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Abstract

®

CrossMark

The purpose of this paper is twofold. First, we compare, in detail, the derivation of the Casimir—
Polder interaction using time-ordered perturbation theory, to the matching of the scattering
amplitude using quantum electrodynamics. In the first case, a total of twelve time-ordered

diagrams need to be considered, while in the second case, one encounters only two Feynman
diagrams, namely, the ladder and crossed-ladder contributions. For ground-state interactions, we
match the contribution of six of the time-ordered diagrams against the corresponding Feynman
diagrams, showing the consistency of the two approaches. Second, we also examine the leading
radiative correction to the long-range interaction, which is of relative order O(%). In doing so,
we uncover logarithmic terms, in both the interatomic distance as well as the fine-structure
constant, in higher-order corrections to the Casimir—Polder interaction.

Keywords: Casimir—Polder interactions, covariant formalism, time-ordered perturbation theory,
radiative corrections, scattering matrix, propagator denominator

(Some figures may appear in colour only in the online journal)

1. Introduction

As is well known, the ground-state Casimir—Polder long-
range interaction energy between atoms varies as 1 /R(’ in the
short range limit, where R is interatomic distance. Due to
retardation, it is of the 1 /R type in the long-range regime [1].
For excited states, it has recently been shown that there are
long-range tails [2] as a result of retardation.

The result for the ground state can be obtained in two
completely different ways, namely, (i) using a covariant
approach, with the S matrix formalism, matching the scat-
tering amplitude against the effective Hamiltonian (ii) using
so-called time-ordered perturbation theory, which actually
employs time-independent field operators in the derivation
and assigns a different diagram to each ‘time ordering’ of the
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virtual photon emission and absorption processes. In the latter
case, one encounters twelve diagrams, while in the former,
only two. It would be beyond the scope of the current paper to
try to review the vast number of investigations on calculations
of interatomic long-range (Casimir—Polder) potentials fol-
lowing the original paper [1]; let us briefly mention papers on
multi-electron systems [3-5], relativistic corrections as well
as other fundamental questions [6, 7], and particular aspects
of excited-state interactions [8—11].

A dedicated comparison of the two approaches has been
missing in the literature. One advantage of the Feynman
formalism is that it clarifies, uniquely, how to encircle the
poles of the atomic polarizability matrix element. Namely, the
matching of the § matrix to the effective Hamiltonian leads to
the Feynman prescription for encircling the poles. This rea-
lization has been instrumental in the treatment of excited
reference states [2, 11], in which case some states of lower

© 2018 IOP Publishing Ltd  Printed in the UK
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Figure 1. Time-ordered diagrams showing the Casimir—Polder interaction between two atoms A and B. The p and ¢ lines are the virtual states
associated with the atom A and the atom B. The k; and k, are the magnitude of the momenta of the photons to the left and to the right of the

line respectively.

energy can become resonant, and a definite prescription is
needed in order to encircle the poles correctly. However, in
the time-ordered formalism, one integrates the virtual photon
energies k; and k, (we set 2= c = ¢y = 1) from zero to
infinity (and avoids the Feynman contour). One possibility to
solve the question of how to encircle the poles, is to arrange
the terms so that the characteristic factor

1
i+ ky k= ko

appears (multiplied by an odd power of k). This factor allows
one to symmetrize the integrand, so that the k, integration
then proceeds from —o0 to +oo. Finally, one carries out the
k, integration by principal value. However, even after this
somewhat ad hoc prescription is implemented, the result is
only applicable to atoms in their ground states.

We anticipate here the result that for the ground state, the
sum of six time-ordered diagrams without crossed photon
lines is equal to one single ‘ladder’ Feynman diagram. Con-
versely, those time-ordered diagrams that contain crossed
photon lines, lead to an equal contribution as the ‘crossed’
Feynman diagram. The universality of the end result of the
derivation for the ground state means that we can take it as a
safe basis for the calculation of relativistic and radiative
corrections. In fact, this program has been implemented in [6].

ey

It turns out that it is more convenient to use the length gauge
for the atom-field interaction, and the so-called temporal
(Weyl) gauge for the photon propagator. The Weyl gauge has
the advantage over, say, the Coulomb gauge in ensuring that
the 00-timelike component of the photon propagator can
be ignored, while the choice of the length gauge leads to
a situation where we can fortunately ignore the seagull
term, proportional to A'Z, which would otherwise have to be
included in the velocity gauge.

We organize the paper as follows. In section 2, we cal-
culate the long-range interaction energy of the two-atom
system using time-ordered perturbation theory. The covariant
formalism, based on the matching of the scattering amplitude,
is outlined in section 3. In section 4, we analyze the radiative
corrections to the Casimir—Polder interactions. Conclusions
are drawn in section 5. As already stated, we use natural units
with 2 = ¢ = ¢y = 1, and the electron mass is denoted by m.

2. Time—-ordered formalism

In order to write the unperturbed Hamiltonian for a system
of two neutral hydrogen atoms A and B (the generalization
to multi-electron atoms is straightforward), one goes into



J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 215002

C M Adhikari and U D Jentschura

center-of-mass coordinates and defines the relative electron
coordinates (with respect to the center-of-mass) to be 7, and
7, with the corresponding canonical momenta jj, and p,. The
unperturbed Hamiltonian is

l—)' 2 ﬁ 2
Hy= "+ V@) + 2 + V(#) + Hr. ()
2m,, Zmb

Let the center-of-mass of the two atoms (roughly equal to the
position vectors of the nuclei) be denoted as ﬁA and EB.
Then, if the two atoms are far enough apart such that
171, |7s] < |Rx — Rg|, the potentials V (#y) and V(ip) in
equation (2) can be approximated as
V) = - V() = -5 3)
|72l 1Rl

where « is the fine-structure constant. Substituting V (7;) and
V (73) in equation (2), the unperturbed Hamiltonian of the
system reads

=2 =2
H=to L D % g 4)
2ma |’b| 2mb |rb|

The first two terms in equation (4) stand for the Schrodinger—
Coulomb Hamiltonian I:\IA, while the sum of the third and the
fourth terms are the Schrodinger—Coulomb Hamiltonian Hp.
The electromagnetic field Hamiltonian, Hy, is given as

— 2 - —
Anglﬁ%k@m@@) (5)
A=1

Here a; and a, are the usual creation and annihilation
operators, which satisfy the following commutation relation:

[ax(K), afi(k")] = 8Dk — k") 6y (6)

Along with the dipole approximation, the interaction Hamil-
tonian in the so-called length gauge of quantum electro-
dynamics is approximated as

Hyp~ —eTy- E(Ry) — e 7y E(Rp), )

where E(ﬁA) and E (ﬁB) are the (Schrodinger-picture, time-
independent, see [12]) electric field operators. In writing
equation (7), we implicitly assume that the wavelength of the
exchanged virtual photon is much longer than the dimension
of the atom, so that the electric-field operator can be taken at
the center-of-mass of the atom. Furthermore, the electro-
magnetic interaction of the proton is taken into account by
using the relative coordinates 7, and 7, rather than the electron
coordinates. Finally, the electromagnetic-field operators are
given by

d’k
Zf(2 )W\f &)

x [i ay(K)eF R — iaf (K)e R, ®)

ERy) =

and

E(Rp) = Zf(2 )W\ﬁ &)

x [i ay(K)eXRe — iaf (kK)e FRn], )

In terms of the creation, annihilation operators of the field, the
interaction Hamiltonian of the system becomes

d*k

Hyp=—e Zf(z )3/2\/7 [ ax (k) & (k) ek Rs

— iaf (k) &\(k)e R - 7,
+ (i ay() &y (K) e s — ia] (k) &y (K)e *Rs) - 7).
10)

The reference state [¢) = |$5 4> P55, 0) has both atoms A
and B in their ground states and the electromagnetic field in
the vacuum state |0). We here calculate the perturbation effect
of the interaction Hamiltonian. The orthonormality condition
for the atomic parts of the combined atom + field state is

<n|m> = 5nma (11)

where 6, is the Kronecker delta and |n) and |m) are any
atomic eigenstates of the atomic part of the unperturbed
Hamiltonian E), for either atom A or B. In the following, we
reserve the notation |o) for a virtual state of atom A, while a
virtual state of atom B is denoted as |p). It is easy to see that
all odd-order perturbations involving the Hamiltonian (7)
vanish. The second-order terms are the sum of self-energy
effects (when both field operators act on the same atom), as
well as one-photon exchange terms which are relevant only if
one has an energetically degenerate, or quasi-degenerate, state
available in either atom, which can be reached via a dipole
transition [10]; this is typically the case only when excited
reference states are involved [8—11]. Thus, we look into the
fourth-order perturbation, which reads

AEW = ‘% ﬁAB — I/'I\AB ! —
(Eo — Hp)' (Eo — Hp)
—~ 1 —~
X Hyp 7A,HAB b )- (12)
(Eo — Ho)

The prime in the operator @ j Ty indicates that the reference
state is excluded from the spectral decomposition of the
operator. The virtual states which need to be used in the
calculation of the fourth-order perturbation (12) carry one,
and two photons in the electromagnetic field modes.

A Casimir—Polder interaction between two atoms A and B
involving two virtual photons results in four different types of
intermediate states, namely, (1) both atoms are in ground
states, and two virtual photons are present, (2) only one atom
is in the excited state, and only one virtual photon is
exchanged, (3) both atoms are in the excited state, but no
photon is present, and (4) both atoms are in the excited state,
and two photons are present [13, 14]. The electrons and
photons can couple in 2 x 2 x 2 4+ 2 x 2 = 12 distinct ways,
where the first term counts the diagrams where the two photon
emission preceed the absorption vertices, and the second term
counts the diagrams where the first emitted photon is absor-
bed before the second is emitted. Figure | represents all these
12 time-ordered sequences of the interaction.

Let us first investigate the first diagram of the figure 1.
There are four factors which give contributions to the
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interaction energy, namely, emission of 122 at Rp, emission of
k; at Rp, absorption of k, at R, and absorption of k; at R4. The
corresponding fourth-order energy shift reads

&3k &k kk

@ _ 1 2 1k2

AE,—e“fzzfzg > L)
(2m) Qmy e 4

X <¢15,A| Ex (]?l) AR eikl'RA(*l)
X (15,510 K) - Frloye fai)
X (pl&ry(K2) - Blbys a) eFFr(—i)

X (o] /6\)\3(]?2) Tl i) ek
1
E, — k)(—ki — k) (Eisp — E; — k2)

(13)

(Eisa —

where |¢1S,i>’ i=A, B is a ket associated to the ground
state of the atom i. The summation over the virtual states |p)
and |o) of atoms A and B includes an integral over the con-
tinuous spectrum. Atom B undergoes the transition |18,
B) — |o) — |18, B), each time under the emission of pho-
tons, while atom A undergoes the transition |LS, A) —
lp) — |18, A), each time under the absorption of a photon.
We have used equations (7)—(10).

The polarization vectors €), (12,-), with i = 1, 2, satisfy the
following identities,

roman numeral identifying a diagram in figure 1, then for

diagram (I), we have,
D = (Eisa — E, — k)(—ki — ko)(Ers3 — E; — k2). (16)

Note that in the virtual state in the ‘middle’ of diagram I, both
atoms are in the ground state.

The net fourth-order energy shift of the system is the sum
of the contributions of all the 12 diagrams. Explicitly,

AE@ — f d3k1 f d3k2 kiko smr _ klmklr
emndJd 2n)? 4 k2
X 6115 _ k2 122
k3
XII

X Z ¢15A|xm|P> <P|xn|¢1sA> <¢1sB|xr|0> <U|xs|¢133 ZD :
=ary

]ei(/?1+l?z>-1?

The six diagrams we want to study first are I, III, IV, VII,
IX, and X. The rationale behind the grouping is that the
photon-lines of the six mentioned time-ordered diagrams do
not cross (they are the dark-colored in figure 1). By contrast,
photon lines cross in the rest of other six diagrams (gray
diagrams of figure 1). Our treatment is inspired by [13] but
specialized to the mentioned sets of time-ordered diagrams.

Let us look at the diagram III, which is the second time-
ordered diagram without a photon-line crossing (see figure 1).
The diagram III involves the emission of a photon with wave
vector Ez at I?B, the emission of Igl at EA, and the excitation of

en(k) - e k) = Oainp k- e\k)=0, both atoms. Thus, the propagator denominator (D,) corresp-
2 [ kPk onding to the diagram (III) reads
z : — §pa — Zr°r
AZ::I ex, (k) €y (kp) = 22 a4 D = (Eixsa — E, — k)(Ers.4 — E; + Ers3 — Ep)
' X (E1s,p — E5 — k2). (18)
Thus, the contribution to the interaction energy from the first The corresponding energy shift is
AEI(é) = et f d3k1 f &’ k2 klkz smr _ klmklr
@ny?J @2n)? 4 ki
w | &m — k3 k3 eitki+ko) R <¢15,A|xm|P> <P|x”|¢1s,A> <¢1S,B|xr|0><U|xx|¢1s,3> ‘ (19)
k3 oo Ersa— E, — k)(Eisa — E; + Eisp — E)(Eis g — E; — k2)
diagram reads The propagator denominators Dyy, Dy, Drx, and Dy, of the
3 5 i diagrams 1V, VII, IX, and X in figure 1, respectively, are
E(4) f d’k f d’k, k1k2 kl kl given by
@2n)3 2n)® 4 k12
ns v = (E1s.8 — E; — ki)(E1s.4 — E, + Ei158 — E5)
X (5’” - @]eidﬁbﬁ X (E1s.8 — E» — k2), (20a)
ks
<¢1S,A|xm|lo> <P|xn|¢1s,A> <¢1S,B|xr|0> <U|xs|¢1s,3> Dy = (Eis,p — E; — k) (—ki — ko) (Eisa — E, — k2),
oo (Eisa — E, — k)(—k — k) (Eis, — E; — k2) 215) (20P)
where R = ﬁA — ﬁB is the internuclear separation. If we x = (E1s.8 — E5 — ki) (E15.4 — E, + E1sp — E5)
denote a propagator denominator by Dk, where K is the X (Eisa — E, — ka), (20¢)
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D, = (Eisa — E, — k)(Eisa — E, + Exsp — E;)

X (ElS,A — Ep — kz) (20d)

For simplicity, we denote E, — Ejg4 = E5, and E,
Ep,.

— Esp=

Let us now group, simplify, and then assemble the pro-
pagator denominators as below:

1 1 1 —1
Di Dm  h+k ((EAp + Epo)(Eps + k2)

+ —! , (21a)
(EAp + EB(T)(EAp + kl)
D= — ( S — ) L ew
Ejp + Egs\Eps + ki Epo + ko ) ki — ko
I -1
Dvi  Dix ki + ka\ (Eap + Ego)(Epy + ki)
+ = , @10)
(Eap + Epo)(Eap + k2)
d=—t S — L @ia
Epp + Ego\ Exp + ki Epp+ ko )y — ko

Adding equations (21a)—(21d) and simplifying, we obtain for
the ‘ladder’ (hence the subscript L) contribution,

' =D+ Dy + DR + Dy + Dl + DY

1 1 1
- +
(Exp + Epo) (EA/) +k  Ep, + kl)
X J—
ki +ky k—ky
B 1 1 " 1
(EAp + EBU) EA/) + k2 EBU + k2

X + .
ki+ky k—ky

We see the characteristic factor (1) emerge. Furthermore, we
notice that the second term is equivalent to the first (under the
integration over both photon momenta), which implies that
the terms lead to equivalent contributions under the photon
integral.

(22)

The fourth-order energy shift due to the six time-ordered
diagrams I, III, IV, VII, IX, and X, simplifies to

_{{fd%,j'&hh@ mr _ K"K
@em?Jd @2n)} 4 k2
% (6”5 _ kznkzs)ei(/?lJrEz)'ﬁ
k2
2
X Z<¢1S,A|X”’|P> <P|x"|¢1s,A> <¢|s,3|xr|0> (0|x5|¢15,3) DEI
p.o
64 d3kl mngrs| smr klmklr
= [ S5 ke e s — SLL
(2m) (2m) ky
% (6715 _ kélké?]é(/?l‘k/?l)'ﬁ
kZ
2

x Z Z <¢1S,A|xj|p> <P|xj|¢1s,A> <¢lS,B|x[|0> <U|x[|¢1s,3>

po il

(Eap + Eps + 2k1)
(EAp + EBG)(EB(T + kl)(EAp + kl)

(% =)
X - s
k+k -k

where we have used the following identity

EL(R) =

&k,

(23)

ij

. . 6
Z<¢1S,A|x'|P> <P|xj|¢1s,A> = ?Z<¢1S,A|XS|P> <P|xs|¢1s,/x>’

ij K

(24)

which is valid for any S state. Using the identity
fd3k = fooo k2dk fdQ, where d{) = sin§dfd¢, the angular
part of equation (23) can be integrated as

T o mr klmklr kR
‘f(‘) sin 9d9L[(; d¢[6 7]6 !

|
:47{(5”” _R"R )smklR
RZ

kiR
n ((5’”’ B 3R R ) cosklR  sinkR ‘ 25)
(kR?  (kR)?

With the help of equation (25), equation (23) can be re-
expressed as
—et
36m*
x3°%° ¢lSA|xJ|p><p|xJ|¢1SA><¢1SB|XZ|U><U|XZ|¢ISB>

(EA P + EBU)

EL(R) =

p.o j.l

x fo Ak A" (ko R)

o KBy + Ego + 2K)
(Eps + ki)(Eap + ki)

( f dky k2 A’“(/qR)
+ k2)

6!11" 67’5

[ ),
0 (ki — k2) 26)
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where

AT () = (6’” _R'R )smx R"R )

+16m -3

R? X ( R?
COSX sinx

% 2 13

is an even function of x, which allows us to extend the

27

integration limit from k, = —oo to k; = +o00. Consequently,
we have
EL(R) = Z Z ¢1S,A|xj|P> <P|xj|¢1s,A>

72 * p.o j.l EAP + EBU
X <¢1S,B|x£|g> <U|x[|¢1s,3>

00 E Ep, + 2k
X f dk k135mn 5A™ (K R) ( Ap + Ego + 2k)
0

(Eo + k) (Eap + k)

% f dk, k23 L’QR),
- (ki + k»)

where we have used the symmetry of the integrand in order to
extend the integration limits to the interval —oo < ky < 0.
The k-integral has a pole of order one at k, = —k;. Strictly
speaking, the k, integral in equation (28) is not uniquely
defined, and its value depends on the integration prescription.
In the following, we shall implicitly assume that a principal-
value prescription is indicated. Let k,R = x and kKR = x;.
Then the k,-integral can be written as

(28)

f Y dky i AR
—o0 (ki + k»)
eix—nl

npRs 00 2 —
= L(&’” R'R )hm f dx -
R3 1—0 00 X + X1 2i
f e—ix—nlx|
X+ X
nps 00 ix—mnlx|
+ L(é’” — R R hrn f dx ¢
R3 7}—>0 [e%) x + X1 2
—ix—mnlx|
+ f dx © }
X+ X
nps 00 ix—mn|x|
(6’” — R R hm f dx ¢ -
R 7)%0 00 X+ X1 2i

f e x|
x+x 2 ’

where we have introduced a convergent factor e 71!,

It is quite surprising that the principal-value integrals in
equation (29) can be evaluated using Cauchy’s residue the-
orem (see figure 2). One identifies the principal-value eva-
luation with a symmetric encircling of the pole, on a half-
circle either above or below the pole in the complex plane,
and then closes the contour in the appropriate half of the
complex plane, as dictated by the functional form of the
exponential [exp(ix)— upper half, exp(—ix)— lower half].

(29)

Figure 2. Complex integration contours to calculate the principal
value of integrals in equation (29).

We finally take the limit » — O at the end, which yields

foo dk2k3 A"‘(sz) L( s R"R*
oo (k + k) R? R?

nps
—L(é’” SRRR )(7rx1 sinx; — 7 COSX)).

)wxlz cOS X1

R3
(30)

Rearranging equation (30) and replacing x; = kR, one
obtains
ok (5“ B R”Rs)cosklR
R? kiR

7(6"5 B 3R R ) sink;R n cosk R ’
2 (kiR)?

(kaR)*
which we substitute in equation (28) and carry out the algebra
to get

BD

8‘4

ER) = —
L(R) 75,3

XZZ (D15.41X10) (pIX/|D 15 0) <¢15.B|x[|a> <‘7|x[|¢1s.3>

p.o J.t (EAp + EBa)
00 E Ep, + 2k i

<[ ak ke Eap + Bo + 2) [Sln%f
0 (Egs + k) (Eap + k) | (kiR)

~ 2sin’ kR | 2cos’ kiR
(kiR)? (kiR)?

_ 5 sin 2k R _ 6 cos? kR 6 sin? kR 3 sin 2k1R]
kiR)* kiR)3 kiR)’ kRY |
(kiR) (kiR) (kiR) (kiR) (32)

We now express the trigonometric sine and cosine functions
in equation (32) as exponentials,

E(R) = P Z >
p.o .t
» (15,41710) (pl/|p15,4) (D15,81x |0) (o lx | P1s,8) 1
Ea, + Eg, 2i
6 .
X [fm dkeZkiR ki'(Exp + Epo + Zkl){ 1 2i
(EBU + kl)(EAp + kl) (klR)2 (kl[\,)3
5 i f dly K
kR (kR (klR)6

o Eap + Epy + 2kpe B0F { 125
(Ego + k)(Esp + k) LkR? (kR (R

61 3
TR R>6}]'
1 1 (33)
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Let us introduce a new variable w which has values w = —1i k;
in the first k;-integral and w =i k; in the second k;-integral
inside the square bracket [ ] in equation (33). This amounts to
a Wick rotation [11], which can be carried out without pro-
blems because we are dealing with ground-state atoms,

P 50 W4 e 2uR
[T aute

7273 Jo R?

ZE ¢lSA|x |P> <p|xj|¢ISA>
Ap

P (EAP tw )

% ZEBO <¢lS,B|x[|0> <U|xz|¢1s,3>
ol

EL(R) = —

(Egy + w?)

2 5 6 3
x |1+ —+ + +
[ wR (wR)? (wR)? (wR)* ]
1 4 n~—2wR
3278 R2
2 5 6 3
- [1 TR TR TR <wR>4]’ o9

wR
where the quantities ay(iw) and ag(iw) are the dynamic
ground-state polarizabilities of atoms A and B, respectively,

E4, :
ay(iw) = Z &l ¢1s Al 1p) <P|x]|¢1s,A> ’
P (EA/) )
(35a)
ap(iw) = —; (EBJ ) (#s, slx/lo) <U|x/|¢’ls B
(35b)

The dynamic polarizabilities given in equations (35a) and
(35b) can be rewritten as

2

i) = & L
a (iw) 3 §<¢IS,A|x H— Ejgpt iwx |¢15,A>
=Y Pisa(tiw), (36a)
+
1 13
1w e —
op(iw) = 3 §<¢1s3| H - Ensp+ iwx |¢1S,B>
=Y Pisp(fiw), (36b)
+

with an obvious definition of the polarizability matrix ele-
ments P. For large w, the polarizabilities show w™* behavior.
The expression for the Casimir—Polder interaction energy
between any two atoms A and B from the six time-ordered
diagrams of the ‘ladder’ type (I, III, IV, VII, IX, and X in
figure 2) is thus given by

4 72wR

EL(R) = f dw a(iw) apiw) S

32g

5 6 3
x|1+—+ >+ T T 7 | 37
wR (wR) (wR)- (wR)
Here we have used ¢2 = 4ma which holds in the natural units,
and we remark that equation (37) is valid for any interatomic
separation R provided their wave functions do not overlap.

Interestingly, the E; (R) is one half of the total Casimir—
Polder interaction energy between two atoms (see [11],
chapter 85 of [15], or [16]). The other half to the Casimir—
Polder interaction, denoted here as Ec(R), where the subscript
‘C’ stands for cross, comes from the remaining six-time-
ordered diagrams in which photon lines cross, namely, II, V,
VI, VIII, XI, and XII in figure 1. One can perform a separate
evaluation of these crossed diagrams, along the same ideas as
discussed above (in particular, the integration contours in
figure 2 are useful). Skipping further details, it is useful to
point out that the contribution of the six time-ordered dia-
grams with crossed photon lines is just the same as the one
from the ladder diagrams, i.e., that Ec(R) = Ep(R).

3. Covariant formalism: matching the scattering
amplitude

We briefly recall the formalism used in [11], in order to
identify the contribution of the crossed and ladder diagrams to
the Casimir—Polder interaction energy. To the fourth-order,
the contribution to the scattering operator, S, is given by the
following expression (see equation (5) of [11])

Ll ]

x dts ﬁ dty TIV(W)V () V (1) V (1),

’\(4)

(38)

where T denotes the time ordering operator. In the dipole
approximation, the interaction Hamiltonian V (1) = Hup (see
equation (7)) can be conveniently expressed as

V() ~ —dy- E(Rx, 1) — dp - E(Rp, 1), (39)

where c?, = e 7} is the electric dipole operator for atom
i whose nucleus is at R;, and this time, we explicitly indi-
cate the time-dependence of the interaction Hamiltonian,
employing interaction-picture field operators. Assuming that
the unperturbed state of the system contains atoms in the state
[) = |y, ¥p) and the electromagnetic field in the vacuum
state |0), the fourth-order forward-scattering S-matrix element
is given by

(89 = (¢1(015?10) [¢).

The time ordering of the electric-field operators in
equation (38) leads to the photon propagators, while the four
types of contributions which arise due to time orderings of
electric dipole moment operators in the interactions V(¢;) are
given in equation (6) of [11], which read as follows:

(40)

Cr= (Ul dai(@) dax()1y) (Ul Ty dii(12) dpe (i) 1), (41a)
Co= (ValTy di(t) dae(ta) vhy) (el Ty dij(22) dpe(i3) [0og),  (41D)
Cs = (YylTy dii(0) die (1) W) (UylTy daj(12) daB3) 1), (1)
Co = (VlTy dui(t) dix () 0) (VlTa daj(02) dae(ta) 1), (41d)

where T is the time ordering operator for the dipole moments.
The graph (a) of figure 3 represents the sum of the con-
tributions C; and C;, while the other two contributions,
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[P a) 1Y) [Wa)N_|va) 1)

[VB) V) [VB) VB)

V)

V)

(a) Ladder

(b) Crossed-ladder

Figure 3. The ladder (a) and crossed-ladder (b) Feynman diagrams,
shaded in order to show the equivalence to the time-ordered
diagrams in figure 1. |14) and |vp) are virtual-states accessible by a
dipole transition from the atomic reference states |¢,) and [),
respectively. The latter are chosen as the |1S) states in the
calculations reported here.

viz. C; and C4 come from the graph (b). All terms given in
equation (3) are multiplied by two photon propagators of the
index structure ‘12’ and ‘34°, respectively, and, hence, give
identical contributions to the S matrix element, as explained in
detail in [11]. Consequently, the ladder (S®); and the cros-
sed-ladder (S™)c contributions to the scattering matrix ele-
ment can be written as

f dtlf dtzf dtsf
x (O|Tz[Ei(Ra, 1) E;(Rp, £)1]0)

x (O|Tx[Ex (R, 13)E¢ (R, 1)110) (1l Ty [dai (1) dar (83)] [4n)
x (Y Ty [dp; (t2) de (t2)] 1)

(S@) = (S®)e

(42)

At this point, we could stop the calculation and argue that,
since the S matrix elements generated by the crossed and
ladder diagrams are the same, the effective Hamiltonians and
energy shifts corresponding to the diagrams also must be the
same, proving consistency with the results of section 2.
However, we carry through the derivation for completeness.
We recall that T is the time ordering operator for the electric
field operators. According to equations (18) and (21) of [11],
one may carry out the z-integrals of equation (42), which
finally gives

(59 =1 [ 2wt Do, D, Bana@)a),

oo 2T
(43)

where T = f Tdr = t; — t; denotes the total interval of time
in which the transition occurs. The photon propagator, or,
merely, as explained in [11], electric-field propagator,

Djj(w, ﬁ), can be expressed in terms of the tensor structures
Qjj and ﬂlj,

Dyeor B) = Sy — gy — ! (44)
jlW, k) = —— a4 — Pjj| —— — )
/ ar | Y Nw R w?R?

where

R:R;
L. (45)

and ﬁ,‘j = (5,‘1' -3 R2

RiR;
= 05 — F,

The dynamic polarizability a4 ;(w) in equation (43) is
given as

ap ik (W) = Z(

n

<1/JA|dAi|VA> <1/A|dAj|1/JA>
E,,’A — w — 1€

n (aldailva) (valdajlibn) .

46
E,,,A + w — i€ ( )

The matching relation for the diagonal element of the effec-
tive Hamiltonian H.g (‘quasipotential’) derived from an S
matrix element is (see equation (3) of [11])

(SWY = —i T (4)|Hegr| ),

so that, for the contribution of the ladder Feynman diagram of
(|Hegs|th) = EL(R), one has in view of equation (43)

EL(R) = fo g_% Dy(w, B) Die(w, Baun i (@) ().

(48)

For a reference 1S state, one has ay i (w) = (6%/3) au(w).
Under a Wick rotation w — i w, equation (48) reads as

(47)

whe 2R
EL(R) =

“32n 3f dw ax(iw) aB(lw)

2 5 6 3
x[1+—+ + 5+ . 49
wR  (WR?  (wR)® (wR)*
Note that, £y (R) is half of the total interaction energy, con-
firming the consistency with the result reported in section 2,

which implies that the ladder-type diagrams contribute exactly
half of the Casimir—Polder interaction.

4. Radiative corrections

Relativistic corrections to the leading-order expression

ER) = EL(R) + Ec(R)

72wR
= f dw a(iw) ap(iw) L
2 5 6 3

involve corrections to the atomic Hamiltonian, to the energy,
to the wave function, and to the transition current [6]. In units
with 2 = ¢ = ¢y = 1, which are used throughout this article,
the Bohr radius is ag = (am)~!, and the interatomic distance,
expressed in atomic units, is

o= — amr. 51)

ap
One can write (see [6]) a systematic expansion of the inter-
action energy, which clarifies the relevant orders of the
expansion in powers of the fine-structure constant a.. In the
non-retardation regime, one encounters the following terms
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(see equation (29) of [6])

C(i)
E(a, mR) = Egee () — ,z,: mac m
c¥
= Efree (a) (52)

— S mai—L
ij p’

where Ege. (o) refers to the a-expansion of the sum of the free
(non-interacting) energies of the two atoms. (For a con-
jectured necessary generalization of this expansion, see
equation (80) below.)

The leading term from the Casimir—Polder interaction is
proportional to C{?, and equal to the van der Waals energy.
Here, we recall that in our units, the Hartree energy is
expressed as Ej, = a?m. In the non-retardation regime, the
quadrupole term gives a correction proportional to Cg(z) (see
equation (33) of [6]). Surprisingly, this term is not suppressed
by a factor of «, but by a higher power of the scaled intera-
tomic distance p (eighth power instead of sixth). The relati-
vistic corrections to the Hamiltonian, energy and wave
function, together with the dipole-octupole mixing term and
the relativistic corrections to the current give the term C(4)
which is still proportlonal to 1/p° but has a prefactor ma*
instead of ma?, and is thus suppressed by two powers of c.
We find that the radiative correction to the Casimir—Polder
interaction contributes, in the non-retardation regime, to the
coefficient C”, with a prefactor proportional to am In(a™2).
(The single power of the logarithm is denoted here by the
second upper index of the coefficient, inspired by a com-
monly accepted notation adopted in Lamb shift calcula-
tions [17].)

In order to obtain the leading radiative correction, we use
the ‘effective radiative Lamb shift potential’ (see [18]),
denoted as éViuq,

— In[a~?] 6V,

(53)

%
Viaa = 29 (a1 nfa=2y 20 _ da
3 T

where 6V is a ‘standard potential’ whose expectation value,
on a hydrogenic state, has particularly simple prefactors,

§V = 1L 6O (F) = madm 6@ (L]
m2 agp

(am)?
e

(nS|6V| nS) = (54)
We recall that only § states are nonvanishing at the origin. We
then perturb the Hamiltonian, energy, and reference state, by
the radiative Lamb shift potential, in both atoms A and B. We
will study the corresponding radiative shift for two hydrogen
atoms, which are both in their ground state. The modification
of the total Casimir—Polder interaction can be written as

72wR
SE(R) = 7r(47r)2 f dw a(iw) So (iw) S
2 5 6 3
x [1 f Rt ot (wR)4], (55)

where dap is the perturbation of the polarizability due to the

‘standard potential’ (54),

bop(iw) = OPis(Fiw). (56)
+

Here, 6Py is the 6V-induced perturbation of the polarizability

matrix element defined in equation (2), for atom B. The

perturbed P-matrix 6Py element has three contributions,

namely, corrections to the Hamiltonian of the propagator

denominator, the energy, and the wave function. Explicitly,

6Pis(iw) = 6PE (iw) + 6PE (iw) + 6P (w),  (57)
The correction arising from the Hamiltonian reads
&2
6P (iw) = 1§ | xi——o————
3 H — ElS + 1w
<6V — 1 ilis), (58)
H — ElS — 1w

which is zero as the matrix element of the Dirac-9 between any
two virtual P states vanishes. The contribution to the Casimir—
Polder interaction from the correction to the energy is given by

§PE (w) = — -0 Pys(w) (1S]8V] 1S)
Jw
40 .
= —a'm —Pis(iw). (59)
ow

The modification of the P-matrix element due to the wave
function correction, to the first order, is given by

<lS !

6P (iw) = Z¢? S — L
15 H — ElS —+ iu)
where the perturbed 1S-state wave function is

o(1S) >, (60)

|6(1S)) = m vV |1S). (61)
In coordinate space, one has
. 1 , er/a
OV 5(F) = EéRlo(V) =2a %

« [_L _ L(s 2y, - zln(L)] + —], (62)
r ao ao ao

where = 0.577 2157 is the Euler-Mascheroni constant.
The result (62) is in agreement with equation (23) of [19].

4.1. Short range

In the short-range regime, i.e., 1/(am) < R < 1/(a’m) , the
radiative correction to the interaction energy takes the form

_ 6
(4m)*RO

x f ™ dw o5 (iw) s (iw) 2 In(a~2)
0 RE

OEq(a, mR) = —

6xdl
(amR)®’

where the delta-perturbed van der Waals 6X9' coefficient (‘dI’
stands for dimensionless, i.e., expressed in atomic units) is

(63)

= ,i om In(a™?)
3w
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given by

(o]
sxa =8 f dw oL (iw)6adl (iw)
wJo

_6 > dl g (E.dl) /- (6,dD) /:

= dw ajg(iw) (dayg™ (w) + day’s™ (iw)).
wJo

(64)

Here E, ¢, and dl stand for the energy correction, the wave
function part, and the dimensionless quantity respectively.
One can use convergence acceleration techniques as discussed

in [20, 21] in addition to other numerical methods presented in
[17] and evaluate the integral (64) numerically, which yields

5X9 = 69.371 0888 2. (65)

The radiative correction to the interaction energy can be
expressed as

5CY
SE..y(ct. mR) = —am m, (66)
where
5CS) = 29.442 0042 In(a~2) (67)

is a large coefficient, which, in addition, also contains a
logarithm of the fine-structure constant. The large magnitude
of the logarithmic coefficient multiplying the radiative cor-
rection, which amounts to an approximate numerical value of
30 x 1n(137%) ~ 300, compensates the additional power of «
in comparison to the relativistic corrections considered in [6];
this implies that the effect is of the same order-of-magnitude as
the relativistic corrections considered in [6] and should be
included in any precise theory of the interatomic interaction. In
a wider context, the emergence of logarithmic terms in an
accurate treatment of the interatomic interaction, in both the
interatomic distance as well as the fine-structure constant, is
discussed in the appendix. On the other hand, in the short-
range regime, the interaction energy E («, mR) is given by [22]

_3
n(4m)2R°

c¥
(amR)®’

E(a, mR) = — fooo dw ayg(iw)ays(iw)

=—a’m

(68)

where C/? = 6.499 0267. (In obtaining numerical results, we
treat the hydrogen atoms in the non-recoil limit, i.e., in the limit
of an infinite mass of the nucleus.) Comparing 0E 4 (<, mR) of
equation (66) to E(«, mR) as given in equation (68), one can
conclude that the correction to the Casimir—Polder interaction due
to the leading radiative correction is of relative order a3 In(a2).

4.2. Long range

In the long-range limit, i.e., R > 1/(a?m) , however, the
dynamic polarizability of the ground state can be approxi-
mated by its static polarizability. Consequently, the Casimir—
Polder interaction and the radiative correction to the Casimir—

Polder interaction read
E(a, mR) = —a,(0) ag(0)f (R), (69)

OEra(a, mR) = —2 o, (0) 5@3(0):—aln(a’2)f ®), (70)
m

10

where the function f(R) is an integral over the angular fre-
quency w,

_ 1 o0 4.—2wR i 5
F® = 1673R? Jy dwwe [1 TR (wR)?
6 3 23
= . 1
* (wR)? + (wR)4] (47)3R7 an

The ground state static polarizability a4 (0) of atom A, in the
case of hydrogen, is given by
9 ¢?
ax(0) =

2 ofm3

(72)

The §V-perturbed ground state static polarizability dag(0) =
bay5(0) is the sum

E) @ 167 ¢2
Oays(0) = 6ajs’ (0) + 605 (0) = — (73)
46 o*m
where
43 ¢2 f 81 e2
a8 (0) = ———, 820y = ———, 74
is (0) 23 o?m3 15 () 46 o*m? 74

are, respectively, the energy and the wave function parts of

delta perturbed ground state static polarizability. As a result,

we have, in natural units,

1863 1

16 7 (ma2RY’
501 o’ 1n(a?)

272 (ma’R) ’

It is evident from equations (75) and (76) that, in the long-

range, the Casimir—Polder interaction and the perturbed Casi-

mir—Polder interaction vary as inverse seventh powers of the

interatomic distance, and the leading-order radiative correction
to the Casimir—Polder interaction is of relative oder o In(a~2).

E(a, mR) = —a®m (75)

OEa(cr, mR) = —a®m (76)

5. Conclusions

We have analyzed the Casimir—Polder interaction between two
neutral hydrogen atoms in the ground state. This process entails
the exchange of two virtual photons. The topologically distinct
12 time-ordered diagrams are grouped into two equal half on
the basis of the presence of crossing in the photon-lines (see
section 2). The contribution E} of the six ‘ladder’ diagrams, in
which the photon lines do not cross, is seen to be equal to the
contribution E¢ of the six diagrams with crossing photon lines.

Within the framework of covariant form of Quantum
Electrodynamics, all of these twelve time-ordered diagrams
can be replaced by just two Feynman diagrams (section 3). The
contribution of the ladder Feynman diagram is seen to equal
the contribution of the six ‘ladder’ diagrams (without crossed
photon lines) in the time-ordered formalism. In addition to this,
the time-ordering formalism and the covariant formalism yield
identical results for the total Casimir—Polder interaction.

In section 4, we discuss a systematic expansion of the
Casimir—Polder interaction energy in powers of the interatomic
distance, and of the fine-structure constant. In the sense of
equation (52), we find that the radiative correction to the
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Casimir—Polder interaction contributes, in the non-retardation
regime, to the coefficient C®, with a logarithmic factor.
Specifically, it is proportional to a’m In(a~2)/p®, where p
is the interatomic distance, measured in atomic units (see
equation (51)). (The one power of the logarithm is denoted here
by the second upper index of the coefficient.) As a consequence,
the radiative correction is of relative order o In(av2).

Our detailed calculation in the time-ordered formalism,
as outlined in section 2, crucially depends on the correctness
of the principal-value prescription used in the evaluation of
the &k, and k, integrals given in equation (29). This treatment
is restricted in validity to the ground-state interaction, where
no additional poles due to virtual resonant transitions to
energetically lower virtual states are available [11]. As much
as our calculation shows the mutual consistency of the time-
ordered, and the Feynman diagram treatment (the latter profits
from the matching of the scattering amplitude), it also high-
lights the limitations of the time-ordered formalism, which
avoids making concrete statements regarding the correct
placement of the poles of the atomic Green function.
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Appendix

We recall, for convenience, the most general form of the

interatomic Casimir—Polder interaction in term of the dynamic

polarizabilities from equation (50), where we introduce the

variable x = 2wR,

EQR) = _j(\)oo dx e (48 + 48x + 30;62 + 4x3 + x9Y
5127°R

« ix ix
(,YA(E) LYB(E).

)
We would like to find an expansion of this expression in the
range R > ay = 1/(am), but not necessarily R > ay. One

may use the expression in terms of oscillator strengths f,,4 for
the dynamic polarizability o, (iw),

O[A(iLU) — Z fr‘lA

2 2’
n Wha +w

(78)

and analogously for atom B. For a hydrogen atom in the
ground states, the oscillator strength f,4 is given as

2 e?
‘flllA =

— Eun | 07y [n) [,
and otherwise one has to sum over the coordinates of the
atomic electrons.

In the interatomic distance range relevant to the van der
Waals interaction, we seek to find the coefficients in the
expansion (see equation (52) here and equation (29) of [6])

c¥
E(a, mR) = —Z mao! L
i (amR)’

(719)

(80)

11

where we ignore the free atomic energy. We here conjecture
that the functional form given in equation (80) should be
augmented by logarithmic terms,

C{*H In* (amR)

E(a, mR) = —)  ma/ p—

ijk

@1

The C;i) coefficients are a special case of the Cj(i’k) for k = 0.
In order to bring the expressions for the coefficients into a
convenient form, one scales variables according to

P =ao Py, g = ao Pp.
. 1 = N 1 -
pA:_P/\, pB __PBa (82)
agp ap
Hy = Ej, Hy, Hp = E;, Hp,
Ey=E, &4, Eg = E, &, (83)

where ag = 1/(am) is the Bohr radius, and E, = o’m is the
Hartree energy. Furthermore,

p = amR = R/ay (84)

is the interatomic distance, expressed in Bohr radii. The
advantage of the scaled variables g, p. 13,'4,3, Ha.p, and &, p is
that they assume numerical values and expectation values of
order unity, for atomic reference states and transition matrix
elements. Alternatively, one might say that the scaled vari-
ables are expressed in ‘atomic units’.

We confirm the results given in equations (30)—(32) of [6],

2/, 1 .
C(Z,O): = i j i , 85
o =\ T e g e Y
0 = 2{ gip}, 1 PiBj).  (86)
9 Ha + Hp — €4 — &

PV = 7Ny N, (87)
(s

Here, N, and N are the number of electrons in atoms A and B.

Furthermore, we find the following representation for the

higher-order coefficient C2(6’0) emerging from equation (77),

1 =2 )
PO = _E(NA (Pg) + N (P4))

+2 <P;; Pj !

9 His+Hpg — E4— &
In the seventh order in «, a logarithmic term is obtained, which
is proportional to p~—!. The mechanism behind the generation
of the logarithm is that one cannot expand the integrand in
equation (77) to arbitrarily high orders in w,4 R and w,p R,
without incurring infrared divergences for small x. One thus
has to introduce a scale-separation parameter €, as in Lamb
shift calculations [17, 23], to separate the region x <
{wuR, w,g R} from the region x > {w,x R, w,p R}. Finally,
one obtains the logarithmic coefficient

P,';Pg>. (88)

cob— —%(NA DGy + No (5DG)). (89)

The expression for the accompanying nonlogarithmic term is
more complicated and of the Bethe logarithm type,
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8 o o
0 = 55193 = 165 1) (N (8D (By)) + Ng (6D(By)) +

i (Ha — E)*'InQalHa — &) — (Hp — E)*InQalHg —

88
1357

Esl)

A”B

><<pp

(Ha — &n)?

For two identical atoms, the denominator (Hy — &£4)% —
(Hp — Eg)? vanishes if, in a sum-over-states representation,
the same excited intermediate state enters the calculation.
However, the numerator in this case also becomes singular.
Numerically, one could treat the problem by adding an
infinitesimal shift to the Hamiltonian of atom B, as in the
replacement Hg — & — Hp — & + 1, and considering the
limit n — O at the end of the calculation. Alternatively, for
two identical atoms with & = & = &, and [(0|g,|ma) > =
[{01pglng) > = [(Olp|n) |> (for ny = ng), the contribution of
the same-excitation states in both atoms yields a contribution

_ 44 3 232 _ 4

x [1 4+ 4 InQa|&, — Eo)]

L U PRI+ 41n(2alé, — D)
n oD

~7.0 _
L=

The full C{7? can, in this case, be obtained by adding the
term C, 1(7‘0) to the term from equation (90), when the sum over
virtual states in the latter is restricted to virtual states with a
manifestly different energy for the two atoms.

The above consideration illustrate that in higher orders,
logarithmic terms (both in « as well as in R) naturally occur
in calculations of the Casimir—Polder (van der Waals)
interaction and need to be taken into account in a precise
analysis of the problem. Furthermore, we uncover a Bethe-
logarithm-like structure in the accompanying nonlogarithmic
terms.
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