ ≤ pmax

ke
. (32)

Thus, b converges to a set B = {b : ‖b∗ − b‖ ≤ pmax

ke
} at

steady state.

Proposition 2. (Convergence of gradient-based iterative path
adaptation law) Suppose that Assumptions 1, 2, and 3 are
satisfied, and that ‖pj‖ ≤ pmax,∀j ≥ 0. Then under the basis
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parameter update law of (20) with Kb = I , Ke = keI , and
0 < ke <

2
L , the following results hold:

• lim
j→∞
‖Ĵ(bj)− J(b)‖ = 0.

• The set B = {b : ‖∇J(b)‖ ≤ 1
Lmin

pmax
2
L−ke

} is attractive.

Proof. By the same logic as the proof of Proposition 1, if we
define δi , keI∇Ĵ(bj), bj+i then it follows from Assumption
3 that uniform, persistent excitation is achieved, and (28) holds
in this case as well. Furthermore, according to Assumption 1,
the only uncertainties are parametric, therefore it immediately
follows that:

lim
j→∞

Ĵ(bj)− J(b) = 0 ∀ b. (33)

Which implies from continuity that:

lim
j→∞
‖∇Ĵ(bj)−∇J(b)‖ = 0. (34)

In fact, Assumption 1 guarantees that ∇Ĵ(bj) = ∇J(b)
for some finite value of j. Assumption 2 provides a bound
on the change in performance index between two successive
iterations, ∆J ≡ J(bj+1)− J(bj):

∆J ≥ ∇J(bj)
T (bj+1 − bj)−

L

2
‖bj+1 − bj‖2. (35)

Substituting the update law of (20) for bj+1, with Kb = I
and Ke = keI , gives:

∆J ≥ ∇J(bj)
T (ke∇Ĵ(bj) + pj)−

L

2
‖ke∇Ĵ(bj) + pj‖2.

(36)

Noting from before that ∇Ĵ(bj) = ∇J(bj) for a finite value
of j, then for sufficiently large j, this can be algebraically
rearranged to obtain:

∆J ≥ L

2

(
ke

(
2

L
−Ke

)
‖∇J(bj)‖2

+ 2

(
1

L
− ke

)
pT
j ∇J(bj)− pT

j pj

)
.

(37)

This is lower bounded once again by using the largest mag-
nitude of the excitation signal, pmax:

∆J ≥ L

2

(
ke

(
2

L
− ke

)
‖∇J‖2

+ 2

(
1

L
− ke

)
pmax‖∇J‖ − p2max

)
.

(38)

Where the dependence of J on b has been suppressed for
succinctness. Sufficient conditions on ke and ‖∇J‖ for the
quadratic expression to be greater than or equal to zero are:

0 < ke <
2

L
and (39)

‖∇J‖ ≥ pmax
2
L − ke

. (40)

Defining B = {b : ‖∇J(b)‖ ≤ pmax
2
L−ke

}, J ′ as the maximum
scalar such that B ⊂ {b : J(b) ≥ J ′}, and S = {b : J(b) ≥
J ′}, then S is invariant and ∆J > 0 whenever b /∈ S. Thus

the performance index will be non-decreasing (i.e. ∆J ≥ 0)
whenever the true response surface has been identified, the
learning gain is chosen appropriately and b /∈ S.

C. Convergence Analysis - Discussion

As mentioned previously, the convergence analysis given
above is based on a set of three assumptions. The most severe
deviations from the ideal case occur because, in real-world
systems, Assumption 1 will be violated to some extent.

In the application examined in this work, inconsistent initial
conditions arise from a combination of two sources. The first
is the optimization itself. By varying the shape of the path
between iterations, we change (at least) the heading angle,
Γ, at which the system finishes iteration j. This is then the
heading angle at which the system starts iteration j + 1.
Second, the external disturbance (the wind speed) is varying
from iteration to iteration. Because the wind speed determines
the system’s speed, it influences the state of the system at the
end of iteration j, which is then the initial state at iteration
j + 1. These iteration-to-iteration variations must be kept
manageable in size through careful tuning of the learning
gains.

Furthermore, in this application there is no reason to expect
that the true, global response surface satisfies Assumption 1.
Rather, our estimated response surface should be viewed as a
local approximation.

In order to increase the robustness of the optimization
against the effects of violating these assumptions, we suggest
three ways in which the optimization can be adjusted:
• First, we implement a trust region to limit the amount

that the basis parameters are allowed to vary between
iterations.

• Second, we reduce the learning gain, Ke.
• Third, we set the forgetting factor, λ to a value less than

1.
The first and second adjustments are helpful in mitigating the
effects of both the inconsistent initial conditions and the local
nature of the response surface estimation. The last adjustment
is helpful in mitigating the effects of the inconsistent external
disturbance. The idea here is that by heavily weighting the
more recent data in the response surface estimation, we are
more likely to fit our response surface to data measured under
a similar external disturbance.

D. Iterative Path Adaptation Framework for the AWE Appli-
cation

The overall structure of the AWE control system, including
both the iteration domain path adaptation (which generates and
optimizes the figure-8 path for the next iteration) and time-
domain wing and rudder angle controllers (which allow the
AWE system to follow the figure-8 path, while controlling the
angle of attack to maximize instantaneous power output), is
shown in Fig. 3.

1) Path Parameterization: In this work, we parameterize
the path in terms of two basis parameters, the azimuthal sweep
angle of the path, termed the width, W , and the zenith sweep
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Fig. 3: Block diagram showing path adaptation performed
between iterations (top) and the lower-level controllers used to
follow the path and maximize instantaneous power (bottom).

angle, termed the height, H . Thus, the vector of iteration-
varying basis parameters is bj = [ Wj Hj ]T . The shape of
the path, ~pj(s,bj) = (rj(s,bj),Θj(s,bj),Φj(s,bj)), is then
calculated from a parametric form of the figure-eight known
as the Lemniscate of Gerono (see [27]), where:

rj(s,bj) = r0 ∀j (41)

Θj(s,bj) = Wj cos
(
(2s+

3

2
)π
)
, (42)

Φj(s,bj) = −Hj sin
(
(2s+

3

2
)π
)

cos
(
(2s+

3

2
)π
)

+ Φ0.

(43)

where s ∈ S is an angular path variable and the manifold of
all path variables, S, is a circle with the points s = 0 and
s = 1 identified as equal. The quantity Φ0 is the mean zenith
angle of the course.

2) Performance Metric: For the AWE application, the ulti-
mate objective is to maximize power output in a manner that
can be repeated from one iteration to the next. This means
that the performance index, J , should be chosen primarily to
reflect average power augmentation as compared to stationary
flight, but should also disallow figure-8 paths that cannot be
followed adequately (which will lead to situations where the
figure-8 paths cannot be repeated because they do not finish at
the same initial condition that they start at). To capture these
desires, the following two-term performance index is chosen
and used in simulation:

Jj =

∫ Tf,j

0
v3app,j(t)dt∫ Tf,j

0
v3w,j(t)dt

− Kt

Tf

∫ Tf,j

0

(
Γ̇(t)

)2
dt (44)

The first term, referred to as the energy augmentation ratio
(EAR), expresses the energy generation augmentation result-
ing from crosswind flight. The numerator is proportional to
the energy produced by the system and the denominator of
the first term is proportional to the energy that would have
been produced by the system under stationary (non-crosswind)
flight. The variable Kt is a scalar weighting parameter. The
second term penalizes courses that require large turning ac-
tions, which ultimately require large aerodynamic forces to
execute turns at high speeds (since centripetal acceleration is
equal to the product of angular rate and velocity). Because

the model used for our simulations has been intentionally
simplified to facilitate path following, it is very important
that we consider ease of this path following problem, and the
second term in the performance index satisfies that goal.

3) Basis Parameter Adaptation: In order to implement a
basis parameter update law, we first require an estimate of
the response surface at each iteration, Ĵ(b j). This estimate is
updated at each iteration using the RLS estimator of (22). For
the purpose of constructing the RLS estimator for the AWE
system, the estimated performance index, Ĵ , is parameterized
as Ĵ = h(bj)

Tβ, where:

h(bj) = [ 1 Wj W 2
j Hj H2

j ]T , (45)

βj = [ β0,j β1,j β2,j β3,j β4,j ]T . (46)

The excitation signal is designed as a uniform random number
with a user-specified range:

pj = [ 2AW (NR,j − 1
2 ) 2AH(NR,j − 1

2 ) ]T , (47)

where AW , AH , are the user-refined ranges and NR,j is the
number generated from a uniform random number generator
which satisfies 0 ≤ NR,j ≤ 1 ∀ j. The orthogonality of
the random number generation function achieves the required
uniform persistent excitation.

The parameterization of (45) represents a good local but
inaccurate global characterization of J , rendering the gradient-
based update law of (20) a more appropriate choice in this
case.

From βj , and h(bj), the gradient of the estimated perfor-
mance index at the current set of basis parameters, ∇Ĵ j , can
be calculated in a very straightforward fashion:

∇Ĵ j = [ β1,j + 2β2,jWj β3,j + 2β4,jHj ]T (48)

This estimated gradient is then used in a slightly modified
version of the path adaptation law of (20):

b j+1 = b j +Ke(∇Ĵj ,∆bmax)∇Ĵ(b j) + p j . (49)

Where the learning gain matrix, Ke ∈ R2×2 has now been
adapted to vary from iteration to iteration in order to imple-
ment a trust region. Specifically, it now depends on estimated
gradient, ∇Ĵj , as well as the elements of the user-defined trust
region, ∆b = [ ∆Wmax ∆Hmax ]T according to:

Ke(∇Ĵj ,∆bmax) =

min

{
1,

∆Wmax

|β1,j + 2β2,jWj |
,

∆Hmax

|β3,j + 2β4,jHj |

}
I

(50)

E. Lower-Level Rudder (Path Following) and Wing Angle
Controllers for the AWE Application

Lower-level controllers must adjust the rudder angle, ur, in
order to follow the path and must adjust the wing angle, uw,
in order to do so efficiently. The wing angle, uw, is chosen to
maximize the approximate net longitudinal acceleration given
in equation (13). In order to solve for the wing angle that
maximizes the longitudinal acceleration, u∗w, it is necessary
to approximate the lookup tables of equation (13) with closed
form analytical functions. This is accomplished by fitting a
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linear regression to the linear region of the Cw,r
L curves and

by fitting a quadratic regression to the quadratic region of the
Cw,r

D curves. Determining the range over which these lookup
tables are considered linear or quadratic is left up to the user.
These regressions have the form:

Ĉw,r
L (αw,r) = kw,r

L1 αw,r + kw,r
L0 (51)

Ĉw,r
D (αw,r) = kw,r

D2 α
2
w,r + kw,r

D1 αw,r + kw,r
D0 . (52)

We can now substitute these equations into equation (13), set
the partial derivative with respect to αw equal to zero and
solve for the optimal angle of attack, α∗w(t),

α∗w(t) =
1

2kwD2

(
kwL1 tan

(
γw(t)

)
− kwD1

)
. (53)

Through the direct relationship between αw(t) and uw(t) in
equation (10), the optimal control input is then, u∗w(t) =
α∗w(t)− γw(t).

Path following is accomplished by first calculating a heading
setpoint, Γsp, at each instant, then using a simple feedback
linearizing model reference controller to regulate the hull’s
orientation to that setpoint. The heading setpoint, Γsp, is de-
termined at every instant through a pure pursuit path following
approach similar to [28] that consists of three steps:

1) Compute the local projection of the current position onto
the path by finding the path variable, s∗, that minimizes
the great-circle distance from the current position, ~rj(t),
to the path, ~pj(s,bj). That is, we solve the following
minimization problem at every instant, t:

s∗j (t) = arg min
s∈S+
{dSphere(~rj(t), ~pj(s,bj))}, (54)

where dSphere denotes the great-circle, or spherical dis-
tance between the ends of the two input vectors.
Because a closed-form solution to this problem for our
path geometry does not exist, we approximate the solution
numerically by using the golden section algorithm [29]
for our 1d minimization. In order to avoid problems
originating from the self-intersecting nature of the path,
this search is only performed over a small subset of
possible path variables, S+ ⊂ S, termed the “searched
subset”. The searched subset, is given by the closed
subset, [s∗j (t − 1), s∗j (t − 1) + ss] where s∗j (t − 1) is
the path parameter found from the projection operation
during the previous time step, and ss is a user-defined
parameter defining the maximum search-ahead distance.
It is also worth pointing out that this formulation inher-
ently enforces a non-decreasing constraint on the target
point location, expressed by sc(t) and ~rc,j(t).

2) Add a user-defined constant, c, to the local projection
point, s∗j (t), to obtain the target point at the current
instant, sc,j(t),

sc,j(t) = s∗j (t) + c. (55)

3) Calculate the spherical heading between the current posi-
tion, ~rj(t) = (r0,Θj(t),Φj(t)), and the target, ~rc,j(t) =

(r0,Θc,j ,Φc,j), calculated by evaluating equations (41) -
(43) at sc,j(t)

Γsp=
π

2
−atan

(
sin(Θc,j −Θj)

cos(Φ′c,j)tan(Φ′j)−sin(Φ′c,j)cos(Θc,j−Θj)

)
(56)

where Φ′ indicates the complement of a zenith angle, also
known as elevation or latitude.

The rudder controller has been designed as a model refer-
ence, feedback linearizing controller. Specifically, the second-
order, relative degree 2 reference model describing desirable
heading angle tracking performance is given by:

Γm(s)

Γsp(s)
=

1

(τs+ 1)2
(57)

where Γm(t) is the reference model output, which is designed
to follow Γsp(t) with time constants of τ . By substituting
the approximated aerodynamics of equation (51) into the ro-
tational dynamic equation (15) we can obtain an approximate
model of the rotational plant dynamics that is then inverted to
obtain our control law:

ur,cmd(t) = − J

Mz(γr)

( 1

τ2
(Γsp − Γ)− 2

τ
Γ̇
)
− γr. (58)

Here, the term Mz(γr) is given by (15). To ensure that
we do not attempt unrealistic rudder deflections, we sat-
urate the commanded rudder angle to a range of ±30◦.
Thus, the final command to the rudder is given as ur =
max{min{ur,cmd(t), 30◦},−30◦}.

F. Controller Parameter Values Used In Simulation

Values for controller parameters used in the simulation
results of Section IV are provided in Table II.

Variable Description Value Units
µ Forgetting factor 0.98 -
AW Width excitation amplitude 0.75 deg
AH Height excitation amplitude 0.2 deg
∆Wmax Width trust region 3 deg
∆Hmax Height trust region 1 deg
τ Reference model time constant 0.03 s
Φ0 Mean path elevation angle 40 deg
ke Learning gain 5 -
Kt Performance index tracking weight 20 -
c Carrot lead path distance 0.02 -
ss Path search-ahead distance 0.01 -

TABLE II: Parameter values used in simulation results.

IV. SIMULATION RESULTS AND DISCUSSION

This control strategy was tested under two wind conditions.
The first, termed the constant wind profile was a spatially
and temporally constant wind speed. The second, termed the
variable wind profile was a spatially uniform but temporally
varying wind speed based on data obtained from the NREL
National Wind Technology Center [30].
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A. Constant Wind Profile

In order for this ILC-based path optimization to be success-
ful under a constant wind profile, it should produce paths that
converge to a fixed geometry. Furthermore, the performance
index, Jj , should increase as the iteration number increases,
as should the average power augmentation. Fig. (4) shows
the basis parameters over one optimization for a variety of
initial conditions. This figure demonstrates that the figure-
8 path converges for a variety of initial conditions. Fig. (5)
shows some examples of the initial and final three-dimensional
shapes resulting from the optimization starting from initial
course geometry 2.

Fig. 4: Evolution of basis parameters for a variety of initial
conditions under a constant wind profile.

Fig. 5: Example initial and final path geometries for initial
condition 2.

Additionally, the path optimization should result in paths
that present the turbines with more wind from iteration to
iteration. In order to examine the amount of wind presented to
the turbines from iteration to iteration, Fig. 6 shows the cubed
ratios of the apparent wind speed to the true wind speed.

Fig. 6: Evolution of apparent wind speed (relative to the
constant, true wind speed) as a function of time, for several
iterations of the optimization.

By examining the performance index as a function of the
iteration number, as shown in Fig. (7), we can see that the
majority of the improvement in the performance index occurs
in the first 50 iterations. This evidence further suggests that
the response surface J(b) is relatively flat in the vicinity of
the optimum, J∗, at least for the constant wind speed chosen
here.

Fig. 7: Evolution of performance index for a variety of initial
conditions under a constant wind profile.

In addition, Fig. 8 shows the energy augmentation ratio
(EAR) given by the first term of equation (44), plotted against
iteration number, j. This plot demonstrates that this optimiza-
tion results in course geometries that produce significantly
more power than the initial course geometry.

B. Realistic Wind Profile

In order for this ILC-based path optimization to be suc-
cessful under a variable wind profile, it should produce course
geometries that show significantly increased energy generation
when compared to a fixed, constant course geometry. Fig.
(9) shows the wind speed profile used in this work. The
instantaneous wind speed in simulation is based on data
obtained from the NREL National Wind Technology Center
[30]. This data is sampled once every minute, but linear
interpolation was used to determine intermediate values. The
data selected for simulation begins on August 24, 2001, which
is the beginning of the data set, and runs for a duration of two
hours.
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Fig. 8: Evolution of energy augmentation ratio (EAR) for a
variety of initial conditions under a constant wind profile.

Fig. 9: Wind speed data obtained from NREL National Wind
Technology Center.

The increased performance index for a variety of initial
course geometries is illustrated by Fig. (10)-(12) and the
increased energy generation is illustrated by Fig. (13)-(14)
which show the energy augmentation ratio (EAR) as a function
of both the iteration number and the associated end time of
each iteration.

The performance index and energy generation ratio are com-
pared against a simulation wherein the course was constant
or fixed, and equal to the initial course geometry, over the
entire duration of the simulation. Because the increased energy
generation results from completing the course faster, we can
see that the optimization achieves more iterations in the same
amount of time as the baseline.

V. CONCLUSIONS

This paper presented an iterative learning approach for
optimizing the course geometry in repetitive path-following
applications. Unlike offline path optimization algorithms,
the approach described herein allows for adjustment of the
path from one iteration to the next, which is essential for
performance-critical applications where modeling uncertainty
is high. This paper demonstrated the efficacy of the proposed
path adaptation approach for one such performance-critical
application, namely airborne wind energy (AWE) systems
executing crosswind flight.

Fig. 10: Performance Index, Jj plotted against both time, t,
(top) and iteration number, j, (bottom), for the optimization
under the variable wind profile of Fig. (9), beginning from
initial course geometry 1, where b0 = [ 20◦ 130◦ ].

Fig. 11: Performance Index, Jj plotted against both time, t,
(top) and iteration number, j, (bottom), for the optimization
under the variable wind profile of Fig. (9), beginning from
initial course geometry 2, where b0 = [ 15◦ 150◦ ].

Fig. 12: Performance Index, Jj plotted against both time, t,
(top) and iteration number, j, (bottom), for the optimization
under the variable wind profile of Fig. (9), beginning from
initial course geometry 3, where b0 = [ 15◦ 60◦ ].
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Fig. 13: Energy augmentation ratio (EAR), plotted against both
time, t, (top) and iteration number, j, (bottom), for the opti-
mization under the variable wind profile of Fig. (9), beginning
from initial course geometry 1, where b0 = [ 20◦ 130◦ ].

Fig. 14: Energy augmentation ratio (EAR), plotted against both
time, t, (top) and iteration number, j, (bottom), for the opti-
mization under the variable wind profile of Fig. (9), beginning
from initial course geometry 2, where b0 = [ 15◦ 150◦ ].

Fig. 15: Energy augmentation ratio (EAR), plotted against both
time, t, (top) and iteration number, j, (bottom), for the opti-
mization under the variable wind profile of Fig. (9), beginning
from initial course geometry 3, where b0 = [ 15◦ 60◦ ].
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