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An Event-Driven AR-Process Model for
EEG-Based BCls With Rapid Trial Sequences
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Abstract— Electroencephalography (EEG) is an effective
non-invasive measurement method to infer user intent in
brain-computer interface (BCl) systems for control and
communication, however, these systems often lack suf-
ficient accuracy and speed due to low separability of
class-conditional EEG feature distributions. Many factors
impact system performance, including inadequate training
datasets and models’ ignorance of the temporal depen-
dency of brain responses to serial stimuli. Here, we propose
a signal model for event-related responses in the EEG
evoked with a rapid sequence of stimuli in BCI applica-
tions. The model describes the EEG as a superposition of
impulse responses time-locked to stimuli corrupted with
an autoregressive noise process. The performance of the
signal model is assessed in the context of RSVP keyboard,
a language-model-assisted EEG-based BCI for typing. EEG
data obtained for model calibration from 10 healthy partici-
pants are used to fit and compare two models: the proposed
sequence-based EEG model and the trial-based feature-
class-conditional distribution model that ignores temporal
dependencies, which has been used in the previous work.
The simulation studies indicate that the earlier model that
ignores temporal dependencies may be causing drastic
reductions in achievable information transfer rate (ITR).
Furthermore, the proposed model, with better regulariza-
tion, may achieve improved accuracy with fewer calibra-
tion data samples, potentially helping to reduce calibration
time. Specifically, results show an average 8.6% increase
in (cross-validated) calibration AUC for a single channel of
EEG, and 54% increase in the ITR in a typing task.

Index Terms—EEG, BCIl, signal model, event-related
potential, RSVP keyboard.

|. INTRODUCTION

LECTROENCEPHALOGRAM (EEG)-based brain-
computer  interfaces (BClIs) offer  alternative
communication channels for human computer interaction.
This technology can be especially important for individuals
with severe speech or motor disorders who cannot use
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communication pathways designed for healthy individuals
or other assistive technology input modalities. By detecting
specific EEG patterns, brain activities can be translated into
actions to accomplish a task.

ERPs are commonly employed in EEG-based BCIs to
determine user intent in various BCI paradigms, such as
motor imagery, speller, etc [1]-[7]. To increase accuracy,
repeated stimuli are often used at the cost of increasing time-
to-decision. To tackle the problem of low accuracy while
maintaining the appropriate time-to-decision, the error-related
potentials (ErrP) has been recently proposed in various BCI
setting. For instance, in BCI settings with auditory stim-
uli where accuracy is relatively low incorporation of ErrPs
improves the overall performance of the system [8]. In addi-
tion, the presence of ErrP in cognitive task-based BCI [9] and
speller BCI [10] has shown significant improvement. In the
context of speller BCIs, these were previously studied as
feedback-related potentials (FRPs) [11]-[14]. Fusion of EEG
evidence from ERP and ErrP/FRP trials along with context
priors from a language model, coupled with active learning
techniques, can significantly improve the speed and accuracy
of BCIs that rely on ERPs [15], [16].

In ERP-driven BCI designs, EEG feature models typically
rely on feature extraction and modeling of feature distributions
conditioned on intent. These models typically assume that
features for individual trials are statistically independent condi-
tioned on the intent; they also typically assume Gaussianity for
EEG features either explicitly or implicitly, with covariances
that are approximately equal (which amounts to assuming a
wide sense stationary background noise) [17], [18]. In par-
ticular, the assumption of EEG features being conditionally
independent given intent is usually incorrect due to the rapid
succession of stimuli and overlapping windows in time over
which these features are extracted.

This study proposes an EEG signal model that represents
EEG signal in each channel as a linear combination of evoked
brain activities that are driven by all stimuli and other events
in the paradigm corrupted by colored background noise that
is characterized by an autoregressive (AR) Gaussian process
model. This model explicitly attempts to capture the under-
lying statistical behavior of EEG in response to sequences
of stimuli (events) in EEG-based BCls, particularly for rapid
stimulus sequences such as typing-based or auditory BClIs.
The proposed signal model can enhance the BCI system per-
formance, i.e. classification accuracy and information transfer
rate by improving assessment of temporal dependencies across
samples.
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[I. SIGNAL MoDEL FOR EEG-BAseD BCls

In BCIs that rely on ERPs there are typically multiple
types of events that may evoke a brain response and these
events may happen in rapid succession. In this paper, for
illustration purposes, we will focus on designs that employ a
combination of ERPs in response to rapidly presented stimuli
as well as FRPs in response to isolated stimuli. The ERP-
inducing sequences will consist primarily of negative intent
trials, while rare trials that evoke positive intent will occur
intermittently. The following isolated FRP trials will tend
to evoke associated positive or negative intent responses in
a more balanced fashion across these two class labels. The
proposed signal model that considers the entire sequence of
stimuli will be referred to as a sequence-based (SB) model
and is expected to accurately model EEG statistics with only
a few parameters.

A. Sequence-Based EEG Model

To enhance the probabilistic representation of EEG mea-
surements, the temporal dependency between EEG trials are
considered as a parametric temporal structure over the EEG
sequences. An EEG channel signal is modeled as a linear com-
bination of three time series components: (1) task-dependent
brain activities, e.g., visual evoked potential (VEP), ERP,
or FRP, (2) task-independent brain activities, i.e., underlying
cortical activities, and (3) an additive measurement noise [19].
The task-dependent brain activities in response to a single or
series of stimuli can be described as a linear combination of
different temporal activities, such as initial sensory responses
to a stimulus, task-dependent perceptual processes, decision
making, and post-response evaluation [20]. By assuming the
EEG sequence as a stationary Gaussian process, it can be
modeled as a time series that consists of five components: three
temporal filters corresponding to the task-dependent brain
activities for ERP and FRP sequences, an AR process repre-
senting task-independent brain activities, and the measurement
noise. Accordingly, a single-channel EEG signal y at the j-th
sequence and time sample n can be expressed as:

Y/ [nl = " hinl*dln — 11+ sln] + elnl,

teTi

ey

where h[n] is the impulse response function of a temporal
filter that describes the dynamic of the stimulus-dependent
brain activities, ¢ is the onset of each stimulus and T/ is a
set including the onset of all stimuli at the j-th sequence. The
variable ¢[n] is the additive measurement noise with A/ (0, 03)
and s[n] is the AR process exhibiting temporal correlation
expressed as:

K
sinl =) axsin — k] + oln],

k=1

2

where w[n] is a Gaussian process with distribution A (0, ag).
The stimulus-dependent brain activities is the direct response
to a particular sensory (visual, auditory) stimuli, cogni-
tive (memory, inhibition) process, or motor command [20].
Figure 1 shows the well-studied brain waveforms including
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Fig. 1. Time-locked electrical activities of the human brain in response
to a particular stimulus. The entire brain activities can be described as
a linear combination of delayed negative and positive neural deflections
shown in each box, i.e., eq, &0, and es.

Nis4 and Py 3 in response to various types of stimuli
that are split into ¢; waves. Therefore, temporal dynamics
of the impulse response, h[n], can be described as a linear
combination of negative and positive neural deflections after a
stimulus. According to the latency and amplitude of each pair
of positive and negative peaks, we decompose h[n] into three
waves as follows:

3

hinl =D eiln — d;], ®)

i=1
where d; is the delay of each wave. The e; wave that includes
Ny and P, is associated with the initial sensory response, ex
includes N and P, and is more related to the decision making
and categorization process [20], and lastly, e3 consists of P3
and N4 and corresponds to the infrequent target stimulus [21]
and post-response evaluation [20]. Based on the temporal
structure of each e; component, this wave can be modeled
by an exponential polynomial function:

eiln] = f(n, 7, L) “)
Li
fl, i, Li) = D by (?)j exp (—n/zi)uln]
I=1
=gl | [nlb; Q)

Here, L; represents the order of polynomial terms and
b; expresses the amplitude of each exponential term. In the
simplified vector form, b; = [bi1 bi> ... b,-,L,-]T and

golnl = [n /2% ... (/L) ]" exp (=n/z)uln]
Accordingly, (1) can be rewritten as:

yInl = > eilnl*oln — 1 — dil + esn] Sl — 1 — da]
teTi

esln] * oln — t] — ds] + s[n] + e[nl, (6)

where r,{ is the onset corresponding to the target stimulus.
Lastly, (6) can be expressed in vector form for all samples in
sequence j as:

¥y =X/B +1z, (7

where y/ € RV=K)x1 K s the order of the AR process
and N is the number of samples in a sequence. Accordingly,
the SB model in (7), includes brain responses to the entire
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trials in a sequence with the overlap between target, non-target,
and independent task activities. In fact, this model enables us
to properly decouple different brain activities as parametric
components. X/ € RW—K)x(Li+L2+L3) js called the design
matrix, which includes the combination of all exponential
polynomial waves according to the onset of the stimuli and
the delays.

Xi =[x & &, ®)

where each Xij matrix is defined as:

X/l = > ol L In—t—di]

teTi

Minl =g, ,In—tl — ), Yinl=gl ;In—t —di]
®

The amplitude parameter 8 € R(L1+L2+L3)x1 jg also defined
as:

g=[b1 b bs] . (10)

In (7), z includes the AR(K) process plus measurement
noise, as:

Z=s+¢
s =Sag + @ (11)
where ax = [a1 ay ... a,a;]T, s € RWN-K)x1 ap4 § ¢

RW—-K)xK  Each row of matrix S is defined as §[n] =
[s(n] sn — 11 ... s[n — K + 1]].
The AR(K) process in (7) can be simplified as:

z=Sag +&, (12)

where & is a white Gaussian process with A (0,521) and
2

oF = o-f + ag. Accordingly, the probability distribution of
an EEG sequence (ERP or FRP) can be expressed as a
Gaussian process y ~ N (X8, X), in which the covariance
matrix X has a Toeplitz structure as a function of parameters
ag and crg.

Since our goal is to model two sets of EEG sequences,
i.e., Yerp and ¥ s,p, the model is required to learn two sets of
parameters for ERP and FRP sequences. Moreover, due to the
fact that the FRP sequences only include a single stimulus that
generates either a positive or a negative response, g will be dif-
ferent for each response type. Therefore, the model parameters
for ERP sequences can be defined as 6., = [ag, ﬁerp, 02]
and for FRP sequences as 0, = [ag, ,6+f,p,,8_frp,o-§].
The maximum likelihood estimation (MLE) method has been
used for 6., and 0 7., estimation by solving the following
optimization problem:

-

0 = argmax p(Y | X, 6). (13)
Here, Y = {yl,yz,...,yN’} and X = (X', X2, ..., X} are
sets of supervised EEG sequences and design matrices for
N; number of sequences. Assuming that EEG sequences are

independently distributed, the loglikelihood function can be
written as:

log p(Y | ) = Ny(N — K)log 2z) + Nylog (1 = | )

5 (v —xi8) = (y ~x7p). (14)
=1

In order to jointly estimate all parameters, the cyclic descent
algorithm [19] is used to solve (13). The other parameters of
the model (L;, 7i,d;),i = {1,2,3)} are learned as hyperpa-
rameters during cross validation. The AR order X is learned
using the Bayesian information criterion (BIC).

B. User Intent Inference

After learning the model parameters, a maximum a-
posteriori (MAP) method is utilized to estimate the user
intent (target stimulus or correct and incorrect stimulus in a
sequence). The posterior probability distribution of a stimulus
is updated according to the observed EEG sequences and
the context information (prior). The posterior update process
following a sequential procedure that updates the posterior
probability after collecting an ERP or FRP sequence. This
sequential process can be performed using either a single- or
a multi-channel EEG model.

1) Using Single EEG Channel: We estimate the user intent
that maximizes the probability distribution over the EEG
sequence for a given design matrix that is a function of the
onset of stimuli and the model parameters and the non-EEG
contextual evidence. Assuming w < D as all the potential
candidates for user intent y*, where D is the dictionary
comprising of all such candidates, the posterior probability
can be estimated using MAP as follows:

-

— *_
v = arg max p(y*=v|Y,0,C)

=argmax p(Y | y,0) ply* =y |C), (15)
weD

where Y represents obtained EEG sequences that can include
both ERP or combined ERP and FRP, and C represents
the non-EEG contextual evidence defined according to the
experimental design. Since the design matrix includes the
order and timing information of all stimuli within a sequence,
we can say that p(Y | w,0) = p(Y | X(w), #). Assuming
ERP and FRP sequences as independent EEG sequences,
the likelihood of the collected combined ERP/FRP sequences
can be expressed as:

P (Y | K(W)a ﬂ) =P (Yerp | Xerp(';"’): 98:’_0)

P (Ysrp | Xprp(w), 05rp)  (16)
According to (17) and (16), the sequence-based (SB) model
represents the entire EEG signal obtained in response to
the sequence of trials, unlike the traditional trial-based (TB)
method that assumes trials within a sequence are independent
events.
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2) Using Multiple EEG Channels: Assuming EEG channels
are independent attributes, weighted naive Bayes (WNB) can
be used to update the posterior probability as following:

Ne
v = argmax []p (Ve | X(), 00" ply* =y 1 ©), (17)
c=1

where ¢ is the channel index, N. is the total number of
channels, and w. denotes the weight of the likelihood score of
each channel. Here, we used a regularized least squares (RLS)
method to estimate channel weights in order to improve the
inference performance.

Applying the proposed temporal structure and using
sequence-based inference for both FRP and ERP sequences
can result in more precise user intent estimation in comparison
with the trial-based approach, which will be demonstrated in
the following sections.

I1l. EXPERIMENT: AN EEG-BASED
BCI TYPING SYSTEM

To assess the SB EEG model, we used a language-
model-assisted EEG-based BCI typing system called RSVP
Keyboard [3]. This system utilizes RSVP paradigm which
stands for Rapid Serial Visual Presentation [2]. In RSVP Key-
board a set of pseudo-randomly ordered symbols are rapidly
presented as a time series on a prefixed location on the screen
in a pseudo-random order to evoke visual potentials [4], [5].
The system uses a finite set of 28 symbols from the English
alphabet, in addition to symbols for space and backspace;
thatis D = {A, B, C,..., Z,_, <}. Each flashing symbol is
defined as an EEG frial, and a set of trials that have been
presented with a small time gap in between (e.g. 200 ms)
is called an EEG sequence. Each sequence is appended with
the top candidate in the alphabet prospect symbol as feedback
according to the posterior probability after ERP/FRP sequence
fusion. This prospect symbol is presented as a single flash
as an RSVP trial in a different color than the regular trials
to induce positive or negative FRP in the EEG response
depending on the prospect’s correctness. Due to low signal
to noise ratio (SNR) of EEG, the system is usually required
to query the user with more than one sequence and prospect
symbols to achieve a desired confidence level. The set of
sequences and prospect symbols which lead to a decision is
called an epoch. It is assumed that the target symbol remains
unchanged at each epoch. Figure 2 represents a schematic of
EEG sequences in the RSVP Keyboard including a series of of
visual stimuli (alphabet) in an ERP sequence and a feedback
stimulus as an FRP sequence. In this example FRP sequence
corresponds to a positive response, because it matches with
the target symbol at trial 6; the rest of the trials correspond to
non-target symbols.

The RSVP Keyboard has three important system operation

modes that are utilized in this study:
(1) Calibration: The calibration is used to learn the class-
conditional distribution of the ERP (target vs. non-target
symbols) and FRP sequences (correct vs. incorrect symbols).
A user is asked to focus on a set of predefined target symbols
shown on the screen, to record labeled EEG data.
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Fig. 2. Schematic of a sequence for the RSVP Keyboard framework.
A series of symbols including non-target and target symbols is shown
at a prefixed position on the screen consecutively over time in rapid trial
fashion. The sequence starts with a + symbol, which is indicated by
the magenta line, the ending of the RSVP sequence, a blank screen,
is shown with a blue line, and the ending of the sequence, a blank screen,
is shown with a purple line. At the end of the sequence, a prospect symbol
is appended.

(2) Copy Phrase: This mode is designed to assess the system
and the user performance in terms of speed and accuracy in
the presence of a language model. The user is given a set of
predefined phrases. Each phrase includes a missing word and
the user is asked to complete the word.

(3) Simulation: This mode is base on a proposed proba-
bilistic simulation framework in [22]. A Copy Phrase task
is simulated without user intervention. We use Monte-Carlo
sampling to draw samples from class distributions using the
class conditional distributions learned from Calibration mode.
This mode reports the system performance in terms of speed
and accuracy.

Detailed information about RSVP Keyboard can be found
in [3], [5].

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

EEG data was collected from 10 healthy participants
while they performed the RSVP Keyboard task. All partici-
pants had consented to participate according to the protocol
(IRB-130107) approved by the IRB of Northeastern Univer-
sity. In our typing experiment, each sequence included 14 trials
and single-trial feedback. The EEG signals were acquired
using a g.USBamp biosignal amplifier with active g.Butterfly
electrodes at a sampling rate of 256 Hz, from 16 EEG sites:
Fpl, Fp2, F3, F4, Fz, Fcl, Fc2, Cz, P1, P2, Cl1, C2, Cp3,
Cp4, P5 and P6. To improve the SNR, and to eliminate
drifts, signals were filtered by an FIR linear-phase bandpass
([1.5, 42] Hz) filter. In particular, in these experiments we used
the calibration mode of the system explained in section III.
The following subsections describe several studies to analyze
and assess the performance of the proposed SB signal model,
compared to a trial-based model.

In trial-based models, it is typically assumed that EEG
trials are independent observations coming from a Gaussian
process. For these cases, regularization [3] or spatio-temporal
structuration [23] are known techniques to estimate the class-
dependent mean and covariance. Other than ignoring the
dependency among trials, these approaches suffer from large
number of parameters required in estimating the mean and
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Fig. 3. Performance of the proposed signal model in reflecting the time-series characteristics of the EEG signal. First row average of 16 original
time-locked EEG signal for the (a) incorrect feedback, (b) correct feedback, (c) target events (d) target events. Second row average of 16 estimated
time-locked EEG signal for the (&) incorrect feedback, (f) correct feedback (g) target events, and (h) target events. Topo-plots above each panel show
the average topography of the entire channels at three different time points: 200, 330, and 450 ms.

covariance. In the TB model used for this section, each EEG
trial was defined as a time window of [0, 500) ms of signal
after each flash onset. After each trial, the model evaluates
acquired ERPs and FRPs in the EEG and assesses their
likelihood of being in response to a target letter and their
likelihood of being in response to a correct or incorrect letter,
respectively. However, the proposed SB model represents the
entire EEG signal obtained in response to a sequence of trials,
as opposed to modeling the EEG feature vector for each
trial assuming independence. It evaluates acquired ERPs and
FRPs in the EEG for the entire sequence and assesses their
likelihood of being the target letter in different locations of
the sequence, corresponding to each symbol presented in a
sequence. Evidence from EEG and context information are
fused using a naive Bayes assumption to make a joint decision
using MAP inference. Here, the non-EEG evidence is provided
by an n-gram language model, which estimates the conditional
probability of every letter in the alphabet based on n — 1
previously typed letters in a Markov model framework. The
RSVP Keyboard inference model is explained in detail in [3].

A. Goodness of Fit

Qualitative and quantitative measures of goodness of fit will
be presented. We conducted a Chi-squared goodness-of-fit test
to evaluate the performance of the proposed signal model in
capturing the probability distribution of the EEG signal. This
performance evaluation can also be performed visually by
comparing topographic scalp maps from actual EEG signals
with those generated by the SB model.

1) Chi-Squared Goodness-of-Fit Test: A  Chi-squared
goodness-of-fit test was performed to evaluate the performance
of the developed SB model in capturing the underlying
distribution of the EEG sequences. This test determines
whether independent samples are consistent with a Gaussian
distribution. In our case, the sample data comes from a

colored Gaussian process, so we used whitened data using
the captured distribution from the model. The significance
level indicates the estimated probability with which the
null hypothesis is rejected. For the ERP and FRP models,
the significance levels averaged over 10 participants are 12%
and 38%, respectively.

2) Topographic Scalp Maps: Figure 3 illustrates the ability
of the signal model to estimate the EEG measurement. The
average EEG signal across trials for the target and non-target
stimuli and for the correct and incorrect feedback of the signal
model can be compared against the actual EEG signal. It can
be observed that the signal model powerfully captures the
important temporal features of EEG time series.

B. Classification Performance Assessment

As a classification assessment indicator for each model,
the area under the receiver operating characteristics (ROC)
curve (AUC) are reported in Table I for the both ERP and
FRP sequences using TB and SB models. Table I presents
the AUCs for all 10 participants in the BCI typing task. AUC
values are calculated based on the 10 fold cross validation on
the calibration data sets. Same calibration data has been used
for both TB and SB models. In the case of TB, the distributions
were captured over trials without imposing any temporal
structural over the signal [3]. However, for SB, the probability
distributions were learned through signal model in (1). It can
be seen that for a single channel (Fz), applying the temporal
structure can improve the classification performance and the
AUC values obtained from the SB model is higher than the
TB model. In particular, we observed more improvement for
the ERP sequences using the SB model, since it includes the
temporal dependency between trials. This improvement is not
observed for the FRP sequences. These results suggest that
a sequence based signal model can be highly beneficial for
capturing the temporal dependency across trials.
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TABLE |
CLASSIFICATION RESULTS FOR TB AND SB EEG MODEL, FOR SINGLE AND MULTI EEG CHANNEL. THE REPORTED VALUES ARE THE MEAN
AUC AcRoss 10 FOLD CROSS VALIDATION. ALL OF THE SINGLE-CHANNEL RESULTS BELONG TO THE
EEG CLASSIFICATION USING THE FZ CHANNEL

ERP FRP
User  TB(Fz) SB(Fz) TB(16) SB(16) TB(Fz) SB(Fz) TB(16) SB(16)
T 618 £072 711L095 824 +054 880+ 049 773 L 124 793 £ 087 795 % 126 812 £ 068
2 599+042 693+072 8454056 883+036 582074 630+103 754+106 790+ 162
3 6864049 825+072 9224040 957 +022 769+ 129 741 +097 828 +066 820+ 11.6
4 6814095 798+110 853+052 9204045 8324098 7174124 8394071 771497
5  630+046 695+061 8574028 93.0+027 810+126 7474067 91.5+074 874+ 094
6  621+038 648+086 7224036 795+061 623+158 627+ 123 649+ 132 699 + 126
7 661 +056 731+073 8594035 87.5+032 7694069 7124059 8254073 771+ 140
8  666+086 763+129 8174109 882+051 5344079 5744094 67.1+084 662+ 128
9 5314063 513+095 785+041 87.5+060 622+140 6124143 819+ 143 704 + 094
10 8574091 7414+107 957 +£060 9814009 7734063 7294+ 077 8064095 821+ 07.8

C. Simulations

In this study, a Copy Phrase task was simulated with
the simulation mode of RSVP Keyboard explained in III
using EEG data collected during the calibration sessions.
For both models, the probability distributions were captured
by four EEG signals models: (1) TB ERP, (2) TB ERP-
FRP, (3) SB ERP(Fz), (4) SB ERP-FRP. Calibration data
consist of real ERP-FRP EEG data from a single-channel (Fz)
and multiple channels for 10 healthy participants. Using the
probability distributions learned for each model in study IV-B,
the probabilistic simulation framework in [22] has been used
by taking 100 Monte-Carlo simulations of a Copy Phrase task
with 10 predefined sentences. The typing performances for
all models are reported by ITR (bit/sequence). This measure
summarizes the accuracy and speed into a single metric
and is commonly used to measure BCI system performance.
Figures 4a and 4b illustrate the average ITR values for single-
channel and multiple channel, respectively, for all 10 sub-
jects sorted according to the calibration session AUC values
obtained by SB-ERP multiple channel model. The results in
Figure 4a show that for single-channel case, the SB model
outperforms the TB model for ERP and ERP-FRP sequences.
The results presented in Figure 4b show the ITR values for
multiple channel for the different signal models. Although the
proposed model for multiple-channel does not demonstrate to
be as large an improvement as for single-channel, we can
see an overall trend of better performance for the SB model
compared to the TB model in the accuracy and the speed of
the user intent detection.

D. Calibration Length Assessment

Calibration length governs the size of the dataset (number
of sequences) used in the training process. Figure 5 shows the
AUC computed for different length of calibration dataset for
training the SB model and the TB model applied to ERP and
FRP sequences. The results for single and multiple channel
ERP and FRP sequences are illustrated in Figures 5a, 5b. 5c
and 5d, respectively. Note that there are 14 trials per ERP
sequences for training the model, while there is only one
trial per FRP sequences. Since the SB model uses only a
few number of parameters, it can learn the signal distribution
using less number of samples, while for the TB model the
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Fig. 4. Average of information transfer rate for 4 signal models with error
bars indicating standard deviation: (1) TB model ERP, (2) TB ERP-FRP,
(3) SB ERP, and (4) SB ERP-FRP. The results belongs to 100 Monte
Carlo simulation of a copy phrase task with 10 predefined sentences,
using synthetic EEG features from 4 different models calibrated with real
ERP/FRP EEG data (a) form Fz channel (b) from 16 channels locations
from 10 healthy participants.
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performance worsens quickly when we use a smaller portion
of the dataset. Therefore, it can be concluded that the SB
model achieves better performance for the FRP sequences with
smaller training samples. For the ERP sequences, although the
SB model provides higher AUCs, the improvement is not quite
significant. The reason for this is that even with a smaller
dataset size, we have 14 (trials) times more data in ERP
sequences than FRP sequences.

E. Model Complexity

It is worthwhile to note that the proposed signal model
has significantly fewer parameters, and thus lower model
complexity, than earlier models that consider each trial
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Fig. 5. Expected AUC values for 10 users calculated using different

signal models for different calibration lengths ({25 %, 50 %, 75%, and
100%} to train: (a) the single channel (Fz) ERP sequences model,
(b) 16 channels ERP sequences model, (c) the single channel (Fz) FRP
sequences model, and (d) 16 channels FRP sequences model. The
shaded area represents 80% confidence of the cdf of the AUC values
for 10 users.

individually. The SB signal model used in the experiments has
25 parameters per EEG channel including the AR parameters,
ag for K = 8, evoked potential waves amplitudes, B, ag,
and hyperparamters. In the current naive approach to multi-
channel fusion, the number of parameters grows linearly with
the number of channels. For the TB signal model, however,
the number of parameters is Np, , = (d(d — 1)/2) +d, where
d is the dimensionality of the EEG feature vector. For a single
channel, typically d is approximately 40, and it grows linearly
with the number of channels. The multi-channel TB model
used in the experiments has approximately 280,000 parame-
ters. The impact of significantly reduced model complexity is
evident in results discussed in section IV-D. The SB signal
model achieved better than or similar performance to the TB
signal model when trained with a smaller number of samples.

V. CONCLUSIONS

The performance of EEG-based BCls relies strongly on the
quality of EEG models that are used in human intent detec-
tion. Specifically, for designs that employ evoked response
potentials, existing approaches typically ignore the temporal
dependency of EEG features across frials in a sequence.
The results we presented in this paper indicate clearly that
ignoring the temporal dependency of EEG features, especially
in cases where rapid stimulus sequences are used, may have
a huge detrimental effect on performance as measured by
information transfer rate. An EEG signal model that attempts
to capture the temporal statistical behavior of EEG, as in
the case of the here-proposed model, can achieve significant
improvements in performance. Furthermore, results indicate
that such parametric models can achieve better performance
when trained with fewer calibration samples, thus calibration
times may be reduced.
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