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Abstract
We study the theoretical foundations for the pressure shifts in high-precision atomic beam
spectrosopy of hydrogen, with a particular emphasis on transitions involving higher excited P
states. In particular, the long-range interaction of an excited hydrogen atom in a 4P state with a
ground-state and metastable hydrogen atom is studied, with a full resolution of the hyperfine
structure. It is found that the full inclusion of the 4P, /, and 4P, manifolds becomes necessary
in order to obtain reliable theoretical predictions, because the 1S ground state hyperfine
frequency is commensurate with the 4P fine-structure splitting. An even more complex problem
is encountered in the case of the 4P-2S interaction, where the inclusion of quasi-degenerate
48-2P,  state becomes necessary in view of the dipole couplings induced by the van der Waals
Hamiltonian. Matrices of dimension up to 40 have to be treated despite all efforts to reduce the
problem to irreducible submanifolds within the quasi-degenerate basis. We focus on the
phenomenologically important second-order van der Waals shifts, proportional to 1/R® where R
is the interatomic distance, and obtain results with full resolution of the hyperfine structure. The
magnitude of van der Waals coefficients for hydrogen atom—atom collisions involving excited P
states is drastically enhanced due to energetic quasi-degeneracy; we find no such enhancement
for atom—molecule collisions involving atomic nP states, even if the complex molecular
spectrum involving ro-vibrational levels requires a deeper analysis.

Keywords: collisional shift, collisional broadening, van der Waals interaction, impact
approximation, Monte-Carlo approach

(Some figures may appear in colour only in the online journal)

1. Introduction retarded regime, the phase of an oscillation of a virtual
transition changes appreciably over the time it takes light to
Investigations of van der Waals interactions involving excited  cover the interatomic distance. For excited reference states,
states have attracted considerable attention [1-6]. In the one may obtain oscillatory long-range tails from the energe-
tically lower, virtual states, which can give rise to interesting
S Author to whom any correspondence should be addressed. effects [7-12]. We here analyze such interactions, with a

0953-4075/19/075005+18%33.00 1 © 2019 IOP Publishing Ltd  Printed in the UK



J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 075005

U D Jentschura et al

particular emphasis on the evaluation of the pressure shift in
the recent 2S—4P experiment carried out in Garching [13].

In the presence of quasi-degenerate states, the dominant
contribution to the interaction is calculated by diagonalizing
the Hamiltonian matrix in a basis of quasi-degenerate states,
resulting in both first-order (1 /R3) and second-order (1 /R6)
energy shifts [4]. Using today’s computer algebra [14], it is
possible to set up the calculation with hyperfine resolution,
i.e. to diagonalize the Hamiltonian matrix in a basis of states
where all hyperfine levels, including their projections, are
resolved, resulting in rather large matrices. In a quasi-
degenerate basis, the energy separations are on the order of
the Lamb shift energy with virtual transition wavelengths in
the centimeter regime; hence, the retarded regime in this case
is of no phenomenological relevance because of the small
absolute magnitude of the energy shift in this range. In
compensation, it is thus sufficient to treat the problem in the
nonretardation approximation.

A significant motivation for an analysis of the fine-
structure, and hyperfine-structure resolved levels, has been an
ongoing experimental effort at a more high-precision mea-
surement of the hydrogen 2§—4P transition in Garching [13],
where the resolution of the hyperfine structure, together with
the necessity to analyze collisional frequency shifts, calls for a
much improved theoretical analysis of the van der Waals
interaction, in comparison to previous approaches [15], which
rely on nonrelativistic approximations.

As evident from the detailed analysis reported in the
follow-up paper [16], excited-state interactions involving 4P
states in contact with either ground-state 1S atoms or meta-
stable 25 atoms are of prime importance [17, 18]. Phenom-
enologically, transitions to the 4P state have been much more
relevant than, say, transitions to P states with n = 6 (see
[19]), because of the much better accessible frequency range
of the transition for lasers (see [13, 20]). Specifically, 25-4P
measurements have been carried out by a number of groups
[13, 20], whereas 2S—6P transitions have not yet been mea-
sured to appreciable accuracy. The analysis is sufficiently
complex that either system could not be analyzed without the
use of computer algebra, due to the complex hyperfine
structure state manifolds. It is thus of prime importance to
generalize the treatment recently outlined in [19] to 4P states.
Furthermore, because of the possible presence of hydrogen
molecules in any atomic beam undergoing dissociation, it also
becomes necessary to analyze the van der Waals coefficients
for atom—molecule collisions, even if we can anticipate that
the van der Waals coefficients will be drastically enhanced for
collisions involving only atoms, because of the quasi-
degeneracy of excited states, which are removed from each
other only by the Lamb shift, fine- or hyperfine structure.
Namely, the fine-structure and the hyperfine-structure split-
tings in the case of atom-atom interactions are very small
compared to the energy differences between atomic and
molecular quasi-degenerate levels, even if one consider pos-
sible excitations to ro-vibrational levels. For example, in the
case of the 4P(H)—1S(H) interaction, the fine structure and the
hyperfine structure splitting parameters are of the order of
2x 107" E,and 9 x 1077 E, respectively, where E;, = 27.

211396 eV is the Hartree energy [21]. However, in the case of
the 4P(H)-1S(H,) interaction, the atom—molecules degenerate
states’ separation is in the order of 2 x 102 E}, and the ro-
vibrational level splitting is at-most ~5.5 x 107> E,. The
oscillator strengths, in either cases, are of the same order of
magnitude. As the respective energy differences appear in the
denominator of the propagator denominators within pertur-
bation theory, which determine the Cq coefficients, we can
anticipate that the so-called van der Waals Cg coefficients are
enhanced for atom—atom as compared to atom—molecule
collisions. This is explained in greater detail in section 5.

In order to understand the systems more deeply, we should
consider the particular properties of the van der Waals Hamil-
tonian mediating the interaction. Let us refer to the atoms
participating in the interaction as atoms A and B. The static van
der Waals Hamiltonian (without retardation), in the dipole
approximation, involves the product of dipole operators of
atoms A and B. An SP state, with atom A in an S state and atom
B in a P state, can be coupled, by the van der Waals Hamil-
tonian, to a state with atom A in a P state and atom B in an §
state. Or, a state with atoms A and B in § states, can be coupled,
by the van der Waals Hamiltonian, to a (possibly, quasi-
degenerate) state with both atoms in P states. This implies that
the van der Waals interaction Hamiltonian needs to be diag-
onalized in the energetically degenerate subspaces composed of
the SS, SP, PS and PP states of the two atoms [4]. However,
because of the usual dipole selection rules, the SS and PP
manifolds do not mix with the SP states, and this reduces the
size of the Hamiltonian matrices to be considered. The latter
fact can be verified explicitly on the basis of adjacency graphs
which demonstrate the irreducibility of the matrices in the basis
of the SP and PS states [22]. Furthermore, interesting level
crossings have been observed in the two-atom interaction
despite the irreducibility of the matrices [4], and an explanation
in terms of higher-order interactions (distance within the adja-
cency graphs) has been described in [22].

This paper is organized as follows. In section 2, we outline
the general formalism behind our considerations (section 2),
before treating the 4P-1S interactions (section 3) and the 4P-2S
interactions (section 4). An interesting phenomenon is found in
regard to the necessity of including both 4P /, as well as 4P,
states into the basis, and also (4S; 2P ;) quasi-degenerate
virtual states. We lay special emphasis onto the second-order
van der Waals shifts incurred by the levels, averaged over the
magnetic quantum numbers, as it is these numbers which are of
highest phenomenological significance. Atom-molecule colli-
sions are analyzed in section 5, and finally, conclusions are
drawn in section 6. SI mksA units are used here, except in
section 4, where we switch to atomic units in order to keep
formulas and mathematical expressions compact.

2. General formalism

2.1. Interaction Hamiltonian

Let us briefly review the derivation of the van der Waals
interaction and its application to excited states. Let X4 and X3
be the electron coordinates, and R4 and Rp be the coordinates
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of the protons. The total Coulomb interaction is

e’ 1 1
c= ==t ———
471'60 |RA — RBl |.XA — xB|

1 1
N S ) 0
X4 — Rp|  |Xp — Ryl

One then uses the fact that the separation |ﬁA - ﬁ3| between the
two nuclei (protons) is much larger than that between a given
proton and its respective electron, that is, much larger than
both |#y] = [¥4 — Ra| and |7 = |¥3 — Rg|. One then writes
Xy — Rp =7y + (Ry — Rp) and Xz — Ry = 73 + (Rg — Ry).
Expanding in 7; and 7, one obtains [23, 24]

e* Fy-fp—3F R (Fz- R

H =
vaw drey R3
e? I
= m(@cz — 3RyRe)rax rae
1 Bijdai dp;
= ey @
47 € R-

whereﬁ:ﬁA —ﬁB,R: |ﬁ| Iézﬁ/R and d4y = ery is an
electric dipole moment for atom A and dj is the same for atom B.
We have introduced the tensor

R; Ry
R?

B = o — 3 3)

For definiteness, one chooses a quantization axis which enables
one to resolve the magnetic projections in the hyperfine mani-
folds. This motivates the choice

R=Re¢, 4)

which is henceforth applied universally to all systems studied in
this paper.

In our analysis of 4P-1S interactions, a typical virtual
transition involving quasi-degenerate states would involve
atom A in a|[4P)) state (with J = % orJ = %), and atom B still
in the |1S) state. This state is energetically degenerate with
respect to a state where atom A is in the |15) state, and atom B
is in the |4P;) state. Here, we further distinguish between
absolute degeneracy (same unperturbed energy of the levels,
even including the hyperfine interaction), and quasi-degen-
eracy, where levels are separated by the Lamb shift, or fine-
structure interval. For the absolutely degenerate case, we
incur first-order van der Waals shifts, linear in the van der
Waals Hamiltonian H,qw, upon a rediagonalization of the
total Hamiltonian.

An analogous situation is encountered for the 4P-2S
interactions, with the additional complication that an addi-
tional degeneracy exists with respect to virtual (4S; 2P, /»)
levels. Namely, the lower 2§ state is removed from the 2P, ,
state only by the classic Lamb shift, and the 45 and 4P states

are separated only by the (n = 4) fine-structure, or the
(n = 4) Lamb shift. Hence, additional virtual states have to be
taken into account in the discussion of the 4P-2S interaction.

2.2. Total Hamiltonian

In order to evaluate the 4P-nS long-range interaction,
including hyperfine effects, and fine-structure effects, one
needs to diagonalize the Hamiltonian

H = Hi s + His,p + Hurs,a + Hurs,s
+ Hpsa + Hrs g + Hygw, (5)

which sums over the atoms A and B. Here, H; g is the Lamb
shift Hamiltonian, Hgg stands for the fine-structure splitting,
while Hygg describes hyperfine effects. We sum over the
atoms A and B. The Hamiltonians are given as follows

8T > - -
Hyrs,;i = ﬂuBuN g, gpl:_Si 16D
4 3

S .72 -7)—S .7 |72 .. T
n 3(S; - ) '1)5 Si - I |73l LL{, ’ (6a)
7] 7]
3.2 - \3
m&—iﬁf(ﬁ)mmﬁﬁw, (6h)
m; ¢ \m.c
=4 - /12/3 a 3 g ﬁz a - -
Hps; = ——5— + 0IFE) + —=5———=5; - Li,
s 8m; c? 2m?c 4m? c |7
(60)
2 —2
Hogw — e” XpaXp+ W Vp ZA ZB. (6d)

4rey R3

The fine-structure constant is denoted as «, g is the vacuum
permeability, and m, is the electron mass. We treat the system
in the non-recoil approximation. The position and relative
(with the respective nucleus) momentum operators are 7; and
[7}, while Z,- is the orbital angular momentum operator. Also,
§,- = 7;/2 is the (dimensionless) spin operator for the electron
i, where o is the vector of Pauli spin matrices, and Z is the
spin operator for the nucleus of atom i (proton 7). According
to [21], the protonic g factors is g, ~ 5.585695, pp =~
9.274 010 x 1072* Am?> is the Bohr magneton, while
py = 5.050 784 x 10727 Am? is the nuclear magneton. In
order to simplify the expressions, we use the approximation
gs = 2 in the following calculations.

For the 4P-1S system, our convention is that the zero of
the energy scale is the sum of the Dirac energies of the 1S
and 4P, , states (in the case of the 4P-1S interaction), and to
the sum of the 2§ and 4P,/ states (in the case of the 4P-2§
interaction). The zero point of the energy excludes both
Lamb shift as well as hyperfine effects. On the basis of the
Welton approximation, we add the Lamb shift energy to
the § states, adjusted for the S—P energy difference to match
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the experimentally observed splitting, but leave the P states
untouched by Lamb shift effects. Hence, strictly speaking,
our definition of the zero point of the energy would corre-
spond to the hyperfine centroid of the |(4P; /2)a(1S)p) states
(see section 3), and to the hyperfine centroid of the
[(4P1 2)a(2P; 2)p) states (see section 4). The fine-structure
energy is being added to the 4P3 ), states. For the calculation
of the van der Waals interaction energies, the precise defi-
nition of the zero point is not of relevance because only the
energy difference in the quasi-degenerate basis matters.

The expression for Hpg in equation (6b) follows the
Welton approximation [25]; for the calculation of energy
shifts, we shall replace

4
a o

(nS1/2|HysnSy 2) = — — Me In(a™) — L, (7a)
3 n’

(nPy /2| His|nPy s2) = 0, (7b)

where £, is the nS Lamb shift, which we understand as the
nSy»—nP, energy difference. These replacements are con-
sistent with our definition of the zero of the energy scale, as
discussed above. Throughout this paper, we perform final
numerical evaluations in the non-recoil approximation, which
corresponds to an infinite mass of the proton, i.e. we set the
reduced mass of the electron in hydrogen atom equal to the
electron mass, and ignore the different reduced-mass
dependence for the fine-structure and the hyperfine-structure
terms in the Hamiltonian. Values for physical constants are
taken from [21].

2.3. Explicit construction of the states

Even if the relevant procedure has recently been described in
some detail in section IIB of [4], and in section I of [19], we
here recall how to construct the atomic states for the hyper-
fine-resolved 4P, /,—-1S interaction. The relevant quantum
numbers are

1&ﬂm_0)n_1z_01_%- =0, (8a)
1&ﬂw_1)n_1z_0J—%- =1, (8b)
4aﬂw—0)n—4€f11—%- =0, (8¢)
4aﬁw_1)n_44_11_% F=1. (8d)

Here, n is the principal quantum number, while Z, J, and F are
the electronic orbital angular momentum, the total (orbital
+spin) electronic angular momentum and the total (electronic
+protonic) atomic angular momentum, respectively. Here and
in the following, we denote by F and §; the total angular
momenta (orbital+electron spin-+nuclear spin) of either atom
A or B, which can be specified for either atom by adding the
respectlve subscnpt By contrast, § is their vector sum
3 FA + FB, so that, in particular, §; = F, 4 + F .

We denote by | +), the electron spin state, while |n, £, m),
denotes the Schrodinger eigenstate (without spin). We need to
add the nuclear (proton) spin |+), to the electron angular
momentum. For illustration, we indicate the explicit form of
the hyperfine singlet 4P, state,

n:4,£:1,J:%,F:o,FZ:0>
—J—H>HH41 —1)
\/E P e > ’ e
1
__H‘ 7|_ e|4, 1, Oe
£->,> )
1
+—_J_e4a l’le
1
_—l_ 7|+ €|4’ 1’ Oe’ (9)
£->,> )

while the hyperfine triplet states in the 4P, /, manifold read as
follows,

n:&[:LJ:%F:LE:O>

1
= = L’4a 17 716
1
— — 1, 0),
+J€|+>p| Jel )
1
= | )7847 1’ le
1
- — |- e 1, 0)., 10
and
n—4,€—1,J—%,F1,F:I:1>
1
— T ), {| )[4, 1, 0),
:F\/§| >p{| >| >
— V2 [F)el4, 1 £} (1)

Just like in [19], we shall use the notation |n, ¢, J, F, F,) for
the thusly obtained states, using the vector coupling coeffi-
cients, with principal quantum number n, orbital quantum
number ¢, total electron angular quantum number J, total
angular quantum number F (electron+nucleus), and total
magnetic projection quantum number F.

Up to the hyperfine—fine-structure mixing term, which is
discussed in equation (31), these states are eigenstates of the
unperturbed Hamiltonian

Hy= Hysa + Hisp + Hpsa

+ Hrps,p + Hurs.a + Hurs - (12)

Based on the explicit representations of the relevant, hyper-
fine-resolved atomic states, one can easily develop a computer
symbolic program, using computer algebra [14], which
determines the matrix elements of the total Hamiltonian (5)
among all states within the hyperfine-resolved basis. A dif-
ferent approach to the calculation of the matrix elements,
especially useful for the evaluation of matrix elements of the



J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 075005

U D Jentschura et al

van der Waals Hamiltonian, is based on the Wigner—Eckhart
theorem, and will be discussed in the following.

2.4. Wigner—Eckhart theorem

It is very important and instructive to recall that the evaluation
of the matrix elements of the long-range interaction Hamil-
tonian (2), in the hyperfine-resolved basis, can also be
accomplished with the help of the Wigner—Eckhart theorem,
as an alternative to the explicit construction of states outlined
in section 2.3. To this end, one writes the van der Waals
Hamiltonian, given in equation (2), as

2

e
Hygw = —
vaw 47e
o A1 X1 + Xa41X,—1 + 2x40 xB,O’ (13)
R3
where the coordinates, in the spherical basis, are
X L (xq +1y,)
A+1=———=(Xa )
+ \/E 'A
1 .
Xp—1=—= (a4 — 1)),
\/5 A
XA,0 = ZA, (14)

and same for atom B.

The unperturbed states are of the form |n, ¢, J, F,
mg, (S), (I)) where we have previously defined the states as
|n, ¢, J, F, mg) with all quantum numbers being explained
previously. The ‘hidden’ quantum numbers are the electron
spin S, and the nuclear spin /. For hydrogen, these attain the
values S = 7 = L and are the same for all hydrogen states
being discussed here. Still, the quantum numbers S and 7/ need
to be taken into account in the vector recoupling which will
be described in the following. First, one eliminates the
magnetic quantum numbers my; and m; by the Wigner—
Eckhart theorem,

(W, O F mi, (8), (DI Ty |n, £, J, F, mp, (S), (D)

i
:(_I)F’m;( F, 1 F)
*mp q mr
x (n', ¢, J', F',(S), (DI T(1) |In, £, J, F, (S), (I)),

15)
where quz,l’o’ | are the elements of a tensor, the specialization
to the case k=1 of a tensor Té‘ of rank &, and
(' O L (S), DN T lIn, &0, F.(S), (D) is  the
reduced matrix element. The nuclear and electronic degrees of

freedom can be separated using a 6j symbol (vector recou-
pling coefficient) as described in [26, 27],

(n', ¢, 0" F', (S), DI T [In, €, J, F, (S), ()
= (- D)/ JQF + DRF 1)
JF I, » .
X {F 7 1}<n LT OINT) |In, L, T, (8)). ”

Another vector recoupling coefficient is needed in order to
separate the orbital angular momentum of the electron from
the electron spin

(', 0,0, OHITA) |n, €, 7, (S))
= (= DFFSHHL 27 + DRI+ 1)

LI5S Lo oy 71y pin, € 17
The following results for the reduced matrix elements
nW=10=0/Flln=4,0=1)
21113
:—3— — do, 18a
R (18a)
(;1’—4[’—1||?||n—1l’—O)—Sg\/Ea (18b)
> 5 56 5 0»
2° (10
n=20=0||F|ln=4,=1)=—— |— ag, (18¢c
< 171l )= S5 @ (180
2° (10
n=40=1||F|ln=2,=0)==— |— ay, 18d
< 171l )=y 5 W (18
(W =2,0=0)7|ln=2,=1)=3J3ap, (I8¢
" =2,0=1]|F|ln=2,=0)= =33 ap, (18f)

for the rank one tensor ¥ = f(l), cover all states relevant to
the current investigation. In order to evaluate the elements,
one expresses them, after the application of the Wigner—
Eckhart theorem, in terms of radial integrals involving the
standard hydrogenic bound-state wave functions [28, 29].

3. 4P-1S interaction

3.1. Selection of the states

The task is to diagonalize the Hamiltonian given in
equation (5),

H = His A+ Hisp + Hurs.a + Hurs s

+ Hrs s + Hgsp + Hygw, (19)

in a quasi-degenerate basis, for two atoms, the first being in a
4P state, the second being in a substate of the 1S hyperfine
manifold. Retardation does not need to be considered.
According to [30, 31], the 4P fine-structure frequency
vps = V(4P3 — 4Py )3)

vrs ~ 1371 MHz, (20)

approximately coincides with the 1S hyperfine-structure fre-
quency

virs ~ 1 420 MHz, @21)

which is the 21 cm line. Hence, in order to be self-consistent,
we need to include both the 4P, /, as well as the 4P3 ), states
into our hyperfine-resolved basis.

We select the (4P)4 (1S)5 and (15)4 (4P)g states, with all
hyperfine levels resolved, from the respective manifolds, and
obtain the following total multiplicities when all 4P/, and
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Table 1. Multiplicities in the 4P} ,—4P3/,—1S system. One might
wonder why §, = %3 is possible for F = 2. The answer is that

F = 2 here refers to the total angular momentum (electron orbital
plus electron spin plus nuclear spin) of one of the atoms, while

$. = £3 refers to the angular momentum projection of the sum of
the total angular momenta of both electrons i.e. §, = F, 4 + F, 5.

=0 F==41 F=+42 F =43
U=32F=2 8 8 6 2
U=3F=1 2 0
J=2) 16 14 8 2
=3 F=1) 8 6 2 0
=3 F=0 4 0 0
J=1/2) 12 8 2 0
I=D+U=2 28 22 10 2

4P, states are added into the basis (see also table 1)

8@ =43) = 2, g = +2) = 10,

g ==+l = 22, g@F=0)= 28 (22)

The multiplicities are the sums of the multiplicities in the
4P; />—18 system,

3
g(J: 5’ 'Sz::t3): 27

gU:%&:im:&

g = %, $.=+£1) = 14,
g = % 3 =0)= 16, (23)
and in the 4P, »>—1S system
=13 =12=2
2
1
¢gU=Lg=xn=s
2
1
g = 5, $.=0) = 12. (24)

We work with the full J = % and J = % manifolds throughout
our investigation.

3.2. Matrix elements of the total Hamiltonian

Matrix elements of the total Hamiltonian (5) now have to be
computed in the space spanned by the two-atom states, which
are given in equations (9)—(11) (for the 4P, ), states), as well
as the 4P;, states. These elements may either be determined
by a computer symbolic program [14] or using the Wigner—
Eckart procedure described in section 2.4. It is useful to define
the parameters

ot

H="g Z¢m, ? = h59.214 98 MHz,
m,

25
s (25a)

Lo = h1057.845(9) MHz, (25b)

Li=h X é x 1057.845(9)MHz, (25¢)
_ d*m, c?
F=""¢" — j1368.660 MHz, (25d)
256
Vi) =3¢ 9 _3E (25¢)
P= 4mey R3 o3
3x22 2 4 3x22E,
W(p) = 20— =, 25

0= e R T 5 25f)

where R = agp, and aq is the Bohr radius, £, is the
4§ — 4P, ), Lamb shift, and E, = o’m, ¢* is the Hartree
energy. Our symbol H is equivalent to one-third of the
hyperfine splitting of the 2§ state [32], while £, is the
28-2P,), Lamb shift [33]. The interaction energy V(p)
depends on the interatomic separation R, viz., p. We have
used the identity

e? a_oz_ draegic am,c L _afic amgc L
4mwey R? 4meg iop3 7 p3
2, 2
=27 = L (26)
P P

The natural scale for the constants 7 and £ is an energy
of order o Ej,. Hence, we write

H= a3 E/z C’H, L:Il - 043 Eh CE,na

F =&’ E, Cr, (27)

where we set Cyy = gp/18a X (me/mp) = 0.0231596,Cr =
1/256a = 0.5352969 and Cp4= Cr,/8 = 0.0517167.
Then, we can write for typical expressions of second-order
energy shifts

V(p) _ 9 E,
TH+ LL,+ BF TG+ D Cop+ BCr o pb
(28)

where Ty, T> and T3 typically are rational fractions, to be
determined by separate calculations.

A particularly interesting feature is that the hyperfine
Hamiltonian actually is not diagonal in the space of the 4P,
and 4P3, states. Rather, one has a mixing among the F = 1
states of the 4P;,» and 4P;/, manifolds, with the mixing
matrix element being given by (see [34] for an outline of the
calculation)

(4P{ (F) | Hursl4P7y | (F) = X. (29)
We restrict the discussion here to one atom only, say, atom A,
omitting the subscript on Hygs = Hyrs, 4. For the two states
to be coupled, the magnetic projection F, has to be the same,
though. Otherwise, the matrix element vanishes. Thus, in the



J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 075005

U D Jentschura et al

basis of states
la) =[4P[3'F. = 1)) = |4, 1, % 1, 1),
Ib) = 4R3(F = 0) = 4. 1, 2. 1.0),
&) =MRf3 F = —1) = 4, 12 1, 1),
ld) =4P{ 5 (F, = 1)) = |4, 1, % 1, 1),
&) =HPE3 (= 0) = 4.1, 2,1,0),

3

|f) =4P{3 (F. = —1) = |4, 1, > L=, (30)

the matrix of the Hamiltonian Hygs + Hps is evaluated as

D 0 0 X 0 0
0 D O 0 X 0
b “loobp o 0 X
WSS =X 0 0 -D+F 0 o |
0 X O 0 -D+ F 0
0 0 X 0 0 -D+ F
(31)
where
 dmic? o ofm?c? (32)
%576 m, 1152 2 m,

Here, g, is the proton g factor, while D is a diagonal matrix
element, and X is the off-diagonal element given above.

The 6 x 6 Hamiltonian matrix (31) can be decomposed
into three identical submatrices corresponding to F, = —1, 0
and +1. Each submatrix is of dimension two, e.g. the one
spanned by |a) and |d). The Hamiltonian matrix is

= D X
HI-IIV:FSLFS = (X D+ f)~ (33)
The eigenvalues of Hyji LFS are given by

X2
& =-D+ F+ —— + 0(xh), 34a
+ =55 + 0% (34a)

2

&E=D- X (34b)

—— + OX%.
F —2D
The second-order shift in the eigenvalues, A = X2/(F — 2D),
is numerically equal to 4.765 9 x 10~'“Ej,, where E;, = o’m,c*
is the Hartree energy. For simplicity, we thus define the para-
meter

A - E

A =47659 x 10714, Th = 313.58 Hz. (35)
The normalized eigenvectors of Hjig' g are
) = ———ta_la) + Id)), (360)
|
(@ la) + Id)), (36)

o) = ———
ol + 1

where the coefficients o are given by

2D — F + \J4(D* — DF + X?) + F?

% 37)

Oy —

Examples of expectation values of the hyperfine Hygs and
Lamb shift H; s Hamiltonians (for states of both atoms A and B)
are

E<n’ [’ J’ F’ E'HLSVl’ [a J’ F’ F:"> = ‘Cn 650’ (38(1)
(1,0, % 1, E|Hrs|1, 0, % LE)= 6H.,  (38b)
(1.0, 2.0, Olffrs| 1L 0, . 0,0) = ~187, (380

@11 Ems 1, L1 ) = Lw (38d)
s 1 2’ s L'z HFS[7, 1, 2’ s L'z 32 [}

@, 1,50, OlHegl4, 1, L,0,0) = —2 . (38¢)
b bl 2’ E HFS bl bl 2’ bl 32 -

41,20, ElHumgd, 1, 2,2, F) = ——H,  (38f)
) [} 2’ s L'z HFS|7s ) 2’ s L'z 160 )

4,1, 21, FlHursld, 1, 2, 1, F) = ———H.  (38g)
9 9 2’ 9 Z HFS 9 k 2’ 9 Z 32 . g

The hyperfine splitting energy between 4P),(F =1) and
4P, »(F = 0) states thus amounts to 74/8, while between
4P;5(F = 2) and 4P5 »(F = 1) states, it is 7{/20. The 1S-state
hyperfine splitting is 247H. For the product state of atoms A and
B, we shall use the notation

|(nA, ZA’ JA’ FA’ F:Z,A)A (nB’ [B, JB, FB’ FZ,B)B >,

which summarizes the quantum numbers of both atoms.

(39)

3.3. Manifold &, = 3

States can be classified according to the quantum number
. = F.o + F, p, because the z component of the total angular
momentum commutes [4] with the total Hamiltonian given in
equation (5). Within the 4P, ;,—4P3/>—1S§ /> system, the states
in the manifold §, = 3 are given as follows

|¢l>:|(1’ Oa lv 17 1) (47 1’ ia 2a 2) >a

2 .\ 2 i
=14 122 2) (1030 1) ),
2 .\ 2 i

In full analogy to the 1S—6P system analyzed in [19], we have
ordered the basis vectors in ascending order of the quantum
numbers, starting from the last member in the list. The
Hamiltonian matrix evaluates to

(40)

22
gy g 222
160 513

3 x 22 963
V) —=H+ F
513 ) 160

V(p)

Hy 3= (41)

We have subtracted the sum of the Dirac energies of the 1§
and 4P, hyperfine centroids, and the 1§ Lamb shift is
absorbed in the definition of the 1S hyperfine centroid energy,
as outlined in section 2.2.
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The eigenenergies corresponding to Hg 3 are given as
follows

963 3 x 222
E =—H+FF —V(p), 42
) =~ F V) (42)
with the corresponding eigenvectors
1
) = —( + ). (43)
| i> \/E |¢1> |¢2>

The average of the first-order shifts (linear in V(p)) vanishes.
The addition of the first-order shifts leads to exact energy
eigenvalues (see equation (42)), and it is thus not meaningful
to analyze a potential second-order shift within the §, = 3
manifold.

3.4. Manifold &, = 2

We order the 10 states in this manifold in order of ascending
quantum numbers,

i) = I(l, 0,20, 0) (4, 122, 2) )>
2 A 2 5
| 3
[¢2) :|(1, 0, —, 1, O) (4, 1, =, 2, 2) ), (44a)
2 A 2 B
1 1
e =11, 0,1, 1] [4, 1, 2,1, 1] ),
o =110 2 ) (1))
| 3
|w4> = |(1’ 0’ A~ 1’ 1) (4’ 1’ o la 1) >’ (44b)
2 A 2 B
1 3
=11, 0,21, 1) (4 1,2,2, 1],
i) |( : )A( : )B>
1 1
oo =14 13 11) (Lo 1)) e
2 A 2 B
I1/)7>=|(4, 1,3, 1, 1) (1, 0, l, 1, 1) ),
2 .\ 2 A
3 1
oo =it 1 220) (Lo ti)) e
2 A 2 B
o =14 1.2.2.2) (1020, 0)),
2 A 2 B
3 1
[V10) = |(4, L, =2, 2) (1, 0, —, 1, 0) ). (44e)
2 \ 2 i

States |¢3) and 1)) are 4P, /, states, the rest are 4P5 ), states
(see also the multiplicities indicated in table 1). Among the
4P5), states, [t)4) and [¢)7) have F = 1, the rest have F = 2.
The Hamiltonian matrix is 10 x 10 and has the structure

" _ (Haa Hasp
$=2 — H/’{B HBB ’

where Hyy, Hap, and Hgg are 5 X 5 matrices, of the form

45)

28TTH 0 0 0
160
0 ﬂ + F 0 0 0
160
o 0 193 H
AA — 32 64\/5 )
H 191H
0 =T 4F 0
642 32
0 0 0 963H
160
(46)
as well as
—3W(p) V6 W(p) 0 0 0
3 3
V3 = — 0 0
J3W(p) J;W(p) NG W(p)
He = | =2V =V2W(p) JoW(p) =3Wp) B3Wp) |
3
—V2W(p) W)  B3W(p)  JEW(p) J;W(P)
3
J6W(p)  3W(p)  —3W(p) 0 J’TW(’”)
(47)
and
193H H
32 6442 0 0 0
H 191H
“ar o P00 0 0
963H
Hpp = 203H
BB 0 160 + F 0 0
0 0 0 £ 287TH
160
963H
0 0 0 60 + F
(48)

One can easily draw an adjacency graph as described in [4, 22]
and convince oneself that there is no hidden symmetry in the
Hamiltonian matrix Hg_, which would otherwise decompose
into irreducible submatrices. The Hamiltonian matrix, Hg —,,
has four degenerate subspaces. Within the sub-space of doubly-
degenerate unperturbed energy F — 2877H /160, there is no
off-diagonal coupling proportional to W(p) in the first order,
implying that the energy shift has an R~® dependence. The
degenerate subspace given by |1/3) and |1)¢) has a Hamiltonian
matrix

193H
" 5 2w
H = 4
=2 Cowy 193H “9)
P 32
The eigenvalues are
193H
EM(p) = —, M0, (50)
with corresponding normalized eigenvectors
1
WEY) = () & ). (51)
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A third degenerate subspace is given by |vy) and |¢)7). The
Hamiltonian matrix is

191
HY, = 017 | (52)
-W F+ —
(p) 2
The eigenvalues are
191H
EL(p) = F+ ——= F W), (53)
with corresponding normalized eigenvectors
|
W) = () & o). (54)

We also have a four-fold degenerate subspace composed
of [12), [bs), |1bg) and |+p10). The Hamiltonian matrix is

c

963H 3W(p)
F+ —160 0 A 0
0o 2 ”yg)
3W(p) 963H | (3)
3W(p) 963H
0 A 0 F+ —160
The eigenvalues are
© 963 3
Efp) = F + 2 H — 5<J§ + DW(p), (56a)
963 3
ESO(p) = F 4 S M = 5(% - DW(p),  (56b)
EC(p) = F+ oH + 205 - D). (560
© 963 3
E0(p) = F 4 - M + E(ﬁ + HW(p), (56d)
with corresponding normalized eigenvectors
1) = ar(92) + o) — bi(ys) + [vs)),  (57a)
[WS) = a(—|vh2) + [¥10)) + b-(—|ws) + [¥s)),  (57b)
1) = a_(|v2) + [h10)) — b-(lhs) + 1¥s)).  (57¢)
W) = ar(=lih) + [Wio) + ba(ts) — [Us),  (57d)
where
aL = ; and by = ﬂ (58)

23 + V3) 23+ 3

In figure 1, we plot the evolution of the energy eigenvalues
within the §, = 2 manifold with respect to interatomic
separation.

Of particular interest are second-order van der Waals
shifts, which occur in the (§, = 2) manifold. The first and
most detailed approach to this calculation involves keeping J
and F fixed, and averaging only over the magnetic projec-
tions. We consider the entries in the fourth column of table 2.

First, we observe that there are no 4P, , states with F = 0 in
the manifold §, = 2, because of angular momentum selection
rules (we have §, = 2 and hence F > 2 for all states in the
manifold). The averaging over the magnetic projections for
given J and F (and §,, of course) fixed, involves the calcul-
ation of the arithmetic mean of the second-order energy shifts,
after selecting from the states given in equations (44a)—(44e)
those two-atom states where the 4P atom has the required
quantum numbers.

For example, the average for J = 3/2, F = 2, and of
course, §, = 2, is given as

(E(4Pyp F=2.3 = 2) = i[E(z)(i/)z)

+ E@ @) + EP (o) + E@ (0], (59

where the E®(1);) are the second-order energy shifts of the
states 9; given in equations (44a)—(44e). For reference, we
also indicate that

(E(4P35, F=1,3.=2)

- %[E@(w) +EQ@)], (60)
<E(4P1/2, F=1,3 = 2>
- %[E(Z)(%) + EQ@g)l. 61)

With respect to table 2, we also observe that the A term,
which is the HFS-FS mixing term, only occurs for the F = 1
states, and vanishes for the F' = 2 states.

It is then possible to calculate a weighted average over
the possible values of F within the (§, = 2) manifold, by
applying the multiplicities incurred within the reference
manifold. So, for example, on the basis of equations (59) and
(60), we have

(E(4P3/3, 8, = D)
 AE@Py, F=2,F,=2) + 2(E@P30, F = 1,5, = 2)
N 6

(62)

Specifically, one obtains
(E@Py2, 5. = D) = (iA - %@”03)& (63a)
while
(E@P1/2, 8. =2))F = (—A + %?104)51. (63D)
The weighted average vanishes,
2(E4P1 /2, 8. = 2))r + 8(E(@4P3,2, 5. = 2))r = 0. (64)
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Figure 1. Evolution of the energy levels as a function of interatomic distance. The vertical axis is the energy divided by the Planck constant
and given in units of 10° Hz (GHz). The interatomic separation in the horizontal axis is in units of Bohr’s radius. At large separation, there
are four energy levels, which match the number of unperturbed energy values of matrix Hr_,. As the interatomic distance decreases, the

energy levels repel each other and are visually discernible. The coefficients a. and b are given by equation (58).

3.5. Manifold §, =1

We present the 22 states in this manifold in order of

ascending quantum numbers,
1
|\I’l>:| 1, 0’ _,0, 0 4, 1,
2 A

|\Ivz>=|(1, 0, L 0. 0) (4, 1,
2 A

|\1/;>=|(1 0. L0, 0) (4, 1,
2 4 2
1
2

|‘I’4>=|(1 0,

(65a)

(65b)

(65¢)

10

1
2
1
|\Ijg>:|(1’ 0’ > 1, 1) (4,
2 A

o =1(1, 0. 21, 1] (4
2 A
1
|\I]10>:|(1’ 0’ > 1’ 1) (4,
2 A
1
|\I]ll>:|(1’ 0, o 1’ 1) (45
2 A
1
|\I/12>:|(47 1, P 0’ 0) (17
2 A

, 1, 0

S

X
)

S

S

~

Il
—_—
“-b-

—_
N = N =
—

p—
N

1,30, 1) ),
2 s
1

1, —, 0, 0) >, (65d)
2 i

L 0) ),
2 s
3

1,—=,1, 0 >, (65¢)
2 ;

1,3,2,0) ),
2 ),
1

0,11 1) ) (656)
2 s

0. L1, 1) ),
2 s
1

0.1 0. o) ). (659)
2 5
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Table 2. Average second-order van der Waals shifts for 4P, hydrogen atoms interacting with ground-state atoms. Entries marked with a long
hyphen (-) indicate unphysical combinations of F and §, values. We denote the scaled interatomic distance by p = R/ao and give all energy

shifts in atomic units, i.e. in units of the Hartree energy £, = o’m, ¢*

defined in equation (35).

.Recall that §; = F, 4 + F, p of the two atom system. The notation A is

5.=0 5. = *1 T = +2 §. = =£3
J=3/2,F=2) 4.439 x 10° 3.601 x 103 3416 x 10° 0
’ 6 6 6
(J=3/2,F=1) A _ 4702 103 A _ 3177 10 A — 1/.)059>< 106
’ 6 6 6
J=1/2,F=1) —A+ 7<65ﬂ3/);< 104 A+ 1.97/)(): 10° A+ 34377[7: 10* _
(J=1/2,F=0) . Loospﬁx 10° _44783/7: 103 o o
1 | Compared to table 2, this average would correspond to an
p & P
[Uys) = |4, 1, > I, 1 i L, 0, > I, 0 B>, average over the entries in the different rows, for given F. A
3 1 remark is in order. According to equation (4), we align the
[W6) = |(4, 1, 5 1, O) (l, 0, > 1, 1) ), (65h)  quantization axis with the straight line joining the two atoms;
A B this is the most natural choice. Of course, the precise identi-
3 1 fication of levels with specific §§, components depends on the
[Wy7) = |(4’ L, 2’ L 1)/\ (1’ 0, 2’ 0, 0)B>’ choice of the quantization axis. However, results for other
3 | orientations can be obtained after the application of appro-
|Ug) = |(4, 1, =, 1, l) (l, 0,—,1, 0) Y, (65i) priate rotation matrices (see chap. 2 of [27] and chap. 4 of
2 A 2 B [35]). After averaging over the quantum numbers F, 4 and
F. g, or, equivalently, the two-atom sum 3§,, the results are
3 1 z q y 7
[W1o) = |(4’ L, 5’ 2’0) (1, 0, 5 1, 1) ), independent of the choice of the quantization axis, in view of
A B o . .
the unitarity of the rotation matrices.
[Wy) = |(4, 1, %, 2,1 (1, 0, %, 0, 0] ), (65)) One can also average over the possible orientations of F,
A B

1
> b —1)3). (65k)

We refer to table 2 for the averaged second-order van der
Waals shifts in the §; = 0, §; = +1, §; = +2, and §, = +3
manifolds. The Hamiltonian matrix for §, = —3 manifold is
identical to that of §, = +3. The § = —2 manifold has
identical diagonal entries to that of §; = 42, while some off-
diagonal entries are different. The same is true of the §, = +1
manifolds. Yet, the Born—Oppenheimer energy curves for
$: = £2 and §, = £1 are alike.

3.6. Second-order energy shifts

As a function of J and F, within the 4P-1S system, a global
averaging over all possible §; values for given F, leads to the
results

© 2.894 x 10°

5

5
1.296: 10 )Eh, 66)
P

(E(4Py2, F = 0))5, = Ep, (66a)

<E(4P1/2, F = l)>3~ = (—A +

5.920 x 10°
(E(@P3p, F = 1))z = (A - T)Eh’ (66¢)
3.353 x 10°
(E@Py)o, F = 2))3. = e b (66d)

namely, F = J + %, for given J and §,. This amounts to an
averaging over the first two entries in the columns, and the
third and fourth entry in every column, of table 2. The results
are

2 1.752 x 10*

(E(@4Pi)y, §. = 0)r = (EA + 6 ]Eh, (67a)

3 2.819 x 10*
(E(@Pijn, §. = D)) = (_ZA + T)Eh,

(67b)

3.377 x 10*

<E(4P|/2, %’Z = :|:2)>F = (—A + p6 ]Eh, (67C)

and

1 1.131 x 104
<E(4P3/2, S = 0)>F = (5 A — T)Eh, (68a)

1.611 x 10*

(E@Py. 5. = £ 1))y = (% . ]Eh, (68b)

8.442 x 103

<E(4P3/2, SZ = :|:2)>F = (% A — p6 )E/,, (68C)

(E(4P3,3, §. = £3))r = 0. (68d)

As a function of J, averaging over F and §; leads to the results

3 2489 x 104
(E@P2))rg, = (Z A+ T

)Eh, (69a)
p

11
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Table 3. Multiplicities in the 4P, ;,—4P3/,—(4S;2P; /,)-25-1S system.
The entries in the first seven rows refer to the 4P ,—4P3/>-2S
system, and are the same as those for the 4P, »—4P3/,—1S system
given in table 1. The eighth row gives the number of added
(45,2P, /») states which complete the basis of quasi-degenerate basis.
Finally, we end up with multiplicities of 40, 30, 12 and 2 for

$. =0, £1, £2, +3, respectively (ninth row).

5=0 §=+1 F=42 =423
=3 F=2) 8 6 2
=35 F=1 6 2 0
J=3 16 14 8 2
=3 F=1) 8 6 2 0
U=3.F=0) 4 2 0 0
T =1/2) 12 8 2 0
J=D+U=2 28 22 10 2
(48, 2P, ) states 12 8 2 0
Total # of states 40 30 12 2
3 1.245 x 10*
(E(4P3/2))r 5, = (g A — T)E,,. (69b)

Without hyperfine resolution, there are four J = % states and

two J = % states. Hence, the fine-structure average of the
latter two results vanishes.

4. 4P-2S interaction

4.1. Selection of the states

The analysis of the interaction of excited 4P hydrogen atoms
with metastable 2S5 atoms is more complicated than that with
ground-state atoms. The reason is that we cannot simply
restrict the basis of states to the 4P, 5, 4P3 /5, and 2§ states,
and just replace the 1S state from the previous calculation
with the metastable 25 states. One observes that [(4P)4(25)p)
states are energetically quasi-degenerate with respect to
[(48)4(2P, s2)B) states, and removed from each other only by
the classic 25-2P, /, Lamb shift. It is thus necessary to aug-
ment the basis of states by the 45-2P, /, states, and to carry
out a full analysis for the 4P, /5—4P3/>—(4S;2P1 /2)-2S system.
The notation indicates that the 45-2P, , states are merely
added as virtual states, for the calculation of second-order
energy shifts.

Due to selection rules, we may reduce the number of
states in the basis, according to table 3. Because the total
Hamiltonian (5) commutes with the total angular momentum
F , we obtain multiplicities of 28, 22, 10 and 2, for the
manifolds with §, =0, § = £1, § = £2, and §, = £3.
However, the addition of the (4S; 2P, /») states finally leads to
multiplicities of 40, 30, 12 and 2, for the manifolds with
$5.=0,8 ==l 8 =+£2, and §, = £3.

12

4.2. Second-order energy shifts

In table 4, we present results for second-order energy shifts
within the individual (J, F, §§;) manifolds. For individual J
and F quantum numbers, an averaging over the magnetic
quantum projections §, leads to the results

(E(@4Py )5, F=0)); = %?109 E), (70a)
(E@Py 2, F=1))5 = (A + W]Eh’ (70b)
(E(QP3/5, F = 1))5. = (—A + %:IOQ]E/“ (70c)
(E(4P3/y, F = 2))5 = %;”09 E. (70d)

These results can be obtained from the entries in table 4,
weighing the terms with the multiplicities given in table 3 (for
an averaging over the rows).

Alternatively, one may opt to average over the possible
orientations of F, namely, F = J £ %, for given J and §;.
This procedure is equivalent to an averaging over the first two
entries in the columns (two possible orientations for F), and
the third and fourth entry in every column, of table 4. The
results then read as

2 8.682 x 10°
<E(4Pl/2, F=0))F = (_EA + T]Eh, (71a)
3 7.754 x 10°
(E(4P 2, 5. = £))r = (_ZA + T]Eh,
(71b)
4976 x 10°
(E(4P1 /2, §. = £2))r = (—A + T]Eh, (71¢)
and
1 4386 x 10°
(E(4P3)5, 8. = 0))r = (5 A+ T)Eh, (72a)
3 3.546 x 10°
(E@P3/5, §. = £1))r = (7 A+ T)Eh, (72b)
1 1.820 x 10°
<E(4P3/2, 5. = j12)>F = (Z A+ T)Eh, (72c)
<E(4P3/2, 5. = :l:3)>F =0. (72d)

Finally, as a function of J, complete averaging over F and §;
leads to the results

3 7.755 x 10°

<E(4Pl/2)>F,&- = (_Z A+ T]Eh, (73a)
3 3.103 x 10°

<E(4P3/2)>F,g: = (g A + T)Eh (73b)

Without hyperfine resolution, there are four J = 3/2 states
and two J = 1/2 states. Hence, an additional average over the
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Table 4. Average second-order van der Waals shifts for 4P; hydrogen atoms interacting with 25 metastable atoms. Entries marked with a long
hyphen (—) indicate unphysical combinations of F and §, values. We denote the scaled interatomic distance by p = R/ag and give all energy
shifts in atomic units, i.e. in units of the Hartree energy E;, = o?m, ¢, The notation A is defined in equation (35).

3 =0 3 = +1 3 =42 3 = 43

9 9 9
(J — 3/2, F= 2) 4.800: 10 34996: 10 2.194 x 10 0

/’6

P P
— _ 3.973 x 10° 2.947 x 10° 6.966 x 108
J=3/2,F=1 A+)7: AJrﬂi: A + ,;: -

(J=1/2,F=1) _A+849l/6><109 _A+749O4x109 _A+44976><109
’ 6 3 6
(J=1/2,F=0) 8.216><10pg 7.302><l(§)9 _p o

/)6 p(v

fine-structure levels leads to a cancellation of the term pro- reference state |m) reads
portional to A, but the 1/ p° energy shift remains as an overall

repulsive interaction among 4P-2S atoms. oy (W) = 1 ?f[ | (m|F|n) |? N | (m|F|n) [ ]
For the 4P,,,-2§ and 4P3/,,-2S systems, the van der 37| Ewn — w— i€ Epp+w — i€

Waals interactions are repulsive, and we obtain large van der -

Waals coefficients of order 10° in atomic units (see = ﬁ;[% . M

equations (73a) and (73b)). The large coefficients mainly are n 2 Eumnl 3 Eun — w — i€

due to the virtual (4S; 2P, ,) states, which have to be added to 2 | (m|F|n) |

the quasi-degenerate basis, as outlined above. * 3 Enn Eypp + w — i€

-5 1 Jam
2 Enm + Enm :l: W — iE
n

5. Atom—molecule interactions _ S E,n
n Enm (Emn - i6)2 - w2

(75)

5.1. General considerations

. . . Here, E,, =E, — E, is the transition energy between the
As already anticipated, for atomic beam spectroscopy, it .o In) and the state [m), while f, =2 /3 Epp |(m|7] n) 2 is
becomes necessary to investigate the van der Waals Ce the dipole oscillator strength, for the dipole-allowed virtual
coefficient for collisions of highly excited hydrogen atoms (in  ransition lm) — |n). Note that one has to sum over the
P states), with hydrogen molecules. Anticipating the result, magnetic quantum numbers of the virtual state |r), but one
we come to the conclusion that |Cg| < 20 in atomic units, but  averages over the magnetic quantum numbers of the reference
the analysis becomes tricky because of some vibrational state |m).

sublevels of the H, Lyman and Werner bands, which are As an example, we calculate the dipole oscillator strength
energetically rather close to the atomic-hydrogen 15—4P and of 4P-1S transition in atomic hydrogen. In the following
1S—6P transitions. discussion, f, ,, indicates the dipole oscillator strength for

Because of the presence of energetically lower virtual nf — n’f’ transition. For a 1S — 4P transition, the dipole
states in the systems, it is instructive to start with a general oscillator strength in atomic unit reads
consideration, expressing the Cg coefficient in terms of

oscillator strengths and energy differences, for the two atomic firio = 2 E4 |(10|7] 41) 2
or molecular systems undergoing the collision. In order to ’
allow for a compact notation, we here switch to atomic units 1 1 ) ‘ foo 3 ’
’ ==|1-= R °R dr |, 76
[eco=1/(@nm), h=1, ¢=1/a]. In the non-retardation 3( 42 0 10(r) 7 Ry (rdr (76)

regime, the interatomic interaction between any two elec-
trically neutral atoms or molecules A and B is given as [3, 4] Where the radial functions R,o(r) and R4 (r) in atomic units

are given by
3i o0
Ew(®) =Re = [ dwop@) as@).  (74) Ruo(r) = 2 exp (1),
o o A Raa() = 2- rexp(—i)LS(i). an
where R is the interatomic distance (in atomic units, i.e. 16 ¥ 5! 4 2

measured in Bohr radii), and a,(w) is the dynamic polariz-
ability of the Jth atom (J = A, B), while Re stands for the real The associated Laguerre polynomials are denoted as L)" (x).
part. The dynamic polarizability o,(w) for atom J in the The integral for the transition matrix element can be evaluated

13
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analytically as
2

5!

212 X 32

- (78)

[ Rot) r* Rurydr =
0

Consequently, the dipole oscillator strength for the 1S — 4P
transition reads

218 33

o ~28991 x 102 a.u.,

ﬁu,lo = (79)
which agrees with [36]. The dipole oscillator strength of the
4P — 1S transitions is related to that of the 1S — 4P trans-

ition as

B glo i B 2]8 % 32
fl0,4l - _f4l,10 - 512
41

9.66 x 1073 a.u.,

~ __

(80)
where g = 2¢ + 1 s the statistical weight for the [nf) state.
The result (80) holds for both 4P, as well as 4P/, states.

Using equation (75), the interaction energy given in

equation (74) can be written as follows, in the limit ¢ — 07
(see equation (1) of [37]),

Exs(R) = —Re 2i

R6
A) £(B)
% i f;lm fn'm’ _ _ﬁ (81)
A B A B 6’
nn’EISW) Eyf'y:ﬂ (EISm) + E,gr,,),/) R

where the sum-integral denotes the summation over the dis-
crete virtual states, and the integral over the continuum.
Alternatively, the van der Waals Cg-coefficient reads, in terms
of oscillator strengths and transition energies

3

A) £(B)
Re =~ ;‘ fnm fn’m’
2, EWED (ES) +

nn' Bnm Hpim

Ce = (82)

E®

n’m’)

One observes that, in view of the correct placement of the
poles (infinitesimal imaginary parts in the propagator
denominators), the sum of the level energies EY + E®),
enters the expression for Cg (not the sum of their absolute
magnitude, as one could otherwise falsely conclude, if one
inconsistently performs the Wick rotation without considering
the possible presence of poles in the first quadrant of the
complex w-plane). If |m) is an excited state, such as the
excited 4P state of atomic hydrogen, and |n) is the ground
state, then EY is negative. For virtual transitions from the
ground X state of the H, molecule to an excited |n’) = |B) or
In'y = |C) state, E®), is positive.

In the case of quasi-degeneracy, one may have a situation
of mutual compensation, i.e. E%) + E,S?n)l, ~ 0, and the Cq
coefficient can be enhanced in magnitude. The energy dif-
ference (Fis — E4p) is approximately equal to —15/32 atomic
units (Hartree), so it is approximately equal to the negative
half of the Hartree energy. Typical oscillator strengths in

atomic hydrogen atoms are of the order of unity. The quantity

EW+ED =Ef —Ef, + Eff — EX, (83)
in equation (81) thus needs to be given special attention. Here

X is the X'7 ground state of Hy.

14

5.2. Molecular spectrum

A short description of the molecular spectrum of the H,
molecule is in order. Binding into X states starts from two
hydrogen atoms in the ground state with orbital angular
momenta L;, =0 and electronic spin angular momenta
S12 = 1/2. As a result, the projection of the total angular
momentum onto the molecular axisis A = L; + L, = 0, and
the total spin quantum number is S = 0, 1. The first two
excited states of X symmetry, above the molecular ground
state X', are B'SS} and B''Y;}. The spin-triplet 5%, state is
not bonding. Even if the 53%] state were bonding, we could
ignore it because singlet to triplet transitions are forbidden by
non-relativistic dipole selection rules [38]. Electronic dipole
transitions from the excited B'S) and C'II, states of H,
molecule (see figure 2) to the ground state XIZ; were first
observed by Lyman and Werner, and are therefore called the
Lyman and Werner bands [39-42].

The transition from the ground state X' to the B'S)
state occurs at 1108 A=~ 11.189 91 eV, while the X IZ;—ClH]:
transition occurs at 1008 A = 12.300 02 eV (see [43]). These
figures exclude possible vibrational and rotational excitations.
The 15-4P)), transition of atomic hydrogen occurs at
12748 51¢eV, while the 15-4P;/, transition energy is
12.748 52 eV (see [31]). Note that the 15-4P, ), and 15-4P5 ),
transition energies differ only by the fine-structure (which, in
this case, enters at the seventh decimal). Indeed, the fine-
structure splitting is an effect of relative order a? (see [25]).
The difference of the atomic 15—-4P, /, transition energy to the
X-B and X—C transitions is at least 0.448 5 eV, provided no
vibrational excitation occurs. For comparison, the transition
energies for the 2S4P,,, and 354P, ), transitions [31] of
atomic hydrogen are, respectively, 2.5497 eV and 0.6610¢eV.

These considerations exclude vibrational and rotational
excitations. In general, the ro-vibrational energy of a molecule
is given as

1 1Y
Ew,N=|lv+ —|w. — |v+ —| xew,
2 2

+B,J(J + 1) = DJ*(J + 1), (84)

where v is the vibrational, and J is the rotational quantum
number. Here, x,w, is the first-order anharmonic correction to
the harmonic oscillator approximation to molecular vibration.
The constant B,
[+3)
B,=B, — a, v+ —]|, (85)
2

is the rotational constant for a given vibrational state. Here, B,
is the rotational constant in the equilibrium position, and «, is
the first-order anharmonicity correction to the rotational
constant. Finally, D; in equation (84) is the centrifugal dist-
ortion constant, several orders of magnitude smaller than B,
To a first approximation, we can assume that the molecular
vibration is of harmonic oscillator type, and centrifugal dis-
tortions of the rotational levels is negligible. More explicitly

Ew. ) = (1/ n %)w Y B, JU+ 1) (36)
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Figure 2. Schematic Born—Oppenheimer diagram for a hydrogen molecule (not to scale). The potential energy and the internuclear distance
are given in arbitrary units. The ground state has 14 vibrational states which characterize the motion of the nuclei, while the excited B'S) and
C'TL,, and B''Y)] states also harbor a number of vibrational sublevels.

Allowed ro-vibrational transitions have AJ =0, &1, +2.
The AJ = 0 transitions (Av = 0) is the Raman Q-branch,
while the R-branch and P-branches correspond to the
AJ = +1 and AJ = —1 transitions, and are relevant for pure
rotational spectroscopy. For diatomic molecules, in Raman
transitions, the selection rules imply that the allowed transi-
tions have AJ = +2 and AJ = —2 (Stokes and anti-Stokes
lines, so-called S and O branches). Transitions with [AJ] > 2
are forbidden by selection rules [38]. Here, we are neither
concerned with pure rotational spectroscopy, nor with Raman
spectroscopy, but with the inclusion of the ro-vibrational
transitions into the sum-over-states representation of the Cg
coefficient according to equation (82). In order to discern the
allowed rotational transitions from the X to the B and C states,
one needs to observe that the X state is gerade, while B and C
are ungerade. For the molecular ground state, it is well known
that, if the proton spins in H, are antiparallel (total proton spin
zero), then the spin wave function is anti-symmetric under
particle (proton) interchange, so that the orbital proton wave
function must be symmetric under particle (proton) inter-
change, resulting in even values for J (para-hydrogen). By
contrast, if the proton spins in H, are parallel (total proton
spin one), then the spin wave function is symmetric under
particle (proton) interchange, and the orbital proton wave
function must be anti-symmetric under particle (proton)
interchange, resulting in odd values for J (ortho-hydrogen).
This holds because the ground-state two-electron wave
function is gerade, while the required proton wave function
symmetry is reversed for the B and C states, which are
ungerade (see [44]). One can understand the symmetries most
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easily if one considers the molecular wave function in the
Born—Oppenheimer approximation [42].

We have thus shown that the virtual transitions entering
the expression (82) have AJ = +1 if the transition involves
gerade and ungerade states of the hydrogen molecule. Let us
try to analyze the frequency shift in a virtual transitions of Hj,
due to the addition of a rotational quantum. We anticipate that,
because of the small magnitude of the effect, it is sufficient to
study the frequency shift within a given manifold of rotational
states, specific to either the initial or the final state of the virtual
transition. The energy differences for J — J 4 1 transitions,
within a given vibrational band, read as

AE(w,J)=Ew,J+1)—EWw,J)~2B,(J+ 1). (87)

The difference between rotational lines in a vibrational band is
thus AE(w, J + 1) — AE(v, J) = 2B,, which means the ro-
vibrational transition energies increase equally by an amount of
2B, in both AJ = +1. For the X '] state, the rotational B,
and «v, constants are B, = 60.853 cm~! and o, = 3.062 cm™',
respectively (see [42]). Thus, the B, coefficient of the X'¥}
state for the vibrational ground state is 7.355 x 10~%V.

5.3. Possible enhancement of the van der Waals coefficient

We have already stressed that the difference of the atomic 15—
4P transition to the X—B and X—C transitions of H, is at least
0.448 5 eV, thus setting a lower limit for the magnitude of the
propagator denominator given in equation (83). Two effects
could lead to an enhancement of Cg. (i) One might assume
that the ground-state hydrogen molecule enters the collision
with atomic hydrogen, in a thermally excited rotational state,
thus modifying the transition frequencies to virtual excited
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states of the molecule, and (ii) potential virtual transitions
from the X ground state of H, to rotational sidebands of the
vibrational levels v = 11 of the B, and v = 2 of the C, state,
could potentially enhance Cg.

Let us try to address point (i). At a temperature of
T = 5.8K, which is relevant for the experiment [13] the
thermal excitation energy is kgl = 4.998 x 10 “eV. (In
general, high-precision atomic-beam experiments profit
enormously from cryogenic beams.) Equating the thermal
excitation energy with the rotational energy, one can obtain
an estimate for the typical rotational J value due to thermal
excitation, assuming a Boltzmann distribution

4.998 x 104V
7.355 x 103 eV

This implies that the thermal energy is insufficient to excite
rotational levels, leaving the molecular ground state X 122,’ of
the system in the rotational ground state of the v = O vibra-
tional band. Thus, we can safely assume that all collisions
involving H, molecules start from the rotational ground state,
i.e. from a para-hydrogen state (after thermalization).

Having excluded thermal excitation of the ground state as
a further source of a quasi-degeneracy of transitions in our
system, we must now exclude point (i7), namely, the possi-
bility of virtual transitions, from the rotational ground state of
the hydrogen molecule, to higher vibrational and rotational
sublevels of the B and C states, which could otherwise
drastically reduce the energy difference with respect to the
hydrogen 1S—4P transition, and decrease the magnitude of
the quantity E) + E), in equation (83). We recall that the
energy difference between the atomic 1S—4P transition and
the X—B molecular transition is 1.5589eV. The v =11
vibrational sublevel of the B'Y] state of molecular hydrogen
has an energy of 102 856.97 cm™" =~ 12.7526 eV (see table 1
of [45]), which is closest to the 1S5-4P transition of
12.7485 eV, among all vibrational levels but higher in energy
than the atomic hydrogen line, so that the degeneracy cannot
be reduced by adding rotational quanta. For the B transition,
in order to address the possibility of rotationally induced
quasi-degeneracy, one should also note the v = 10 vibra-
tional sublevel of the B'Y} state of molecular hydrogen has
an energy of 101 864.90cm ' ~ 12.629 6 eV (see table 1 of
[45]). On the other hand, we recall once more that the energy
difference between the atomic 1S—4P transition and X-C
transition in molecular hydrogen is 0.448 5eV. The v =2
vibrational sublevel of the C'TI, state of molecular hydrogen
has an energy of 103 628.662cm™" 12.84830eV (see
table 5 of [46]), which is very close to the 1S—4P transition of
12.7485eV and energetically closest among the different
vibrational levels. As an inspection shows, it is also higher in
energy than the atomic hydrogen line, so that the degeneracy
cannot be reduced by adding rotational quanta. For the X-C
transition, in order to address the possibility of rotationally
induced quasi-degeneracy, one should also note the v =1
vibrational sublevel of the C'TI,, state of molecular hydrogen
has an energy of 101457.569 cm™" ~ 12.579 1 eV (see table
5 of [46]).

JU+1) — =0=J=0.06. (88)

~
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One can argue as follows. The rotational energy roughly
follows J(J + 1) ~ J?, for large J (see equation (86)). For
the X—B transition, to achieve quasi-degeneracy of about
1.189 x 10~'eV with B, ~ 9395 x 10 *eV, we need
J? ~ 127 = J ~ 11. Likewise, for the X—C transition, in
order to achieve quasi-degeneracy by adding rotational
excitation energy of the excited H, state of about
1.694 x 10" 'eV with B, ~ 3.579 x 10 eV, we need
J? ~ 47 = J ~ 7. By symmetry considerations, one can
show that relevant rotational transitions in our system need to
satisty AJ = +1. Transitions with AJ = +1 bring the X-B
and the X—C transitions closer to the 15-4P, , atomic trans-
ition only by 0.1% and 1.5% respectively. With a forbidden
transition featuring AJ = +2, one can bring the X-B and the
X—C transitions closer to the 1S—4P atomic transition only by
the insignificant amounts of 0.3% and 4.5%, respectively.
Effects due to higher multipoles, which could potentially lead
to ‘even more forbidden’ transitions, are typically suppressed
by powers of « [47, 48], with one power of « for each higher
angular momentum involved. For the very high required AJ
values, the contribution from the transitions which involve the
‘highly forbidden AJ’ is thus numerically suppressed and can
safely be neglected.

5.4. Estimate of the van der Waals coefficient

The remaining task is to find the oscillator strength of exci-
tation from the ground X337 molecular state to the v = 11
vibrational side band of the excited B'Y} molecular state, and
the same for the relevant X—C transition. The oscillator
strength for the v = 11 vibrational band of the Lyman band is
given in [49, 50] and reads and f = 1.74 x 10 Za.u., while
the oscillator strength for v = 2 vibrational band of the
Werner band is f/ = 6.95 x 1072 a.u. (see [49, 50]). For
comparison, slightly discrepant oscillator strengths are given
in [51] and [52], for the v = 2 vibrational band of C, namely,
f'=555x 1072 and f' = 6.42 x 1072, respectively. We
here use the oscillator strength reported in [49] in our esti-
mate. The oscillator strength for the 4P—1S atomic hydrogen
transition is —9.66 x 107> (see equation (80)). Conse-
quently, the contribution of the virtual vibrational sublevels of
the B and C states of H,, which are closest-in-energy to the
1S-4P transition in H, are given as
3 (—=9.66 x 1073) x 1.74 x 1072

Co(X; B) = —
2 (—0.468 5) x 0.468 6 x 1.499 x 104

=17.661au.,

(89)

3 (=9.66 x 1073) x 6.95 x 1072
2 (—0.468 5) x 0.4722 x 3.667 x 1073

=1.241au..

Ce(X; O)

(90)

The sum is Cg(X; B) + Co(X; C) is ~8.901 in atomic units.
The energies in the denominator of equations (89) and (90)
are expressed in terms of the atomic unit of energy, namely,
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the Hartree energy E;, = 27.2114 eV, using the unit con-
version of 1eV = 0.036 749 3E,. As a last step, one needs
to consider X—B’ transitions. Neglecting rotational quanta,
the X—B’ transition is at 110529.47 cm™' ~ 13.704 eV (see
table5 of [53]), while the X-D transition is at
1129335.29cm ™! ~ 14.002 eV (see table 7 of [53]). These
transition energies exceed the ionization threshold of atomic
hydrogen. Considering the X-B’ and X-D transitions in the
H; molecule and the 4P-1S transition in atomic hydrogen, the
propagator denominator (83) becomes positive, and, in
magnitude, greater than the 4P atomic hydrogen binding
energy. Consequently, the contribution of the B’ and the D
states to the van der Waals Cg¢ coefficient in the H(4P)-H,
interactions is opposite in sign to that of B and C molecular
states; numerically, it is small in magnitude in comparison to
C¢(X; B) and Cg(X; C). Because the involved virtual transition
frequencies and oscillator strengths are independent of the
hydrogen fine structure, to the order of the approximations
made, the result is the same for both 4P, , and 4P;, refer-
ence states. We can thus safely neglect the possibility of a
dramatic enhancement of the Cg coefficient in collisions of
hydrogen molecules with 4P hydrogen atoms. The total
magnitude of the Cg coefficient will be determined by non-
quasi-degenerate states, i.e. by a sum over the entire bound
and continuous spectrum of the hydrogen atoms and mole-
cules, as given by the general formula (82). Based on typical
calculations available for other atomic and molecular systems
without quasi-degeneracies [37], we can thus conservatively
estimate that

|Cs(4P H; X'S7 Hy)| < 20 au.. on

Let us now turn to the H-H, interaction for the planned 15—
6P experiment [54]. The 6P-1S transition energy of about
13.22068 eV [31] is comparable to the X—B(r = 15) transition
energy of 106534.3cm ™' ~ 13.2085¢eV [55] and the X-C
(v = 4) transition energy of 107 580.936 cm '~ 13338 3eV
(see [46]). The binding energy of the 6P-level of atomic hydro-
gen is less than that of the 4P-level. We notice that the X-B
(v = 15) transition energy is below the atomic 6P-1S§ transition
energy (in absolute magnitude), while the magnitude of the X—C
(v =4) transition energy exceeds that of the atomic 6P-1S
energy difference. For the same reasons as given above for 4P
interactions, the B''Y}" and D'II, molecular levels lead to neg-
ligible contributions to the Cg coefficient for H(6P)-H, interac-
tions. The oscillator strength of the v = 15 vibrational level of the
molecular B state and the v = 4 vibrational level of the molecular
C state are, respectively, 7.94 x 1072 and 3.87 x 10 in atomic
units [49]. The oscillator strength for the 6P~1S transition, where
J takes either 1/2 or 3/2, is —2.60 x 107, As a result, the Cg
coefficient of the H(6P)-H, interactions reads Cg = 2 X
(—0.293 + 0.147)a.u. = —0.292a.u.. Just as for 4P hydrogen,
the total magnitude of the Cg coefficient will be determined by
non-quasi-degenerate states. molecules, as given by the general
formula (82). Based on typical calculations available for other
atomic and molecular systems without quasi-degeneracies [37],
we can thus conservatively estimate that

|Cs(6P H; X'37 Hy)| < 20 au.. (92)
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Both estimates (91) and (92) are smaller than the Cg coefficients
obtained for atom—atom collisions, discussed in sections 3 and 4.

6. Conclusions

We have studied the van der Waals interaction of excited 4P
hydrogen atoms with ground-state 1S and metastable 2§
atoms, and with hydrogen molecules. In order to obtain
reliable estimates of the van der Waals interaction coeffi-
cients, one needs to expand the states in a hyperfine-resolved
basis, and consider all off-diagonal matrix elements of the van
der Waals interaction Hamiltonian, as outlined in sections 2.1
and 2.2. The explicit construction of the hyperfine-resolved
states is discussed in section 2.3, and the use of the Wigner—
Eckhart theorem for the calculation of the matrix elements of
the van der Waals interaction is described in section 2.4.

For the 4P-1S system, one needs to include both the
4P, ), as well as the 4P5 /, states in the quasi-degenerate basis,
because the 4P fine-structure frequency is commensurate with
the 1S hyperfine transition splitting (see section 3.1). The
matrix elements of the total Hamiltonian involve the so-called
hyperfine—fine-structure mixing term (see section 3.2), which
couples the 4P, ,»(F = 1) to the 4P;,(F = 1) levels [see
equation (31)].

The explicit matrices of the total Hamiltonian (5) in the
manifolds with §; = 3, 2, 1 are described in sections 3.3-3.5.
Final results are also indicated for the (otherwise excessively
complex) manifold with §, = 0. Due to mixing terms of first
order in the van der Waals interaction between degenerate
states in the two-atom system, the leading term in the van der
Waals energy, upon rediagonalization of the Hamiltonian
matrix, is of order 1 /R3 for the 4P-1S interaction, but it
averages out to zero over the magnetic projections. The
phenomenologically important second-order shifts of the
energy levels are given in section 3.6, with various averaging
procedures illustrating the dependence of the shifts on the
quantum numbers, and the dependence of the repulsive or
attractive character of the interaction on the hyperfine-
resolved levels.

The same procedure is applied to the 4P-2S interaction in
section 4, with the additional complication that virtual quasi-
degenerate (4S; 2P, ») also need to be included in the basis.
The treatment of the 4P—1S and 4P-2S long-range interac-
tions reveals the presence of numerically large coefficients
multiplying the 1/ p6 interaction terms, due to the presence of
quasi-degenerate levels. The interaction remains nonretarded
over all phenomenologically relevant distance scales.

For atom-molecule collisions, the analysis has been
carried out in section 5. After some general considerations
which illustrate the complications that can arise for excited
states (see section 5.1), we briefly discuss the molecular
spectrum (section 5.2), before discussing possible enhance-
ment mechanisms for the van der Waals coefficient, which
can be of thermal and other origin (see section 5.3). A
numerical estimate of the coefficient is performed in
section 5.4, with the result that the drastic enhancement that
we see in atom-atom collisions, is in fact absent for
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atom—molecular interactions. This observation is of high
relevance to the analysis of experiments.
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