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Abstract— Coarsely quantized MIMO signalling methods have
gained popularity in the recent developments of massive MIMO
as they open up opportunities for massive MIMO implementa-
tion using cheap and power-efficient radio-frequency front-ends.
This paper presents a new one-bit MIMO precoding approach
using spatial Sigma-Delta (Σ∆) modulation. In previous one-
bit MIMO precoding research, one mainly focuses on using
optimization to tackle the difficult binary signal optimization
problem that arises from the precoding design. Our approach
attempts a different route. Assuming angular MIMO channels,
we apply Σ∆ modulation—a classical concept in analog-to-
digital conversion of temporal signals—in space. The resulting
Σ∆ precoding approach has two main advantages: First, we no
longer need to deal with binary optimization in Σ∆ precoding
design. Particularly, the binary signal restriction is replaced by
peak signal amplitude constraints. Second, the impact of the
quantization error can be well controlled via modulator design
and under appropriate operating conditions. Through symbol
error probability analysis, we reveal that the very large number
of antennas in massive MIMO provides favorable operating
conditions for Σ∆ precoding. In addition, we develop a new Σ∆
modulation architecture that is capable of adapting the channel
to achieve nearly zero quantization error for a targeted user.
Furthermore, we consider multi-user Σ∆ precoding using the
zero-forcing and symbol-level precoding schemes. These two Σ∆
precoding schemes perform considerably better than their direct
one-bit quantized counterparts, as simulation results show.

Index Terms— massive MIMO, one-bit MIMO, Sigma-Delta
modulation, MIMO precoder design

I. INTRODUCTION

Recently there has been growing interest in coarsely quan-
tized multi-input multi-output (MIMO) transceiver implemen-
tations for massive MIMO communications systems that em-
ploy very large antenna arrays. These studies are strongly
motivated by the need to reduce the hardware cost and power
consumption of radio-frequency (RF) front-ends—which grow
rapidly under massive MIMO—and the idea is to use
low-resolution analog-to-digital converters (ADCs)/digital-to-
analog converters (DACs) and energy-efficient low-dynamic-
range power amplifiers. A number of researchers have inves-
tigated MIMO channel estimation and MIMO detection using
one-bit or low-resolution ADCs [1]–[7], and it has been found
that the very large number of antennas in massive MIMO
indeed helps recover information lost due to the coarsely
quantized signals.

MIMO precoding using one-bit DACs is another emerging
topic in this area. A natural direction is to simply quantize
the output of a conventional linear precoder, such as zero
forcing (ZF), and the question is how the coarse quantiza-
tion effects impact system performance [8]–[10] using, for
example, the Bussgang decomposition as an analysis tool.
More recently, there has been emphasis on directly designing
a one-bit precoder, rather than following the aforementioned

precode-then-quantize direction. The direct one-bit precoding
designs use criteria such as minimum mean-square error and
minimum symbol error probability [11]–[18], and numerically
these designs were found to yield significantly improved per-
formance. The challenge with direct one-bit precoding design
is mainly centered on the optimization, which requires finding
a good non-convex algorithm to handle a large-scale binary
optimization problem. Promising numerical results have been
reported with the direct one-bit precoding designs, but there
is still much to be understood, e.g., are the good numerical
results an indication that most of the local minima have good
quality, and if yes when can we guarantee this to happen? We
refer the reader to [17], [18] for further descriptions of the
various design approaches.

Since we have mentioned one-bit ADCs/DACs for MIMO,
we should also mention the classical one-bit approach for
analog-to-digital conversion—Sigma-Delta (Σ∆) modulation.
The Σ∆ modulation approach exploits the use of oversampled,
or low-frequency, signals in order to reduce the impact of the
quantization noise. The Σ∆ principle is to employ a feedback
loop to quantize the accumulated error between the input and
the one-bit quantized output. The net effect is to shape the
quantization noise to the high end of the frequency spectrum,
where it can be separated from the signal of interest using a
simple low-pass filter and decimator. For background on the
Σ∆ approach and its various generalizations, the reader is
referred to the tutorial article [19].

Alternatively, or in addition to quantization noise shaping
in temporally oversampled systems, one can employ the Σ∆
effect using signals oversampled in space using an array
of antennas. In such spatial Σ∆ architectures, the feedback
signal is derived from the delayed and quantized outputs of
adjacent antennas rather than or in addition to those of the
given antenna. Oversampling in this context means that the
elements of a uniform linear array would be spaced closer
than one-half wavelength apart. As a result, the quantization
error can be pushed to higher spatial frequencies, mitigating
the distortion for signals of interest that might arrive from
lower spatial frequencies, i.e., those near the broadside of the
array. This idea has been exploited recently by a number of
researchers [20]–[23]. Venkateswaran and van der Veen [24]
use the concept in a different way, by beamforming the one-
bit ADC outputs and using this as the feedback signal to
each antenna, with the goal of removing interfering sources.
The spatial Σ∆ approach should not be confused with the
multi-antenna architecture of [25], in which each antenna
output is modulated by a different Hadamard sequence prior
to Σ∆ quantization in time. This is a variation of the approach
originally proposed in [26], that uses a parallel bank of Σ∆
ADCs in order to obviate the need for temporal oversampling.

The Σ∆ idea has also been used for transmit signal pro-
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cessing. Scholnik et al. [27] use space-time Σ∆ DACs to
generate one-bit outputs that directly drive each of the an-
tennas, focusing the resulting quantization noise to directions
and frequencies that do not impact the signal at the desired
receiver. Krieger et al. [28] considered designs of analog
beamforming weights for phased arrays when low-resolution
phase shifters are employed. The goal there is to reduce
the error that results from quantization of the weights of a
transmit beamformer, and the weights are generated via Σ∆
quantization assuming a “dense” (oversampled) linear array.

Curiously, to the best of the authors’ knowledge, the current
developments of one-bit massive MIMO precoding do not
seem to have touched upon the possibility of spatial Σ∆ mod-
ulation. It is therefore interesting to explore and understand
what opportunities spatial Σ∆ modulation can bring to one-
bit massive MIMO precoding—this is the main objective of
this paper. We summarize our contributions, and compare them
with existing literature, below.

1. Our study reveals that one-bit massive MIMO precoding
using spatial Σ∆ modulation, or simply Σ∆ precoding
for short, allows us to effectively mitigate the quantization
noise effects. More precisely, we consider uniform linear
arrays with user angles being within a certain “tolerable”
range, say, [−30◦, 30◦]. We show that the quantization
noise can be substantially suppressed when the number of
antennas is large. This conclusion resembles that for analog
beamforming by Krieger et. al [28], although the context
of this work is completely different from that of [28].

2. We generalize the concept of spatial Σ∆ modulation. The
spatial Σ∆ modulation concept used in the aforementioned
literature usually considers direct application of the basic
Σ∆ modulation for low-pass temporal signals. In this
application, the best noise shaping result, in terms of nearly
zero quantization noise, is possible only when the signal of
interest comes from the broadside. We question whether
the broadside angle can be altered. We develop a new
Σ∆ modulation architecture whose angle for nearly zero
quantization noise can be changed to any angle, and in
the single-user case this new modulator allows us to adapt
the user angle for achieving nearly zero quantization noise.
Furthermore, we generalize this angle-steering concept to
any type of channel, rather than just the angular channel.

3. The Σ∆ precoding approach allows us to revisit the easier
precode-then-quantize approach, this time with much better
controlled quantization noise. We show that the “precode”
part of the precode-then-quantize operation is to design pre-
coders under peak amplitude constraints. Leveraging this
advantage, we develop multi-user Σ∆ precoding schemes
using ZF and symbol-level precoding (SLP) for both the
PSK and QAM cases. Efficient optimization algorithms
for SLP, with the design emphasis of operating under the
assumption of a large number of antennas, are also derived.

The organization of this paper is as follows. Section II
describes the massive MIMO one-bit precoding problem.
Section III reviews the basics of Σ∆ modulation. Sections IV
and V describe our Σ∆ precoding developments for the single-
user and multi-user cases, respectively. Section VI provides

simulation results. Section VII concludes this work.

II. PROBLEM SETTINGS

The scenario we consider is the multiuser MISO downlink
over a quasi-static frequent-flat channel and under one-bit
transmitted signal constraints. The model is given by

yi,t =

√
P

2N
hTi xt + vi,t, t = 1, . . . , T, (1)

and for i = 1, . . . ,K, where yi,t ∈ C represents the complex
baseband received signal of the ith user at symbol time t;
K denotes the number of users; T is the transmission block
length; P is the total transmission power; N is the number of
antennas of the BS; hi ∈ CN is the channel from the BS to
the ith user;

√
P/(2N)xt, with xt ∈ {±1 ± j}N , represents

the complex baseband one-bit transmitted signal; vi,t is noise
and is assumed to be i.i.d. circular complex Gaussian with
mean zero and variance σ2

v .
The BS aims to blast parallel data symbols to the users.

To put into context, let si,t ∈ S denote the symbol to
be transmitted to the ith user at symbol time t, where S
denotes the symbol constellation set. For convenience with
our development later, we will assume that

max
s∈S
|s| = 1;

or, the symbols are normalized such that the above equation
holds. The challenge is to find xt ∈ {±1 ± j}N , for t =
1, . . . , T , such that

hTi xt ≈ ci,tsi,t, for all i, t, (2)

where ci,t > 0 denotes a scaling factor; or, in words, we
aim to shape the symbols at the user side under the one-bit
transmitted signal constraints. As a more technical note, we
should mention that i) if the decision of the symbols at the
user side depends on the signal amplitude, e.g., M -ary QAM,
we should also make ci,1 = · · · = ci,T for every i; see [17],
[18], [29] (also [15] for a further discussion); and that ii) if
the decision involves only signal phase, e.g., M -ary PSK, the
ci,t’s are allowed to be different. In the currently available
literature, this one-bit precoding challenge is formulated as
a binary optimization problem—which is hard to solve by
nature. For details, read the recently growing body of literature
[12], [13], [16]–[18], [30], [31].

We are interested in the single-path angular array channel.
The settings that lead to such channels are that the antennas at
the BS are arranged as a uniform linear array, and that there
is only one propagation path from the BS to each user; the
extension to other channels will be given later. For the single-
path angular channel, each hi is characterized as

hi = αia(θi), (3)

where αi ∈ C is the complex channel gain; θi ∈ [−π/2, π/2]
denotes the angle of departure from the BS to the ith user;

a(θ) = [ 1, e−j
2πd
λ sin(θ), . . . , e−j(N−1) 2πd

λ sin(θ) ]T (4)

denotes the array response vector at θ, in which λ is the carrier
wavelength and d ≤ λ/2 is the inter-antenna spacing.
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Fig. 1: The first-order Σ∆ modulator.

III. BASICS OF Σ∆ MODULATION

In this section we review the basic concepts of Σ∆ modu-
lation [19]. We will focus on the notion of noise shaping, and
will pay less attention to aspects that have little relevance to
the one-bit precoding context. Consider the system in Fig. 1,
which is called the first-order Σ∆ modulator. We have a
discrete-time real-valued signal sequence {x̄n}n∈Z+

as the
modulator input. In the application of temporal DACs, x̄n is
a significantly oversampled version of some signal. Here, it is
sufficient to know that x̄n is a low-pass signal. The problem
is to one-bit quantize {x̄n}n in a way that the resulting
quantization noise is high-pass. Doing so satisfactorily will
result in negligible quantization noise effects on the low-pass
frequency region of the desired signal x̄n. The Σ∆ modulator
output sequence, denoted by {xn}n∈Z+

, is generated as

xn = sgn(bn), (5a)
bn = bn−1 + (x̄n − xn−1), (5b)

for n = 0, 1, . . ., and with b−1 = x−1 = 0. Let qn = xn− bn,
n ∈ Z+, denote the quantization noise, and let q−1 = 0 for
convenience. From (5) one can show that

xn = x̄n + qn − qn−1, n ∈ Z+,

and subsequently

X(z) = X̄(z) + (1− z−1)Q(z),

where X(z) =
∑∞
n=0 xnz

−n denotes the z-transform. Since
1 − z−1 is a high-pass response, the quantization noise is
suppressed at low frequency.

A key issue in Σ∆ modulation is the effect of overloading.
Overloading refers to the situation when the quantizer input
bn has amplitude greater than 2. The consequence is that the
corresponding quantization noise qn goes beyond the range
[−1, 1]. As an example of showing what problem overloading
can bring, consider

x̄n = 1 + ε, for all n ∈ Z+,

where ε > 0. This is an instance in which the signal amplitude
is greater than one. One can verify from (5) that bn = 1 +
(n + 1)ε and qn = −(n + 1)ε. We see that the quantization
noise is unbounded as n → ∞. A sufficient condition under
which overloading can be safely avoided is to limit the input
signal range as

−1 ≤ x̄n ≤ 1, for all n ∈ Z+. (6)

Under the above condition it is guaranteed that |bn| ≤ 2 for
all n ∈ Z+, and consequently,

−1 ≤ qn ≤ 1, for all n ∈ Z+.

To see this, suppose |bn−1| ≤ 2. Then, we see from (5b) that

|bn| ≤ |x̄n|+ |bn−1 − xn−1| ≤ 2,

where we have used |bn−1 − xn−1| ≤ 1, implied by (5a).
Under the no-overload condition (6), it is very common

to assume that the quantization noise qn is i.i.d., uniformly
distributed on [−1, 1], and independent of {x̄n}. This as-
sumption is widely adopted for signal-to-quantization-noise
ratio (SQNR) prediction in the Σ∆-DAC/ADC literature. We
should, however, emphasize that the uniform i.i.d. assumption
is only a convenient approximation for the sake of tractable
analysis. Quantization noise analysis in Σ∆ modulation is a
complicated topic, and we refer the reader to the Introduc-
tion of [32] which provides an excellent discussion. Simply
speaking, from a theoretical viewpoint, Σ∆ quantization noise
analysis is very difficult owing to the feedback and coarse
quantization nature of the Σ∆ modulator. Some analysis
results are available, e.g., in [32] and the references therein,
but they are very complicated for practical use. From a
practical viewpoint, it has been found by experiments and
simulations that the uniform i.i.d. assumption yields reasonable
approximations in many applications, but it can also be a poor
approximation for some specific signals. For the latter the
remedial solution is to apply dithering, which will be discussed
later. In this paper we will apply the uniform i.i.d. assumption,
and the reader should bear in mind that the uniform i.i.d.
assumption can fail sometimes.

There are three further aspects we would like to discuss.
First, while the no-overload condition (6) is widely adopted
for ensuring bounded quantization noise, overloading does not
necessarily imply unbounded quantization noise. An example
is x̄n = (−1)n(1 + ε) for some 0 < ε < 1. It can be verified
that qn = −ε for even n, and qn = 0 for odd n. In fact,
one can argue that a moderate amount of overloading could
be acceptable in practice, since not all kinds of overloaded
input signals trigger the occurrence of unbounded quantization
noise. For example, the second-order Σ∆ modulator [19]
cannot avoid overloading for any input signal range (unless
x̄n = 0 for all n) [32], and yet it is still used in practice.
That being said, there seems to be little theoretical work on
understanding the quantization noise bound under overloading.

Second, we previously mentioned that the uniform i.i.d.
assumption is far from true for some specific signals. Among
them, DC and pure sinusoidal signals are most well-known
[32], [33]. A popular way to handle the non-i.i.d. issue is to
apply dithering. For example, as described in [33], consider
modifying (5a) as

xn = sgn(bn + un), (7)

where un, called a dither signal, is uniform i.i.d. generated
on [−δ, δ] for some constant δ > 0. Intuitively, the idea is
to use artificial noise to make the overall quantization noise
qn = xn − bn more random, thereby attempting to destroy
correlated patterns that qn may exhibit in the no-dithering case.
Empirically, it has been found that dithering works to a certain
extent [33]. However, dithering also increases the quantization
noise level. It can be verified from (5b), (6) and (7) that −1−
δ ≤ qn ≤ 1 + δ.
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Third, better noise-shaping, in terms of further suppressing
the low-pass region of the quantization noise, can be achieved
by employing more advanced Σ∆ modulators, e.g., the higher-
order and multi-stage versions of the first-order Σ∆ modulator.
The issue arising would be with overloading, however, and in
some cases multi-bit quantization is used to avoid overloading.

Readers are referred to the literature [19], [32] for further
details of the above three aspects. To keep our forthcoming
development simple, we will consider only the first-order Σ∆
modulator without overloading and without dithering, unless
otherwise specified.

IV. Σ∆ PRECODING: SINGLE-USER CASE

This section and the subsequent sections describe how we
apply Σ∆ modulation to perform one-bit precoding. In this
section we consider the single-user case.

A. Spatial Σ∆ Modulation

Consider the basic model (1) for the single-user case. For
the sake of notational simplicity, we remove the time index t
and user index i from (1) and write

y =

√
P

2N
hTx+ v, (8)

with h = αa(θ); θ is the user’s angle. Let x̄ =
[ x̄1, . . . , x̄N ]T , with −1 ≤ <(x̄n) ≤ 1 and −1 ≤ =(x̄n) ≤ 1
for all n, be the signal we wish to Σ∆-modulate. We apply
first-order Σ∆ modulation (as described in the preceding
section) to {x̄n}Nn=1 to obtain {xn}Nn=1. The resulting x =
[ x1, . . . , xN ]T then serves as the one-bit transmitted signal.
More precisely, we use two first-order Σ∆ modulators, one
for the real part and another for the imaginary part, to get
x. By doing so, we perform Σ∆ modulation in space. The
advantages of doing so will become clear as we analyze the
subsequent quantization noise effects below.

Following the preceding section, we can write

x = x̄+ q − q− (9)

where q = [ q1, q2 . . . , qN ]T ; q− = [ 0, q1, . . . , qN−1 ]T ;
each qi is complex quantization noise with −1 ≤ <(qn) ≤ 1
and −1 ≤ =(qn) ≤ 1 (the aforesaid noise range is guaranteed
when −1 ≤ <(x̄n) ≤ 1 and −1 ≤ =(x̄n) ≤ 1). For the sake
of analysis, we model the qn’s as i.i.d. uniform noise on the
unit box interval {q = a+ jb | a, b ∈ [−1, 1]}. Putting (9) into
(8) gives

y =

√
P

2N
hT x̄+ w, (10a)

w =

√
P

2N
hT (q − q−) + v, (10b)

where w denotes a noise term that combines quantization
noise and background noise. We are interested in knowing
how the noise power scales with the system parameters. Let
z = ej

2πd
λ sin(θ) for convenience. We see that

aT (q − q−) = (1− z−1)
N−2∑
n=0

z−nqn+1 + z−(N−1)qN ,

and consequently, E[aT (q − q−)] = 0 and

E[|aT (q − q−)|2] = |1− z−1|2(N − 1)σ2
q + σ2

q ,

where σ2
q = E[|qn|2] = 2/3 due to the assumption of uniform

i.i.d. quantization noise. It follows that E[w] = 0 and

σ2
w = E[|w|2] =

|α|2P
3N

(|1− z−1|2(N − 1) + 1) + σ2
v

By assuming large N , the above quantization noise variance
formula can be simplified to

σ2
w ≈

|α|2P
3
|1− z−1|2 + σ2

v (11a)

=
4|α|2P

3

∣∣∣∣sin(πdλ sin(θ)

)∣∣∣∣2 + σ2
v . (11b)

Eq. (11b) reveals interesting behaviors with the quantization
noise effects at the user side.
1. First, the quantization noise power at the user side is

independent of the number of antennas N . This will give us
substantial advantages in using massive MIMO to suppress
the quantization noise, as we will further show in the next
subsection.

2. Second, the quantization noise power increases as the
absolute value of the angle |θ| increases; broadside (θ = 0)
is the best, while endfire (θ = π/2 or θ = −π/2) is the
worst. This suggests that spatial Σ∆ modulation serves
users with smaller |θ| better. This also suggests that if we
work on sectored antenna arrays, where we only need to
deal with a restricted angular range, say, from −30◦ to 30◦,
spatial Σ∆ modulation has an advantage.

3. Third, the quantization noise power decreases as we de-
crease the inter-antenna spacing d. This means that we may
want to employ more densely spaced antennas. In practice,
however, it is infeasible to have very small inter-antenna
spacing as that will introduce mutual coupling effects.
Also, the physical dimensions of the antennas prevent small
spacing. We will have to rely on large N and smaller
operating angular ranges to reduce the quantization noise.

A further comment is as follows.

Remark 1 We should also draw connections between conven-
tional Σ∆ modulation for discrete-time signals and the spatial
Σ∆ modulation proposed above. Simply speaking, frequency
in the temporal case becomes angle in the spatial case. Σ∆
modulation in time and space serve low frequency and low
angle signals better, respectively. Also, applying small d in
the spatial case is essentially the same as oversampling in the
temporal case. In fact, the latter typically considers a very large
oversampling factor, such as 128, such that quantization noise
becomes almost negligible [19]. Such extreme oversampling is
however inapplicable to the spatial case; as mentioned above,
mutual coupling and the physical dimension constraint prevent
us from doing so.

B. Σ∆ Maximum Ratio Transmission

In the preceding subsection we have presented a different
paradigm to deal with one-bit precoding: Using spatial Σ∆
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modulation, we can convert the one-bit precoding problem
to a precoding problem for an amplitude-limited signal x̄,
specifically, −1 ≤ <(x̄) ≤ 1 and −1 ≤ =(x̄) ≤ 1. Let us
consider a simple precoding scheme, namely, the maximum
ratio transmission (MRT) approach

x̄ =
α∗s

|α|
a∗(θ), (12)

where s ∈ S is a symbol. Note that x̄ satisfies the aforemen-
tioned amplitude-limit constraints since |[a(θ)]n| = 1 for all
n and |s| ≤ 1. We are interested in performing a symbol-error
probability (SEP) analysis of this Σ∆ MRT scheme. Plugging
(12) into the model (10), we get

y = c · s+ w, c = |α|
√
PN

2
.

Let us make an approximation, namely, that w is circular
Gaussian distributed with mean zero and variance given by
(11b). Let ŝ = dec(y) be the decision of s, where dec denotes
the decision function associated with S. The SEP can be
characterized as

P(ŝ 6= s) ≤ βQ
(
χ
M

√
SNReff

)
, (13)

where (β, χ
M

) = (2,
√

2 sin(π/M)) if S is the M -ary PSK
constellation set, and (β, χ

M
) = (4, 1/(

√
M − 1)) if S is

the M -ary QAM constellation set and M is a power of 4;
Q(t) =

∫∞
t

(e−z
2/2/
√

2π)dz;

SNReff =
c2

σ2
w

denotes the effective SNR [34]. The effective SNR plays the
main role in determining the SEP performance. From the
above derivations, we see that

SNReff =
|α|2PN

8|α|2P
3

∣∣sin (πdλ sin(θ)
)∣∣2 + 2σ2

v

. (14)

Let us extract some insights from the effective SNR deriva-
tion (14).

1. First, increasing the power P is not helpful in re-
ducing quantization noise power. In fact, we have
limP→∞ SNReff = 3N/(8

∣∣sin (πdλ sin(θ)
)∣∣2)).

2. Second, the effective SNR increases linearly with the num-
ber of antennas N . In particular we observe that under a
fixed power P , increasing N—which also means less power
per antenna—is effective in improving the effective SNR.
This suggests that Σ∆ precoding is particularly suitable for
massive MIMO.

In the supplementary material of this paper, we provide
additional numerical results to give readers some intuitive
feeling on the noise shaping performance of Σ∆ MRT. One
will see that, in general, the symbol shaping error of Σ∆ MRT
reduces with N and increases with |θ|.

Fig. 2: The angle-steered first-order Σ∆ modulator.

C. Quantization Noise Zeroing by Σ∆ Angle Steering

We have seen that the quantization noise tends to increase
as the angle θ is further away from 0. It is natural to question
whether we can reduce the quantization noise by re-designing
the Σ∆ modulator. The answer turns out to be yes.

Our idea borrows insight from bandpass Σ∆ modulation
[19], although our task is still different from that of the latter.
Consider the modified first-order Σ∆ modulator in Fig. 2,
which we refer to as an angle-steered Σ∆ modulator. In this
system, x̄n, bn and xn are all complex-valued, and φ ∈ [−π, π]
is given. The modulation process is described by

xn = sgn(<(bn)) + j · sgn(=(bn)), (15a)

bn = ejφbn−1 + (x̄n − ejφxn−1), (15b)

Let q0 = 0, and let qn = xn − bn be the quantization noise.
From (15) one can show that

xn = x̄n + qn − ejφqn−1, (16)

where the difference compared with the previous first-order
Σ∆ modulator is the inclusion of the phase shift term ejφ.
We are concerned with the range of x̄n under which no
overloading will occur.

Fact 1 Consider the angle-steered Σ∆ modulator in Fig. 2
or in (15). Let

A = 2− | cos(φ)| − | sin(φ)|. (17)

If |<(x̄n)| ≤ A and |=(x̄n)| ≤ A for all n, then bn is not
overloaded, and the quantization noise qn is bounded with
|<(qn)| ≤ 1 and |=(qn)| ≤ 1.

Proof: We prove Fact 1 by induction. Assume |<(x̄n)| ≤ A
and |=(x̄n)| ≤ A for all n. It is easy to see that |<(q1)| ≤
1 and |=(q1)| ≤ 1. Now, suppose that |<(qn−1)| ≤ 1 and
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|=(qn−1)| ≤ 1 are true. Using bn = x̄n− ejφqn−1, which can
be shown from (15), we have

|<(bn)| ≤ |<(x̄n)|+ | cos(φ)<(qn−1)|+ | sin(φ)=(qn−1)|
≤ A+ | cos(φ)|+ | sin(φ)| = 2,

and similarly, |=(bn)| ≤ 2. Consequently, we must have
|<(qn)| ≤ 1 and |=(qn)| ≤ 1. The proof is complete. �

We should mention that the largest value of A is A = 1,
which happens when φ ∈ {0,±π/2,±π}. The smallest value
of A is A = 0.59, which happens when φ ∈ {±π/4,±3π/4}.
This means that there is a mild compromise with the signal
range if no overloading is desired.

However, the aforementioned compromise brings a signifi-
cant advantage, namely, quantization noise zeroing. Following
the same noise analysis in Section IV-A, we can show that

σ2
w ≈

|α|2P
3
|1− ejφz−1|2 + σ2

v

=
4|α|2P

3

∣∣∣∣∣sin
(
φ− 2πd

λ sin(θ)

2

)∣∣∣∣∣
2

+ σ2
v .

Hence, by selecting φ = 2πd sin(θ)/λ, we can eliminate
the quantization noise effects. To get more insight, let us
consider MRT under such angle-steered Σ∆ modulation. The
corresponding MRT scheme is x̄ = Aα∗s

|α| a(θ). The effective
SNR under angle steering is

SNReff =
A2|α|2PN

2σ2
v

, (18)

with A = 2 − | cos(2πd sin(θ)/λ)| − | sin(2πd sin(θ)/λ)|.
We see that the sole factor of performance reduction is A,
which is reduced to 0.59 (equivalently, −4.64dB SNR loss
relative to A = 1) in the worst case. Thus, we see that the
angle corresponding to the minimum quantization noise in the
previous Σ∆ modulator, that is, the broadside angle θ = 0,
can be steered to any desired angle using the angle-steered
Σ∆ modulation approach.

Again, to give readers some intuition, the supplementary
material of this paper provides an additional numerical result
that shows that the angle-steered Σ∆ modulation approach
leads to almost zero symbol shaping error.

Remark 2 It is worthwhile to note that the angle-steered Σ∆
MRT scheme described above does not require the uniform
i.i.d. assumption with the quantization noise. From (10), (16),
and with φ = 2πd sin(θ)/λ, one can show that the overall
noise term w is actually given by

w =

√
P

2N
αzN−1qN + v;

we will show the details and insight of the above expression
under a more general setting in the subsequent subsection.
Note that the same phenomenon also happens with the basic
Σ∆ MRT scheme when the user angle is θ = 0. As such, there
is no need to assume that the qn’s are i.i.d., and the remaining
factor lies only in the surviving quantization noise term qN
in the above equation. That surviving term is small compared
with the signal term for large N , and thus may be ignored.

Remark 3 The angle-steered Σ∆ modulation architecture can
be used to change the angular range the system serves.
Previously, we mentioned that the basic spatial Σ∆ modulation
is more appropriate for serving users under a smaller angular
range, say, from −30◦ to 30◦. Now, with angle steering, we
can easily alter the center of the angular range, say, to 60◦,
thereby serving users from 30◦ to 90◦.

D. Angle-Steered Σ∆ Modulation for Any Channels

It is intriguing to further question whether the angle steering
idea in the last subsection can be generalized to any arbitrary
channel h, rather than just the one-path angular channel under
uniform linear arrays. The answer turns to be also yes.

Without loss of generality, assume hn 6= 0 for all n. Also,
assume the elements of the antenna array to be indexed such
that 0 < |h1| ≤ |h2| ≤ · · · ≤ |hN |. Consider modifying the
angle-steered Σ∆ modulator (15) as follows:

xn = sgn(<(bn)) + j · sgn(=(bn)), (19a)

bn = hn−1

hn
bn−1 +

(
x̄n − hn−1

hn
xn−1

)
, (19b)

for n = 1, . . . , N and with h0 = 0. From the above equations,
one can readily show that

xn = x̄n + qn − hn−1

hn
qn−1, (20)

where q0 = 0; qn = xn − bn for n = 1, . . . , N . By observing

hTx =
N∑
n=1

hnx̄n +
N∑
n=1

hn

(
qn − hn−1

hn
qn−1

)
= hT x̄+ hNqN ,

where the quantization noise terms q1, . . . , qN−1 are succes-
sively canceled, the signal model reduces to

y =

√
P

2N
hT x̄+ w, (21a)

w =

√
P

2N
hNqN + v. (21b)

Suppose that the Σ∆ modulator is not overloaded such that
|qN | ≤ 1. Then, for most massive MIMO cases of interest
in which |hN | �

∑N−1
n=1 |hn|, the quantization noise term

in w can be neglected. We call this modulator a generalized
angle-steered Σ∆ modulator. The sufficient condition for no
overloading is as follows.

Fact 2 Consider the generalized angle-steered Σ∆ modulator
in (15a) and (19). Let, for n = 1, . . . , N ,

An = 2− |hn−1|
|hn| (| cos(φn)|+ | sin(φn)|), (22)

where φn denotes the phase of hn−1/hn. If |<(x̄n)| ≤ An
and |=(x̄n)| ≤ An for all n, then bn is not overloaded, and
the quantization noise qn is bounded with |<(qn)| ≤ 1 and
|=(qn)| ≤ 1.

The proof of Fact 2 is essentially the same as that of Fact 1,
and we shall thus omit it. Note that 0.59 ≤ An < 2. Also,
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since the signal range (22) varies with n, it makes sense to
modify the MRT scheme accordingly:

x̄n = rs, (23)

where rn = Anh
∗
n/max{|<(hn)|, |=(hn)|} for all n.

V. Σ∆ PRECODING: MULTI-USER CASE

The study in the preceding section provides us with vital
insights into how the performance of Σ∆ precoding scales
with the system parameters, assuming a single user. Now we
turn to the multi-user case.

The development follows exactly the same spirit as the
preceding section. We simplify the notation of the basic signal
model (1) by removing the index t, i.e.,

yi =

√
P

2N
hTi x+ vi, i = 1, . . . ,K.

For simplicity, we apply Σ∆ modulation without angle steer-
ing. Adaptation to the angle-steered case is straightforward.
The corresponding model is

yi =

√
P

2N
hTi x̄+ wi, i = 1, . . . ,K, (24)

where x̄ ∈ CN is an amplitude-limited desired signal, with
−1 ≤ <(x̄) ≤ 1 and −1 ≤ =(x̄) ≤ 1; wi is a term
combining quantization noise and background noise. The noise
term wi is modeled as mean-zero circular complex Gaussian.
The variance of wi, denoted by σ2

w,i, is evaluated as

σ2
w,i =

4|αi|2P
3

∣∣∣∣sin(πdλ sin(θi)

)∣∣∣∣2 + σ2
v , (25)

where large N has again been assumed; note that (25) directly
follows from the noise variance formula (11).

In the first two subsections below, we will describe two
design schemes for x̄ under the assumption of M -ary PSK
constellations. Then, the third subsection will consider the
adaptation of the two schemes to the M -ary QAM constel-
lation case. The final subsection will discuss the extension to
the multi-path angular channel case.

A. Σ∆ Zero-Forcing

The first scheme we consider is ZF. For notational conve-
nience, define

‖x‖IQ−∞ = max{|<(x1)|, |=(x1)|, . . . , |<(xN )|, |=(xN )|};

that is, the infinity norm applied on the in-phase and
quadrature-phase components of a vector. Also, assume M -ary
PSK constellations. The ZF precoding scheme implements

x̄ = γA†Ds, (26)

where s ∈ SK is the symbol vector, with si representing the
symbol for the ith user;

D = Diag(σw,1α
∗
1/|α1|2, . . . , σw,Kα∗K/|αK |2),

A = [ a1, . . . ,aK ]T , ai = a(θi);

and γ is a normalization constant such that ‖x̄‖IQ−∞ = 1. It
is easy to see that

γ =
1

‖A†Ds‖IQ−∞
. (27)

This ZF precoding scheme is designed such that every user
has the same effective SNR, and consequently, uniform SEP
performance. To see this, consider putting (26) into (24). It
can be shown that

yi = ci · si + wi, ci =

√
P

2N
γσw,i.

Following the effective SNR concept used in the preceding
section, the effective SNR of the ith user is

SNReff,i =
c2i
σ2
w,i

=
P

2N
γ2. (28)

Clearly, the effective SNRs of all the users are identical.
In the simulation results section we will show the per-

formance of this Σ∆ ZF precoding scheme. Here, we are
interested in analyzing how the effective SNRs scale with the
system parameters. The result is as follows.

Proposition 1 Let k = arg maxi=1,...,K σw,i/|αi|. The users’
effective SNRs are bounded by

SNReff,i ≥
PN |αk|2λ2

min(R)

2K3σ2
w,k

=
PN |αk|2λ2

min(R)

2K3
(

4|αk|2P
3

∣∣sin (πdλ sin(θk)
)∣∣2 + σ2

v

) , (29)

for all i, where R = AAH/N ; λmin(R) denotes the smallest
eigenvalue of R. Also, it holds that

1 ≥ λmin(R) ≥ 1− (K − 1)ρ, (30)

where

ρ = max
i6=j

∣∣∣∣DN

(
πd

λ
(sin(θi)− sin(θj))

)∣∣∣∣ ,
and DN (φ) = sin(Nφ)/(N sin(φ)) is the digital sinc func-
tion.

Proof: From (27)–(28), we see that the problem is to
analyze ‖A†Ds‖IQ−∞. Let ‖ · ‖p denote either the p-norm
for vectors or the induced p-norm for matrices. We have

‖A†Ds‖IQ−∞ ≤ ‖A†Ds‖∞ ≤ ‖A†‖∞‖Ds‖∞
= ‖A†‖∞max

i
σw,i/|αi|,

where we have used ‖x‖IQ−∞ ≤ ‖x‖∞, ‖Ax‖∞ ≤
‖A‖∞‖x‖∞, and |si| ≤ 1 for all i. By using

A† = AH(AAH)−1 =
1

N
AHR−1,

we further get

‖A†‖∞ ≤
1

N
‖AH‖∞‖R−1‖∞

≤ 1

N
K(
√
K‖R−1‖2)

=
K3/2

N
λ−1

min(R),
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where the first inequality is due to ‖XY ‖∞ ≤ ‖X‖∞‖Y ‖∞;
the second inequality is due to ‖AH‖∞ = maxi

∑K
j=1 |aji| =

K and due to ‖X‖∞ ≤
√
n‖X‖2 for X ∈ Cm×n; the third

inequality is due to the fact that for a positive definite X , it is
true that ‖X‖2 = λmax(X) and λmax(X−1) = 1/λmin(X).
By putting the above inequalities into (27) and (28), the desired
inequality (29) is obtained. The proof of (30) is relegated to
Appendix A. �

Let us discuss the implications of the theoretical result in
(29)–(30). First, the quantization noise effects are the same as
what we see in the single-user case; a larger absolute value
of the angle means a larger quantization noise power. Second,
the lower bound of the effective SNRs increases linearly with
the number of antennas N . Again, this suggests that Σ∆
precoding is favorable for massive MIMO. Third, λmin(R),
which appears in the signal power part of the effective SNR,
is large if the user angles are well separated, but small if some
of the angles are close. This factor is relative to N . Fixing the
angles, larger N brings λmin(R) closer to its largest value,
1. Third, we are interested in how N should scale with the
number of users K. Very intuitively, by reading (29), there is
an indication that N should increase cubically with K; doing
so keeps N/K3 constant in the effective SNR bound. However,
note that this is a prediction from a performance bound that
is safe, but also pessimistic, by its nature. For instances where
a1, . . . ,aK are orthogonal—which one can expect it to be
approximately true when N is very large, one can redo the
proof of Proposition 1 to obtain a better bound

SNReff,i ≥
PN |αk|2

2K
(

4|αk|2P
3

∣∣sin (πdλ sin(θk)
)∣∣2 + σ2

v

) ,
which is merely the single-user effective SNR (14) downscaled
by K. In such instances it suffices to scale N linearly with
K.

B. Σ∆ Symbol-Level Precoding

The second scheme we consider is SLP. The idea is to
design, on a per-symbol-time basis, an amplitude-limited x̄
such that the SEP performance of the users is improved. It is
interesting to first draw a connection between SLP and ZF. As
shown in [35], any x̄ ∈ CN can be expressed as

x̄ = A†(Ds+ u) + η, (31)

where η lies in the nullspace of A, D = Diag(β1, . . . , βK),
with βi > 0 for all i, and u ∈ CK . Putting (31) into the model
(24) gives

yi =

√
P

2N
αi(βisi + ui) + wi, i = 1, . . . ,K, (32)

where the nullspace term η has no impact on the received
signals, the ui’s appear as symbol perturbation terms, and
the βi’s appear as symbol gains. There are two main ideas.
First, conditioned on si, we can use ui to purposely push
the shaped symbol away from the decision boundaries. SEP
performance can thereby be improved. Second, while the
nullspace term η seems useless at first glance, it plays a

hidden role in improving energy efficiency. Intuitively, from
(31), we may hope that some particular η can cancel some
of the signal components of A†(Ds+ u), possibly reducing
the subsequent IQ amplitude limit ‖x̄‖IQ−∞. In the related
context of per-antenna power constrained linear precoding,
it has been alluded to that using the nullspace term can be
beneficial [36].

Having shed light on the intuition, we turn to the design.
We formulate the design as a minimax SEP problem. Assume
M -ary PSK constellations. Let SEPi = P(ŝi 6= si), with ŝi =
dec(yi), be the SEP of the ith user. The problem is

min
‖x̄‖IQ−∞≤1

max
i=1,...,K

SEPi. (33)

Our first challenge is to find a tractable characterization of
SEPi. Consider the following result.

Lemma 1 ( [37]) 1 Let S be the M -ary PSK constellation
set. Let y = z + w, where w is circular complex Gaussian
with mean zero and variance σ2

w, and z ∈ C is arbitrary. Let
s ∈ S, and let ŝ = dec(y). It holds that

P(ŝ 6= s) ≤ 2Q

(
χ
M

ψ

σw

)
,

where χ
M

=
√

2 sin(π/M), and

ψ = <(zs∗)− |=(zs∗)| cot(π/M).

Applying Lemma 1 to the signal model (24), we characterize
the users’ SEPs as

SEPi ≤ 2Q(χ
M

√
SNReff,i),

where

SNReff,i =
P (<(hTi x̄s

∗
i )− |=(hTi x̄s

∗
i )| cot(π/M))

2Nσ2
w,i

.

Since the above bound on SEPi decreases as SNReff,i in-
creases, and since this relationship is monotone, it makes sense
to consider

max
‖x̄‖IQ−∞≤1

min
i=1,...,K

SNReff,i (34)

as a convenient and reasonable approximation of the minimax
SEP problem (33). As a slight abuse of notation, redefine the
variable x as

x = [ <(x̄)T ,=(x̄)T ]T .

Through some efforts, problem (34) can be rewritten as

min
x∈[−1,1]2N

f(x) , max{cT1 x, · · · , cT2Kx}, (35)

where

ci =

{
−bi + ri i = 1, . . . ,K
−bi − ri i = K + 1, . . . , 2K

bi = σ−1
w,i[ <(s∗ih

T
i ),−=(s∗ih

T
i ) ]T ,

ri = σ−1
w,i cot(π/M)[ =(s∗ih

T
i ),<(s∗ih

T
i ) ]T .

It is worthwhile to note that problem (35) is convex.

1As a technically subtle note, the SEP result for the case of z = c ·s, where
c > 0, is available in the classical communications literature. However, the
same result for arbitrary z does not seem to be as readily available.
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Our second challenge is to find a suitable algorithm for
computing the optimal solution to problem (35); note that
we consider large N . Since problem (35) can be formulated
as a linear program, one could use general-purpose conic
optimization software to complete the task. However, we argue
that this is not preferred for large N . Here we give two
solutions; both exploit the problem structure. One is to apply
the smoothed accelerated projected gradient (APG) method,
previously developed for the non-convex one-bit precoding
problem [18]. Concisely, the method works as follows. We
first approximate the non-differentiable f by

f̂(x) = µ log

(
2K∑
i=1

ec
T
i x/µ

)
,

where µ > 0; note that f̂ is smooth and it is a tight
approximation of f when µ → 0. Then, we apply the APG
method [38]–[40] on the smoothed problem. This gives rise
to the following algorithm

xk+1 =
[
xkex − βk∇f̂(xkex)

]1
−1
, k = 0, 1, 2, . . . (36)

where βk > 0 is the step size; ∇f̂(x) is the gradient of f̂ at
x; xkex, called an extrapolated point, is given by

xkex = xk + γk(xk − xk−1),

with γk = (ξk−1−1)/ξk, ξi = (1+
√

1 + 4ξ2
k−1)/2 and ξ−1 =

0; the notation [·]1−1 denotes the projection onto [−1, 1]n. Note
that [·]1−1 is merely an element-wise clipping function; i.e.,
if y = [x]

1
−1 then yi = max{−1,min{x, 1}} for all i. We

choose βk as the reciprocal of the Lipschitz constant of ∇f̂ , a
choice that guarantees convergence to an optimal solution. The
Lipschitz constant of ∇f̂ can be shown to be ‖C‖22/µ [40],
where C = [ c1, . . . , c2K ], and ‖ · ‖2 denotes the spectral
matrix norm. We will call the algorithm in (36) the primal
APG method.

The second solution considers a dual form of problem (35).
The primal APG method has 2N decision variables, which is
large, and the motivation of the dual method is to see if we
can use a smaller number of variables to solve problem (35).
More accurately, consider a regularized form of problem (35)

min
−1≤x≤1

f(x) +
τ

2
‖x‖22 (37)

for some small τ > 0. As a key observation, we note that

f(x) = max
λ≥0,λT 1=1

λTCTx.

The above alternative expression of f leads us to

(37) = min
−1≤x≤1

max
λ≥0,λT 1=1

λTCTx+
τ

2
‖x‖22 (38a)

= max
λ≥0,λT 1=1

min
−1≤x≤1

λTCTx+
τ

2
‖x‖22 (38b)

= max
λ≥0,λT 1=1

g(λ) ,
2N∑
i=1

−ϕτ (c̄Ti λ), (38c)

where c̄i denotes the ith row of C; ϕτ is the Huber function
and is given by

ϕτ (y) =

{
y2/(2τ) |y| ≤ τ
|y| − τ/2 otherwise

Note that (38b) is due to Sion’s minimax theorem [41], and
(38c) is due to min−1≤x≤1 yx+τx2/2 = −ϕτ (y) which one
can easily show. Consider the dual problem in (38c), which
has 2K decision variables. In the same vein as the previously
introduced APG method, we use APG to solve problem (38c)

λk+1 = Π{λ≥0|λT 1=1}
(
λkex + βk∇g(λkex)

)
, (39)

for k = 0, 1, 2, . . ., where Π{λ≥0|λT 1=1} denotes the projec-
tion onto the unit simplex; λkex is defined in the same way as
xkex; βk is the step size. Note that there exist very efficient
algorithms for computing the unit simplex projection [42].
Also, the Lipschitz constant of ∇g is shown to be ‖C‖22/τ .

Once we compute the optimal solution λ? to problem (38c),
the question that remains is how we can use λ? to recover
the optimal solution x? to problem (37). From the study of
minimax theory [43], it is understood that x? must be an
optimal solution to

min
−1≤x≤1

(λ?)TCTx+
τ

2
‖x‖22. (40)

Since problem (40) has one optimal solution only, owing to the
strong convexity of its objective function, the optimal solution
to problem (40) must be x? itself. The optimal solution to
(40) is simply

x? =
[
− 1
τCλ

?
]1
−1 . (41)

We will call the method in (39) and (41) the dual APG method.
From our numerical experience, the primal and dual APG

methods are both competitive. This will be shown in the
simulation results section.

C. The QAM Case

Having studied the Σ∆ ZF and SLP schemes for the M -
ary PSK constellation case in the preceding subsections, we
now consider the M -ary QAM constellation case. There is
an aspect we need to discuss first. Previously we ignore the
time index t in the basic signal model (1). This is without
loss of generality since PSK symbols do not require signal
amplitude information for detection, and it is unnecessary to
coordinate the scalings of the received signals over time. But
this is no longer true in the QAM case. More technically, in
(2), we need to make the received signal scaling coefficients
ci,t’s to be consistent for every symbol, namely, by having
ci,1 = · · · = ci,T , ci for every i [15], [17], [18], [29].

Let us consider the ZF scheme under the above design
consideration. We modify the ZF scheme in Section V-A as

x̄t =
A†Dst

maxt=1,...,T ‖A†Dst‖IQ−∞
, t = 1, . . . , T. (42)

Following the same development as before, one can show that
the corresponding received signals are given by

yi,t = ci · si,t + wi,t, ci =

√
P

2N
γσw,i, (43)
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where γ = 1/maxt=1,...,T ‖A†Dst‖IQ−∞. It can be shown
that the same result in Proposition 1 applies here.

For the SLP scheme, essentially the same problem was
considered in [18]. The latter considers the minimax SEP
design in non-convex one-bit precoding, and does so by joint
optimization of all x̄1, . . . , x̄T and all scalings c1, . . . , cK .
This amounts to a large-scale problem, but enhanced SEP was
also observed. The algorithm proposed there is similar to the
primal APG method in Section V-B, with a non-convex penalty
term for forcing a binary solution. By removing that penalty
term, the algorithm will be applicable to our Σ∆ SLP design.
We omit the details due to space limitation.

We propose one more scheme that strikes a balance between
ZF and SLP. Consider the following nullspace-assisted ZF
scheme

x̄t=
A†Dst + ηt

maxt=1,...,T ‖A†Dst + ηt‖IQ−∞
, t = 1, . . . , T, (44)

where every ηt lies in the nullspace of A. The scheme (44)
is a more general version of the ZF scheme (42), taking
advantage of the design simplicity of the latter. It is also a
special case of the SLP scheme. From the alternative SLP
interpretation (31)–(32), one can see that (44) is an SLP
scheme that drops the symbol perturbation terms ut’s, adopts
the simple way to decide the received signal gains βi’s in
ZF, but keeps the nullspace term ηt. The received signals of
the scheme (44) are the same as (43), with γ replaced by
γ = 1/maxt=1,...,T ‖A†Dst+ηt‖IQ−∞. Now, the problem is
find η1, . . . ,ηT such that γ is maximized. It is readily seen that
we can achieve this by solving, in a time decoupled manner,

min
ξt∈CN−K

‖rt +Bξt‖IQ−∞, t = 1, . . . , T, (45)

where we apply change of variable ηt = Bξt; B ∈
CN×(N−K) is an orthogonal basis of the nullspace of A;
rt = A†Dst. We will show by simulation results that this
nullspace-assisted ZF scheme provides order-of-magnitude
SEP improvement over the ZF scheme.

We finish by mentioning how we solve the problems in (45).
We first reformulate each problem in (45) in a form similar
to problem (35), but without the constraint x ∈ [−1, 1]2N .
Then we apply the smoothed APG method in (36) (without
projection) to find the solution. We omit the details for the
sake of brevity.

D. The Multi-Path Case

Our preceding developments can also be extended to the
case of multi-path angular channels. Consider the multi-path
channel model

hi =

Li∑
l=1

αila(θil), (46)

where αil and θil correspond to the complex channel gain
and angle of the lth path to the ith user, respectively; Li is
the number of paths associated with the ith user. Following
the same development as in the preceding sections, it can be

shown that the basic signal model takes the same form as (24),
i.e.,

yi =

√
P

2N
hTi x̄+ wi, i = 1, . . . ,K.

The difference is that the expression of the noise variance σ2
w,i

is replaced by

σ2
w,i ≈

P

3N

N−1∑
n=0

∣∣∣∣∣
Li∑
l=1

αil(z
−n
il − z

−n−1
il )

∣∣∣∣∣
2
+ σ2

v , (47)

where zil = ej
2πd
λ sin(θil). As a result, the ZF and SLP schemes

developed above can be applied to the multi-path case (with
minor modifications). The detailed derivations of (47) are
relegated to Appendix B.

We should mention that σ2
w,i does not increase with N .

Using |x1 + · · · + xL|2 ≤ L(|x1|2 + · · · + |xL|2), we show
from (47) that

σ2
w,i ≤

4PLi
3

Li∑
l=1

|αil|2
∣∣∣∣sin(πdλ sin(θil)

)∣∣∣∣2 + σ2
v .

As can be seen, the above bound does not depend on N .

VI. SIMULATION RESULTS

This section shows our simulation results for Σ∆ precoding.

A. Single-User Case with Basic Σ∆ Modulation

We start with the single-user case, specifically, the basic Σ∆
MRT scheme in Section IV-B. The simulation settings are as
follows. The number of antennas and the inter-antenna spacing
are N = 256 and d = λ/8, respectively. The complex channel
gain α has unit amplitude and phase uniformly drawn from
[−π, π] in each simulation trial. The symbol constellation is
8-ary PSK. For benchmarking we also evaluate the theoretical
SEP bound of the basic Σ∆ MRT scheme, i.e., (13)–(14),
and the simulated symbol error rate (SER) performance of the
unquantized MRT scheme. Here, unquantized MRT (or any
precoding) refers to the case where one applies MRT (or any
precoding) without the one-bit signal restriction.

Fig. 3 shows the SER performance under several different
values of the user angle θ. We see that, for the cases of θ = 0◦

and θ = 60◦, the simulated SER performance of the basic Σ∆
MRT scheme is almost the same as the theoretical. For the case
of θ = 30◦, we observe a small gap between the simulated and
theoretical SER performance of the basic Σ∆ MRT scheme.
The reason, as we found out, is that the quantization noise
could have its behavior deviating from the i.i.d. assumption
in some specific cases, and θ = 30◦ happens to fall into one
such case. We may mitigate the non-i.i.d. effect by dithering,
although it may not be worthwhile to try dithering in this case
since the performance gap is small and dithering increases the
quantization noise level. Moreover, for the case of θ = 90◦,
we notice that the simulated and theoretical SER performance
has a significant gap. Again, this is because the quantization
noise is not i.i.d., and the non-i.i.d. effect is severe in this case.

Next, we show the radiation patterns of the basic Σ∆ MRT
scheme. The simulation settings are the same as the previous.
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(b) θ = 30◦
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(c) θ = 60◦
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(d) θ = 90◦

Fig. 3: SERs for different θ.

Fig. 4 plots the angular power spectrum P (ϑ) = E[|a(ϑ)T x̄|2]
for several values of the desired angle θ. We see that the actual
angular power spectrum does not always look like what theory
ideally suggests, i.e., superposition of the highpass quantiza-
tion noise spectrum and the MRT signal spectrum, the latter
of which appears as a spike at θ. We see a highpass response
with the actual angular power spectrum for θ = 30◦, 60◦, 90◦,
but this is not seen for θ = 0. We expect a single peak
at the desired angle θ, but we also see some smaller peaks
at other angles for θ = 0◦, 30◦, 60◦. Also, we do not see
a peak for θ = 90◦. The non-ideal phenomena we see are
due to the non-i.i.d. effects, and they are identical to those
in the temporal Σ∆ modulation of DC and sinusoidal input
signals [32], [33]. Nonetheless we can also argue that the
actual angular spectrum roughly follows the theoretical, say,
for θ = 30◦, 60◦. As an aside, while our interest is to apply
precoding to a target user, the quantization noise of the Σ∆
scheme also causes interference to other angles—an issue one
needs to be careful when operating under multi-cell interfering
channel environments.

Finally, we examine the SER performance under different
numbers of antennas N . The user angle is fixed at θ = 60◦.
The result in Fig. 5 illustrates that, under the same SNR
level P/σ2

v , increasing N reduces the SERs substantially. This
numerical observation is in agreement with the SEP analysis
result in Section IV-B.

B. Single-User Case with Angle-Steered Σ∆ Modulation

We turn our attention to the angle-steered Σ∆ MRT scheme
in Section IV-C. The simulation settings are essentially identi-
cal to those in the preceding subsection, and the difference is
that we reduce the number of antennas to N = 128, increase
the inter-antenna spacing to d = λ/2, and try a large angle
of θ = 90◦. The basic Σ∆ MRT scheme is expected to work
poorly, as suggested by the analysis in Section IV-B. Also,
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(d) θ = 90◦

Fig. 4: The angular power spectrum for different θ.
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Fig. 5: SERs for different N .

as we have seen in the simulation results in the preceding
subsection, the non-i.i.d. quantization noise effect may become
significant. To mitigate the non-i.i.d. effect, we try the dithered
Σ∆ MRT scheme, specifically, by applying the dithering
procedure (7) to the basic spatial Σ∆ modulator. The dithering
level δ in (7) is set to δ = 0.8.

Fig. 6 shows the SER performance of the basic, dithered
and angle-steered Σ∆ MRT schemes. As seen previously in
Fig. 3(d), the basic Σ∆ MRT scheme suffers from the non-
i.i.d. quantization noise effect when θ = 90◦. The situation
now is even worse. We see from Fig. 6 that the basic
Σ∆ MRT scheme completely fails, and does not perform
as the theoretical SER performance says. The dithered Σ∆
MRT scheme yields significantly improved performance, and
this indicates that dithering can reduce the non-i.i.d. effect.
However, it is the angle-steered Σ∆ MRT scheme that gives
the best performance. Also, the theoretical SER performance
of the angle-steered Σ∆ MRT scheme accurately predicts the
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Fig. 6: SERs under angle-steering and dithering; θ = 90◦.

simulated SER performance.
Next, we consider the generalized angle-steered Σ∆ MRT

scheme in Section IV-D under i.i.d. Gaussian channels. Specif-
ically, in each simulation trial, the channel h is i.i.d. com-
plex circular Gaussian generated with mean zero and unit
variance. The number of antennas is N = 256, and the
symbol constellation is 16-ary QAM. The benchmark scheme
is the unquantized MRT. The unquantized MRT scheme we
consider is the one under the peak IQ amplitude constraint
‖x‖IQ−∞ ≤ 1 and without one-bit quantization; precisely,
it is implemented by (23) with An = 1 and with σ2

w = σ2
v .

Also, we try the direct one-bit quantization of the unquantized
MRT scheme, which we call it the quantized MRT scheme;
we will use the same convention to name other direct one-
bit quantized algorithms in the sequel. In addition to the
generalized angle-steered Σ∆ MRT scheme, we try a heuristic
where we overload the generalized angle-steered Σ∆ MRT
scheme by setting An = 1 for all n. Careful readers will see
from Section IV-D that the issue will be that the surviving
quantization noise term qN in (21b) may become large. But if
it does not in general, then the overloaded heuristic will have
the advantage of enhanced SNR.
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Fig. 7: SERs for the i.i.d. Gaussian channel.

Fig. 7 shows the results. We have the following obser-

vations. First, the quantized MRT scheme fails to work.
Second, the generalized angle-steered Σ∆ MRT scheme (“Σ∆
Steering” in the figure) yields SER performance that is about
3dB away from that of the unquantized MRT scheme. This
agrees with our analysis, which suggests 4.64dB as the worst
case. Third, the overloaded generalized angle-steered Σ∆
MRT scheme (“Σ∆ Steering, OL”) yields SER performance
almost the same as that by the unquantized MRT. While
our present work only considers the no-overload case, this
simulation result suggests that overloading can be beneficial.
We will leave overloading as a subject of future investigation.

C. The Multi-User Case

Now we consider the multi-user case. The simulation set-
tings are as follows: The number of antennas is N = 512; the
inter-antenna spacing is d = λ/8; the number of users is K =
24, and the users are within an angular range [−30◦, 30◦];
the angles θi’s are randomly picked from [−30◦, 30◦] with
inter-angle difference no greater than 1◦; the complex channel
gains αi’s have phases uniformly drawn from [−π, π], and
their amplitudes are generated as |αi| = r0/ri where r0 = 30
and ri are uniformly drawn from [20, 100] (this is a standard
free-space path-loss model, with ri being the distance from
the BS to the ith user and r0 being a reference value); the
symbol constellation is 8-ary PSK.

The settings of the Σ∆ SLP scheme should also be
mentioned. For the primal APG, the smoothing parameter
µ = 0.05, and the algorithm stops when ‖xk+1−xk‖2 ≤ 10−5

or when a maximum iteration number of 2000 is reached. For
the dual APG, the regularization parameter is τ = 0.005, and
the algorithm stops when ‖λk+1 − λk‖2 ≤ 10−7 or when a
maximum iteration number of 3000 is reached.

Fig. 8 shows the results. In the legend, “unquant. ZF” is the
unquantized ZF scheme under the average power constraint;
“quant. ZF” is the direct one-bit quantization of the unquan-
tized ZF scheme; “Σ∆ ZF” is the Σ∆ ZF scheme in Section
V-A; “Σ∆ Primal APG” and “Σ∆ Dual APG” are the primal
and dual Σ∆ SLP schemes in Section V-B; “unquant. SLP” is
the unquantized version of the SLP scheme; “quant. SLP” is
the direct one-bit quantization of the unquantized SLP scheme.
We see that the proposed Σ∆ ZF and SLP schemes work well.
The quantized ZF and SLP schemes do not, however.

Next, we perform benchmarking with some existing one-
bit precoding designs. The simulation settings are the same as
the previous, except that we reduce the number of antennas
to N = 256 and the angular range to [−22.5◦, 22.5◦]. The
compared algorithms are the SQUID algorithm [12] and the
maximum safety margin (MSM) algorithm [30]. The results in
Fig. 9 show that the Σ∆ SLP scheme outperforms SQUID and
MSM, and the Σ∆ ZF scheme performs better than the latter
when the SNR is greater than 25dB. In addition to SERs,
we also compare the algorithm runtimes. Table I shows the
runtime results; the results were obtained on MATLAB, and
a desktop computer with Intel i7-4770 processor and 16GB
memory was used to perform the runtime test. We can see
that the proposed Σ∆ SLP designs yield competitive runtime
performance compared to SQUID and MSM.
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Fig. 8: Bit error rates (BERs) of the multi-user Σ∆ precoding
schemes in the 8-ary PSK case.
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Fig. 9: BER comparison of the multi-user Σ∆ precoding
schemes and some existing one-bit precoding schemes.

TABLE I: Average runtime (in Sec.) of different algorithms;
(N,K) = (256, 24), 8-ary PSK.

Algorithm Σ-∆ ZF Σ-∆ Primal
APG

Σ-∆ Dual
APG SQUID MSM

runtime 0.0021 0.0574 0.0496 1.0324 0.9197

Finally, we consider the QAM case. The simulation settings
are: 16-ary QAM, N = 256, K = 16, and the transmission
block length T = 100. Also, the angular range is [−30◦, 30◦],
and the αi’s are generated in the same way as before. Fig.
10 shows the results. In the plot, “Σ∆ ZF” is the Σ∆
ZF scheme in (42); “Σ∆ null. ZF” is the nullspace-assisted
Σ∆ ZF scheme in (44)–(45), and “GEMM” is the direct
one-bit precoding design in [18]. We see that the Σ∆ ZF
schemes, with and without nullspace assistance, work. Also we
should pay particular attention to the nullspace-assisted Σ∆
ZF scheme. It has a 5dB gain compared to the Σ∆ ZF scheme,
and it is only 3dB away from GEMM. We should mention that
GEMM handles a more complicated design problem than the
nullspace-assisted Σ∆ ZF scheme.
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Fig. 10: BERs of the multi-user Σ∆ precoding schemes in the
16-ary QAM case.

VII. CONCLUSION

In this paper we studied the potential of spatial Σ∆ modula-
tion for one-bit MIMO precoding. We showed that Σ∆ precod-
ing is an excellent candidate when the system is equipped with
a massive antenna array and when the users lie within a certain
angular sector, which is a typical assumption in many cellular
systems. The major advantage of Σ∆ precoding is that it can
achieve good performance for relatively simple designs such
as quantized linear precoding, whereas direct one-bit design
requires complicated non-convex methods with binary signal
constraints (or relaxed versions thereof) in order to obtain low
error rates. While our initial Σ∆ precoder assumed a simple
angular channel, we showed how to generalize the idea to any
type of channel in the single-user case.

APPENDIX

A. Proof of (30)

The proof of (30) in Proposition 1 is as follows. Since R
is Hermitian, we can write

λmin(R) = min
‖x‖2=1

xHRx.

Let φi = 2πd sin(θi)/λ, and let zi = ejφ. Since ai =

[ 1, z−1
i , . . . , z

−(N−1)
i ]T , we have

rij =
1

N
aTi a

∗
j =

1

N

N−1∑
n=0

(z−1
i zj)

n =
1− (z−1

i zj)
N

N(1− (z−1
i zj))

.

Thus, the elements of R satisfy rii = 1 and

|rij | =
∣∣∣∣DN

(
φ1 − φ2

2

)∣∣∣∣ ≤ ρ.
Since rii = 1, we have

λmin(R) ≤ eH1 Re1 = 1,
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where e1 = [ 0, 1, . . . , 1]T . Also, it holds that

xHRx ≥
K∑
i=1

|xi|2 −
∑
i6=j

|rij ||xi||xj |

≥
K∑
i=1

|xi|2 − ρ
∑
i6=j

|xi||xj |

= |x|T ((1 + ρ)I − ρ11T )|x|
≥ (1 + (1−K)ρ)‖x‖22,

where we denote |x| = [ |x1|, . . . , |xn| ]T in the third equation;
the last equation is due to λmin((1 + ρ)I − ρ11T ) = 1 + ρ−
ρ‖1‖22 = 1 + (1 −K)ρ. It therefore follows that λmin(R) ≥
1 + (1−K)ρ. The proof of (30) is thus complete.

B. Derivation of (47)

Following the single-user development in Section IV-A, the
noise term wi in the model (24) of the multiuser case is given
by

wi =

√
P

2N
hT (q − q−) + vi;

recall q− = [ 0, q1, . . . , qN−1 ]T . When the channel hi takes
the multipath form in (46), wi can be expressed as

wi =

√
P

2N

[
N−2∑
n=0

(
Li∑
l=1

αil(z
−n
il − z

−n−1
il )

)
qn+1

+

(
Li∑
l=1

αilz
−N−1
il

)
qN

]
+ vi,

where zil = ej
2πd
λ sin(θil). Under the uniform i.i.d. assumption

with q, we have E[wi] = 0 and

σ2
w,i =

Pσ2
q

2N

[
N−2∑
n=0

∣∣∣∣∣
Li∑
l=1

αil(z
−n
il − z

−n−1
il )

∣∣∣∣∣
2

+

∣∣∣∣∣
Li∑
l=1

αilz
−N−1
il

∣∣∣∣∣
2 ]

+ σ2
v ,

where σ2
q = E[|qn|2] = 2/3. By approximating the above

expression as

σ2
w,i ≈

Pσ2
q

2N

[
N−1∑
n=0

∣∣∣∣∣
Li∑
l=1

αil(z
−n
il − z

−n−1
il )

∣∣∣∣∣
2 ]

+ σ2
v ,

which is reasonable for large N , we arrive at the noise variance
formula in (47).
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