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Abstract— This paper discusses a market-based pool strategy
for a microgrid (MG) to optimally trade electric power in the
distribution electricity market (DEM). The increasing
penetration levels of distributed energy resources (DERs) and
MGs in distribution system (DS) stress distribution system
operator (DSO) and require higher levels of coordinated control
strategies. The distribution system operator has limited visibility
and control over such distributed resources. To reduce the
complexity of the system and improve the efficiency of the
electricity market operation, we propose a decentralized pool
strategy for an MG to integrate with a distribution system
through a market mechanism. A market-based interactions
procedure between MGs and DS is developed for MGs as price-
makers to find an optimal bidding/offering strategy efficiently.
To achieve a market equilibrium among all entities, we initially
cast this problem as a bi-level programming problem, in which
the upper level is an MG optimal scheduling problem and the
lower level presents a DEM clearing mechanism. The proposed
bi-level model is converted to a single mix-integer model which is
easier to solve. Uncertainties associated with MG’s rivals’ offers
and demands’ bids are considered in this problem. The solution
results from a modified IEEE 33-Bus distribution system are
presented and discussed. Finally, some conclusions are drawn
and examined.

Keywords— bidding and offering strategies, bi-level
programming, distribution electricity market, distribution
locational marginal prices, mathematical programs with
equilibrium constraints, Microgrid, Stackelberg game.

NOMENCLATURE
Indices
b The node subscript index in DS ,b € B
b; The node location where j-th microgrid
is located
J MG subscript index connected with DS,
jelJ
k Generation unit subscript index in MG
Jth, kek,
/ Consumer subscript index in DS /e L
m Utility node subscript index connected
with DS, me M
n Distributed generator (DG) subscript
index in DS, ne N
t Index for time periods ,z € T
Parameters
D;; / D,-Q, Real/reactive power consumption for j-
th MG in time ¢
K Incidence matrix
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Maximum/minimum real power output
in time ¢

Maximum/minimum reactive power
outputs in time ¢

Generator ramp up/down rates

Marginal cost of generation unit i in
MG in time ¢

Marginal profit of consumer / in DS in
time ¢

Marginal cost of DG 7 in DS in time ¢

Marginal cost of utility m in time ¢

Large positive constant

DS node set B={l,.,NB} , NB is

number of node; ( BY is subset of B,
means node with (.) component.)

MG set J={,.,NM} , NM is
number of MG.

Generation unit set K, ={1 ,..,NDG,}
in j-th MG, NDG,; is number of
generation units

Consumer set in DS L ={l,.., NL}, NL
is number of load in DS

Utility set in DS M = {1}

DG in DS set N={1,..,ND} , ND is
number of distributed generation units
in DS

Time period set 7 ={1,..,NT} , NT is
number of time

Binary variable associated  with
generator k state

Real power flow at node b in time ¢
Real/reactive power output of the MG,
DG, utility, consumer in time ¢
Real/reactive power injection at node b
in time ¢

Reactive power flow at node b in time
t

Voltage magnitude at node b in time ¢
Offering/Bidding price MG j submitted
to DS in time ¢
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B, The j-th MG marginal operation cost in
’ time ¢
AL AL Lagrangian multipliers associated with

real/reactive power balance constraints

ﬂ(lf)';““ 7 ﬂf)';““ Lagrangian multipliers associated with
qmax real(p)/reactive(q) power output of the
> oy MG, DG, utility, consumer constraints
T A s Lagrangian  multipliers  associated
voltage magnitude constraints
P, MG j islanding state in time ¢

Auxiliary binary variables to linearize
complementary slackness constraints
@, Auxiliary binary variables to linearize
complementary slackness constraints
Auxiliary variable of MG power
exchange cost with distribution system

[. INTRODUCTION

The microgrid concept is proposed to facilitate the
integration of distributed energy resources into the electricity
grid, which can reduce transmission grid losses and overcome
limitations in distribution system [1]. By integrating
distributed energy resources into microgrids with smart central
controllers and smart sensors, MGs can provide highly reliable
electrifications which can guide customers to lower their
operation costs and utilize electricity more efficiently [2].
MGs can also benefit power system through profitable and
environmentally friendly services [3], higher power system
resiliency [4], less transmission and distribution costs [5],
fewer carbon emissions by the use of renewable power
resources [6], and utilization of electrification in rural areas
[3]. With all of these benefits, microgrids can be expected to
be used in a wide variety of electrical environments [7].

Microgrid can work in either Islanding or Grid-connected
mode at the point of common coupling (PCC) [8]. To ensure a
secure MG operation in a centralized manner [9], MG has
three control levels: primary, secondary and tertiary. The
primary and secondary controls are able to maintain the
frequency/voltage of the MG. As the primary focus of this
paper, two goals of tertiary control are (1) to optimally
manage the power flow between the MG and the utility grid
[10], and (2) to minimize microgrid operation cost while
providing high-quality service to various types of customers in
uncertain environments. Although the benefits of optimally
scheduling MGs have been reported in the literature [1], [4],
[9], [11], and [12], drawbacks of the existing approaches are
that they are limited to MG scheduling, and do not address the
interactions between microgrids and distribution system
concerning power coordinated operation strategy and
distribution electricity market price policy. With regard to
power coordinated operation strategy, the distribution system
was assumed as an infinite bus that can provide unlimited
power supply/load to mitigate any power imbalance in MGs
[10]. However, this assumption has a crucial flaw because the
distribution system operator, in fact, has the physical capacity
limitation to do so. Furthermore, the distribution system
operator does not have an incentive to provide power beyond
the economically optimal level. As for the distribution
electricity market pricing policy, due to the presence of price

uncertainty and its consequences, the market price between
microgrid and the distribution system is not known in
advance.  Consequently, the current practice of
bidding/offering pricing strategies may not be optimal.

The coordinated strategy can be economically beneficial to
both microgrids and the distribution system [13]. Such
benefits of using a decentralized coordinated management
(DCM) include higher profits [14], improved efficiency of
DERs and reduced complexity of distribution network
operation [15], and improved system reliability [16]. The
current literature on DCM assumes fixed pricing strategy.
However, the fixed pricing approach does not guarantee
optimality because it is difficult to include the abnormal
conditions such as overloading, islanding, component outages
as well as load uncertainty and volatility of non-dispatchable
generation units. These conditions can provide market power
or non-beneficial outcomes for decentralized coordinated
management participants. Hence, there is a clear need for an
approach that considers both the coordinated management
strategy and the distribution electricity market pricing policy.

A successful distributed electricity market requires a good
pricing policy. Overall pricing schemes in the existing
industrial distributed electricity markets can be found in [17].
Furthermore, a study has been reported to compare different
distributed electricity market designs and pricing policies [18].
The pricing policies can be categorized as price-based and
market-based management. The price-based management is an
efficient way to handle the DEM by using fixed forecast price
[9]-[12]. However, this approach is not well suited when the
microgrid penetration in the distribution network is high.
Therefore, the market-based management was proposed as an
alternative [19]. The market-based DEM with dynamic pricing
is more flexible than the price-based DEM. However, the
proposed market-based bidding strategy for MG does not
guarantee optimality because the power interaction between
MG and distribution system is determined by distribution
system only. Furthermore, there is no explicit optimal bidding
curve creation strategy which has the significant impact on
distributed electricity market operation. Another bidding
strategy for microgrid as price-taker in market-based
wholesale market can be found in [20]. Nonetheless, the MG
is not widely accepted by high voltage wholesale market
directly because: 1) MG’s capacity is limited [21] and 2) the
high voltage network is not designed for bi-directional power
flow. The distribution system fits microgrid and other DERs
with advanced distributed system operator and the distribution
market operator (DMO), which is helpful in managing price
information among market participants. In reality, the MGs
and other DERs are two primary competing power suppliers in
DEM, which constitute an oligopolistic distribution electricity
market, leading to imperfect competition. An imperfect
competitor is in fact a price-maker [22] whose
offering/bidding strategy has the ability to influence the
market profile defined by aggregated behaviors of all market
participants. Therefore, a new market-based mechanism is
needed so that the MGs can impact the DEM’s market price.
This paper attempts to shed light on a realistic economical
behavior of an MG in the distributed electricity market beyond
the proposed market-based scheme [19]. Because an MG is a
prosumer in the DS, a combined offer-and-bid pair can be
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submitted to the distributed electricity market. This
necessitates a new strategy, in which an MG plays as a price-
maker in the market-based distribution electricity market.

This problem can be cast as the Stackelberg game where a
microgrid plays the role of a leader, while competitors and
consumers are the followers [23]. Under this framework, bi-
level programming is used to formulate the optimal offering
strategy problem [24]. A bi-level programming model can be
converted into mathematical programming with equilibrium
constraints (MPEC) [25], which is a highly non-convex
optimization problem [26]. To reduce computational burden
for solving the MPEC model, a binary expansion solution
approach proposed by [27] can be used to convert the MPEC
model into a mix-integer programming (MIP) model, which
gives a global optimal solution.

Therefore, this paper proposes a new coordinated pool
strategy, in which a microgrid plays as a price-maker in the
market-based distributed electricity market. Considering MGs
as strategic prosumers, a MIP model is developed to maximize
the benefits for MGs from trading power in DEM through an
optimal bidding/offering strategy. A modified bidding/offering
policy is provided to overcome drawbacks of existing
strategies.

The remainder of this paper is organized as follows.
Section II presents the model outline and assumptions. Section
III formulates the bi-level programming problem and solving
algorithm. The model is tested under price uncertainty as well
as MG contingencies such as islanding in Section IV. Relevant
conclusions are discussed in Section V.

II. OUTLINE AND ASSUMPTIONS

The decentralized pool strategy we propose in this paper
has two levels as seen in Fig.1: a microgrid level and a
distribution system level. In the MG level, the microgrid
operator (MGO) is in charge of optimally scheduling MG-
owned DGs and local consumers. In the DS level, the
distribution system operator takes care of interactions between
the DS and its participants. The distribution network operator
(DNO) is responsible for power flow, and the distribution
market operator is responsible for market regulation. The
DMO enables competitive access to markets and the optimal
use of DERs on distribution networks. Under the distribution
system operator (DSO) model, the operator accepts a wide
range of management rules beyond the network operation of
DNO and market responsibility of DMO. The DSO can help
provide reliable and secure operations to the DS by enabling
highly reliable networks, flexible DERs and demand response
program under a competitive market environment.

The pool bidding [28] and the coordinated management
[14] are used together to solve the problem of high penetration
levels of MGs in DS. The MGs are strategic players whose
bids/offers are subject to market profile, which is decided by
nonstrategic players such as the DS customers, DS-owned
DGs, and high voltage utility nonstrategic players. The
distribution electricity market uses a price signal such as
distribution locational marginal price (DLMP) as feedback to
MG’s bids/offers. The DLMPs are widely used as price
signals among market participants or between the market
operator and the market agent [29].

The microgrid as a price-maker with an independent
operator has autonomy to make its own scheduling and
bidding/offering decisions in response to distribution system
operation states and market price signals which leverage the
MGs’ transactive capabilities in the distributed electricity
market [29]. As a result, it can help the distribution system
operator reduce the decision burden and network complexity.
At the same time, the power pool regulation at the distribution
system level defines standards for processing and evaluating
electricity price bids [30], which ensure the microgrids and
distribution generators can freely participate in the distributed
electricity market.

The key components to implement these regulations are
DSO, DNO and DMO. The state of art distribution system
operators can perform active managements including market
regulations and demand response with greater flexibility and
capability between supply and demand [31]. Such examples
include Distributed System Platform Provider proceeding
proposed by the New York Public Service Commission [32],
the Multi-Microgrid in Chicago including the IIT Campus
Microgrid (ICM) and the Bronzeville Community Microgrid
(BCM) [33], and European Distribution System Operators
advocated by the European Union [31]. Some distribution
network operator’s responsibilities like power balancing and
network operation can also be taken by the DSO. It is too early
to conclude that the DNO will be entirely replaced by the DSO
[34] as the DNO’s contributions in security and quality of
supply and power flow management are significant [35]. In
some distribution electricity markets such as Cornwall Local
Energy Market [36] and TDI 2 [37], the DNO is successfully
acting as the DSO to manage the distribution system. In our
proposed framework, we adopted the concept of the
transactive energy systems [29], which both DNO and DMO
entities are defined under the unified DSO. The advanced
DSO expands the conventional operational domain of the
DNO and the DMO to enable a sound distribution system
operation with high penetration levels of DERs. It also
facilitates the MGs as prosumer to implement transactive
exchanges.

: Microgrid Level

MG Generators k—" 0| MGO Power_J MG Local
supply demand Demand
- Bid/om/ Nw g
DS Level P A
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[ | Transmission
Offer[ Supply ‘ Bid | Demand Offer ‘ Supply Info
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DS Generators Utility

Fig.1. Decentralized pdol stratégy for distributed electr'ic'it)'/ market
Compared with previous DEM management strategies, our
proposed strategy has the following advantages:
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e Having MG as a strategic player enables a bi-
directional power flow between MG and DS, which
can smooth out or shift the peak hour load.

e The MGs’ bidding/offering price based on DLMP
reflects the exact market mechanism of the distribution
electricity market. This approach helps the microgrid
operator reduce its burden to determine the true market
value of its power resources in trading in DEM.

e MGs as price-markers have direct influence on DEM
price. However, influencing the price may create
associated market risk due to price uncertainty, which
MGs must take if it occurs.

e Efficiency of clearing the market can be improved by
allowing competition among all the power source
owners [19]. This can be done because the DMO can
evaluate all the bids and offers ranging from the
cheapest to the most expensive before transactions
occur among all market participants.

e The separation of roles between a distribution network
operator (technical functions: e.g. power flow) and a
distribution market operator (market regulation)
prevents the producers from abusing the market.

In this paper, the distribution system network is modeled
with AC Distribution load flow [38]. The DS-owned DGs and
MGs are primary power suppliers of distribution electricity
market. Two main consumers are MG community load and
DS spot load. The DEM pool is cleared hourly, day-ahead
within the DistFlow framework. The hourly DLMPs reflect
adequately distributed MGs’ influence to DEM. The 24 hourly
DLMPs are obtained through dual variables associated with
real power balance constraints. The MG scheduling model
includes most of its features, i.e., unit linearized operation cost,
generator capacity limits, and generator ramping up/down
rates. The paper assumes that DS-owned DGs offer with their
marginal costs, and spot loads bid with forecast market prices.
The MGs’ bids/offers are based on actual DLMPs of DEM.
We use linearized operation cost offering curves for all
generators and linearized bidding curves for all customers.

III. MODEL AND SOLUTION METHODOLOGY

A. Bi-level Programming Model

The optimal bidding problem is formulated as a bi-level
programming model as follows:

ULPM:min Y > (3 8B, - 4,,-P,+VOLL-DY) (1)
j ot k

B, <P, <PB™I,, Vt,VkeK VjeJ )
o, <0, <Oy, Vt,VkeK NjeJ 3)
B, -P, <RU, VtVkeK VjeJ 4)
Py —Py,<RD,, V1,VkeK, VjeJ (%)
DB, =D, +P,, ViVkeK, Vjel (6)

k
>.0,=D°+0Q,, Vt,keK, VjeJ (7

k

P,,Q,, A, carg{min ) (Y 5P, +
LLPM: L (8)
Zajtpjt +z5nlz/rpmt _Zé‘lf};;t)
J m 1
< PSP ™ ™™, Vi,Yie J,LLM,N (9)

it
Qimin < Ql-, < Qimax . ﬂf)‘[“i“ ’ﬂf)rlnax s vt, Vie J,L,M,N (10)

B’=K,/P +K P +K,P, ~KF, (1
 =K,0,+K,0,+K,0, K0, (12)

Py, =P, —PY 2}, Vbe BVt (13)

Oy =0y — O : 22, Vbe BVt (14)

Vipry =Vy — (B, +x,0,) [V i 7,,, Vbe BVt (15)
Voo <V, <V, cam ai™, Vbe B,Vt} (16)

The objective function of the upper level programming
model (ULPM) is to minimize power generation cost of
microgrids, power exchange cost at point of common coupling
and load shedding cost. The power exchange cost is negative
when MGs are extracting power from the distribution system
or positive when MGs are exporting power to the DS.
Dispatchable generators in MG are subject to real power
output capacity constraint (2), reactive power capacity output
constraint (3), ramp up rate (4) and ramp down rate (5). Real
power balance equations (6) and reactive power balance
equations (7) together ensure that the power generated by DGs
is used to supply the entire load and the power exchange at

PCC. The DLMPs (4 are endogenously generated from the
lower-level programming model (8) - (16) (LLPM), and the
MG uses DLMPs as the base bidding/offering price /1,,’;,. The

real power and reactive power exchange at PCC belong to the
feasible set defined by the LLPM as in constraint (8).

The LLPM presents the distribution system market
clearing problem with the objective to maximize the social
welfare (8), which consists of four terms. The first three terms
represent the total cost for the DS: operation cost from DS-
owned DGs, power exchange with MG, and the cost of
extracting power from utility power system. The last item is
total benefits obtained by supplying power to customers.
Constraint (9) and (10) guarantee that the DGs’ outputs, MGs
power exchange, utility extraction, and load requirement are
within a capacity range. The constraints (11) - (16) are
DistFlow equations that can be used to describe the complex
power flows at each node for DS. Constraints (11) and (12)
are real power injection and reactive power injection at each
node. The possible equations to use are power balance
equations, which can be written for real and reactive power for
each bus. Constraints (13) and (14) are real and reactive power
balance equations at each node, which guarantee the power
balance. Constraint (15) is the node voltage equation. Voltage
limits are defined in constraint (16). The justification of the
linearized method for DistFlow can be found in [14].

Dual variables associated with each constraint are labeled

pmin p max qmin

next to the corresponding constraints: g™ , g/, ul™"
HOT Ay AL 7,y and ;™ Tt is noted that the LLPM

is a linear programming model if the microgrids’
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bidding/offering price «, is treated as input parameters.

Thus, the LLPM can be replaced with Karush-Kuhn-Tucker
(KKT) optimality conditions to formulate as an MPEC.

B. MPEC
The KKT optimality conditions for LLPM are constructed

as follows:
OO — b 4+ 1P — AP =0 Vbe BVt 17
5,5{, O P — 27 =0 Vb e B", Vi (18)
,uft“"" + ™ = -A''=0 VbeB’ vt (19)
—5L W+ it + A =0 Vbe BVt (20)
2 =0 o

VieJ,LLM,N,YbeJ,L,M,N,Vt

A=A, —nym, [V =0 Vbe BVt (22)
A8 =28, —x,m, [V? =0 Vbe BVt (23)
Ty = Epy =V + V™ =0 Vb e B,Vt (24)

0< ™ 1L(P,—P™)>0,vt,VieJ,L,M,N (25)
0< ™ L (P™ -P)>0,Vt,ieJ,L,M,N  (26)
0< ™ 1(Q,-0™)>0,vt,VieJ,L,M,N (27)
0< 0™ L (O™ -0,)>0,Vt,ieJ,L,M,N  (28)

o<z L(V,, -V,")>0, Vbe B,Vt (29)
0<z™ L™ ~V,)>0, Vbe B,Vt (30)
(9) - (16) &3))

pmm pmax qmm max P min max
/u()r Hu()z Hu()z 5:u()z /lbt’ﬂ’bl’”bl’ﬂbz 3”1» >0 (32)

The KKT optimality conditions contain stationarity (17)-
(24), complementary slackness (25)-(30), primal feasibility
(31), and dual feasibility (32). The bi-level programming
model is replaced with (1) - (9) and (17) - (32) as MPEC. The
MPEC is a non-convex problem, thus the linearize technics
are needed to solve the problem.

C. Linear Reformulation of MPEC
The nonlinearity of MPEC comes from two parts: MGs’
bidding/offering in upper-level objective function A, P,, and

b 1= jto
complementary slackness part in lower-level KKT equivalent
constraints (25) - (30).

To linearize /lht s

we applied strong duality method used
in [28]. The corresponding linearized term of ﬂblPﬂ as

follows:

Q Z bit ]t

_ pmax pmax min ypmin
- Z ,U P + Z /unp Pz -

’\411L ‘«WL

+ qmin min_
> u bZ

it
ieJ M ,N,L

Z nt m Zé‘rfzjtpmt-i_zé‘lff;t
It

nt

qmax max
Z %

ieJ ’I/l N.L (33)
max 7, max min 77 min
ﬂ.bt I/bt + Z I/bt
bt
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The complementary slackness constraints (25) — (30) can
be linearized as follow if we introduce a set of binary variables

@, 7, tolinearize each part.

The linearized form of (25) (26) (27) (28) (29) (30) as
follows:

0<P, -P™ <(1-a®™)0,, Vt,VieJ,L,M,N (34)
0< 2™ <@?™0,,Vt,YieJ,L,M,N (35
0<P™ —-PB <(1-0)™)0,,Vt,YieJ,L,M,N (36)
0< ™ <™ 0,,vt,Vie J,L,M,N 37
<Q,-0™ <(1-&'™)0,,Vt,YieJ,L,M,N (38)
0< ™ <@i™0,,Vt,YieJ,L,M,N 39)
<O™ -0, <(1-w!™)0,Vvt,YieJ,L,M,N (40)
0< ™ <™ 0,,Vvt,VieJ,L,M,N 41

0< v <(1-7")0,,Vt,Vbe B (42)

0 < ﬁ,f?‘" < z',j’t““O ,Vt,Vbe B (43)

0sVy™ -V, <(1-7;")0,,Vt,vbe B (44)

0< ﬂ,ﬁ‘;‘“ <7,;"0,,Vt,vbe B (45)

With a linearized form of MEPC, the bi-level

programming is reformulated as a mix integer programming
problem which can be solved by using some commercial
software packages. The MIP formulation is as follows:

min Z P, + Z VOLL-Dj, +Q (46)

Subject to: (2) - (7), (17) - (24), (31) - (32), (34) - (45)

D. MG Bidding/Offering Strategy

The microgrid is prosumer such that (1) it can submit
offers to the distribution market operator when it exports
power to the DS or (2) it can submit bids to the distribution
market operator when it extracts power from the DS. The
bidding/offering prices for MGs in bi-level model always
coincide with DLMPs. However, this bidding/offering strategy
may result in a solution that is not practical for the following
reasons: (i) a flat offer curve may result in multiple solutions
and degeneracy [28]; (ii) some incentive(s) or even protective
policy are necessary to maintain the profitability of MGs; (iii)
no way to ensure the market clearing to have increasing offer
curves or decreasing bid curves; and (iv) bidding/offering
curves in practice are more complicated than the linearized or
piecewise linearized curve adopted in our bi-level model.

To provide a remedy to the issues, we propose a direct and
simple bidding/offering strategy for microgrids to find
bidding/offering price ( @/, ) based on two pieces of price

information: MG corresponding marginal cost ( 8, ) and

DLMPs (4, ) in DS. The marginal cost of an MG can be

obtained at the intersection of the aggregated marginal cost
curve of its DGs and the maximum capacity of its PCC.
DLMPs are declared at the DS level through the DEM
clearing mechanism. Hence, a modified bidding/offering
strategy for MGs is proposed as follows:

Offering Strategy:
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1) If P,=0, it indicates that either MG j-th is on
islanding mode or bidding/offering prices are not
accepted. If B, <4, , then o), =4, . If B, >4, ,
then aj’, =p, . This keeps MG j-th from being

accepted at a higher price.
2) If0<P,<P™andp, < AL

. » it indicates that MG j-
th is working on grid connected mode. The MG j-th

is transferring power to DS where the market price is

relatively higher. Then we set o, = Ay —& to make

sure DS is willing to take more.

3) If0<P,<P™andp, >4, , it indicates that MG j-
th is generating power with higher cost to supply DS
loads at a lower price. Then we set &), =f, to

maintain MG’s profitability in the market.
Bidding Strategy:
4) If P <P <0 and B, <24, , it indicates that the

MG j-th is extracting power from DS with higher cost
even though it has a cheap power source available
inside. Then we set @ =f, to maintain the

profitability of MG j-th.

5) If P™ <P, <0 and g, >4, , it indicates that MG -
th is extracting power from DS rather than generating
power itself with higher cost. Then MG will bid with
price ), = A +& . The decreasing bid can encourage

DS to export more power to MG j-th.
It is noted that & is a very small positive constant,

e.g.,107 .

E. Uncertainty Modeling

When MGs participate in DEM as price makers,
uncertainties associated with their rivals (DS-owned DGs) and
customers in DS highly affect the bidding/offering decisions
that MGs make. The bidding/offering prices made by rivals
and customers may fluctuate with load consumption changes.
The probability distribution of a real-time market price is not
precisely known and may vary with unpredictable system
conditions in short term operation such as network, load and
units availabilities [20]. Hence, a robust optimization method
is more appropriate to handle these uncertainties. The offering

price of DGs can be modeled as a summation of two

terms 5. +5.¢&,,, where 8¢ is a predicted offering price, &, is

an unknown variable associated with price uncertainty, and

5:3 is a scale parameter. In setting up a robust optimization
model, the uncertainty set for &, is modeled as follows:
Unt = {é:nt : gnt € [_dnt’dm ]} ’ (47)

Above, parameter d,, controls the level of uncertainty. If
d,, =0 , the price uncertainty is ignored. Ifd , =1, it means
that all price uncertainties are taken into account. Similarly,
the customers’ offering price ( &, ) can be modeled

as St +81&, . The uncertainty set for &, is defined as

Ulz = {élt : glt € [_dlt 7d1t]} . (48)

Consequently, the objective function that minimizes the
worst-case scenario [39] can be stated as:

: U
mm(z a,P, +Z o, P, +
Jt mt

8 A (49)
,max (3(8]+86,0P, = (5; +6,£)R))
nt SYmon €Y 7
Proposition: In objective function (49),
£ EI(?]’!%)CEU (Z (5"(; + 5’5:5"1 )Rﬂ - 2(515 + 5If§1t )Plt )) is
nt ntSlt It nt lt

equivalentto Y (89 +d,8)P, = (5y —d, 01 )P,
nt It

Proof: See Appendix.
Therefore, the robust optimization model for the LLMP is:

min(}_a, P, +> 6, P,
Jt ) mt ) (5 1)
+2.(8, +d,0,)P, =3 (6, —d,5,)F)
nt It

Subject to (10) - (17)

The objective function states that DS-owned DGs attempt
to maximize their profits by offering the highest price possible.
In the meantime, the customers wish to decrease its bidding
price to lower the energy cost. Following the linearization
process discussed in Section III (B&C), the robust MIP model

(53) is essentially the same as (47) by replacing 59 with
5% +d 6% and S¢ with §f —d,5F formulated as follows:
min ) 57 P, + Y VOLL-D/ + & (52)
Jjt

it ~it
it

st. (2)-(7), (18), (19), (21)- (24), (31) - (32), (34) - (45)
Q=% —>6°+d,5°,6F — 8t —d,5h)

nt~nt >

5% +d 60 — p"™ + P 2P =0 VbeB",Vt (53)

nt nt~ nt

—8+d, 8 — P 4 g™ 20 =0 Ybe BVt (54)

IV. NUMERICAL EXPERIMENTS

The model is tested on a modified IEEE 33-bus
distribution system with three microgrids and five DGs in the
system [40]. The model was solved using IBM CPLEX [41]
on a computer laptop equipped with 2.80 GHz Intel CPU and
8GB of RAM. To express the all parameter of the system in
per-unit, the power base of the test system is set at I0MVA.
The voltage base of the system is set at 12.66kV at utility side.
The other details of MGs can also be found in [40] including
output capacity, price information, and load capacity. The
following cases are used for experiments:

Case 0: Grid-connected MGs in a deterministic case (46)

Case 1: Grid-connected MGs in worst case scenarios (52)

Case 2: Islanded mode of MGs operation
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Fig.2. Modified IEEE 33-bus distribution system

Case 0 and Case 1: The goal is to find the optimal
bidding/offering strategy within a 24-hour time horizon. Fig.3
shows DLMP trend over time for both cases, in which the
same DLMP is applied to all nodes in the network at a specific
time. We find very little variation in DLMPs between nodes,
reflecting a lack of binding line constraints on this small
network. The trend shows different DLMPs between the
deterministic model and the robust model during 1:00am-
13:00pm and 20:00pm-midnight, which is referred to off-peak
hours. During these specific time periods, the DLMP of the
robust model is 10% higher than that of the deterministic
model. There are two main reasons for this difference. First,
DS-owned DGs attempt to increase offer prices to secure
maximum profits because they are not sure about the real-
market price. Second, some DS-owned DGs (DG1, DG2 and
DGS5) are not fully dispatched during off-peak hours that
MGs’ bids/offers have limited influence on the market price. It
also shows that DLMPs stay relatively low during the non-
peak hours (less than 0.66 $/p.u.).

The DLMPs start increasing at 13:00pm until they reach
the peak at 17:00pm, and gradually decline for the rest of the
period. During this time period (peak—hours), the prices are
considerably higher than non-peak hours. This is because the
consumer requirements increase rapidly during this period,
which is indicated in Table III [40]. We noticed that the
DLMPs for both cases remain identical between 13:00pm and
20:00pm. After DS-owned DGs reach the maximum output
capacity, the DS begins to import more power from MGs with
extra generation capacity. This action helps DS to stabilize the
DLMPs at the beginning and end of peak-hours. After both
DGs and MGs reach the maximum capacity, the utility side is
the only power supplier option that DS have, even at a
relatively high price. The utility prices are the same for both
cases, which provides another reason that the DLMPs are
identical during peak hours.

We continue our discussions using Table 1., which shows
the comparison between the two cases. The results in column
“Entity” are associated with DS clearing market mechanism
(DS) and MG operation (MG#). The sources of DS clearing
market include MGs, DGs, loads, and utility. The sources of
MG operation cost consist of (1) interaction with the DS and
(2) power generation. The negative values in column “Cost”
indicate profits. A positive value in column “Power Injection”
indicates the total power transfer from a source to an entity,
while a negative value indicates the opposite direction of the
power transfer. The evidence of MGs’ schedule adjustment
can be found to show that MGs are helpful in dealing with DS

price uncertainty during the peak hours. The power generation
cost of MGl and MG2 in the robust model ($10000 and
$5300) is higher than in the deterministic model ($8900 and
$4100). It is obvious that these extra powers are transferred to
DS, as the difference power injection values show.

Unlike other MGs, MG3’s power generation cost ($6900
to $6400) decreases as well as power exportation (0.612p.u. to
0.514p.u.) in the robust model. There are two explanations.
First, the conservative DGs’ marginal cost in the robust model
results in reduction of power generated by all DS-owned DGs.
To overcome the resulting power shortage, the power injection
from utility increases, which can increase the total feeder loss.
At the same time, the power injection of MGl and MG2
increases to create a counter flow on the main feeder to
decrease the main feeder loss. The output of the MG3 is
diminished because an increasing power injection from MG3
leads to increase the feeder flow and then its ohmic losses.
Most of the feeder loads can acquire power from a much
closer power supply (MGl and MG2) to reduce loss on the
main feeder. This makes the MG3 not competitive. Second, as
input data (Table VI. [40]) shows, MG3 has a DG (DG3)
which has the least operation cost (0.03 $/p.u.) among all DGs
in MGs. This DG is fully dispatched for 24 hours in both
cases. As a result, the MG3 is less price sensitive than the
other two MGs, which makes it less influenced by price
uncertainty.

1.2 | [C5 Robust
$Dctcmum=llc

1L
08 L

06 L il

0.4 z z z z L
1 3 5 7 9 " 13 15 17 19 21 23 24

Hourly Distbution Locational
Marginal Prices ($/p.u.)

Time (h)
Fig. 3. DLMPs of Case 1 and Case 2
TABLE 1L RESULTS COMPARISON
Case 0: Case 1:
Entity Sources P‘OW?I‘ P.ow?r
Cost ($) Injection Cost($) Injection

(p.u.) (p-u.)
PCC(MG1I) -106 -0.15 1216.5 0.069
PCC(MG2)  -3114.9 -0.803 -1641.2 -0.562
PCC(MG3) 3818.7 0.621 3286.2 0.514

DS DG 22200 5.831 22200 5.523

Utility 1900 0.88 2300 0.96
Loads -37500 -6.379 -32600 -6.504

Total -12802 0 -5239 0

PCC 106 0.15 -1216.5 -0.069

MGl DG 8900 2.01 10000 2.229

Total 9006 2.16 8783.5 2.16

PCC 3114.9 0.803 1641.2 0.562

MG2 DG 4100 0.817 5300 1.058

Total 7214.9 1.62 6941.2 1.62
PCC -3818.7 -0.621 -3286.2 -0.514

MG3 DG 6900 1.917 6400 1.81
Total 3081.3 1.296 3286.2 1.296

The total profit of DS in the robust model ($5239) is less
than that in the deterministic model($12802). The decrease of

0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2916144, IEEE

Transactions on Power Systems

profit comes from two parts. First, DS extracts more power
from MGs to compensate power shortage, which is caused by
price uncertainty. Second, the customers decrease their bids to
acquire power from DS, which leads to profit loss from
supplying load.

Table II. illustrates some examples of revised MGs
bidding/offering strategy. For a specific MG j-th at time

period z: The DLMP (4) and marginal cost ( B;) and the
power exchange between MG and DS ( P, ) are given. We can
compare the original bid/offers ( «, ) and the adjusted
bid/offer (a‘;t ). The MG1 at 10:00am extracts power from
DS. 8., > A5, » the bid with decreasing price is 0.44+¢. For
MG2 at 21:00pm, S, ,, < A;,, , the fix offer is 0.5 to maintain
its profit. For MG2 at 14:00pm, f3,,, <4, ,, the increasing

offer is 0.66-e. For MG3 at 3:00am, the f,, > 4,,,, the fixed

offer price is set at 0.5.

Table III. is the results comparison between the original
and the modified bidding/offering strategies for DS and MGs
operation cost. The modified example assumes that the power
interactions remain the same when the trading prices are
modified. The MGs benefit from the policies to maintain the
profitability. In the meantime, the obtained market clearing
profit of DS decreases correspondingly. It can be seen that
there is a $470.08 total cost saving for MGs and a $297.69
profit loss for DS. Therefore, we can expect that the proposed
policy is practical and incentive, especially in the infancy of
MG industry deployment.

TABLE II. EXAMPLE OF MODIFIED MG BIDDING/OFFERING STRATEGY
J ¢ Zon b, Ay B, a
($/ p.u) (p.u.) ($/ p.w) ($/ p.u) ($/p.u.)
1 10 0.44 -0.024 0.44 0.5 0.44+¢
2 21 091 -0.047 091 0.5 0.5
2 14 0.66 0.026 0.66 0.5 0.66-¢
3 3 0.44 0.022 0.44 0.5 0.5
TABLE IIL COMPARASIONS OF MG BIDDING/OFFERING STRATEGY
. Operation Cost($)
Entity Original _ Modified
MGI1 8783.50 8765.80
MG2 6941.20 6796.45
MG3 3286.20 2978.57
Total MGs 19010.90 18540.82
DS -5238.50 -4940.81

Case 2: This case studies the special occasion that MGs
switch working mode from grid-connected to islanding in case
of contingencies. We use T —7 islanding rules [9] to test the
system. By introducing binary variable p, with constraints

(55), (56) in upper level programming model, the p, can

control the MG working modes switch. Then we add one more
constraint (57) to control the total number of MG islanding
hours.

p, P <P, <p P Vt,Vie) (55)
PO <0, <p, O VL.Vie] (56)
Y p,=T-7 Viel (57)

t

The total number of islanding-hours (7) from zero up to
eight hours is tested based on the total operation time (24-hour
(7) in the deterministic model). Fig. 4 and Fig. 5 show that the
operation cost for MGs and clearing market profit for DS
remain relatively stable as islanding hours increase. The larger
number of islanding-hours results in decreasing interactions
between MGs and DS. For MG with enough reserve, the more
power generated through its own DGs to compensate the
power lost during the islanding-hour. If not, the load shedding
process is needed, which is likely to increase operation cost
for MG. The DS, on the other side of islanding event, reacts to
islanding events correspondingly. DS-owned DGs react to
MGs’ islanding action with an increasing or decreasing power
output schedule. The solution results show that each MG has
enough operating reserve to supply its local load without load
shedding. Therefore, Fig. 4 and Fig. 5 illustrate that the MG’s
operation cost and DS’s clearing market profit depend on their
DGs’ marginal cost in different number of hours islanding
mode.

10000 [ T T T T T T T §
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8000 il

ge W
s & 6000 | -sMal |
22 _5-MG2
g 3 MG3
&~ 4000 | - ]
z;/é\é\é\é/’/é\k/‘g‘\éx
‘ ‘ s ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8

Number of islanding hours (h)

Fig. 4. Operation cost of MGs with increasing islanding time
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Fig. 5. DS clearing market benefits

In summary, the coordinated pool strategy provides an
efficient way for MGs to participate into DEM with lower
cost. A bidding/offering strategy enables MGs to successfully
help DS to handle price uncertainty and islanding.

V. CONCLUSION

A coordinated pool strategy for microgrid as price maker
to participate in market-based distribution electricity market
was proposed and formulated. We presented a reformulation
of the original bi-level model as a linear mix-integer
programming model, which is easier to solve. Three sets of
experiments (models, strategies, and configurations) were
performed to compare (1) deterministic model vs. robust
optimization model, (2) original strategy vs. revised strategy,
and (3) islanding mode vs. non-islanding mode. It was shown
that having MGs in DS can help stabilize the DLMPs during
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the peak hours, and mitigate impact when an MG runs in an
islanding mode. It is also shown that the proposed coordinated
pool strategy performed well in dealing with the interactions
between the DS and MGs. Furthermore, the market-based
DEM created a fair and competitive environment for all
market participants. Utilizing MGs as price makers with
associated market risk enabled MGs to become competitive
through a bi-directional power flow. One can extend our
model to include ancillary service market.
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VI. APPENDIX

Derivation of Robust Objective Function (50)
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