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ABSTRACT

The ending of Moore’s Law makes domain-specific architecture as

the future of computing. The most representative is the emergence

of various deep learning accelerators. Among the proposed solu-

tions, resistive random access memory (ReRAM) based process-in-

memory (PIM) architecture is anticipated as a promising candidate

because ReRAM has the capability of both data storage and in-situ

computation. However, we found that existing solutions are un-

able to efficiently support the computational needs required by the

training of unsupervised generative adversarial networks (GANs),

due to the lack of the following two features: 1) Computation effi-

ciency: GAN utilizes a new operator, called transposed convolution.

It inserts massive zeros in its input before a convolution operation,

resulting in significant resource under-utilization; 2) Data traffic:

The data intensive training process of GANs often incurs structural

heavy data traffic as well as frequent massive data swaps. Our re-

search follows the PIM strategy by leveraging the energy-efficiency

of ReRAM arrays for vector-matrix multiplication to enhance the

performance and energy efficiency. Specifically, we propose a novel

computation deformation technique that can skip zero-insertions

in transposed convolution for computation efficiency improvement.

Moreover, we explore an efficient pipelined training procedure to

reduce on-chip memory access. The implementation of related cir-

cuits and architecture is also discussed. At the end, we present our

perspective on the future trend and opportunities of deep learning

accelerators.
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1 INTRODUCTION

Generative adversarial network (GAN) based unsupervised deep

learning has recently been extensively deployed in various mod-

ern computer vision tasks [11, 12, 20]. GANs have demonstrated

great potential in extending deep learning into a wider range of do-

mains [8, 13, 30] where sufficient labeled training data is generally

unavailable or at least costly to obtain. In contrast to traditional su-

pervised learning which requires a large amount of labeled training

data, GANs are capable to learn reusable feature representations

from unlabeled samples. In a GAN model, two deep neural net-

works (DNNs) – a generator and a discriminator, are simultaneously

trained against each other via an adversarial process: the generator

captures the data distribution and attempts to generate synthetic

samples, while the discriminator implements a binary classifier to

differentiates the samples generated by a generator against real

data. This learning process is performed iteratively until we obtain

a generator with strong generative capability and a discriminator

with high classification accuracy.

Given the abundant DNN accelerator designs [4, 5, 22, 23], it

was believed that the computational needs of GANs can be accom-

modated by conventional DNN accelerators. As such, for a long

period, there was a lack of hardware accelerators for GAN execu-

tion. By studying the algorithmic characteristics of GAN models,

researchers realized that the training process of GANs involves a

special mathematical operator (e.g. transposed convolution), more

complex training phases, and massive computation and data move-

ment. These problems, however, have been exacerbated in recent

years because of the continuously increasing trend of deploying

larger and deeper networks in GANs, e.g. 101-layer ResNet genera-

tor and discriminator [12].

Although some designs [24, 28, 29] have recently been proposed

for GANs acceleration, these solutions are subject to various con-

straints. For instance, the dataflow optimization approach in [24]

limits the shape and structure of the generator and/or discriminator

being trained in a GAN model and fails to support many popular

GAN variations. FlexiGAN [28] and GANAX [29] require a sophis-

ticated interleaving MIMD and SIMD microarchitecture to support

their proposed dataflow. In this paper, we present our research on

efficient architecture design for GANs. We utilize the energy effi-

ciency of the emerging resistive random access memory (ReRAM)

array for vector-matrix multiplication, and the design follows the

Process-In-Memory (PIM) concept to improve performance and

energy efficiency. Specifically, we propose a novel computation

deformation technique that can skip zero-insertions in transposed

convolution for computation efficiency. Moreover, we explore an

efficient pipelined training procedure to reduce on-chip memory

access. In summary, we make the following key contributions:
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• We completely eliminate inserted zeros in transposed convo-

lution by a novel computation deformation. The optimized

computing model exhibits improved computation efficiency

and resource utilization.

• We analyze the general training process in GAN and pro-

posed a pipeline architecture that improves system through-

put by leveraging structural layer-wise computation. The

architecture uses ReRAM array to perform calculations di-

rectly, without the need for additional processing units. The

ReRAM memory is also used as buffers to store intermediate

results. This design greatly reduces data movement and en-

ergy consumption by preventing data from being transferred

across the memory hierarchy.

• To further improve the training efficiency, we propose spa-

tial parallelism and computation sharing by exploring the

data dependency and the trade-off between parallelism and

hardware resource.

• Weuse various applications and themost recent GANmodels

on distinct benchmarks to evaluate the effectiveness of the

proposed design. Our experimental results show significant

acceleration and energy savings compared to prior arts.

2 BACKGROUND

In this section, we describe the background of GAN and some of

the concepts involved in its development. We also briefly introduce

the emerging ReRAM memory and its basic operations.

2.1 GAN Basics

GAN is an unsupervised training paradigm based on an adversarial

game between a generator (G) and a discriminator (D) as illustrated

in Figure 1. Both D and G typically aremodeled as DNNs and trained

simultaneously. In general, G is optimized to produce good samples

from noise to simulate real data distribution, while D is a binary

classifier trained by distinguishing between real samples and gen-

erated samples. The objective of GAN training can be represented

as a minimax game with these two players:

min
G

max
D

V (D, G) = Ex∼Pdata [loдD(x )]+Ez∼Pz [loд(1−D(G(z)))] (1)

In image processing, most of the GAN variations are (or at least

partially) based on the deep convolutional generative adversarial

networks (DCGAN) [20]. Therefore, DCGAN is the targe model for

GAN acceleration. In DCGAN, D uses discriminative convolutions

to “downsample” the input to produce a classification. Instead, G

takes a uniform noise distribution as input, then projects it onto a

small spatial extent convolutional representation with many feature

maps which serves as the beginning of a series of transposed con-

volutional (TCONV) layers. The results are eventually converted
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Figure 1: A GAN system.
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Figure 2: The ReRAM basics.

into high-dimension images. Different from traditional convolu-

tion operation (CONV), TCONV inserts many zeros into its input

feature maps and then performs the up-sampling convolutional

computation. The output feature maps of TCONV are larger than

its input. TCONV can essentially be implemented using the CONV

operator. However, it requires adding several columns and rows of

zeros to the inputs, resulting in severe resource under-utilization.

Activation layers are typically cascaded after convolutional lay-

ers to act as a threshold by performing a non-linear function. The

batch normalization layer is another important component. It is

applied before activation layers to stabilize the training process of

GANs.

2.2 ReRAM Basics
ReRAM is an emerging type of non-volatile memory that stores

information with cell resistances. As demonstrated in Figure 2(a),

each ReRAM cell has a metal oxide layer sandwiched between

top electrode (TE) and bottom electrode (BE). The resistance of a

ReRAM cell can be programmed by applying a current or voltage

with proper pulse-width or magnitude between TE and BE. The

data stored in a cell can be represented by the resistance level ac-

cordingly: a low resistance state (LRS) denotes logic bit ‘1’, while a

high resistance state (HRS) represents logic bit ‘0’. For read opera-

tions, a small sense voltage is applied across the device, and then

the cell resistance can be determined based on the magnitude of

the detected current to further obtain a corresponding logic value

stored in the cell.

Recent work has demonstrated a high density ReRAM crossbar

implementation. Figure 2(b) illustrates the array biasing scheme

when writing ‘1’ on a 3 × 3 ReRAM crossbar array. The wordline

(WL) and bitline (BL) of the selected cell are driven to V and 0

respectively, while unselected WLs and BLs are set toV /2. To write
a ‘0’, the biasing polarity must be alternated. For a read, the selected

WL is charge to a small read voltageVr and the current changes on
the corresponding BL will be sensed to determine the resistance.

3 PRIOR ARTS
A major challenge in GAN acceleration is the high demand for

computing resource and large data transfer because a GAN model

consists of two DNNs. Moreover, GANs training involves more

complex operations and more computing phases compared to tra-

ditional supervised deep learning. For instance, a direct adoption

of the accelerator PipeLayer [23] designed for CNN training to im-

plement GAN consumes 3× latency and hardware compared to its

CNN counterpart. Moreover, existing schemes mainly focus on ac-

celerating discriminative convolution. The generator core leverages

TCONV, a fundamentally different operator that first inserts many

zeros into its input feature maps and then performs the up-sampling

CONV computation. This operator manifests unique challenges for

hardware acceleration, which is not well studied in prior arts.
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Table 1: Comparison of GAN Accelerators

Accelerator Year Description Architecture Optimization

[32] 2017 TCONV acceleration on FPGA reversing loop; stride hole skipping

FCN-engine [27] 2018 CMOS TCONV inference accelerator reschedule TCONV data path with on-chip buffer

Red [10] 2019 ReRAM TCONV inference accelerator pixel-wise mapping; zero-skipping data flow

[24] 2018 CMOS GAN accelerator time multiplexed design; zero skipping

FlexiGAN [28] 2018 GAN acceleration on FPGA TCONV computation reorder; architecture optimizer on FPGA

GANAX [29] 2018 CMOS GAN acclerator TCONV computation reorder; MIMD-SIMD;

decoupled access/execute μengine

We summarize recent works on GAN acceleration in Table 1.

The work in [32] attempted to accelerate TCONV on FPGA. FCN-

engine [27] and Red [10] implemented a fully convolutional accel-

erator that can handle both CONV and TCONV operations using

CMOS and ReRAM, respectively. These three works only focus

on inference task but do not support the more sophisticated and

intensive training function. Song et al. [24] proposes a CMOS-based

GAN training accelerator where zero operands can be skipped by

carefully mapping the network onto its process elements (PEs).

The proposed dataflow, however, imposes strong limitations on

the shape and topology of G and/or D, making it less flexible to

serve various GAN variations. FlexiGAN [28] and GANAX [29]

reorder the output computation and allocate computing rows with

similar patterns of zeros to adjacent PEs for efficient TCONV ex-

ecution. To support such reorganized dataflow, these two works

propose specific architectures to realize interleaving MIMD and

SIMD operations on FPGA and ASIC, respectively. FlexiGAN [28]

and GANAX [29] both implement decoupled access and execute

micro-engines, resulting in increased design complexity.

4 EFFICIENT PIM ARCHITECTURE FOR GAN

In this section, we present our research on two ReRAM-based accel-

erator architectures for GANs, namely ReGAN [2] and ZARA [3].

We analyze the GAN training process and then present ReGAN –

a training architecture that implements both the inter-layer and

intro-layer parallelism in a pipelined fashion for improving the

throughput. Our latest work, ZARA, focuses on optimizing the

GAN calculation model and completely eliminating the insertion of

zeros in the TCONV convolution so as to improve computational

efficiency and alleviate under-utilization of resources.

4.1 Training Process

Figure 3 demonstrates the complex training phases in a three-layer

GAN. A discriminator and a generator are both modeled as a DNN

and are alternately trained until they reach equilibrium or meet

predetermined constraints. D is trained to differentiate generated

fake samples from genuine data. The dataflow of training D with

Generator (G) Discriminator (D)

IP1 FCNN2 FCNN3

Real 
sample

T1 T2 T3T0

no
ise

T1 T2 T3T0 T4 T5 T6

T5T6T7

T10 T9 T8T13 T12 T11
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sample

1 IP3CNN1 CNN2 Loss

T4

T7
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Figure 3: Training processes in a GAN [2].

real samples is denoted by �˜�. When a training sample enters

the first layer in D atT 0, it continuously flows through all layers in

D in the forward direction. A loss function is then calculated at T 4
based on the exact label (‘1’ for the training sample). Finally, the

error and partial derivatives are propagated back to the first layer

of D and stored. This process requires 7 logical cycles.

The data stream of training D with the generated samples is rep-

resented by�˜�. Here, G is connected to D to form a large network.

G maps a random vector to a sample with the same dimension as a

real sample. The sample is processed through all layers in D, and

a loss function is finally executed using the exact label (‘0’ for the

generated sample). Similarly, the partial derivative propagates back

to the first layer of D at T10. In T11, the two sets of previously

calculated and stored derivatives are added together and used to

update the weight of D. It takes a total of 7 + 10 + 1 = 18 cycles. In

this process, G is used but not updated.

G is optimized to generate samples that simulate the distribution

of real data, thereby tricking D into misprediction. The data stream

is represented by �˜�, which is similar to �˜�, except that: 1) The

error is calculated inT 7 using a different label (‘1’ for the generated
sample), since the target of G is to mislead D; 2) The error is always

propagated back to the first layer of G; and 3) The weight of G is

updated in T 14, while D is fixed. Thus, it takes 14 cycles to process

one sample with G. Note that the cycles in Figure 3 (e.g. T 0, T 1, ...)
are logical cycles, which could take several physical clock cycles

depending on the implementation details.

4.2 Pipelined Design & Compute Optimization

In practice, the training data are processed in batches of size B (e.g.,

64 or 128). B is a hyperparameter which controls the number of

training samples to process before updating the internal weights

of a DNN. For example, when performing DNN training with B =
64, 64 inputs in the same batch are processed continuously. The

backpropagation error caused by each input is stored and applied

only at the end of the batch. There is no dependency among the

data inputs in a same batch. The training process can be essentially

pipelined to increase system throughput.

We use the same GAN model as demonstrated in Figure 3 to

explain the pipelined training execution in ReGAN. Assuming the

discriminator has LD layers, the generator has LG layers, and batch

size is B. In order to update D, we first feed the real samples into D

in a pipelined fashion. Both the forward and backward path take

LD cycles. It also consumes 1 cycle for calculating the loss function

and B − 1 cycles to drain the previous batch from the pipeline.

Therefore, it takes a total of LD + LD + 1 + B − 1 cycles. To train

D on generated fake samples, it takes LG + LD + LD + 1 + B − 1.

Finally, 1 addtional cycle is required to update D. Similarly, training
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Figure 4: Computation in CONV. (a) Forward pass and error

matrix; (b) Error backpropagation.

G requires 2LG + 2LD + B + 1 cycles. As a comparison, if the

training process is performed without a pipeline, D and G training

consume (4LD + LG + 2)×B cycles and (2LG + 2LD + 1)×B cycles,

respectively. Furthermore, ReGAN proposes spatial parallelism and

computation sharing to further optimize pipeline performance. The

design principle behind both solutions is to take advantage of the

trade-off between system performance and hardware requirement.

Spatial parallelism (SP). Since D remains unchanged in �˜�
and �˜�, we can duplicate D for two copies and perform training

processes �˜� and �˜� in parallel. In this way, the total latency is

as the same as the latency of �˜� for the spatial parallelism hides

the latency of �˜�.

Computation sharing (CS). The data stream of training Dwith

generated samples (�˜�) and training G (�˜�) share the same

forward path. However, they are distinguished from the definition

of loss function, and hence have different backpropagation data

path. With this observation, we propose to co-train D and G by

duplicating the memory for intermediate computation storage (e.g.

memory to store the error and partial derivatives). In this case, the

training of D and G share the forward path T0 −T6. At cycle T7,
two backward branches are computed in parallel. The weights of G

are updated at T14 and D can be updated at T 11.

4.3 Dataflow Optimization

Table 2 summarizes the symbols used to explain the GAN calcula-

tion. Note that ◦ denotes elementwise multiplication. We do not

provide the complete description of these parameters or mathe-

matical model of the GAN training process due to page limits. We

recommend interested readers to refer [23] and [2].

Figure 4(a) visualizes the main calculations of the forward path in

CONV corresponding to Equations (1) and (2) in Table 2. As shown,

Table 2: Notations used for explainingGAN training process.

Symbols/equations Description

ul =Wldl−1 + bl (1) forward function

dl = h(ul ) (2) activation function

δl−1 =Wl
T δl ◦ h′ (ul ) (3) error backpropagation

∇Wl = dl−1δl T (4) weight partial derivative

∇bl = δl (5) bias partial derivative

Figure 5: (a) TCONV operation; (b) TCONV deformation.

a set of kernels are convoluted with the input or the output of the

previous layer. The sliding convolution window is repeated for all

possible positions in the input feature map (FP), and the results are

stored in the output FP. These results are then used as the inputs

of the following layer. Once the forward layerwise computation

finished, a cost function J is defined to quantitatively evaluate the

difference between the network output and its expected output.

The error for layer l is defined as δl=
∂ J
∂bl

which will be propagated

backwards to the previous layer as depicted in Figure 4(b). The

backpropagation process can be described by Equation (3)∼(5) in
Table 2.

Compared to CONV, TCONV first transforms its input to a larger

representation by zero paddings around the image and zero inser-

tions between adjacent rows/columns and then performs CONV

on the expanded input. For instance, Figure 5(a) illustrates the zero-

insertion step for a 2 × 2 input FP with stride = 1 and paddinд = 1.

A kernel convolves with this transformed input FP and correspond-

ingly generate an output FP with a size of 4 × 4. In this example,

21 zeros are inserted, that is, only 4/25 the source operands are

valid input and contributes to the final results. Previous work have

shown that executing GAN by following conventional convolution

dataflow illustrated in Figure 5(a) leads to a low computational

efficiency because generally more than 60% of the computations

are multiplications and additions with zero operands due to the

zero-insertion step in TCONV [29].

To address this issue, we propose ZARA – an ReRAM-based GAN

accelerator. Through the novel deformation of TCONV, ZARA can

completely skip over zero-insertions in both forward and back-

ward computation phases. Taking the example in Figure 5(a), we

observed that the convolution between the expanded FP and the

kernels only contains four distinct valid patterns. The elements

in odd output rows only related to a subset of kernel weights (e.g.

the second row in this example), whereas the even output rows

use a different kernel weights subset (e.g. the first row) for their

computations. Building upon this observation, we introduce a series

of dataflow optimization covers both the forward and backward

phases in TCONV to mitigate the aforementioned inefficiency in

TCONV execution. For simplicity, we only demonstrate the data

optimization in a forward phase in Figure 5(b).
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Table 3: Benchmarks (C: convolution layer; T: transposed convolution layer; F: fully connected layer.).

ReGAN ZARA

Model Dataset D Topology G Topo. Model Dataset D Topo. G Topo.

MLP1 mnist [15] 2/4-layer MLP 2/4-layer MLP FCN [27] POSVAL VOC [9] 5C2F N/A

MLP2 mnist [15] 3C1F 4-layer MLP DCGAN [20] LSUN [31] 4C1F 1F4T

GAN1 CIFAR-10 [14] 4C1F 1F4T iGAN [21] CIFAR-10 [14] 3C1F 1F3T

GAN2 celebA [18]/LSUN [31] 5C1F 1F5T 3DGAN [26] IKEA [16] 5C1F 1F4T

ResnetGAN CIFAR-10 [14] [12] [12] ArtGAN [25] CIFAR-10 [14] 6C1F 1F5T

4.4 Hardware Implementation

Normally, ReRAM-based DNN accelerators use ReRAM arrays as

precessing units for vector-matrix multiplication. As demonstrated

in Figure 6, the weight matrix is written as cell conductance states

in the crossbar. Input FPs are applied to the WLs as voltage levels.

In this way, all BLs in the crossbar produce the current sums simul-

taneously with the same voltage along WLs, and hence a vector-

matrix multiplication is performed in each step. . Representative

ReRAM-based DNN accelerators include PRIME [7], ISAAC [22],

and PipeLayer [23].

Similar to [7, 23], ReGAN [2] partitions the ReRAMmainmemory

into three regions: memory subarrays for data storage, full func-

tion subarrays for both in-site VMM and data storage, and buffer

subarrays for storing the intermediate results between layers (e.g.,

generated images, data required for compute partial derivatives,

etc.). The buffer subarrays are connected to the full function sub-

arrays through private high-throughput local data ports, so that

buffer accesses do not consume the bandwidth of memory sub-

arrays. It is worth mentioning that we adopted the spike-based

scheme [17] in ReGAN to minimize the energy overhead of power-

hungry analog-digital converters. ReGAN realizes the non-linear

activation function by using a look-up table. Moreover, we imple-

mented various function units (e.g. substractor, shift & add, etc.)

to support the related computation involved during the training

process.

ZARA leverages the ReRAM crossbar to perform in-memory

GAN execution. However, different fromReGAN, ZARA is a domain-

specific standalone accelerator. More specific, ZARA aims to solve

the inconsistent computational delay caused by TCONV deforma-

tion, which breaks the pipeline execution model. A mapper and a

scheduler are designed to effectively map and schedule the oper-

ations of the optimized dataflow onto PEs to eliminate the incon-

sistency in execution time. ZARA PIM is implemented in a tiled

…
…

…

…
||

[ … 

W
L D

riv
er

, D
AC

S&H, ADC, S&A

[
]

Figure 6: Mapping a VMM onto a ReRAM crossbar.

computation architecture. The top level is ZARA nodes. Each ZARA

node consists of a ReRAM memory to store input/output values,

a mapper and a scheduler that map the optimized dataflow onto

target PEs and control the computation flow respectively, an IO

interface to communicate with other ZARA nodes, and a number

of PEs connected via on-chip mesh. Each PE contains multiple

vector-matrix multipliers, a ReRAM buffer to cache temporal data,

activation units to perform nonlinear function, and output register

to aggregate results, all connected with a shared bus. A PE also

has simple algorithm and logic units (sALU). The crossbar arrays

within a vector-matrix multipliers share a driver by global wordline.

At a time, only one crossbar array in a vector-matrix multipliers

can be activated and used to perform in-situ VMM. The results can

be selected via a bitline multiplex. The details of these components

are described in [3].

5 EVALUATION

Table 3 summarizes the topological structures of evaluated net-

works and dataset in ReGAN [2] and ZARA [3]. To evaluate Re-

GAN, we built four MLP GANs which has a multiLayer perceptron

(MLP) generator and a MLP/CNN discriminator. We test them on

mnist [15]. For CIFAR-10 [14] and LSUN [31], we built a symmet-

ric GAN with four CNN/FCNN layers in G/D. In particular, we

also selected the 101-layer ResNet GAN in [12] as benchmarks on

CIFAR-10 [14]. For CelebA [18] and LSUN [31], we built a five-layer

CNN/FNN GAN as benchmarks. We compare ReGAN against the

GTX1080 GPU platform. Our experimental results show that Re-

GAN can achieve 240× performance speedup compared to GPU

platform averagely, with an average energy saving of 94×.
We evaluated the ZARA architecture against four counterparts [2,

23, 27, 29] using five state-of-the-art GANs. For comparison pur-

pose, we also include fully convolution network [27] in evaluation.

Experimental results show that ZARA can improve the training

performance of GAN by averagely 1.6 × ∼23× over CMOS-based

GAN accelerators. Compared to state-of-the-art ReRAM-based ac-

celerator designs, ZARA also provides 1.15 × ∼2.1× performance

improvement.

6 DISCUSSION AND FUTUREWORK

In recent years, we have seen a continuously increasing trend of

deploying emerging frameworks such as generative adversarial

networks with hierarchical structure into various complex appli-

cation domains. These models are often trained and tested with

huge dataset, and therefore, consume high computation and stor-

age resources. Moreover, data processing in these models often

incurs heavy data traffic as well as frequent massive data interac-

tion, which makes the memory wall issue even worse. Almost all of

the current machine learning acceleration schemes, however, focus
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on the execution of DNN inference but pay less attention on the

more sophisticated and intensive training phases.

In this paper, we review the current advance in accelerator de-

signs for GANs and point out their limitations. Then we introduce

our solutions. Different from previous research, we use ReRAM-

based in-memory computation since ReRAM is capable of both

computation and storage, significantly reducing the data move-

ment. ReGAN [2] explored an efficient pipelined training procedure

to reduce on-chip memory access. Spatial parallelism and com-

putation sharing were proposed to further improve performance.

ZARA [3] proposed a novel computation deformation technique

that can skip zero-insertions in TCONV. A dataflow mapper and an

operation scheduler were also implemented to support the proposed

execution model.

There is still much work unsolved on ReRAM-based GANs ac-

celeration. For example, many current studies on ReRAM-based

accelerators assume ideal ReRAM cells. However, real devices suf-

fers from severe process variations [19], circuit noise [1] and short

retention time and endurance [6] issues. How to realize reliable

accelerators using the real device model is a common challenge, not

only for ReRAM-based designs but also all emerging memory based

solutions. We are encouraged by the broad design space enabled by

ReRAM crossbar arrays and we also intend to explore the future

opportunity of performing GANs learning in end devices because

it would be desirable to have the intelligent edge devices capable

of adaptively learning and tuning their parameters to achieve a

desirable accuracy.
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