EMAT: An Efficient Multi-Task Architecture for Transfer

Learning using ReRAM

Fan Chen, Hai Li

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
{fan.chen,hailij{@duke.edu

ABSTRACT

Transfer learning has demonstrated a great success recently to-
wards general supervised learning to mitigate expensive training
efforts. However, existing neural network accelerators have been
proven inefficient in executing transfer learning by failing to ac-
commodate the layer-wise heterogeneity in computation and mem-
ory requirements. In this work, we propose EMAT—an efficient
multi-task architecture for transfer learning built on resistive mem-
ory (ReRAM) technology. EMAT utilizes the energy-efficiency of
ReRAM arrays for matrix-vector multiplication and realizes a hi-
erarchical reconfigurable design with heterogeneous computation
components to incorporate the data patterns in transfer learning.
Compared to the GPU platform, EMAT can perform averagely 120x
performance speedup and 87X energy saving. EMAT also obtains
2.5x speedup compared to the-state-of-the-art CMOS accelerator.

CCS CONCEPTS

« Hardware — Hardware accelerators;

KEYWORDS

ReRAM, transfer learning, accelerator

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have become a per-
vasive approach in a broad range of modern application domains
involving computer vision [15], natural language processing [8]
and text processing [25]. The state-of-the-art accuracy of CNNs,
however, comes at the cost of significant computational and mem-
ory resources. Normally, the computation and memory intensive
CNN training is offloaded on powerful GPUs in the cloud. The de-
veloped models, on the other hand, are deployed at the edge devices
(e.g., IoT or mobile) to perform the testing function.

In real applications, however, data is essentially dynamic. It
would be desirable to have the intelligent edge devices capable of
adaptively learning and tuning its parameters to achieve an ideal
accuracy. For instance, in wearable applications that monitor the
health of users, it would be desirable to adapt the CNN models
locally rather than sending the self-made health data back to the
cloud due to significant data movement overhead and privacy is-
sues. For other applications such as robots, drones and autonomous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD '18, November 5-8, 2018, San Diego, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5950-4/18/11...$15.00
hitps://doi.org/10.1145/3240765.3240805

vehicles, the statically trained models could not efficiently handle
various environmental conditions. However, the large data trans-
mission latency of sending huge environmental data to the cloud
for incremental training is unacceptable. More importantly, many
real-life scenarios essentially desire the real-time execution of mul-
tiple tasks and dynamic adaptation capability [13]. Nevertheless, it
is extremely challenging to perform learning in end devices because
of their stringent computing resources and tight power budget.

Recently, transfer learning [19, 20] is presented to reduce the
expensive training efforts. It is a new general supervised training
framework that re-utilizes a previously trained neural network in
one source domain and adapts (or transfers) it to a different do-
main with distinct feature space and distribution (target domain).
By having the convolutional layers (CONVs) fixed while training
the fully-connected layers (FCs) only, transfer learning could dra-
matically speed up training in the target task (or domain) [3, 9, 24].
Moreover, recent studies [5, 7, 21, 22] have demonstrated the use of
emerging ReRAM for implementing neural network accelerators,
benefiting from its computation and storage capabilities. However,
it is challenging to deploy transfer learning on existing hardware
platforms. PRIME [7] and ISAAC [21] only support CNN testing.
PipeLayer [22] and ReGAN [5] are proposed to support training of
CNNs and generative adversarial networks, respectively. These two
schemes, however, are both homogeneous designs, which didn’t ex-
ploit the heterogeneity of CONVs and FCs. In this work, we present
a ReRAM-based architecture for accelerating transfer learning that
can adaptively accommodate the end devices’ requirement. Our
contributions in this work include:

e We analyze the general training procedure in transfer learn-
ing and accordingly present EMAT—an architecture that
directly leverages ReRAM arrays to perform computation. In
EMAT, the subsystems are specialized for the computation
and storage characteristics of CONVs and FCs, respectively,
making EMAT a scalable architecture.

e To optimize EMAT, we propose a novel time-multiplexed
design for efficiently executing multi-tasks that share the
trained CONVs.

e We evaluate EMAT and compared it against baseline CMOS
architecture and GPU platform. Our experimental results
show that EMAT can perform averagely 120x performance
speedup and 87 energy saving against GPU platform. EMAT
also obtains 2.5X speedup compared to its CMOS counter-
part.

2 PRELIMINARY

2.1 Convolutional Neural Networks

Figure 1 shows an example of a typical CNN, which consists of three
types of essential components—convolutional, fully-connected and
pooling layers. Cascaded CONVs are usually considered as a generic

D’ - ﬂ%%&fﬁ :.l.:%i-rd

-;ﬁooling

| L |
convolution+pooling layers fully connected layers
(feature extractor) (classifier)

Figure 1: A typical CNN.

extractor of high- or mid-level image representation [19]. Pooling
layers are used in an interleaved fashion with CONVs to reduce the
feature map size and the computation. FCs are located at the final
stage of a CNN as a classifier, which applies a linear transformation
on the input feature vector.

In supervised learning, the weights and bias of a neural network
are determined through the training on labeled dataset. The trained
parameters are then deployed to run testing functions. In a testing
phase, an input data is fed into the network and flows through
layers consecutively by performing a forward function:

y=W -x+bandz=h(y), (1)

where the output neuron vector z is determined by the input neuron
vector x, the weight matrix of connections W and the bias vector
b. Usually, h(-) is a non-linear activation function.

In a training phase, data first flows along the same forward
direction as in the testing phase, followed by a series of operations in
the backward direction. A cost function J is defined to quantitatively
evaluate the difference between the network’s real output and its
expected output. The error for layer [is defined as §; = gg—;’ which
can be back-propagated (BP) to the previous layer as [16]:

814 =W, -8, H (yy). @)

The error and input activation are multiplied layer-wise to find
the gradient of weights (VW). The updated weight (Wj;) and bias
(bj;) are:

Wit < Wjip—n-zij_1-96j1 (3)
bji,1 < bjii—n-5j1 4)
where 7 is the learning rate and §; ; is the error back propagated

from the node j in layer . z; ;_ is the input of the node i in layer
1-1

2.2 Transfer Learning

In many applications, training a CNN requires significant com-
puting resources and huge amount of weight updating iterations.
Moreover, traditional supervised machine learning methods are
based on an assumption that the training and testing data are drawn
from the same feature space and have the same distribution. This
task-specific training method, however, implies a poor scalability
of CNNs as a model needs to be trained from scratch on the newly
collected data if the feature space changes. In many real world
applications, however, it is expensive or even impossible to col-
lect the sufficient new training data and rebuild the models. To
tackle the above challenges, transfer the knowledge learned from a
source domain to a new task domain emerges as a more promising
approach.

The transferability of CNN models is based on the key observa-
tion that CONVS5s located in the early stage often act as a feature
extractor by performing common functions, such as recognition,

C1-C2-C3-C4-C5
I =]
o b

(a) (b)
Figure 2: Transferring parameter of a trained CNN in (a) to
(b) for different target task.

C1-C2-C3-C4-C5

ackward

forward

backward
orward

localization and detection [15, 20]. Normally, it takes a two-stage
process for transferring parameters of a CNN. First, a network is
trained on the source task with a large amount of available labeled
data as illustrated in Figure 2(a). The pre-trained parameters of in-
ternal layers including CONVs and the first a few FCs (e.g., C1~C5,
F6, F7 in the given example) can be directly transferred to the target
tasks. Specifically, one or several adaptation layers (e.g., Fa, Fb) are
added to form a new network as shown in Figure 2(b). This net-
work only needs to be trained with a small amount of labeled data
specified for the target task. When training the new network, the
transfered layers are fixed and execute the feed-forward function;
while the newly added FCs will be trained through back propaga-
tion. As can be seen that transfer learning can dramatically simplify
the training procedure by limiting the complex BP operations and
reducing the training samples.

2.3 ReRAM Basics

Figure 3(a) depicts the three-layer structure of a ReRAM cell: an
oxide layer sandwiched between a top electrode and a bottom elec-
trode layer. A ReRAM cell can be switched between a low resistance
state (LRS, logic "1") and a high resistance state (HRS, logic "0") by
applying an external write voltage with appropriate pulse width
and magnitude. Figure 3(b) shows a simple ReRAM crossbar array
structure, which has the smallest cell size of 4F2, where F denotes
the technology feature size. Recent studies have demonstrated that
ReRAM-based architecture performs in-situ matrix-vector multi-
plication [14] and is effective for accelerating neural network com-
putation [5, 7, 22]. As shown in the figure, an input vector can be
represented by the input signals to the wordlines (WL) of the array.
An element of the matrix is programmed as the conductance of the
corresponding cell in the crossbar array. The current flowing to the
end of each bitline (BL), therefore, can be viewed as the result of
the matrix-vector multiplication. For a large matrix that can not fit
in a single array, the inputs and outputs shall be partitioned into
multiple arrays. The output of each array is a partial sum, which is

? 2 2

Top electrode

3 e
e :
Metal oxide : "%)“Qi "%G)—_i ‘% WL; i
‘? l

[bottom electrode] I
]

L o)

~

(a) (b)
Figure 3: The ReRAM basics. (a) The cell structure. (b) Map-
ping matrix-vector multiplication to ReRAM crossbar array.

1E+

1E+3

1E+3
1E+2

1E+2

1E+1
1E+1

Norm. storage (MB)
Norm. scalar MFLOPs

B
i
i
i
&
s

3

1E+0

TYTTOREREE

(a) i b)
Figure 4: Evaluation of CONV/FC layers. (a) Storage require-
ment. (b) MFLOPs.

collected horizontally and summed vertically to generate the actual
results.

3 CNN WORKLOAD ANALYSIS

We note that heterogeneous computing phases are involved in
transfer learning: (i) the pre-trained CONVs perform the forward
inference function for the feature extraction; and (ii) the trainable
FCs deploy both the forward and backward functions. To explore
the computational characteristics and challenges in transfer learn-
ing, we first quantify the computation characteristic of CONVs and
FCs by using AlexNet [15] as a representative example. AlexNet is
a famous CNN which comprises of 5 CONVs (C1-C5), 3 pooling
layers and 3 FCs. We ran AlexNet on ImageNet and summarizes
each layer’s memory space and computation requirement (in mil-
lion floating point operations per second, or MFLOPs) in Figure 4.
Note that the y—axis in the figure is in logarithmic scale. And the
rightmost two bars respectively represent the total demands of
CONVs and FCs.

Clearly, the heterogeneity in layer topology naturally translates
into different computing and memory requirements: FCs consume
a significant fraction (30X more than CONV layers) in data storage
(or bandwidth) resources, but contribute only a small portion of the
total computations. CONVs, in contrast, account for the majority of
the MFLOPs (92%). Our proposed EMAT architecture takes advan-
tages of the above heterogeneity in layers topologies, the details of
which shall be elaborated in the following section.

4 EMAT ARCHITECTURE

We propose EMAT—an efficient multi-task architecture for transfer
learning using ReRAM, the design details of which is described in
this section. We will start with how to map neural networks to CNN
crossbar arrays to better support transfer learning. Furthermore, to
exploit the underlying heterogeneity in computation and memory
requirements of CONVs and FCs, two types of processing cells,
namely CONV-CELL and FC-CELL, are proposed. At the end, we
present the overall EMAT architecture and the optimization for
multi-task training.

4.1 ReRAM Design for Transfer Learning

Feed forward function. Figure 5 illustrates the feed forward com-
putation execution of CONVs and FCs on ReRAM arrays. In this
case, the CONV and FC both have 9 input neurons and 4 output
neurons. Each neuron in a FC is connected to all the neurons in
the other layer. Thus, the total number of parameters in this simple
example is 9 X 4 = 36. The neurons in a CONV, however, are only
connected to a small region of the adjacent layer. The weights are
shared among input neurons, while the input neurons are reused

ty tg t, t; oneReRAMcolumn 1 X1 | Wiyg|Wag| W3y Way
X5 |Xq|X2|Xq m g X2 Wya|Waz|W3p Waol
2

Xg | X5 X3 | X X W13(W33(W33lWeg

el x BT B ek
2 |4

Xg |Xg|Xg|Xs5 m ;:'L | X5 X W5\ Was W35 Wagl

I —E | X6| W16|W26W36Wae|

1 X7 Wq7|Wa7|W37Wa7)

| Xg| W1gWag W3gWag

ﬂ wl '&‘l“ﬂ ¥ aq

T o3 I

() b)
Figure 5: The feed-forward execution on ReRAM arrays: (a)
CONYV function; (b) FC function.

—

as denoted in the figure. Hence, the number of weights decreases
to only 4. For larger networks, the parameter sharing scheme sig-
nificantly reduces the number of parameters from O(n?) to O(1).

In practice, the weight elements of the connection matrix are
first programmed as conductance values of the corresponding cells
in the crossbar array (the light gray part in the figure) under a
certain programming voltage. Input neuron vector X is prepared
according to the computation and then supplied as the input voltage
sequences to the wordlines of ReRAM array. The output current
at the end of each bitline are collected as the value of the output
neuron (the dark gray part in the figure) without including the
non-linear activation function if any.

Back propagation function. As a learning algorithm, the back
propagation (BP) function is essential but the hardware support is
more difficult. Equations (2)-(4) show that there are three stepsin a
BP process, including deviation calculation, error back-propagation
and parameter updating. We use the host CPU to calculate the devia-

tion of §; = gb% for high data accuracy. The error back-propagation

step is composed of a matrix-vector multiplication W;T - §; and a
vector-vector multiplication &; - k' (y;). The former can be imple-
mented on ReRAM arrays by following the same mapping method
in the feed-forward function, while for the vector-vector multi-
plication, we reserve a special pre-processing function unit in the
ReRAM buffer subarray (see Section 4.2). The parameter update step
includes a matrix-vector multiplication to calculate Zig-1° ‘Sj. 5 a
scalar multiplication to apply the learning rate and a subtraction to
compute the updated weights and bias. Similarly, the matrix-vector
multiplications can be realized through ReRAM arrays, while the
other two require special function units to support.

Improving parallelism in execution. A naive implementa-
tion by strictly following the structure in Figure 5 results in unbal-
anced processing latency in CONVs and FCs: the CONV takes 4
computing cycles while FC only need 1 cycle to complete the execu-
tion, though they have the same number of input/output neurons.
A possible solution for the scenario is to duplicate a few ReRAM
arrays so that the long operation can be partitioned and executed in
parallel. For instance, making four copies of the ReRAM for CONV
in Figure 5(a) and assigning each input column to one array can
complete its operations in just one cycle. Essentially, the parallelism
can be enhanced at the cost of hardware resource. We can further
utilize the trade-offs between system performance and hardware

FC-CELLn
FC-CELL-1
CONV-CELL-m
Global CONV-CELL-1
CTRL W P
a
o N7
""_-... w
fom -
m (=]
o o
o 3
[C] e
Local _

FC-CELL

(a)

(b) (d)

Figure 6: (a) The EMAT architecture overview and CONV-CELL design; (b) FC-CELL design; (c) wordline driver module; and

(d) activation function module.

requirement to support multiple CNN applications in EMAT, which
shall be explained in Section 4.4.

4.2 Heterogeneous Computing Cells

We propose two types of computing components, CONV-CELL and
FC-CELL, for EMAT architecture. Each type is specifically designed
to optimize the inference in CONVs and the training in FCs required
in transfer learning procedure (see Section 2.2). As illustrated in
Figure 6(a & b), both CONV-CELL and FC-CELL have two key com-
ponents: ReRAM memory sub-arrays and full function sub-arrays
(FF). The memory subarrays are the same as conventional memory
subarrays for data storage. An FF subarray can be configured in
either computation or storage modes: in computation mode, it exe-
cutes matrix-vector multiplications; while in memory mode, it is
used as memory subarrays to save data. Detailed array designs are
similar as [7].

We aim to support both computation and storage in FF sub-
arrays with minimum overheads in area and energy consump-
tion. To achieve the purpose, we replace the power-hungry analog-
digital/digital-analog converters (ADC/DAC) [7, 21] with the spike-
based scheme such as [22]. The spike-based design requires two
new circuit components—spike driver and integrate-and-fire circuit
(IFC). The spike driver is used to convert an input signal to a se-
quence of weighed spikes, while the IFC integrates input currents
and generates output spikes. Here, we omit the working mechanism
and design details of the spike-based system, which can be found
in many prior studies.

Compared to the CONV-CELL, the design of FC-CELL shall
satisfy two unique requirements: the memory-intensive operations
as discussed in Section 3 and the support of training with more
complex operations explained in Section 2.2. Thus, in our design,
a portion of ReRAM arrays are dedicated as buffer subarrays. We
particularly place the buffer subarrays close to the FF subarrays
and connect them with high-bandwidth interconnect. As such, the
intermediate data produced by FF subarrays can be transferred to
and saved in buffer subarrays and input to FF subarrays in later
cycles. Moreover, we add special function unit (sALU) into the buffer
subarray to support the training of FC layers. sALU provides three
types of functions for data pre- and post-processing: (i) vector-
vector multiplication used in error back-propagation; (ii) a scalar
multiplication; and (iii) an abstractor for weights updates.

In addition to the memory subarrays, FF subarrays, buffer sub-
arrays and sALU as the major components in CONV-CELL and
FC-CELL designs, wordline driver and activation function are also
important elements.

Figure 6(c) depicts the scheme of wordline driver. In the design,
we include a zero detect module in front of the spike driver. This is
based on the observation that a large portion of input activations in
a conventional layer are zeros [12]. So zero detect module can help
reduce the amount of computations. Spike driver is used to generate
weighted input spikes. It is worth noting that the spike driver also
serves as the write driver to tune the weights programmed in the
ReRAM array. We deploy the sub and shift circuits to realize the
subtraction and division operations in batch normalization.

The design of activation function is shown in Figure 6(d). The
computation results from the positive and negative subarrays are
first merged at the subtractor (sub), and then sent to the configurable
look up table (LUT) to realize the activation function. The LUT can
be bypassed in certain scenarios, e.g., when a large matrix is mapped
to multiple crossbar arrays.

4.3 EMAT Overview and Dataflow
Figure 6(a) illustrates the hierarchical organization of the proposed
EMAT architecture. It is a scalable extension of CNN-CELLs and
FC-CELLs. The communication between different computing cells
is realized by a Global I/O Bus that connects to an SRAM. In this
case, data transfer between different computing cells go through the
SRAM. A global controller orchestrates the data transfers between
computing cells in training and testing based on the computing con-
figurations (e.g., batch size). The execution of a CNN application on
the EMAT architecture can be realized in a pipelined fashion, thanks
to the data independence in CNN layer-wise computation [22].
@ Once the input are latched from SRAM into the ReRAM subarry
in CNN-CELL, the FF subarrys start the computation.
® When the first input vector is sent to the ReRAM crossbar, the
wordline driver can continue processing the next input vector.
@ The input are multiplied element-wisely with the two crossbar
with positive and negative weights, respectively.

Integrate-and-Fire circuit collects a current on the bitline and
produces output pulse representing results.

® The activation function units perform non-linear functions on
results.

® When the CNN-CELL completes the computation, the extracted
features are output to and stored in SRAM.

@ The FC-CELL fetches input from SRAM and follows a similar
intra-cell computing flow.

©® The results are write back to the SRAM when the processing of
one image is finished or when the buffer subarray is full.
EMAT is a spatially scalable architecture. It specializes the for-
ward CONV and backward FC layers across distinct processing
cells to leverage the key compute and data access patterns in trans-
fer learning. Additionally, the reconfigurability of the architecture
provides significant flexibility for mapping a given network topol-
ogy. For instance, using more cells for mapping a larger CNN or
duplicating cells for a single CNN to improve parallelism.

4.4 Multi-Task Optimization

Many end devices, e.g., mobile devices, need support many real-time
applications concurrently [13]. It requires not only the dynamic
adaptation capability but also multi-task support. The flexibility
offered by the EMAT architecture enables the operation of multiple
CNN tasks by sharing the same feature extractor in a time-multiplex
fashion.

Figure 7(a) illustrates the typical pipelined execution for a single
task, in which a new input can enter the pipeline every cycle within
a batch. Note that in this work, we train all the FCs in target domain
instead of only the adaptation layers for high accuracy. After a
pipeline filling period, one output is produced per cycle, providing
a very high execution efficiency. Given the computation-intensive
nature of CNNs as discussed in Section 3, switching from one task
to another will have to take a long wait time if following the single-
application working flow. To address this problem, we aggressively
exploit the hardware-performance trade-off discussed in Section 3.
Our key idea is to re-utilize the same feature extractor for multiple
tasks. A more powerful CNN-CELL by duplicating copies of ReRAM
arrays with the same weight configuration can be realized to process
feature extraction in a shorter time. Figure 7(b) presents the case
when we duplicate the naive design for four times. The processing
time of a given layer would finish 4x faster than the orginal setup.
Multiple tasks occupy the shared CNN-CELL in a time-multiplexed
fashion. Each FC-CELL fetches the extracted feature buffered in the
SRAM through Global I/O bus.

To sum up, multiple FC-CELLs dedicated to different tasks work
in parallel. Data transfer occurs serially through the shared bus
across multiple FC-CELLs.

5 EXPERIMENT METHODOLOGY

Workload. All the experiments in this work are run on classifica-
tion tasks. We take ImageNet with 14.2M images in 21.8K indexed
synsets as the source domain and Pascal VOC 2007 [11] datasets as
the target domain in transfer learning. Pascal VOC 2007 is selected
as it has significant differences in image statistics compared to Im-
ageNet. To test the efficiency on multi-task scenario, we include
MNIST [17] and Animals on the Web [4] datasets together as the
multiple target domains.

Network models. AlexNet and VGG-16 have been widely used
in transfer learning studies. Thus we choose these two popular

| STt ST
&l

SEIETISEIER

ERIETIRE ﬁ

1 1 1

Ol
o)
]] [It

N

Figure 7: (a) Pipeline based design. (b) Multiplexed design

for multi-task support.
large-scale CNN networks and adopted the same typologies and

hyper-parameters as the references [15, 23].

Evaluation platform. We pre-train AlexNet and VGG-16 on
ImageNet on GPU by Tensorflow [1]. The parameters of our GPU
platform are shown in Table 1. The training procedure periodically
evaluates the cross-entropy objective function on a subset of the
training set and on a validation set. The learning rates are divided
by 10 until the training cross-entropy is stabilized. We then stop
training after 2 iterations.

We built a ReRAM simulator based on NVSim [10] for EMAT
evaluation. The read/write latency is set as 29.31ns/50.88ns per
spike, and the read/write energy is 1.08p]/3.91n] per spike [22]. The
default data resolution on EMAT is 16-bit. Without loss of generality,
we use a resistance range of 20KQ ~ 200KQ for ReRAM cells. The
resistance ranges provides 16 levels (or 4-bit resolution) for weight-
discretization. To obtain the 16-bit data operation, we group every
four arrays and add shifted 4-bit outputs. The ReRAM crossbar
array size is 64, that is, 64 rows and 64 columns per array as that
in [2]. The input SRAM memory was modeled using CACTI [18].
We compare the transfer training to target tasks on the EMAT
architecture against (1) the GPU system and (2) a CMOS counterpart
based on Dadiannao [6].

6 EVALUATION

Performance. Figure 8 compares the execution speedup obtained
in transfer learning when considering only a single target task. The
runtime is measured and normalized to the one when a pre-trained
AlexNet learns the MNIST dataset on CPU (Intel E5-2630 v3 8-core).
The results show that the speedup of EMAT increases 90X at least,
150 at most and 120X on average compared to the GPU platform.
The geometric mean speedup to the CMOS counterpart is 2.5X.

The results show that, EMAT achieves higher speedup when the
target task is complex, for example, VGG-16 on VOC 2007 classifica-
tion. It is simply because the long training time benefits more from
the pipelined design as the computations and data movements are
performed in a highly parallel manner.

Table 1: Configuration of the GPU platform.

Memory 128 GB

Storage 1TB

Graphic Card NVIDIA Geforce GTX 1080
Architecture Pascal

CUDA Cores 2560

Base Clock 1607 MHz

Compute Capability || 6.1

Graphic Memory 8 GB GDDRS5X

Memory Bandwidth || 320 GB/s

CUDA Version 8

1E+4

1E+3
1E+2

peedup

“ 1E+1

€ 1e:0

Nor

&
Figure 8: Normalized speedup.

Energy Consumption. Figure 9 shows the energy consump-
tion of all the applications of interest. Again, all the numbers are
normalized to the CPU energy consumption when learning MNIST
on AlexNet. For the similar reason, the energy saving of EMAT
increases with the complexity of target tasks. Thus, the VGG-16 on
VOC 2007 provides the most energy saving as 115x. AlexNet on
VOC 2007 offers the second most savings as 110x. Compared with
GPU platforms, EMAT provides averagely 87X energy reduction.
The results show that, the energy efficiency of EMAT increases
by 1.9x at least, 30 at most and 8x on average compared with
CMOS platform. This is mainly due to the large size SRAM input
memory. For small- or middle-scale networks that can fit within a
small number or even single computing cells, the energy of EMAT
would decrease significantly due to the decreased access to the
global SRAM memory .

Impact of ReRAM array sizes. We also explore the design
space of different ReRAM array sizes and show the results in Fig-
ure 10. An intuitive thought is that as array size increases, the
overhead on peripheral circuitry reduces and thereby the overall
energy consumption decreases. Interestingly, it is not always the
case: an increase in energy consumption is observed when the
ReRAM array size enlarges from 64 x 64 to 128 x 128. This is be-
cause of the decrease in array utilization ratio due to the sparse
connectivity in CNNs.

Multi-task operation. For EMAT to support concurrent CNN
classifications, we tested EMAT with four concurrent applications
running complex CNNs, e.g., ImageNet, VOC 2007, Animal on the
Web and MNIST. Results show that with a 4 MB SRAM and 30 FPS,
EMAT would be able to perform 4-task simultaneously. With large
SRAM capacity, EMAT can support more concurrent applications as
large memory stores more intermediate feature and reduces spatial
conflicts.

7 CONCLUSIONS

In this paper, we present a ReRAM-based accelerator, EMAT, to
accelerate transfer learning for low power end devices. Two comput-
ing components are specialized for the computational and storage

1E+5 w
> g
EolE-l-'ﬂ E
Lie3
C g
« 1E+2
E v j E=EEEEE
S so] MGPU [CMOS mEMAT |

< »

¢ & & F F

& K\ K\ G <

*&s &3 & K
Figure 9: Normalized energy saving.

E]
!3515 B EMAT-128 @B EMAT-64 B EMAT-32
o F
510 :
Es i
2ot

o ¢ d
i
Figure 10: The EMAT energy consumption comparison
when varying ReRAM crossbar array size.

characteristics of CONV and FC layers. We also introduce a novel
time-multiplexed training flow for executing multi-tasks. The ex-
perimental results show that EMAT can achieve a high speedup
and significant energy saving compared to the GPU platform.

ACKNOWLEDGMENT

Thiswork was supported in part by NSF 1725456, DOE DE-SC0018064
and AFRL FA8750-18-2-0057. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of grant
agencies or their contractors.

REFERENCES

[1] M. Abadi et. al, “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems,” ArXiv e-prints, 2016.
[2] A. Ankit et. al, "RESPARC: A Reconfigurable and Energy-Efficient Architecture
with Memristive Crossbars for Deep Spiking Neural Networks,” in DAC, 2017.
[3] Y. Aytar and A. Zisserman, “Tabula rasa: Model transfer for object category
detection.” in ICCV, 2011.
[4] T.L. Berg and D. A. Forsyth, “Animals on the Web,” in CVFR, 2006.
[5] E.Chen, et al, “ReGAN: A pipelined ReRAM-based accelerator for generative
adversarial networks,” in ASP-DAC, 2018.
[6] Y. Chen el al, “DaDianNao: A Machine-Learning Supercomputer,” in MICRO,
2014.
[7] P.Chi et. al, “PRIME: A Novel Processing-in-memory Architecture for Neural
Network Computation in ReRAM-based Main Memory,” in ISCA, 2016.
R. Collobert et. al, “A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning,” in ICML, 2008.
R. Collobert et. al, “Natural Language Processing (almost) from Scratch.” arXiv,
2011.
[10] X.Dong, et al, “NVSim: A Circuit-Level Performance, Energy, and Area Model
for Emerging Nonvolatile Memory," IEEE TCAD, 2012.
[11] M.Everingham et. al, “The Pascal Visual Object Classes Challenge: A Retrospec-
tive,” International Journal of Computer Vision, 2015.
[12] S. Han et. al, “Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding.” ICLR, 2016.
[13] 5. Han et. al, "MCDNN: An Approximation-Based Execution Framework for Deep
Stream Processing Under Resource Constraints,” in MobiSys, 2016.
[14] M. Hu, et al, “Memristor Crossbar-Based Neuromorphic Computing System: A
Case Study,” IEEE Transactions on Neural Networks and Learning Systems, 2014.
[15] A.Krizhevsky, et al, “ImageNet Classification with Deep Convolutional Neural
Networks,” in NIPS, 2012.
[16] Y.LeCun, “A Theoretical Framework for Back-Propagation,” , 1988.
[17] Y.LeCun, “The MNIST database of handwritten digits.” , 1998.
[18] N. Muralimanchar, et al, “Optimizing NUCA Organizations and Wiring Alterna-
tives for Large Caches with CACTI 6.0,” in MICRO, 2007.
[19] M. Ogquab, et al, “Learning and Transferring Mid-level Image Representations
Using Convolutional Neural Networks,” in ICCV, 2014.
[20] S.]. Pan and Q. Yang, “A Survey on Transfer Learning.” IEEE Transactions on
Knowledge and Data Engineering, 2010.
[21] A. Shafiee, ef al, “ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.
[22] L. Song, et al, “PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep
Learning.” in HPCA, 2017.
[23] S. et. al, “Very Deep Convolutional Networks for Large-Scale Image Recognition,”
ArXiv e-prints, 2015.
[24] T. Tommasi, et al., “Safety in numbers: Learning categories from few examples
with multi model knowledge transfer” in ICCV, 2010.
[25] X.Zhang et. al, “Text Understanding from Scratch,” ArXiv e-prints, February 2015.

[8

[o

