ZARA: A Novel Zero-free Dataflow Accelerator for Generative
Adversarial Networks in 3D ReRAM

Fan Chen, Linghao Song, Hai “Helen” Li, Yiran Chen
Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
{fan.chen,linghao.song,hai.li,yiran.chen}@duke.edu

ABSTRACT

Generative Adversarial Networks (GANs) recently demonstrated a
great opportunity toward unsupervised learning with the intention
to mitigate the massive human efforts on data labeling in supervised
learning algorithms. GAN combines a generative model and a dis-
criminative model to oppose each other in an adversarial situation
to refine their abilities. Existing nonvolatile memory based machine
learning accelerators, however, could not support the computational
needs required by GAN training. Specifically, the generator utilizes
a new operator, called transposed convolution, which introduces
significant resource underutilization when executed on conven-
tional neural network accelerators as it inserts massive zeros in
its input before a convolution operation. In this work, we propose
a novel computational deformation technique that synergistically
optimizes the forward and backward functions in transposed convo-
lution to eliminate the large resource underutilization. In addition,
we present dedicated control units - a dataflow mapper and an oper-
ation scheduler, to support the proposed execution model with high
parallelism and low energy consumption. ZARA is implemented
with commodity ReRAM chips, and experimental results show that
our design can improve GAN’s training performance by averagely
1.6 X ~23% over CMOS-based GAN accelerators. Compared to state-
of-the-art ReRAM-based accelerator designs, ZARA also provides
1.15 X ~2.1X performance improvement.

CCS CONCEPTS

« Hardware — Hardware accelerators;

KEYWORDS
GAN; 3D ReRAM; unsupervised learning

ACM Reference Format:

Fan Chen, Linghao Song, Hai “Helen” Li, Yiran Chen. 2019. ZARA: A Novel
Zero-free Dataflow Accelerator for Generative Adversarial Networks in
3D ReRAM. In The 56th Annual Design Automation Conference 2019 (DAC
’19), June 2—6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/lo.l145/331678143317936

1 INTRODUCTION
Supervised deep learning have been widely used in various modern
artificial intelligence (AI) applications, spanning over image and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317936

speech recognition [9], object detection [6], natural language pro-
cessing [3], etc. It has achieved near or even beyond human-level
accuracy in classification problems [8, 11]. Training deep neural
networks (DNNs), however, requires vast quantity of correctly la-
beled data. Such a fact greatly constrains the generalization of DNN
models to the scenarios where the training data is difficult or costly
to obtain.

Recent advances in unsupervised Generative Adversarial Net-
works (GANs) [7] offer a great opportunity to extend deep learning
to applications that conventional supervised learning is not capable
to handle [10, 13, 15, 20]. A GAN model consists of two neural net-
works, a generator that attempts to generate synthetic data from
random noise and a discriminator that tries to distinguish the data
created by the generator from the actual training samples. The
generator and discriminator are co-trained against each other in
an unsupervised manner until we receive a generator with strong
generation capability and a discriminator with high classification
accuracy.

Although GAN has quickly become a popular research topic
since it was proposed in 2014 [7], there were few studies on how
to accelerate the calculation of GAN models in computing commu-
nity. Until recently, researchers began to realize that the special
mathematical operator in GAN - transposed convolution (TCONV)
could not be effectively executed in traditional DNN accelerators
such as Eyeriss [2] and Pipelayer [18]. TCONV is a two-stage op-
eration which augments a low-dimension input feature map to a
high-dimension richer representation. It first inserts many zeros
into the input data and then performs a convolution operation
on the expanded feature map at the second stage. The inserted
zeros contribute to more than 60% of multiplication and addition
operations [25], resulting in severe resource underutilization when
conventional DNN accelerators were employed. In this paper, we
propose ZARA, a ReRAM-based PIM accelerator that fills the gaps
in prior arts. Compared to previous work, we make the following
contributions.

o we explore the dataflow and complex computing operations
involved in GANs. We design a revolutionary computation
deformation to completely eliminate inserted zeros in trans-
posed convolution to improve the computation efficiency
and resource underutilization.

e we propose a dataflow mapper and an operation scheduler to
mitigate the discrepancy in computation latency caused by
deformed flow of data. By leveraging the trade-off between
performance and hardware resource, the mapper effectively
maps the computation onto processing engines to maximize
both spatial and temporal parallelism.

e we implement ZARA with 3D horizontal ReRAM-based ar-
chitecture and evaluate its effectiveness using five recent

Generator (G) Discriminator (D)

SECHRE

e —
Transposed Convolution Convolution
(TCONV) (CONV)

Figure 1: A GAN system.
GAN models on five distinct applications. We show that

ZARA delivers significant speedup and energy saving over
state-of-the-art GAN accelerators.

2 PRELIMINARY
2.1 GAN and DCGAN

In a GAN framework, two DNNs compete with each other in a min-
imax game: a generative model G generates synthetic samples from
random noise to simulate the real samples, and a discriminative
model D distinguishes the generated samples from the real ones.
The two models are trained alternatively until they reach an equi-
librium. In theory, any two networks with inverse structures can
be trained as opponents in a GAN system to refine their abilities.
However, the inferior stability of GAN imposes strict constraints
on selection of proper networks. Inspired by the recent success of
convolutional neural networks (CNNs), deep convolutional genera-
tive adversarial networks (DCGAN) [15] was proposed. DCGAN
features several principles of network architectures to ensure a
stable training, such as 1) replacing pooling layers with strided
convolutions in D and transposed convolutions in G, 2) removing
fully-connected layer, and 3) using Rectified Linear Unit (ReLU)
and LeakyReLU in activation functions in G and D, respectively.
Most of the current GAN variations are based on or at least par-
tially based on DCGAN [10, 20, 22] because of its good stability. As
illustrated in Figure 1, D uses conventional convolution (CONV)
to downsample the input and produces a binary classification. In
contrast, G performs transposed convolution (TCONV), which is
fundamentally different from CNOV, to map a uniform noise to a
high-dimension representation. Table 1 summarizes the notations
that are commonly used for explanation of the layer structure and
computation of a GAN. Due to page limit, we do not give the full
descriptions of those parameters or the mathematical model of the
GAN’s training process. We refer the interested readers to [1, 18].
Compared to CONV, TCONYV first transforms its input to a larger
representation by zero paddings around the borders and zero inser-
tions between adjacent rows/columns and then performs performs
Table 1: Notations used for explanation of a GAN.

[Symbols/equations [[Description |
Wy, by kernel matrix, bias of the I/” layer
activation function
uy, dj ourput FP before, after activation function
8 error matrix of the [*" layer
vW; weight derivative of the [‘” layer
u;=Widj_1 + b (1) || forward function
= h(up) (2) || activation function
811 =W; T8 oh (u;) (3) || error backpropagation
YW, =d_16; (4) || weight partial derivative
Vb, =6 (5) || bias partial derivative
Iy, Iy, Ic width, height, channels of input FP
Kw, Ky, Kc, Kn width, height, channels, numbers of kernels
Ow, Og, O¢c width, height, channels of output FP
Sw, Sy TCONV stride on width, height
Pw, P TCONV padding on width, height

o denotes element-wise multiplication.

Expanded FP | Kernel W; Output FPu; Error Matrix &,
InputFP d;_4 i i S Eﬂ.
T CY B a s
e o O | i
(a) i(b) i(c)

Figure 2: Transposed convolution (TCONYV). (a) zero-
insertion stage for a 2 X 2 input FP with stride Syy = Sy = 2.
(b) convolution between the expanded input and kernels. (c)
error matrix for backpropagation.

convolutional computation on the expanded input. The padding
on width and height are denoted as Py and Py, respectively. The
stride on width (height) is denoted as Sy (Sg), representing that
Sw — 1 (Syg — 1) zeros need to be inserted between two adjacent
columns (rows). In this way, only approximately 1/Sy (1/Sg) of
the source operands within a row (column) are non-zero and con-
tributes to the final result. For instance, Figure 2(a) illustrates the
zero-insertion step for a 2 X 2 multi-dimensional input feature map
(FP) with stride Sy = Sy = 2 and padding Pyy = Py = 1. Then
3 multi-dimensional kernels (a.k.a. weight matrix) convolve with
this transformed input FP and correspondingly generate 3 output
FPs with a size of 4 X 4, as shown in Figure 2(b). In this example, 63
zeros are inserted to each input FP, that is, only 12/75 (16%) of the
source operands are valid input and contributes to the final results.

As a training framework, a backward pass (represented by Equa-
tion (3)-(5) in Table 1) is essential for updating a GAN model. Fig-
ure 2(c) shows the error matrix, which has the same size with output
FP and can be back-propagated to the previous layer. The error and
the expanded FPs are then multiplied at each layer to calculate the
partial derivative of weights (VW) and bias (vb).

2.2 ReRAM-based Vector-Matrix Multiplier

Resistive Random Access Memory (ReRAM) is an emerging non-
volatile memory that uses the resistance of a dielectric solid-state
device to store data. Recent works [1, 17, 18] demonstrated that
vector-matrix multiplication (VMM), which is the major operations
in neural network models, can be efficiently conducted using a
ReRAM crossbar with more than 100X efficiency improvement over
conventional designs. Figure 3(a) illustrates a 2D ReRAM-based
VMM. Each input on the wordlines (WLs) of a two-dimensional
ReRAM crossbar is connected to all the bitlines (BLs) via ReRAM
cells. The elements of the matrix are represented as the conduc-
tance of the ReRAM cells and the input vector is represented by the
input voltage on the WLs. The output currents from the BLs, hence,
represents the result of vector-matrix multiplication. By adding

BL1 BL2 BL3 BL4

v, wiL1
NSy
NN
|4
NN
V.
NN,
cell

0, 0, 0; 0,
(a) 2D ReRAM VMM (b) 3D Horizontal ReRAM

Figure 3: The ReRAM basics.

some necessary peripheral circuits (e.g., analog-digital converters,
sample-and-hold units, shift-and-add units, etc.) onto the ReRAM
crossbar, we are able to effectively implement the calculations in-
volved in the neural networks.

Previous work [13] demonstrated a DNN inference accelerator
based on 128 x 128 2-bit Multi-level Cell (MLC) ReRAM arrays
with a lifetime of only one day. For a DNN learning accelerator,
the life problem will be more severe as the high precision and
frequent writes required by the training process quickly wear the
ReRAM cells out. In our work, we choose 3D horizontal Single-bit
Cell (SLC) ReRAM crossbar as the basic computing unit to balance
the computation density and lifetime of the design. As shown in
Figure 3(b), a 2-bit cell in 3(a) can be split into two 1-bit cells.
These two designs have the exactly same peripheral circuits but the
lifetime of ReRAM arrays can achieve ~ 10x improvement [13].

3 RELATED WORKS AND MOTIVATION

Zhang et. al [26] proposed to accelerate TCONV on FPGA. Fen-
engine [23] and Red [5] further realizes a fully convolutional accel-
erator that can handle both CONV and TCONV operations using
unified processing elements (PEs). These work only focus on infer-
ence task but do not support training function. ReGAN [1] imple-
mented a full-fledged GAN accelerator using emerging ReRAM but
it adopts the inefficient zero-insertions in TCONV and neglects the
redundant operations. Zhang et. al [19] proposed a CMOS-based
GAN accelerator where zero operands can be skipped by carefully
mapping the GANs onto the PEs. Its dataflow, however, imposes
strong limitations on the topology of the GANs (i.e. Sy = Sy = 2),
making it very inflexible to serve various GAN variations. Flexi-
GAN [24] and GANAX [25] reorder the output computation and
allocate computing rows with similar patterns of zeros to adjacent
PEs for efficient TCONV execution. To support their reorganized
dataflow, these two works both implement decoupled access and
execute micro-engines to support interleaving MIMD and SIMD
operations, resulting in increased design complexity. LerGAN [14]
presented kernel reshaping scheme to handle zero-related com-
putation in GAN and implemented the proposed design with 3D-
connected Process-in-Memory architecture in ReRAM. The forward
and backward functions in TCONV are considered as two indepen-
dent processes in the reshaping scheme proposed in LerGAN, so the
optimization is not explored to the maximum. The PIM architecture
employs an ideal 3D connection technology that is difficult to im-
plement even with the most advanced circuit technologies available
today. Different from all the above designs, our work completely
eliminates the zero-insertion related in TCONV computations. We
collaboratively optimize the forward and backward propagation
with a novel deformation scheme and implemented the proposed
design with commodity ReRAM chips.

4 ZARA

4.1 Overview of ZARA

Figure 4 illustrates the ZARA workflow. ZARA takes in a high-level
specification of a GAN model which defines network typologies,
number of parameters and other information of both the generative
model and the discriminative model. We propose to deform the
TCONV computation by decomposing the original kernel matrix
into multiple sub-kernels which convolve on the input FP directly

GAN Shape and Size

Dataflow Optimizer

Optimized Flow of Data

¥ k2
Mapper Scheduler

Implementation Details Execution Schedule

Processing Engines

Processed Data

Figure 4: Workflow of ZARA.
without zero-insertions. The output FPs can then be periodic shuf-

fled and combined to obtain equivalent output results. The TCONV
deformation results in discrepancy in computation latency, which
breaks the pipelined execution model. Therefore, we carefully de-
sign a Mapper and a Scheduler to effectively map and schedule
the operations of the optimized dataflow onto Processing Engines
(PEs) to eliminate the discrepancy in execution time. We will pro-
vide the details of each components in the following sections.

4.2 Dataflow Optimizer

Due to the zero insertions in TCONV, executing GAN by following
conventional convolution dataflow may result in over 60% resource
underutilization. To solve this issue, we first studied the computa-
tional characteristics of TCONV. Taking the example in Figure 5(a),
we observed that the convolution between the expanded FP and the
kernels only contains four distinct valid patterns, represented by
different colors. The elements in odd output rows only related to the
elements in the even rows of the kernel weight matrix, whereas the
even output rows consume elements in the odd rows of the weight
matrix. Building upon this observation, we propose to pre-classify
the weight kernels into multiple subsets. Convolution execution
occurs only between the input and relevant subsets in both the
forward and backward phases of a TCONYV, thereby alleviating the
aforementioned inefficiency in TCONV execution. Below we will
detail the proposed data flow optimization scheme.

Forward function dataflow optimization is illustrated in Figure 5(b).
Note that we assume Py, < Sy — 1 and Py < Sy — 1, which is
valid in practice. In this case, the pre-classification of the weight
kernels is completely dependent on Sy, and Sy. In the special case
where the assumption is not true, some boundary subsets need to
be added to produce boundary elements in the output FP. In this
example, the kernels are first categorized into Sy X Sp subsets. In
this way, the convolution between expanded input FP and kernels
translates into the convolution of original input FP with multiple

Wl u
1t row
2" row
= 3 row
4t row
5th row
Shuffling &
combining
e "
di_q 4
Emam
w 1
mman® " l
(o) N

Figure 5: (a) 2D TCONV operation for a 4 x4 input and a 5x5
kernel. (b) Optimized dataflow for performing 2D TCONYV.

(b) :
Figure 6: Optlmlzed dataflow of (a) error backpropagation.
(b) weight derivative.

kernel subsets. The output FP is thus obtained by shuffling the
elements in multiple subsets of output FPs and combining them
together.

Error propagation from layer [is performed inversely to layer -1
as denote in Equation (3) in Table 1. h/(ul) denotes partial derivative
of activation function. Note that in DCGAN, the activation function
used for G is ReLU, for D is LeakyReLU, which means that h'(x;) is
either 0 or a constant. Hence, the o can be realized by AND operator.
For error backpropagation, the transposed weight matrix W) needs
to convolve with error matrix §;. Based on the deformed dataflow
in the forward function, we learn that each output element in layer
lis only related to a subset of kernels. Therefore, to get the error for
layer I — 1, we can just convolve §; with the corresponding subset
of weight matrix. As depicted in Figure 6(a), mathematically, we
pad Ky — 1 (K — 1) rows (columns) of zeros on the edges and then
perform the convolutions accordingly. The ineffectual calculation
with zero operand on the edge can be handled by the scheduler
with simple zero skipping method. §;_; is then obtained by adding
four error sub-matrix element-wisely.

Partial derivatives of weights and bias are represented by Equa-
tion (4) and (5) in Table 1. The partial derivatives of bias can be
easily obtained from §;_;. The partial derivatives of weight matrix
can be obtained by the convolution illustrated in Figure 6(b). In this
case, the error sub-matrix can be viewed as kernels which convlve
with the output FP of layer [— 1. The results are then be used to
update the weight matrix and bias in layer /.

4.3 Mapper and Scheduler

Previous works [1, 17, 18] have shown that convolutions can be
represent as matrix multiplications through the Toeplitz matrix.
The data input and the Toeplitz matrix can be then mapped onto
the ReRAM crossbars. Take the example in Figure 5, we assume the
kernel channels and number of kernels are Ko = 64 and Ky = 512,
respectively. Figure 7 (a) illustrate the naively mapping for W;! and
W;? on to ReRAM crossbars with a size of 128 x 128. We find that
decomposing kernel matrix is efficient to eliminate zero operands
in TCONV computation but breaks the regular execution models.
The different sizes of output FPs lead to unbalanced runtime - 9
cycles to produce d;! and 6 cycles for d;?. As such, if one uses a con-
volution accelerator for TCONV operations, the processing engines
that are performing the operations for a kernel sub-matrix with
fewer number of output have to remain idle until the operations for
other kernel sub-matrix finish, making it impossible for pipelined
execution as in [1, 18]. To address this challenges, we dedicated
a mapper unit and a scheduler unit to deal with the variability
in computation latency. The mapper unit effectively mapping the
optimized flow of data on to PEs to eliminate the discrepancy in

Ky = 256 Ky = 256) G, =3)
© I |
wn
i xB | XB 'xB!xB xB XB XB XB
X XB XB XB XB XB XB
)
|| XB| | XB
M_

(a)

Figure 7: (a) Mapping kernel sub-matrix onto VMM. (b) Spa-
tial parallelism.

execution time, while the scheduler manages the operation flow.
These two units work together to maximize the benefits of both
spatial and temporal parallelism.

In general, the mapper utilize the trade-off between hardware re-
sources and performance to realize spatial parallelism. As shown in
Figure 7(b), we define parallelism degree as G, representing G copies
of the naive implementation will be duplicated. In this example,
we have G; = 3 and G2 = 2 to ensure consistent computing time.
The scheduler schedules GAN training accordingly in a pipelined
fashion to exploit the temporal parallelism.

44 ZARAPIM

Figure 8 shows the architecture of one ZARA node. ZARA lever-
ages ReRAM crossbars to perform in-memory GAN execution. At
the top level, each ZARA node consists of a ReRAM memory to
store input/output values, a mapper and a scheduler that maps the
optimized dataflow onto target PEs and controls the computation
flow, respectively, an IO interface to communicate with other ZARA
nodes, and a number of processing engines (PEs) connected via
on-chip mesh. Each PE contains multiple vector-matrix multipliers,
a ReRAM buffer to cache temporal data, activation units to per-
form nonlinear function, and output register to aggregate results,
all connected with a shared bus. A PE also has simple algorithm
and logic units (SALU) and shift&add units. Each VMM has a few
ReRAM crossbars which shares an ADC, a number of 1-bit DAC,
sample & hold units and shift & add units. The crossbar arrays
within a VMM shares a driver by global wordline. At a time, only 1
crossbar array in a VMM can be activated and used to perform in-
situ vector-matrix multiplications. The results can be selected via a
bitline multiplex. The details of these components are summarized
as the follows:

Shift and add (S&A). For a large matrix that can not fit in a single
PE, the input and the output shall be partitioned and grouped into

ReRAM Mem | |
3| [Pe]) 7E]

10 Interface |

ReRAM Buffer |’

sALu || s&A |y Act || OR |
vV vl v v

VMM VMM VMM| VMM,

\
1
1
1
'
1
1
'
!

Scheduler

XB: ReRAM crossbar /f GWL

DRV: driver X8

GWL: global writeline
Bitline Mux |

S&A: shift & add
Act: activation unit
OR: output register
S&H: sample & hold .|

Figure 8: ZARA architecture.

DRV
[S&H,ADCS8A],

multiple PEs. The output of each PE is a partial sum, which is
collected horizontally and summed vertically via a shift-and-add
unit to generate the actual results.

Activation unit (Act). It implements the activation function used
in a GAN application. In this work we focus on Rectified Linear
Unit (ReLU) and LeakyReLU as they are most widely generator and
discriminator, respectively. We realize the activation unit as a look
up table (LUT) as previous work [1, 18].The LUT can be bypassed
in certain scenarios, e.g., when a large matrix is mapped to multiple
crossbar arrays.

Special algorithm and logic units (sSALU). The sALU provides
three types of functions for data pre- and post-processing in this
work: (i) vectorvector multiplication used in error back-propagation;
(ii) a scalar multiplication; and (iii) element-wise addition of multi-
ple error sub-matrix in the error propagation pass.

Driver (DRV). The driver is used to program the weights to ReRAM
cells before computation and input the data onto writlines for
vector-matrix multiplication.

Sample-and-hold (S&H). It captures the bitline current, converts
the current to a voltage and sends the voltage to an analog-digital
converter (ADC) unit.

Digital-analog converter (DAC). It converts digital inputs into
corresponding voltages applied to each WL. In this work we assume
that every WL receives one-bit of its input voltage each cycle. As
such, the expensive DAC can be realized by an inverter [17].
Analog-digital converter (ADC). ADCs convert the analog sig-
nals produced by ReRAM crossbars to digital output results. It
costs > 60% power consumption in a VMM [17]. In this work, we
share a ADC across 8 ReRAM crossbars to amortize the overhead
of expensive ADCs.

5 EXPERIMENTAL SETUP

Benchmarks. We evaluated the ZARA architecture using four
state-of-the-art GANs. Table 2 summarizes the evaluated networks,
dataset, and the topological structures of G and D that are repre-
sented by the numbers of CONV and TCONV layers of the adopted
generative and discriminative models. For comparison purpose, we
also include fully convolution network [12] in evaluation.
Schemes. We compared the proposed ZARA architecture with
four counterparts shown in Table 3. The ADC, DAC, S&H, S&A,
activation logic designs and the same 32nm process technology
used in an existing ReRAM DNN accelerator [17] are adopted in our
evaluations. The bus and connections are modeled and estimated
using Cadence Virtuoso with TSMC 32nm technology. We used
NVSim [4] to estimate the latency, power and area of ReRAM arrays.
We adopted the ReRAM cell model from [21] with a size of 256 X 256.
Each 3D ReRAM crossbar shares 256 1-bit inverters to replace the
expensive DACs [17]. In this design, each PE contains 4 VMMs,
while each VMM has 8 ReRAM crossbars.

Table 2: Benchmarks (C: CONV layer; T: TCONV layer; F:

fully connected layer.)
Model Year | Dataset D Topology | G Topology
FCN [12] 2015 | POSCAL VOC | 5C, 2F N/A
DCGAN [15] | 2016 | LSUN 4C, 1F 1F, 4T
iGAN [16] 2016 | CIFAR-10 3C, IF 1F, 3T
3DGAN [22] | 2016 | IKEA 5C, IF 1F, 4T
ArtGAN [20] | 2017 | CIFAR-10 6C, IF 1F, 5T

Table 3: Simulated scheme comparison

[Name [[Year | Description
FCN-engine [23] 2018 | CMOS TCONYV accelerator
GANAX [25] 2018 | CMOS GAN acclerator with zero skipping
Pipelayer [18] 2017 | ReRAM-based CNN training accelerator
ReGAN [1] 2018 | ReRAM-based GAN accelerator without zero skipping

Energy and area model. We implement the ZARA microarchitec-
tural units using Verilog, including sALU, S&A, Act, the mapper, the
scheduler, the connection and bus, and other logic hardware units.
We use TSMC 32nm standard cell library and Synopsys Design
Compiler to synthesize these units to obtain the area, delay, and
energy numbers.

6 EVALUATION
Comparisons to a CPU and a GPU. Figure 9(a) shows the perfor-
mance comparison between a CPU (Intel E5-2630 v3 8-core), a GPU
(NVIDIA Geforce GTX 1080) and ZARA. The results are normal-
ized to the CPU’s run time. ZARA achieves the best performance
across all the benchmarks. Such significant performance improve-
ment comes from two reasons: 1) ZARA eliminates the redundancy
of zeros in input FPs and pipelines the execution after removing
the discrepancy in computation cycles; and 2) the in-situ analog
vector-matrix multiplication reduces the off-chip memory data ac-
cesses. Compared to the CPU and GPU platforms, ZARA achieves
averagely 146X and 7.6X performance improvement, respectively.
Figure 9(b) presents the energy comparison between a CPU, a
GPU and ZARA. The results are normalized to the CPU’s energy
consumption when training each applications of interest. Thanks
to the high energy-efficiency of ReRAM arrays, ZARA provides
averagely 87.5X and 3.6X energy savings compared to the CPU and
GPU platforms. The results also show that the energy saving of
ZARA increases with the complexity of generative models. Thus,
ArtGAN on cifar10 obtains the largest energy saving, i.e., 111X and
4.1x compared to the CPU and GPU counterparts, respectively.
Performance improvement over other DNN accelerators. The
performance comparison of all accelerators is shown in Figure 10(a).
For simple benchmarks like FCN, FCN-engine and GANAX offer
performance comparable to the ReRAM-based accelerators such as
Pipelayer and ReGAN. For complex benchmarks, the ReRAM-based
accelerators significantly outperform the CMOS-based accelerator.
This result is mainly caused by the limited hardware resources of the
CMOS-based accelerators. On average, ZARA achieves 1.6X ~ 23X

speedup over the CMOS-based accelerators. Compared with the
2E+2

Q
3 2642 I
ﬂJ
d.l
& 1E+2
g ECPU AGPU EZARA
o SE+1
= ml VII
0E+0
(a) FCN-32s DCGAN iGAN 3D-GAN ArtGAN geomean

120

100

80 I

60 ECPU EGPU HEZARA
40

: 1 A
0

FCN-32s DCGAN iGAN 3D-GAN ArtGAN geomean

Norm. Energy Saving

(b) Figure 9: Comparison to CPU and GPU.

6o | OFCN BGANAX MPipelayer ReGAN MZARA]

& 0
o o

Norm. Speedup
N W
o o

=
o o

) FCN-32s DCGAN iGAN 3D-GAN ArtGAN

—_—
Q

geomean

120 EFCN 2 GANAX M Pipelayer EReGAN IZARAli

Norm. Energy Saving

FCN-32s DCGAN iGAN 3D-GAN ArtGAN

geomean

-
z

Figure 10: Comparison with existing accelerators.

ReRAM-based Pipelayer and ReGAN, ZARA achieves 2.1x and
1.15% performance speedup, respectively.

Energy improvement over other DNN accelerators. We com-
pare the energy consumption of all the concerned DNN accelera-
tors, as shown in Figure 10(b). Among all the accelerators, ZARA
consumes the least energy in GAN executions. Compared with
the ReRAM-based ReGAN and Pipeleyer, on average, the energy
savings of ZARA are 4.5x and 1.5X%, respectively. Compared with
the CMOS-Based FCN-engine and GANAX, the energy savings of
ZARA are as high as 78 and 1.8X, respectively.

Reliability improvement over ReRAM-based DNN accelera-
tors. Figure 11 shows by adopting SLC 3D ReRAM, the lifetime of
ZARA can be as long as 3.4 years when constantly training GAN
while the lifetime of Pipelayer and ReGAN are only 3 months and
5 months, respectively.

7 CONCLUSION

In this work, we propose a process-in-memory accelerator for gen-
erative adversarial networks. We first present a novel computation
deformation for transposed convolution to synergistically optimizes
both forward and backward functions to eliminate the large re-
source underutilization due to zero-insertions. This deformed flow
of data inevitably leads to discrepancy in computation latency. We
then proposed a unique dataflow mapper and operation scheduler
by leveraging both the spatial and temporal parallelism. Different
from previous research, we use ReRAM-based in-memory compu-
tation since ReRAM is capable of both computation and storage,
significantly reducing the data movement. Compared to state-of-
the-art DNN accelerator designs, our design can substantially im-
prove GAN’s training performance without requiring additional
computing resources.

ACKNOWLEDGMENTS

This work was supported in part by NSF 1725456, NSF1744082
and DOE DE-SC0017030. Any opinions, findings and conclusions

i @ Pipelayer B ReGAN IZARAh

lifetime (year)
OR NWRARWV

FCN-32s DCGAN iGAN 3D-GAN ArtGAN

geomean

Figure 11: Lifetime comparison.

or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of grant agencies
or their contractors.

REFERENCES

[1] F. Chen, L. Song, and Y. Chen. 2018. ReGAN: A pipelined ReRAM-based accelera-
tor for generative adversarial networks. In ASP-DAC.

[2] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE
Journal of Solid-State Circuits.

[3] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning. In ICML.

[4] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. 2012. NVSim: A Circuit-Level Per-
formance, Energy, and Area Model for Emerging Nonvolatile Memory. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[5] Zichen Fan, Ziru Li, Bing Li, Yiran Chen, and Helen Hai Li. 2019. RED: A ReRAM-
based Deconvolution Accelerator. In DATE.

[6] R.Girshick, J. Donahue, T. Darrell, and J. Malik. 2014. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition.

[7] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial

Nets. In NIPS. Curran Associates, Inc.

] Benjamin Graham. 2014. Fractional Max-Pooling. ArXiv e-prints.

[9] G.Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. 2012. Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research
Groups. IEEE Signal Processing Magazine.

[10] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim.
2017. Learning to Discover Cross-Domain Relations with Generative Adversarial
Networks. ArXiv e-prints.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE.

[12] J. Long, E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for
semantic segmentation. In CVPR.

[13] Qian Lou, Wujie Wen, and Lei Jiang. 2018. 3DICT: A Reliable and QoS Capable
Mobile Process-in-memory Architecture for Lookup-based CNNs in 3D XPoint
ReRAMs. In ICCAD.

[14] H. Mao, M. Song, T. Li, Y. Dai, and J. Shu. 2018. LerGAN: A Zero-Free, Low Data
Movement and PIM-Based GAN Architecture. In MICRO.

[15] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. ArXiv
e-prints.

[16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved Techniques for Training GANs. ArXiv e-prints.

[17] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In ISCA.

[18] L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning. In HPCA.

[19] M. Song, J. Zhang, H. Chen, and T. Li. 2018. Towards Efficient Microarchitectural
Design for Accelerating Unsupervised GAN-Based Deep Learning. In HPCA.

[20] Wei Ren Tan, Chee Seng Chan, Hernan Aguirre, and Kiyoshi Tanaka. 2017.
ArtGAN: Artwork Synthesis with Conditional Categorical GANs. ArXiv e-prints.

[21] W. Wen, L. Zhao, Y. Zhang, and J. Yang. 2017. Speeding up crossbar resistive
memory by exploiting in-memory data patterns. In ICCAD.

[22] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B

Tenenbaum. 2016. Learning a probabilistic latent space of object shapes via 3d

generative-adversarial modeling. In Advances in Neural Information Processing

Systems.

Dawen Xu, Kaijie Tu, Ying Wang, Cheng Liu, Bingsheng He, and Huawei Li. 2018.

FCN-engine: Accelerating Deconvolutional Layers in Classic CNN Processors. In

ICCAD.

[24] Amir Yazdanbakhsh, Michael Brzozowski, Behnam Khaleghi, Soroush Ghodrati,
Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh. 2018. FlexiGAN: An
End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks.
FCCM.

[25] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh.
2018. GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial
Networks. In ISCA.

[26] Xinyu Zhang, Srinjoy Das, Ojash Neopane, and Ken Kreutz- Delgado. 2017. A
Design Methodology for Efficient Implementation of Deconvolutional Neural
Networks on an FPGA. ArXiv e-prints.

[23

