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ABSTRACT

Generative Adversarial Networks (GANs) recently demonstrated a

great opportunity toward unsupervised learning with the intention

to mitigate the massive human efforts on data labeling in supervised

learning algorithms. GAN combines a generative model and a dis-

criminative model to oppose each other in an adversarial situation

to refine their abilities. Existing nonvolatile memory based machine

learning accelerators, however, could not support the computational

needs required by GAN training. Specifically, the generator utilizes

a new operator, called transposed convolution, which introduces

significant resource underutilization when executed on conven-

tional neural network accelerators as it inserts massive zeros in

its input before a convolution operation. In this work, we propose

a novel computational deformation technique that synergistically

optimizes the forward and backward functions in transposed convo-

lution to eliminate the large resource underutilization. In addition,

we present dedicated control units - a dataflow mapper and an oper-

ation scheduler, to support the proposed execution model with high

parallelism and low energy consumption. ZARA is implemented

with commodity ReRAM chips, and experimental results show that

our design can improve GAN’s training performance by averagely

1.6×∼23× over CMOS-based GAN accelerators. Compared to state-

of-the-art ReRAM-based accelerator designs, ZARA also provides

1.15 × ∼2.1× performance improvement.
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1 INTRODUCTION
Supervised deep learning have been widely used in various modern

artificial intelligence (AI) applications, spanning over image and
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speech recognition [9], object detection [6], natural language pro-

cessing [3], etc. It has achieved near or even beyond human-level

accuracy in classification problems [8, 11]. Training deep neural

networks (DNNs), however, requires vast quantity of correctly la-

beled data. Such a fact greatly constrains the generalization of DNN

models to the scenarios where the training data is difficult or costly

to obtain.

Recent advances in unsupervised Generative Adversarial Net-

works (GANs) [7] offer a great opportunity to extend deep learning

to applications that conventional supervised learning is not capable

to handle [10, 13, 15, 20]. A GAN model consists of two neural net-

works, a generator that attempts to generate synthetic data from

random noise and a discriminator that tries to distinguish the data

created by the generator from the actual training samples. The

generator and discriminator are co-trained against each other in

an unsupervised manner until we receive a generator with strong

generation capability and a discriminator with high classification

accuracy.

Although GAN has quickly become a popular research topic

since it was proposed in 2014 [7], there were few studies on how

to accelerate the calculation of GAN models in computing commu-

nity. Until recently, researchers began to realize that the special

mathematical operator in GAN - transposed convolution (TCONV)

could not be effectively executed in traditional DNN accelerators

such as Eyeriss [2] and Pipelayer [18]. TCONV is a two-stage op-

eration which augments a low-dimension input feature map to a

high-dimension richer representation. It first inserts many zeros

into the input data and then performs a convolution operation

on the expanded feature map at the second stage. The inserted

zeros contribute to more than 60% of multiplication and addition

operations [25], resulting in severe resource underutilization when

conventional DNN accelerators were employed. In this paper, we

propose ZARA, a ReRAM-based PIM accelerator that fills the gaps

in prior arts. Compared to previous work, we make the following

contributions.

• we explore the dataflow and complex computing operations

involved in GANs. We design a revolutionary computation

deformation to completely eliminate inserted zeros in trans-

posed convolution to improve the computation efficiency

and resource underutilization.

• we propose a dataflowmapper and an operation scheduler to

mitigate the discrepancy in computation latency caused by

deformed flow of data. By leveraging the trade-off between

performance and hardware resource, the mapper effectively

maps the computation onto processing engines to maximize

both spatial and temporal parallelism.

• we implement ZARA with 3D horizontal ReRAM-based ar-

chitecture and evaluate its effectiveness using five recent
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Figure 1: A GAN system.
GAN models on five distinct applications. We show that

ZARA delivers significant speedup and energy saving over

state-of-the-art GAN accelerators.

2 PRELIMINARY
2.1 GAN and DCGAN
In a GAN framework, two DNNs compete with each other in a min-

imax game: a generative modelG generates synthetic samples from

random noise to simulate the real samples, and a discriminative

model D distinguishes the generated samples from the real ones.

The two models are trained alternatively until they reach an equi-

librium. In theory, any two networks with inverse structures can

be trained as opponents in a GAN system to refine their abilities.

However, the inferior stability of GAN imposes strict constraints

on selection of proper networks. Inspired by the recent success of

convolutional neural networks (CNNs), deep convolutional genera-

tive adversarial networks (DCGAN) [15] was proposed. DCGAN

features several principles of network architectures to ensure a

stable training, such as 1) replacing pooling layers with strided

convolutions in D and transposed convolutions inG, 2) removing

fully-connected layer, and 3) using Rectified Linear Unit (ReLU)

and LeakyReLU in activation functions in G and D, respectively.
Most of the current GAN variations are based on or at least par-

tially based on DCGAN [10, 20, 22] because of its good stability. As

illustrated in Figure 1, D uses conventional convolution (CONV)

to downsample the input and produces a binary classification. In

contrast,G performs transposed convolution (TCONV), which is

fundamentally different from CNOV, to map a uniform noise to a

high-dimension representation. Table 1 summarizes the notations

that are commonly used for explanation of the layer structure and

computation of a GAN. Due to page limit, we do not give the full

descriptions of those parameters or the mathematical model of the

GAN’s training process. We refer the interested readers to [1, 18].

Compared to CONV, TCONV first transforms its input to a larger

representation by zero paddings around the borders and zero inser-

tions between adjacent rows/columns and then performs performs
Table 1: Notations used for explanation of a GAN.

Symbols/equations Description

Wl , bl kernel matrix, bias of the l th layer
h activation function
ul , dl ourput FP before, after activation function

δl error matrix of the l th layer

�Wl weight derivative of the l th layer

ul =Wldl−1 + bl (1) forward function
dl = h(ul ) (2) activation function

δl−1 =Wl
T
δl ◦ h

′
(ul ) (3) error backpropagation

∇Wl = dl−1δl
T (4) weight partial derivative

∇bl = δl (5) bias partial derivative

IW , IH , IC width, height, channels of input FP
KW , KH , KC , KN width, height, channels, numbers of kernels
OW , OH , OC width, height, channels of output FP
SW , SH TCONV stride on width, height
PW , PH TCONV padding on width, height

◦ denotes element-wise multiplication.
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Figure 2: Transposed convolution (TCONV). (a) zero-

insertion stage for a 2 × 2 input FP with stride SW = SH = 2.

(b) convolution between the expanded input and kernels. (c)

error matrix for backpropagation.

convolutional computation on the expanded input. The padding

on width and height are denoted as PW and PH , respectively. The

stride on width (height) is denoted as SW (SH ), representing that

Sw − 1 (SH − 1) zeros need to be inserted between two adjacent

columns (rows). In this way, only approximately 1/SW (1/SH ) of

the source operands within a row (column) are non-zero and con-

tributes to the final result. For instance, Figure 2(a) illustrates the

zero-insertion step for a 2 × 2 multi-dimensional input feature map

(FP) with stride SW = SH = 2 and padding PW = PH = 1. Then

3 multi-dimensional kernels (a.k.a. weight matrix) convolve with

this transformed input FP and correspondingly generate 3 output

FPs with a size of 4 × 4, as shown in Figure 2(b). In this example, 63

zeros are inserted to each input FP, that is, only 12/75 (16%) of the

source operands are valid input and contributes to the final results.

As a training framework, a backward pass (represented by Equa-

tion (3)-(5) in Table 1) is essential for updating a GAN model. Fig-

ure 2(c) shows the error matrix, which has the same size with output

FP and can be back-propagated to the previous layer. The error and

the expanded FPs are then multiplied at each layer to calculate the

partial derivative of weights (�W ) and bias (�b).

2.2 ReRAM-based Vector-Matrix Multiplier

Resistive Random Access Memory (ReRAM) is an emerging non-

volatile memory that uses the resistance of a dielectric solid-state

device to store data. Recent works [1, 17, 18] demonstrated that

vector-matrix multiplication (VMM), which is the major operations

in neural network models, can be efficiently conducted using a

ReRAM crossbar with more than 100× efficiency improvement over

conventional designs. Figure 3(a) illustrates a 2D ReRAM-based

VMM. Each input on the wordlines (WLs) of a two-dimensional

ReRAM crossbar is connected to all the bitlines (BLs) via ReRAM

cells. The elements of the matrix are represented as the conduc-

tance of the ReRAM cells and the input vector is represented by the

input voltage on the WLs. The output currents from the BLs, hence,

represents the result of vector-matrix multiplication. By adding
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Figure 3: The ReRAM basics.



some necessary peripheral circuits (e.g., analog-digital converters,

sample-and-hold units, shift-and-add units, etc.) onto the ReRAM

crossbar, we are able to effectively implement the calculations in-

volved in the neural networks.

Previous work [13] demonstrated a DNN inference accelerator

based on 128 × 128 2-bit Multi-level Cell (MLC) ReRAM arrays

with a lifetime of only one day. For a DNN learning accelerator,

the life problem will be more severe as the high precision and

frequent writes required by the training process quickly wear the

ReRAM cells out. In our work, we choose 3D horizontal Single-bit

Cell (SLC) ReRAM crossbar as the basic computing unit to balance

the computation density and lifetime of the design. As shown in

Figure 3(b), a 2-bit cell in 3(a) can be split into two 1-bit cells.

These two designs have the exactly same peripheral circuits but the

lifetime of ReRAM arrays can achieve ∼ 103× improvement [13].

3 RELATEDWORKS AND MOTIVATION
Zhang et. al [26] proposed to accelerate TCONV on FPGA. Fcn-

engine [23] and Red [5] further realizes a fully convolutional accel-

erator that can handle both CONV and TCONV operations using

unified processing elements (PEs). These work only focus on infer-

ence task but do not support training function. ReGAN [1] imple-

mented a full-fledged GAN accelerator using emerging ReRAM but

it adopts the inefficient zero-insertions in TCONV and neglects the

redundant operations. Zhang et. al [19] proposed a CMOS-based

GAN accelerator where zero operands can be skipped by carefully

mapping the GANs onto the PEs. Its dataflow, however, imposes

strong limitations on the topology of the GANs (i.e. SW = SH = 2),

making it very inflexible to serve various GAN variations. Flexi-

GAN [24] and GANAX [25] reorder the output computation and

allocate computing rows with similar patterns of zeros to adjacent

PEs for efficient TCONV execution. To support their reorganized

dataflow, these two works both implement decoupled access and

execute micro-engines to support interleaving MIMD and SIMD

operations, resulting in increased design complexity. LerGAN [14]

presented kernel reshaping scheme to handle zero-related com-

putation in GAN and implemented the proposed design with 3D-

connected Process-in-Memory architecture in ReRAM. The forward

and backward functions in TCONV are considered as two indepen-

dent processes in the reshaping scheme proposed in LerGAN, so the

optimization is not explored to the maximum. The PIM architecture

employs an ideal 3D connection technology that is difficult to im-

plement even with the most advanced circuit technologies available

today. Different from all the above designs, our work completely

eliminates the zero-insertion related in TCONV computations. We

collaboratively optimize the forward and backward propagation

with a novel deformation scheme and implemented the proposed

design with commodity ReRAM chips.

4 ZARA

4.1 Overview of ZARA
Figure 4 illustrates the ZARA workflow. ZARA takes in a high-level

specification of a GAN model which defines network typologies,

number of parameters and other information of both the generative

model and the discriminative model. We propose to deform the

TCONV computation by decomposing the original kernel matrix

into multiple sub-kernels which convolve on the input FP directly
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Figure 4: Workflow of ZARA.
without zero-insertions. The output FPs can then be periodic shuf-

fled and combined to obtain equivalent output results. The TCONV

deformation results in discrepancy in computation latency, which

breaks the pipelined execution model. Therefore, we carefully de-

sign a Mapper and a Scheduler to effectively map and schedule

the operations of the optimized dataflow onto Processing Engines

(PEs) to eliminate the discrepancy in execution time. We will pro-

vide the details of each components in the following sections.

4.2 Dataflow Optimizer
Due to the zero insertions in TCONV, executing GAN by following

conventional convolution dataflow may result in over 60% resource

underutilization. To solve this issue, we first studied the computa-

tional characteristics of TCONV. Taking the example in Figure 5(a),

we observed that the convolution between the expanded FP and the

kernels only contains four distinct valid patterns, represented by

different colors. The elements in odd output rows only related to the

elements in the even rows of the kernel weight matrix, whereas the

even output rows consume elements in the odd rows of the weight

matrix. Building upon this observation, we propose to pre-classify

the weight kernels into multiple subsets. Convolution execution

occurs only between the input and relevant subsets in both the

forward and backward phases of a TCONV, thereby alleviating the

aforementioned inefficiency in TCONV execution. Below we will

detail the proposed data flow optimization scheme.

Forward function dataflow optimization is illustrated in Figure 5(b).

Note that we assume PW < SW − 1 and PH < SH − 1, which is

valid in practice. In this case, the pre-classification of the weight

kernels is completely dependent on SW and SH . In the special case

where the assumption is not true, some boundary subsets need to

be added to produce boundary elements in the output FP. In this

example, the kernels are first categorized into SW × SH subsets. In

this way, the convolution between expanded input FP and kernels

translates into the convolution of original input FP with multiple
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Figure 5: (a) 2D TCONV operation for a 4× 4 input and a 5× 5

kernel. (b) Optimized dataflow for performing 2D TCONV.
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Figure 6: Optimized dataflow of (a) error backpropagation.

(b) weight derivative.

kernel subsets. The output FP is thus obtained by shuffling the

elements in multiple subsets of output FPs and combining them

together.

Error propagation from layer l is performed inversely to layer l−1

as denote in Equation (3) in Table 1.h
′
(ul ) denotes partial derivative

of activation function. Note that in DCGAN, the activation function

used for G is ReLU, for D is LeakyReLU, which means that h
′
(ul ) is

either 0 or a constant. Hence, the ◦ can be realized by AND operator.

For error backpropagation, the transposed weight matrixWl needs

to convolve with error matrix δl . Based on the deformed dataflow

in the forward function, we learn that each output element in layer

l is only related to a subset of kernels. Therefore, to get the error for
layer l − 1, we can just convolve δl with the corresponding subset

of weight matrix. As depicted in Figure 6(a), mathematically, we

pad KH − 1 (KW − 1) rows (columns) of zeros on the edges and then

perform the convolutions accordingly. The ineffectual calculation

with zero operand on the edge can be handled by the scheduler

with simple zero skipping method. δl−1 is then obtained by adding

four error sub-matrix element-wisely.

Partial derivatives of weights and bias are represented by Equa-

tion (4) and (5) in Table 1. The partial derivatives of bias can be

easily obtained from δl−1. The partial derivatives of weight matrix

can be obtained by the convolution illustrated in Figure 6(b). In this

case, the error sub-matrix can be viewed as kernels which convlve

with the output FP of layer l − 1. The results are then be used to

update the weight matrix and bias in layer l .

4.3 Mapper and Scheduler

Previous works [1, 17, 18] have shown that convolutions can be

represent as matrix multiplications through the Toeplitz matrix.

The data input and the Toeplitz matrix can be then mapped onto

the ReRAM crossbars. Take the example in Figure 5, we assume the

kernel channels and number of kernels are KC = 64 and KN = 512,

respectively. Figure 7 (a) illustrate the naïvely mapping forWl
1 and

Wl
2 on to ReRAM crossbars with a size of 128 × 128. We find that

decomposing kernel matrix is efficient to eliminate zero operands

in TCONV computation but breaks the regular execution models.

The different sizes of output FPs lead to unbalanced runtime – 9

cycles to produce dl
1 and 6 cycles for dl

2. As such, if one uses a con-

volution accelerator for TCONV operations, the processing engines

that are performing the operations for a kernel sub-matrix with

fewer number of output have to remain idle until the operations for

other kernel sub-matrix finish, making it impossible for pipelined

execution as in [1, 18]. To address this challenges, we dedicated

a mapper unit and a scheduler unit to deal with the variability

in computation latency. The mapper unit effectively mapping the

optimized flow of data on to PEs to eliminate the discrepancy in
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Figure 7: (a) Mapping kernel sub-matrix onto VMM. (b) Spa-

tial parallelism.

execution time, while the scheduler manages the operation flow.

These two units work together to maximize the benefits of both

spatial and temporal parallelism.

In general, the mapper utilize the trade-off between hardware re-

sources and performance to realize spatial parallelism. As shown in

Figure 7(b), we define parallelism degree asG , representingG copies

of the naïve implementation will be duplicated. In this example,

we have G1 = 3 and G2 = 2 to ensure consistent computing time.

The scheduler schedules GAN training accordingly in a pipelined

fashion to exploit the temporal parallelism.

4.4 ZARA PIM
Figure 8 shows the architecture of one ZARA node. ZARA lever-

ages ReRAM crossbars to perform in-memory GAN execution. At

the top level, each ZARA node consists of a ReRAM memory to

store input/output values, a mapper and a scheduler that maps the

optimized dataflow onto target PEs and controls the computation

flow, respectively, an IO interface to communicate with other ZARA

nodes, and a number of processing engines (PEs) connected via

on-chip mesh. Each PE contains multiple vector-matrix multipliers,

a ReRAM buffer to cache temporal data, activation units to per-

form nonlinear function, and output register to aggregate results,

all connected with a shared bus. A PE also has simple algorithm

and logic units (sALU) and shift&add units. Each VMM has a few

ReRAM crossbars which shares an ADC, a number of 1-bit DAC,

sample & hold units and shift & add units. The crossbar arrays

within a VMM shares a driver by global wordline. At a time, only 1

crossbar array in a VMM can be activated and used to perform in-

situ vector-matrix multiplications. The results can be selected via a

bitline multiplex. The details of these components are summarized

as the follows:

Shift and add (S&A). For a large matrix that can not fit in a single

PE, the input and the output shall be partitioned and grouped into
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Figure 8: ZARA architecture.



multiple PEs. The output of each PE is a partial sum, which is

collected horizontally and summed vertically via a shift-and-add

unit to generate the actual results.

Activation unit (Act). It implements the activation function used

in a GAN application. In this work we focus on Rectified Linear

Unit (ReLU) and LeakyReLU as they are most widely generator and

discriminator, respectively. We realize the activation unit as a look

up table (LUT) as previous work [1, 18].The LUT can be bypassed

in certain scenarios, e.g., when a large matrix is mapped to multiple

crossbar arrays.

Special algorithm and logic units (sALU). The sALU provides

three types of functions for data pre- and post-processing in this

work: (i) vectorvectormultiplication used in error back-propagation;

(ii) a scalar multiplication; and (iii) element-wise addition of multi-

ple error sub-matrix in the error propagation pass.

Driver (DRV).The driver is used to program theweights to ReRAM

cells before computation and input the data onto writlines for

vector-matrix multiplication.

Sample-and-hold (S&H). It captures the bitline current, converts

the current to a voltage and sends the voltage to an analog-digital

converter (ADC) unit.

Digital-analog converter (DAC). It converts digital inputs into

corresponding voltages applied to eachWL. In this work we assume

that every WL receives one-bit of its input voltage each cycle. As

such, the expensive DAC can be realized by an inverter [17].

Analog-digital converter (ADC). ADCs convert the analog sig-

nals produced by ReRAM crossbars to digital output results. It

costs > 60% power consumption in a VMM [17]. In this work, we

share a ADC across 8 ReRAM crossbars to amortize the overhead

of expensive ADCs.

5 EXPERIMENTAL SETUP

Benchmarks. We evaluated the ZARA architecture using four

state-of-the-art GANs. Table 2 summarizes the evaluated networks,

dataset, and the topological structures of G and D that are repre-

sented by the numbers of CONV and TCONV layers of the adopted

generative and discriminative models. For comparison purpose, we

also include fully convolution network [12] in evaluation.

Schemes. We compared the proposed ZARA architecture with

four counterparts shown in Table 3. The ADC, DAC, S&H, S&A,

activation logic designs and the same 32nm process technology

used in an existing ReRAMDNN accelerator [17] are adopted in our

evaluations. The bus and connections are modeled and estimated

using Cadence Virtuoso with TSMC 32nm technology. We used

NVSim [4] to estimate the latency, power and area of ReRAM arrays.

We adopted the ReRAM cell model from [21] with a size of 256×256.

Each 3D ReRAM crossbar shares 256 1-bit inverters to replace the

expensive DACs [17]. In this design, each PE contains 4 VMMs,

while each VMM has 8 ReRAM crossbars.

Table 2: Benchmarks (C: CONV layer; T: TCONV layer; F:

fully connected layer.)
Model Year Dataset D Topology G Topology

FCN [12] 2015 POSCAL VOC 5C, 2F N/A
DCGAN [15] 2016 LSUN 4C, 1F 1F, 4T
iGAN [16] 2016 CIFAR-10 3C, 1F 1F, 3T
3DGAN [22] 2016 IKEA 5C, 1F 1F, 4T
ArtGAN [20] 2017 CIFAR-10 6C, 1F 1F, 5T

Table 3: Simulated scheme comparison
Name Year Description

FCN-engine [23] 2018 CMOS TCONV accelerator
GANAX [25] 2018 CMOS GAN acclerator with zero skipping
Pipelayer [18] 2017 ReRAM-based CNN training accelerator
ReGAN [1] 2018 ReRAM-based GAN accelerator without zero skipping

Energy and area model.We implement the ZARA microarchitec-

tural units using Verilog, including sALU, S&A, Act, the mapper, the

scheduler, the connection and bus, and other logic hardware units.

We use TSMC 32nm standard cell library and Synopsys Design

Compiler to synthesize these units to obtain the area, delay, and

energy numbers.

6 EVALUATION
Comparisons to a CPU and a GPU. Figure 9(a) shows the perfor-

mance comparison between a CPU (Intel E5-2630 v3 8-core), a GPU

(NVIDIA Geforce GTX 1080) and ZARA. The results are normal-

ized to the CPU’s run time. ZARA achieves the best performance

across all the benchmarks. Such significant performance improve-

ment comes from two reasons: 1) ZARA eliminates the redundancy

of zeros in input FPs and pipelines the execution after removing

the discrepancy in computation cycles; and 2) the in-situ analog

vector-matrix multiplication reduces the off-chip memory data ac-

cesses. Compared to the CPU and GPU platforms, ZARA achieves

averagely 146× and 7.6× performance improvement, respectively.

Figure 9(b) presents the energy comparison between a CPU, a

GPU and ZARA. The results are normalized to the CPU’s energy

consumption when training each applications of interest. Thanks

to the high energy-efficiency of ReRAM arrays, ZARA provides

averagely 87.5× and 3.6× energy savings compared to the CPU and

GPU platforms. The results also show that the energy saving of

ZARA increases with the complexity of generative models. Thus,

ArtGAN on cifar10 obtains the largest energy saving, i.e., 111× and

4.1× compared to the CPU and GPU counterparts, respectively.

Performance improvement over otherDNNaccelerators.The

performance comparison of all accelerators is shown in Figure 10(a).

For simple benchmarks like FCN, FCN-engine and GANAX offer

performance comparable to the ReRAM-based accelerators such as

Pipelayer and ReGAN. For complex benchmarks, the ReRAM-based

accelerators significantly outperform the CMOS-based accelerator.

This result is mainly caused by the limited hardware resources of the

CMOS-based accelerators. On average, ZARA achieves 1.6× ∼ 23×

speedup over the CMOS-based accelerators. Compared with the
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Figure 9: Comparison to CPU and GPU.
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Figure 10: Comparison with existing accelerators.

ReRAM-based Pipelayer and ReGAN, ZARA achieves 2.1× and

1.15× performance speedup, respectively.

Energy improvement over other DNN accelerators. We com-

pare the energy consumption of all the concerned DNN accelera-

tors, as shown in Figure 10(b). Among all the accelerators, ZARA

consumes the least energy in GAN executions. Compared with

the ReRAM-based ReGAN and Pipeleyer, on average, the energy

savings of ZARA are 4.5× and 1.5×, respectively. Compared with

the CMOS-Based FCN-engine and GANAX, the energy savings of

ZARA are as high as 78× and 1.8×, respectively.

Reliability improvement over ReRAM-based DNN accelera-

tors. Figure 11 shows by adopting SLC 3D ReRAM, the lifetime of

ZARA can be as long as 3.4 years when constantly training GAN

while the lifetime of Pipelayer and ReGAN are only 3 months and

5 months, respectively.

7 CONCLUSION
In this work, we propose a process-in-memory accelerator for gen-

erative adversarial networks. We first present a novel computation

deformation for transposed convolution to synergistically optimizes

both forward and backward functions to eliminate the large re-

source underutilization due to zero-insertions. This deformed flow

of data inevitably leads to discrepancy in computation latency. We

then proposed a unique dataflow mapper and operation scheduler

by leveraging both the spatial and temporal parallelism. Different

from previous research, we use ReRAM-based in-memory compu-

tation since ReRAM is capable of both computation and storage,

significantly reducing the data movement. Compared to state-of-

the-art DNN accelerator designs, our design can substantially im-

prove GAN’s training performance without requiring additional

computing resources.
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