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Abstract

®

CrossMark

We investigate collisional shifts of spectral lines involving excited hydrogenic states, where van
der Waals coefficients have recently been shown to have large numerical values when expressed
in atomic units. Particular emphasis is laid on the recent hydrogen 25—4P experiment (and an
ongoing 25-6P experiment) in Garching, but numerical input data are provided for other
transitions (e.g. involving S states), as well. We show that the frequency shifts can be described,
to sufficient accuracy, in the impact approximation. The pressure related effects were separated
into two parts, (i) related to collisions of atoms inside of the beam, and (ii) related to collisions of
the atoms in the atomic beam with the residual background gas. The latter contains both atomic
as well as molecular hydrogen. The dominant effect of intra-beam collisions is evaluated by a
Monte-Carlo simulation, taking the geometry of the experimental apparatus into account. While,
in the Garching experiment, the collisional shift is on the order of 10 Hz, and thus negligible, it
can decisively depend on the experimental conditions. We present input data which can be used
in order to describe the effect for other transitions of current and planned experimental interest.

Keywords: collisional shift, collisional broadening, van der Waals interaction, impact

approximation, Monte-Carlo approach

(Some figures may appear in colour only in the online journal)

1. Introduction

High-precision spectroscopy experiments on atomic hydrogen
[1-5] are critically important sources of data for the least-
square adjustment of fundamental constants [6]. The dis-
crepancy in the interpretation of the results of related
experiments, notably, in extracting the proton charge radius
from ordinary hydrogen versus muonic hydrogen (known as
the proton size puzzle, see [7, 8]), raises questions concerning
conceivable systematic effects which can be overlooked
in experiments. Among these, pressure-related effects
(collisional shifts) need to be studied in more detail.

5 Author to whom any correspondence should be addressed.
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The absence of efficient laser-cooling techniques for
atomic hydrogen makes it very difficult to devise collision-
free methods of spectroscopy, e.g. those based on optical
lattices. A standard method, which may be used for an
immediate experimental evaluation of collisional shifts, is
based on the variation of the pressure (extrapolating the
spectroscopic results to vanishing particle density). However,
the extrapolation procedure is also connected with an uncer-
tainty, which affects the resulting uncertainty of the experi-
ment. In general, if the magnitude of the pressure-related
shifts in the experiment is smaller than or comparable to its
overall uncertainty (due to other effects), then it is difficult to
use an extrapolation procedure effectively. Under these con-
ditions, theoretical estimates of the collisional shift become

© 2019 IOP Publishing Ltd  Printed in the UK
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indispensable. The simplicity of the hydrogen atom helps in
this regard.

From a historical perspective, it is interesting to note that
the study of collisional shifts and broadening mechanisms was
started more than a century ago [9, 10]. However, the appli-
cation of the developed methods to precision spectroscopy
requires some efforts. The spectroscopy of atomic hydrogen
takes place in atomic beams, where the distribution of relative
velocities between atoms cannot be described by a simple
function, like the Maxwell distribution. The geometry of the
atomic beam and the velocity-selectivity of the data acquisition
may also affect the evaluation. Because of the 1/ R® dependence
of the van der Waals interaction of atoms, the effective range of
the interatomic interaction is limited to a few hundred Bohr
radii, and the collisions happen very fast when measured in
terms of typical lifetimes of excited atomic states. This obser-
vation justifies, as we shall discuss in detail in the following, the
so-called impact approximation [11] which describes the effect
of the collisions as sequences of ‘sudden’ phase shifts, which in
turn depend on the impact parameter and on the velocity of the
atoms. Hence, details of the experimental apparatus need to be
considered in the theoretical calculation.

The goal of this paper is to describe in detail, a procedure for
the estimation of both frequency shifts as well as line broadening
in precision atomic-beam measurements of transitions in hydro-
gen and other simple atomic systems. Particular focus will be laid
on the collisional shift in the recently completed 2S—4P experi-
ment, on a beam of cold atomic hydrogen in Garching [1].
However, we emphasize that the results of this work can also be
used for future experiments on spectroscopy of other 2S-nP
transitions on the same apparatus (e.g. for n = 6), and with minor
modifications, for other transitions which will be the focus of
attention in the future. Recent progress in the determination of
interaction potentials between neutral hydrogen atoms and higher
excited hydrogen atoms and molecules [12—14] opens the pos-
sibility for an improved calculation of the collisional cross-
sections and the corresponding shift and line broadening.

In beam spectroscopy experiments, it is convenient to
separately consider the collisions of the atoms inside the beam
with each other (intra-beam collisions) and collisions of the
atoms with the background gas. The beam-background shift is
related to the pressure of the background gas, while the intra-
beam shift is related to the flux of gas. The estimation of the
intra-beam shift can in principle be done analytically, and
supplemented by a Monte-Carlo approach. The beam-back-
ground collisional shift can be estimated analytically, using as
input the residual pressure of background gas in the vacuum
chamber, which in our case is better than 108 mbar.

We organize this paper as follows: in section 2, we
present a brief discussion of the basic physical ideas, and of
the impact approximation used for our analysis. In section 3,
we derive the cross-sections for the collisional shift in H-H
collisions, using recently obtained results for the long-range
van der Waals interaction coefficients. The calculation of the
collisional shift for the already mentioned 2S—4P experiment
and estimation of this effect for a possible upcoming 25-6P
transition measurement are completed in section 4. Conclu-
sions are drawn in section 5. SI mksA units are used

throughout the paper, in order to enhance the readability and
reproducibility of the obtained results.

2. Impact approximation

A standard method to find the pressure shift in a rarified gas is
based on the so-called impact approximation (see ch 36 of [15]).
The main assumption of this approximation is that we can neglect
the interaction of the spectator atom with the perturbing species
except for a very short period of time, when perturbing atoms
approach the spectator closely. For this approximation to be valid,
the collision has to happen on time scales short compared to the
natural lifetime of the excited atomic state. In the framework of
the impact approximation, we thus neglect the duration of the
collision 7, and consider the process as instantaneous, assuming
that 7. < T'"!, where T is the decay constant (imaginary part
of the excited-state energy) of the atomic levels. For example,
the collision time in the Garching 25—4P experiment can be
estimated in terms of the so-called Weisskopf radius, which is a
critical value of an impact parameter where the phase change
during a collision reaches the value of unity. (In general, a larger
Weisskopf radius implies a stronger interatomic interaction.) The
Weisskopf radius for the Garching 25-4P experiment is less or
on the order of 1004y, and the collision velocity is in the order of
300ms . Thus, 7o ~ 107" s, while the natural lifetime of the
4P state is about 1.24 x 1078 s [16], which justifies the use of the
impact approximation.

Let us consider a two-level atom with an initial state |g)
and an excited state |e), and an energy difference between
those levels equal to hwy. The free evolution of the off-
diagonal matrix element between those states can be written
as Py, ) = Pee (0)exp(—iwp t). The collisions with other
atoms affect the phase of the oscillations, causing a drift of the
phase, which we can associate with a shift and a broadening
of the line via a Fourier transformation. So, we can write the
oscillating term of the off-diagonal matrix element as:

(@) = exp[—iwoet — 19 ()], ey

where @ is a random function, describing the total phase
acquired during a collision. Within our approximations, the
collision happens instantaneously, and we can write

Y=Y 9,00 — 1), ()

1

where © is the Heaviside step function, ¢; is a phase shift
gained in ith collision, while ¢ is the time of the ith event. The
autocorrelation function of this oscillating process is

A = (fOf* @ — 1)
= e (exp[—ile() — v — D). G)

where (...) represents the averaging on time axis. We will
assume that all collisions happen independently of each other
and the distributions do not posses memory. This corresponds
to a Markov process, which can be described by Poisson
statistics. The probability of a collision with phase shift ¢ can
be described by introducing a density function a(¢), whose
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physical meaning is that
dp = a(¢) dr do “)

is the probability of collision with a phase shift between ¢ and
¢ + d¢ during the time interval d¢. According to the Poisson
distribution, the number of the collisions k with a phase shift
in the interval (¢, ¢ + d¢) during the time 7 is distributed as

)\k
pk) = Fe*’\, A= a(p) T de. (5)
The average value ( exp(—ik¢)) can be computed easily,
(exp(—ikg)) = > p(k)e ko
k=0
% \kp—A—ik y
=30 F— =ep-A — e ) (©)

=~
Il
(=}

In order to continue, we discretize the space of ¢ to the finite set
of values ¢, ¢», ..., ¢, paying attention that in the end, we need
to study the behavior of the equation in the limit of g — co. Itis
easy to show that when we consider collisions with different
values of ¢, this formula can be generalized to the form

q
(eTiWO—ve—m)) = <exp[—i ij¢j] >
j=1

q
< H exp(_ikj¢j)>

j=1

=S pk) S plh) -+ S plky)---
fi=0 =0 k=0
o q
pU) ] exp(—ikio)
ky=0 j=1
q 0
=TI > pkyexp(—iki)

Jj=

k=0

kj

q o \"
=1I exp(=X\) >_ k—j'eXp(—ikjif’j) N

j=1 k=0 1
With the help of equation (6), we may express this as

(e iO—va-)) = ﬁ (exp(—ik;®)))

j=1

q
= [ exp[—X\(1 — exp(—ig))]

j=1
q

= exp(ZAj(l - exp(iqéj))]. ®)
j=1

In the limit of g approaching infinity, one can express the sum
on the right-hand side of equation (8), in integral form, as

<e—i(v1‘(1)—v:(t—7))>
= exp(_TfOO a(d)[1 — e—i(b]d(b)

:exp(—Tf_ia(qﬁ)[l — cos ] d¢)

x exp(—injX) a(@) sin é d¢), )

where we make use of A = a(¢) 7 d¢. The phase factor has to
be added to the phase exp(—iwg?) from equation (3). According
to the Wiener—Khinchin theorem, the power spectrum of the
process f(f) can be obtained by Fourier transform of the auto-
correlation function. This calculation gives a Lorentz function

(/2

f(w) ~ : 10
T G+ w—wo = w? a0

where w,. and 7, are obtained as the collisional shift and
broadening:

we= [ a(@)sin) do, (an
+00
%= " a@0 - cos@) do. (12)

00

The physical dimension of these equations can easily be checked
upon observing that a(¢), according to equation (4), carries a
physical dimension of inverse time.

3. Calculation of collisional shifts and broadenings

3.1. Peculiarities of van der Waals coefficients for S states

Even if the main subject of the current paper is the pressure
shift in 1S-nP transition, we here recall a few interesting
aspects of calculations related to van der Waals interactions of
atomic hydrogen atoms in § states. We consider a two-atom
system in which both atoms A and B are in [kS) and |nS),
where k,n € N. The energetic degeneracy of states
|kS)a|nS)p and |nS)4|kS)p indicates that the kS—nS exchange
interaction results in entanglement of the states, whose basis
states are

The eigenvalue equation of the system is given by
(Ho + Hvaw)|V) = E|V), (14)

where the unperturbed Hamiltonian H is the sum of the
Schrodinger Hamiltonians of the atoms,

Hy = Z[p" ¢ i].

i—ap\ 2m e |7

15)

Here, m is the mass of the electron, while p; and 7 are the
kinetic momenta of the electron for an atom 7 and the position
of the electron relative to the nucleus of the atom, respec-
tively. The van der Waals Hamiltonian,

e xaxg+ Yy Vs — 22428
4reg R3

Hyaw = , (16)

is the perturbation to the system. Here x;, y;, and z; are the
coordinates of the atomic electrons with respect to the atomic
centers, while R is the interatomic distance. As given in
section 4 of [12], the eigenenergies and the eigenvectors of
the system, in the van der Waals range (qp < R < ag/ ),
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can be expressed as

_ Dg(nS; kS) £ My(nS; kS)

E: = E —

(17a)
L
V2

where E, is the unperturbed energy, and Dg(nS; kS) and
Mg(nS; kS) are, respectively, the direct and mixing van der
Waals coefficients. They are given by equation (54) of [12].
Let us recall them here for convenience,

2¢*
3(4mep)?
« g LKSI7 1p) PL(nST lg)
Pq Ep + Eq - (EkS + EnS) |

2 et
3(4mey)?
« ¢<kSI7 lp) - (pI7InS) (nS|7 |g) - (q|7 |kS)
E, + E; — (Exs + Eys)

W) = (1) £ [92)), (17b)

Dg(nS; kS) =

(18a)

Me(nS; kS) =

(18b)

rq

Here, the sum-integral sign clarifies that the continuum states
are to be included in the sum over virtual states, and the
transition matrix elements are to be evaluated for the two
atoms separately, as indicated. The symmetry-dependent
quantity Dg(nS; kS) £ Mg (nS; kS) is the van der Waals
coefficient of the nS—kS system. More explicitly,

Co(nS; kS) = De(nS; kS) + Mg(nS; kS). (19)
For example, the coefficients Cg(2S; 1S) (see [12]) and
Ce(3S; 1S) (see [17]) are given as

Co(2S; 1S) = (176.752 266 + 27.983 245) E;, al,  (20a)

Cs(3S; 1S) = (917.478 571 + 2.998 270) Ej, al,  (20b)
where E;, = o’*mc” and ag = h/(amc) are the Hartree energy
and the Bohr radius, respectively. (In atomic units, both E,
and ag are unity.) Notice that, for the 25—-1§ system, the Dg
coefficient is about six times larger than the Mg coefficient
whereas for the 35—1S system the D coefficient is two orders
of magnitude larger than the M, coefficient. The M, coeffi-
cient becomes smaller with the principal quantum number is
being increased as recently observed in [17]. However, the Dg
coefficients increase as the fourth power of the principal
quantum number of the excited reference states. As a con-
sequence, the mixing Mg coefficient becomes negligible in
comparison to the direct D¢ coefficient for higher excited
reference states.

3.2. Peculiarities of van der Waals coefficients for P states

For interactions involving higher excited P states (in atomic
hydrogen), other issues arise. Namely, in a sum-over-states
representation (see equation (18a) and appendix A), the van der
Waals Cg coefficient is obtained in terms of dipole transitions of

4P 1S

15 4P

Figure 1. One-photon exchange from a (4P; 1S) atomic hydrogen
state to a (1S; 4P) state, for long-range interactions between two
atoms.

the two atoms to virtual levels accessible via such transitions,
with the sum of the transition frequencies for the virtual transi-
tions of both atoms in the denominator. The Cg coefficients in
the nP-1§ and nP-2S systems are enhanced because of the
presence of quasi-degenerate virtual states which are accessible
via such transitions. This is illustrated in figure 1 for the 4P—1S
system: An allowed one-photon exchange from an initial (LS;
4P) state couples to the quasi-degenerate (4P; 1S) level
Therefore, hyperfine frequencies enter the propagator denomi-
nator in second-order perturbation theory, and the Cg coefficient
is drastically enhanced [14].

For example, we have according to equation (69) of [14]
for the 4P-1S system,

(Co(4Py/2; 18)) = 2.489 x 10* E; ag,
(Co(4P3 2; 1)) = —1.245 x 10* E, af.

(2la)
(21b)

Here, by (Cs), we denote a linear average over the hyperfine
manifolds has been performed, which is (slightly) different
over the averaging procedure required for the calculation of
the pressure shift (see appendix B). Specifically, one has
(|Cs?) = |(Cs) */°. (Numerical experiments show that the
two quantities differ by no more than 30% for typical atomic
transitions in hydrogen.) By contrast, for the 6P-1S system,
we have according to equation (27) of [18],

(Cs(6Py /2, 18)) = —8.2347 x 102 E, af,
(Cs(6P;3 25 15)) = 4.117 4 x 10* E;, a,

(22a)
(22b)

so the sign pattern is reversed as compared to the 4P-1S
system.

The enhancement of Cg could of course only occur if the
two atomic or molecular species involved in the long-range
interaction have identical or very similar transition fre-
quencies. Typically, this would be the case for identical atoms
or molecules, or closely related ones, like different isotopes.
For the reference (4P; 1S) system, the virtual transition fre-
quency to (1S; 4P) is almost zero because the two virtual
transition frequencies for the two atoms (almost) cancel. The
first-order perturbation, for absolute degeneracy, is treated in
appendix A.
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3.3. Cross sections

In order to establish a connection between the gas model and
the oscillator model, we can parameterize all collisions by the
relative velocity of the colliding atoms v and the impact
parameter b. If we write the interaction between the spectator
atom in the state |s) (s = g, e) and the perturbing atom at a
distance R as E((R), then the phase shift in a single collision
can be calculated in non-recoil limit as

b, b) = %fm (E, (V22 £ b2)
— E,(\v’1? + b?))dr.

In order to convert the formulas (11) and (12) into cross
sections, we should recall that dp/dt = a(¢) d¢, and that

(£58)- o0 (522
|

where dN is an infinitesimal number of atoms, dA is a cross-
sectional impact area, and n is the number density of the
atoms. Also, v, is the velocity of collisions. This implies that
a(¢) d¢ = nv. 2nb db, where v, is the velocity of collisions.
Hence, we can compute the cross-sections of the pressure
shift and broadening (in units of rad mz):

(V) = fom b sin (6(v, b)) db,

(23)

)(a(¢) do), (24)

1
n,

(25a)

o, (v) = fo " 2mb [1 = cos (6(v, b))]db. (25b)

With the help of the formulas for the cross-sections, we
estimate the shift and broadening of the spectral line by
simple formulas

(26a)
(26b)

We =MV, Oy (Vc)a
Ve =MV U@’/(VC),

where v, is a characteristic velocity of the collisions, which
will be specified in greater detail in the following. An
improvement of this estimate requires a more careful con-
sideration of the distribution of collisional velocities (e.g. with
the help of a Monte Carlo simulation).

We shall also notice that in some cases the integrals in
previous equations can be computed analytically. Particularly, if
the interaction energy can be expressed as E(R) = —C,R ",
where n =4, 5, 6, ... is a positive integer number, then the
cross-section corresponding to the pressure shift reads, in view
of equation (23),

I G [T
ow(v,n)—f0 27rb51n( ﬁ[oo b

+ 227241y db

ﬂ JT bl

— _san(Cy) fo " 27bsin - W
2

27

Table 1. Coefficients A (n) and A,(n) for n = 4, 5, 6.

no A AW
4 984895 5.68629
5 454652 454652

6 293624 4.04139

For a positive integer n, equation (27) can be expressed as

|C”| )2/("1)

T e

o,(v, n) = —A,(n) sgn(C,,)(

where sgn(x) is the sign function, i.e. sgn(x) = 1 if x > 0 and
sgn(x) = —1 if x < 0. Since the cross-section is just a pro-
portionality coefficient between the flux of atoms and the
experienced frequency shift, the sign of o, deserves a remarks
According to equation (17a), a positive Cg coefficient is asso-
ciated with an attractive van der Waals interaction, which in turn
leads to a negative frequency shift in equation (28). In contrast to
0., (v, n), we shall define, in the following, the cross section o,
(v, n) associated with collisional broadening, as a manifestly
positive quantity.

The coefficients A, (n) are n-dependent dimensionless
constants. For n > 4, A (n) is given by

n—1 2/(n—1)
('3

). (29)

Aw(n)zw"/("*l)F(n — 3)
n—1

. ( ™
X sin
n—1
Similarly, the cross-section corresponding to the pressure
broadening for any n > 3 reads

o,(v, n) = fooo 2wb[1

— cos % T b E db

2/(n=1)
|c;|) . 30)

=A,(n)| —

( )( P
Both the A,(n) and the A.(n) coefficients are dimensionless.
For n > 3, we have

A, (n) = o/ (=1 F(u)

n—1

_ 2/(n—1)
r(*s)
X | —7<— cos(
r(3)

while for n = 3, the coefficient A,(n = 3) = 7r2, and the
integral for A (n = 3) does not converge. We refer to table 1
for the values of A(n) coefficients, for the cases n = 4, 5, 6.

In case of collisions between hydrogen atoms, when the
interaction potential is caused by van der Waals forces, the

most relevant distance region is (a¢g < R < ag/a). In the
van der Waals region, the dipole interaction of an excited

™
1), GD

n—
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Table 2. Coefficients of collisional broadening and frequency shift are given for hydrogen transitions of experimental interest for high-
precision spectroscopy. The corresponding cross-sections can be calculated using the given data, via formula (32). The colliding system is
described in the column ‘perturber-spectator’ in the format ‘state of perturber atom—(lower state of spectator atom—upper state of spectator
atom)’. The 1S hydrogen atoms may be present in all possible hyperfine substates, while the 25 atoms, in accordance with the experimental
apparatus, are assumed to be in an ' = 0 substate only, after having been excited via two-photon absorption from the F = 0 hyperfine
ground-state sublevel. This is at variance with equations (21a)—(22b). The coefficients fffl/ for perturber 1S atoms were averaged over the

manifold of all available hyperfine substates, while the 2S5 perturber atoms were taken only in the F' = O substates. The averaging is done

according to equation (40).

Perturber-spectator

€9 (rad m* (ms™"H*?) €9 (rad m® (m s HHD

15-(15-25) —2232
15-(15-3S) —4325
15-(15-4S) —6.855
1S-(25-4P, ) 3.133
15—(25-4P5 ) ~5.753
15—(25—6P; ) 1.506
15—(25-6P5)») ~3.172
2S(F = 0)~(15-2S) —1.474
2S(F = 0)~(25—4P, ;5) 2719
28(F = 0)~(25-4P5)5) —1.812
28(F = 0)~(25-6P; )») 5.053
2S(F = 0)~(25-6P5 5) —4355

X
X
X
X
X
X
X
X
X
X
X
X

10 3.072 x 107V
10 5.953 x 107V
1Y 9.435 x 107V
1071° 4313 x 1071¢
10 ' 7.919 x 10 '©
10t 2.072 x 1071¢
10716 4365 x 1071°
10" 2029 x 10
10~ 3.742 x 1071
101 2494 x 1071
1075 1.304 x 107
10~ 5.967 x 1071

atom interacting with the induced dipole of the ground state
atom produces van der Waals type of pressure shift and
broadening. The corresponding cross-sections, for n = 6, are
given by

o) = Qv o) = OvA, (32)
where the superscript in Cg indicates that the interactions are
of the nonretarded van der Waals type and the proportionality
coefficients ff)w are given by

3255 — 5 3 Col V7°
&= " F(g)sgn(cs) ('5—6')
2/5
— —~2.936 24 sgn(Ce) (';—6') :
(33a)
€O — CFPES 4D aysp(2)(1C Y
g 2175 % 5 s\ 7
2/5
— 4.041 39 ('2—6') : (33b)

The coefficients 553)7, computed for the different transitions
are given in table 2. Numerically, the magnitude of the
pressure-shift cross-section is about three-quarters of the
pressure-broadening cross-section, as is evident from
equations (33a) and (33b).

We refer to [12—14, 17, 18] for numerical values of the
van der Waals Cg coefficients. As is evident from the dis-
cussion in section 3.1, the van der Waals C¢ coefficients are
symmetry dependent for nS—1S interactions (see [12, 17, 19]).
With D¢ denoting the ‘direct’ term and M the ‘mixing’ term,
one obtains the coefficients Dg + Mg for the symmetric and
anti-symmetric combinations of the two-atom states. The
coefficients Dg += Mg should then be taken to the power of
2/5. Assuming an equal likelihood for collisions to take place

in either of the two symmetries, appropriate formulas to
evaluate the 5(5) and 5(6) are given as
gl
)2/5

|Dg + M|

€© = —1.468 12{[sgn(Ds + Mﬁ)( P

D¢ — Mg| \/°
+m@—mﬂi;ﬁ)]
D, M. 2/5
+ [sgn(D6 + MG)(|64/;76|)

_ 2/5
ﬂmqu&?@)ﬂ (34a)
2/5 B 2/5
! 2 Vi3
D¢ —

o (S A S N S

7
For all nS-1S systems with n > 4, the mixing van der Waals
coefficient Mg is smaller by at least four order of magnitude
than the direct term Dg [17]. This fact simplifies the situation.
If we include the mixing term, then, for the 2S-1S system,
¢9@) and §$)(v) should read as

|Dg + M|
7

€928 15) = —(2.232 + 0.142)

x 10717 rad m?(m s~1)?/3, (35)
and
£9(28; 1) = (3.072 + 0.196)
x 10717 rad m?(m s—1)2/3, (36)

respectively. The mixing term is not indicated in table 2, but
given in explicit form in equations (35) and (36). For the
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Rear diaphragm
1.50 mm x 1.85 mm

Front diaphragm

N I
ozzle rn=1.20 mm

Detector diaphragm

r3=1.92 mm

Figure 2. The scheme used for simulation of the collisional shift from intra-beam collisions. The trajectories of atoms are starting on the
nozzle outlet; the diaphragms are forming the atomic beam. Atoms can be excited in 2 state in the 15-2S Gaussian laser beam with 1/¢
intensity radius 0.3 mm. Excited 2§ atoms crosses the 2S—4P spectroscopy laser beam. During that the 2S—4P beam the atoms can collide
with other atoms from the beam, which causes an intra-beam shift. The Monte-Carlo procedure of calculation of this shift is based on random
seeding of the trajectory of the spectator atom A, the trajectory of the perturber atom B in a way that they collide in point 7., averaging a
function ),,, describing the collisional shift for different velocity groups with proper weights.

35—1S system, one has

€©(38; 18) = —(4.3253 + 0.0056)

x 10717 rad m?(m s~ 1)2/3, 37)
and
5&?(35; 1S) = (5.9534 + 0.0078)
x 10717 rad m?(m s—1)%/5. (38)

The mixing contribution only enters at the third decimal. The
long-range interaction potential is attractive, which means
that the frequency shift is negative. Presenting our results only
to four significant figures, we can neglect mixing contribu-
tions for the 45—1S system and higher excited reference states.

In table 2, we present the average values of {f?) and é(f)
for F = 0 to F = 1 transitions in the hyperfine manifolds of
the 25-2§ and 25-nP, systems. Note that both & ﬁf) and & ff’) are

proportional to |Cg>/>. The averaging over the fine and
hyperfine levels is done as follows. Let us assume that the
system we are interested in has N hyperfine manifolds which
we label by a subscript j = 1, ..., N, with multiplicities m;,
and also let Ml = 3>, my;. The 5(75) and £© are calculated using

¢© = —2.936 24 sgn(Cy) (IC6l2/3) / 72273, (39a)
€© = 4.041 39 (|C4P%) /52/5, (39b)
where
1 .
(ICg7)) = o m;(ICP 5. (40)
j

We shall notice that in our theoretical works ([14, 18]), the
energy shift for both the 1S and 2§ collisions are averaged
over all possible hyperfine states. The particular interest of the
current work is concentrated on the 25-4P and 25-6P
experiments at the Max Planck Institute at Garching, where

atoms are prepared in the metastable 2S(F = 0) state [1].
Selection rules of spectroscopy allow the excitation from the
28(F = 0) state to the nP,(F = 1) states, where j = 1/2, 3/2.
So, the averaging in this case should be done over a different
manifold of quantum states. We here use the van der Waals
coefficients C(2S(F = 0)-nP(F = 1)) whose evaluation is
described in detail in the accompanying article [14].

One may notice that in nS—mP collisions, the van der
Waals Hamiltonian (16) mixes the quantum states of the
system |nS,, mPg) with a state |[mP,, nSg). In principle, this
mixing may cause a first-order energy shift, proportional to
R™>. However, this first-order shift averages out to zero when
taken over state manifolds; hence it does not contribute to the
pressure shift [20]. Indeed, we may cite the following remark
on p 1045 of [20]: ‘Shifts would be given by the imaginary
part of the S matrix element, but are zero for resonance
dipole—dipole interactions’. Note that in the notation of [20],
the S matrix element is given by the expression (/|®|/). In our
notation, in appendix A, the § matrix element is denoted as
(/10]1) in order to ensure the self-consistency of the notation
we are using in this paper (more details are provided in
appendix A).

4. Collisional shift in the Garching 2S-4P hydrogen
experiment

4.1. Experimental apparatus

In order to evaluate the effect of the collisions between the
atoms inside the beam, we need to consider the geometry of
the experimental setup. A detailed description of the 2S-4P
experiment in Garching is given in [1, 21]. For the calculation
of the collisional shift, we use a simplified model, based on
the actual geometry of the experiment (see figure 2).
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According to this model, hydrogen atoms in the 1S state are
emitted from a cryogenic circular nozzle with a temperature
of T=5.8 K. The atomic beam is collimated by several
diaphragms, aligned along the 1S-2S two-photon excitation
laser beam at 243 nm. After passing through the excitation
region, where they can be excited to the 2§ state, the atoms
come into the 25—4P spectroscopy region, in which they cross
the 486 nm laser beam. A possible bias due to simultaneous
irradiation of the 2§ atoms by the 15-2S laser beam during the
25—4P spectroscopy is avoided by shuttering the 15-2S laser
beam with rate of 160 Hz. The 25—4P excitation signal is
detected via Ly-a and Ly-vy decays and recorded only in the
periods when the 1S-2S laser beam is blocked. A multi-
channel scaler separates the signal from the 2S-4P
spectroscopy into several groups according to the delay
between the beam blocking falling front and the photon
detection. The velocity distribution of the atoms v, strongly
depends on the delay, since fast atoms pass the 2S—4P
spectroscopy region earlier than slow ones.

The total flux of hydrogen atoms in our calculation is
taken from the measured flow of the hydrogen gas into the
apparatus during the 25—4P measurement (approximately
1.8 x 10'® H, molecules per second). An estimate of the
dissociation rate into hydrogen atoms can be obtained indir-
ectly, via two independent methods, which independently
indicate a fraction of atomic hydrogen on the order of 10%.
The first estimate proceeds as follows. Upon a decrease in
temperature from 20 to 5.8 K, the residual pressure near the
nozzle is observed to decrease by more than a factor 10.
Within a crude approximation, we can assume that molecular
hydrogen, as opposed to atomic hydrogen, becomes solid in
this temperature range and is left on the nozzle as ice, which
means that about 90% of the gas remains in molecular form.
Alternatively, we experimentally study how the amplitude A
(T) of the line changes as a function of temperature. Within a
crude approximation, one would have A(T) = Nd(T) e(T),
where N is the number of molecules, d(7T) is the dissociation
ratio, and e(7) is the excitation probability. If N is indepen-
dent of temperature, and e(7) is proportional to 1/T (see [22]),
then the amplitudes of the lines at 5.8 and 300 K should be
related to the corresponding dissociation rates as A(5.8 K)/A
(300K) =~ [d(5.8K)/d(300K)][(5.8 K)/(300K)]. This esti-
mate also is compatible with a dissociation rate not exceeding
10 %, and a flow of hydrogen atoms thus not exceeding

3.6 x 10" atoms s .

4.2. Analytic estimate for intra-beam collisions

It is interesting to note that the collisional shift can be esti-
mated via a simple analytic calculation. We notice that the
average velocity of the atoms leaving the nozzle in the case of
a Maxwell distribution with temperature 7 = 5.8 K is about
v =3J7/8 X kgT/my ~ 410 ms~ . If all the atoms are
flying from a point-like source with a uniform angular dis-
tribution, the number of atoms crossing the sphere of radius L,
can be estimated as N = 47 L? v m, where n is a number
density of the atoms. From the flux N = 3.6 x 10'” atoms s,

one can estimate the concentration of ground-state

hydrogen atoms in the atomic beam at a distance of
about L, =164cm from the nozzle to be about m =
N/(@m L¥v) ~2.6 x 10" atomsm>. For 15-4P;, col-
lisions with a velocity of 410 m s™!, the collisional shift cross-
section is about o, = —5.1 x 107'7 rad m? which finally
gives a shift w./2n) =nv g,/(2n) ~ —8.6 Hz. We recall
that for 4P, /,, the van der Waals potential is repelling, while
for 4P; 5, it is attractive [14]. This result is close to the result of
the Monte-Carlo simulations, confirming the possibility to
neglect pressure-related effects on the current level of exper-
imental uncertainty [1, 21].

4.3. Monte-Carlo calculation for intra-beam collisions

The simple analytic estimate given above can be criticized
since we ignore the complicated spatial and velocity dis-
tributions of the hydrogen atoms. In order to take this into
account, we use an approach based on a Monte-Carlo simu-
lation. In the framework of this simulation, we consider the
collisional shift caused by collisions with other atoms from
the same beam. These can be in either the 1§ or 28 state. For
simplicity, we do not model a full lineshape of the 25-4P
spectroscopy, but restrict our evaluation to the collisional
shift, equally weighted over the set of 2§ atoms. For the
computation of the excitation probability of the spectator
atoms A in the delay window from, say, 7; to 7,, we use an
existing Monte-Carlo approach, described in [23, 24]. The
origin points of trajectories of the hydrogen atoms in this
simulation are seeded uniformly on the orifice of the nozzle,
while the velocity vectors of these trajectories are seeded
uniformly in the corresponding solid angle. The trajectories
which do not pass all diaphragms are rejected. The program is
also choosing a random absolute value of the velocity v, of
the atom according to a Maxwellian distribution, and the
random position of the atom z,¢ on the z-axis, where the atom
is located at the moment of shuttering the excitation light.
The Monte-Carlo procedure discards the seeded trajectory if
the atom does not fall into the delay window, characterized
by the condition 7 < 7 < 7,. Here, we designate as 7 =
(Lo — Zof)/va. an individual delay of the atom A, where L is
the distance from the nozzle to the 2S—4P laser beam, and v4,
is the z component of the velocity of the atom. For all the
atoms which fit into the delay window, we can compute the
excitation probability p,, to the 2S state by integrating the
optical Bloch equations from the moment of the beginning of
trajectory to the moment when the light is shuttered off.
The result of the procedure described above is a set of
random atomic trajectories described by the initial position
a0, the velocity vector vy and the individual delay of the atom
7. For each trajectory, one computes the excitation probability
to the 2S state p»y, and the position of the atom 7.y, when it is
crossing the 25—4P laser beam. Random collisions with other
atoms B in the vicinity of the point 7., cause the intra-beam
shift, where we assume that the modulus of 7% is large against
the distance of closest approach of the two atoms during the
collision, i.e. large against the impact parameter b. This
means that |;(.:ol| > |7A(tcol) - ?B(tcol)| = b’ where Teol is the
point in time of closest approach of the two atoms. The
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weight for this averaging is the excitation probability of the
atom A, which we denote as pj,.

The evaluation of the collisional shift of the atom A in the
position %.,; with velocity 4 can be done via the cross-sections
of the collisional shifts, computed by formula (32). In order to
evaluate collision rates and velocities, we can describe our
nozzle as a set of point-like sources of atoms B. Each source s
with position 7, emits N, atoms per second with a velocity
distribution p(vg) and an angular distribution (&), where é is
a unit vector representing direction. We assume that atomic
trajectories are straight during the 15-2S excitation phase, so
that é can be expressed as

o= Sa =5 (41)
|’_{:01 - Fxl

For most atoms contributing to the experimentally
observed line shape, the assumption of a straight trajectory of
the atoms during the 1S-2S excitation (which is of course
different from the subsequent 25—4P excitation) is valid since
the probability of the collision with a small deflection angle
(which allows the atom to pass through the front and rear
diaphragms) is quite small. For example, our estimation
shows, that the fraction of atoms, which can be deflected by
the angle between 10~* and 10~ rad, is less than 10™>. In our
experimental geometry, that implies that either, the atoms in
the atomic beam in the 25—4P spectroscopy region come to
this region from the nozzle without a strong deviation from
the straight-line trajectory, or they do not get there at all.

A remark is in order, which is relevant especially for the
2S8-4P excitation region, because of the large Cg coefficients
governing atoms in the excited P state. As we show in
appendix C, it is interesting to observe that the assumption
that the trajectory of the atom is close to a straight line during
the collision, actually is not fulfilled in the complete range of
impact parameters relevant to our calculation. When the
impact parameter is close to a ‘deflection radius’, which for
our geometry is close to the Weisskopf radius, then the tra-
jectories of the colliding particles are strongly deflected. In
this case, the problem of the collisional shift should be con-
sidered with a full account of the experimental geometry. In
the setup of the Garching 2S—4P experiment, the atoms,
deflected in the region of 25—4P spectroscopy, remain in a
spatial region where the emitted decay photons could be
registered by the detector, upon decay, in the form of Lyman-
« (after quenching) and Lyman-v photons (from the 4P state).

Experimentally, if the 2§ atom is kicked out of the beam,
then it will hit the wall of the detector ‘box’. With a high
probability, a collision with the wall leads to a quenching of
the 28 state, due to the interaction of the atom with the surface
of the grounded conductor, and emission of a Lyman-«
photon. (In our experiment, we actually do not detect the
photons, but the photoelectrons, which they kick out from the
walls, as described in [1].)

When 2§ (or, conceivably, 4P) atoms are kicked out of
the beam by collisions with small impact parameters, they do
so irrespective of the frequency of the spectroscopy laser. In
other words, if the 25 atom leads to an event registered by the
detector, regardless of the state of 25—4P laser, the atom could

only contribute to the constant background, which is elimi-
nated by our fitting procedure [1]. Only the atoms with a
small deflection angle (less than 10" rad) contribute to the
observed resonance line shape. The latter escape from the
detector undetected if the 2S—4P laser is off-resonance and are
detected via decay from the 4P state if the 2S—4P laser is in
resonance. In our Monte Carlo simulation, we assume that the
trajectories of the colliding atoms are straight, and ignore the
possibility of a large deflection from the straight-line trajec-
tory. Thus, we very likely overestimate the observed colli-
sional shift, because we also take into consideration the atoms
with a large deflection angle; these should otherwise be
ignored because they only contribute to the background. In
consequence, a Monte Carlo simulation with straight trajec-
tories during the 25-4P excitation can be used as an estimate
of an upper limit of the collisional shift.

The number density of atoms B with velocities in the
interval (vg, vz + dvp), created by the source s in the point
T+o1, can be evaluated as

Ny \If( ﬁol*ﬂ)
T —
Amvg | ool — T | [ oot — 75 |

x E(, Ieo1) p(vp) dvg,

dng, =

(42)

where Z(7, .1) is a filtering function, which is equal to unity
if the trajectory, starting at 7 and heading towards 7.,|, passes
all diaphragms installed in our experiment, and zero if not.
The relative velocity of the atoms A and B is

Teol — I

(43)

Veol = VA — VB = VA — VB — —>
|rcol*’:v|

and so, the infinitesimal frequency shift dwy, caused by the
source s and velocity component (vg, vg + dvp) is:

N, N )
d7vp | Tt — 7 | ot — 7 |

X E(Fs, Iol) p(vp) dvp

dwy, =

|;;01_;;‘

X | — VBEOI—:?|
| oot — T |
X Uw( VW — vp—o—h ) (44)

The angular distribution W, for practial calculations, is
taken proportional to the cos(f), where the 6 is the angle
between the normal vector to the surface of the nozzle outlet
and the atomic trajectory. This choice is motivated by Lam-
bert’s cosine law, which is well known for ideal diffusive
radiators. In order to write this probability distribution func-
tion explicitly, we can introduce another angle ¢ so that # and
¢ define a spherical coordinate system, whose z axis points
away from the point of the source in direction of the normal
vector to the nozzle surface. In this coordinate system, the
probability distribution W can be written as

W(l, ¢) = cos(#)sin(f) /m, (45)
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which is normalized to

foh dg fom 46 Wb, o) = 1.

Indeed, for our nozzle, the relevant angular ranges are
0<f<7/2and 0 < ¢ < 27.

In order to compute the collisional shift of the individual
atom A, this function should be integrated over all the velo-
cities vz and all the sources of atoms s. It is clear that any
attempt at an analytic computation of this integral would be
hopeless even in simple cases. However, we can use the
Monte-Carlo method with good effect. It is advantageous to
restrict possible values of the velocity vg to an interval from
ZeT0 1O Vimax, Where v is a velocity chosen to be bigger than
the velocity of most of our atoms. One then needs to calculate
the average value of the function

(46)

0. — 1 dwy, 1
sV T = = -
N; dvg 47TVB|rcol - rs|2
Teol = T | = o =
X ‘I’(i_fo - ] 2 (7, 7o) p(vB)
%01 — Fl
. ol — T
X | — gL ‘
|72:ul - rsl
. ol — T
ol [ - ve=2—= | |. (47)
|rcol - Ks|

For this averaging, we should seed the velocity of the atom vg
according to a uniform distribution, since the function €,
contains the properly normalized probability density function
p(vg). The sources of the atom can be seeded with a weight
determined according to their flux N, which practically
means that in each Monte-Carlo run, we can randomly
choose, as the point of origin of atom B, a specific point 7; on
the nozzle orifice. The total shift can be evaluated as:

Weol = f
co zs:o

where Ny is a sum of fluxes of all the sources, and (---)yc
represents a Monte-Carlo averaging. Notice, that in this
approach to the intra-beam collisional shift, we do not
necessarily need to use discrete sources of the perturbing
atoms. The sources can be distributed on some surface or
even in an extended volume. For the purpose of our evalua-
tion, we assume that sources are uniformly distributed on the
orifice of the nozzle.

A particular effect which should be considered in the
25—4P experiment, concerns the possibility to collide with
another 2§ atom in the beam. In order to take this effect into
account, we compute the probability p,,p of excitation of
each atom B. We can use the fact that the individual delay of
atom B must exactly coincide with the individual delay 7 of
the atom A. If the seeded velocity of atom B satisfies
the condition vg, > Ly/7, then atom B leaves the nozzle
after the light was shuttered off, so this atom cannot be
excited to the 2§ state and py,p = 0. If vz < Lo/, then atom
B can be excited to the 25 state with a probability, which can
be computed by an integration of the optical Bloch equations.

Vmax

dwsy & Niot Vmax <st>MCa (48)

10

We also need to take into account, that the 15-2S laser beam
excites only atoms in the 1S(F = 0) state, since the transition
IS(F = 1) — 2S(F = 1) is not in resonance with the 15-2S
laser beam. According to statistical weight, the probability
that the atom originates in a state F = 0 is 1/4, so we should
multiply the result of the integration of the Bloch equations
by the factor 1/4. Thus, we can separate the collisional shift
into two parts—collisions with 1S atoms and collisions with
2§ atoms—by averaging two different functions:

(=)

X E(, Ieol) P (vB)

o o
Teol — I

o o
Teol — I

1 — pyp
S "
2
Amvp|ior — 7

1S __
sV

7ot — 7

X \_/:4—\/3

N

PaB
4mvp|ite — T

|71 — 7
7001 —

Wcol -

"

x E(%, Teol) p(vB)

W —vp (49)

Teol —

|Fcol

25
st -

o o
Teol — I

-

VA — VB

|’_‘(;01 -

The cross-sections of the shift JZ.S, with n = 1, 2, can be
computed using formula (32). The Cg coefficient for 1S col-
lisions should be averaged over all possible hyperfine sub-
levels of the 1S state, while the Cg coefficient for the 2S5 atoms
should take into account only 2§ atoms in the F = O state.
The Cg coefficients used for our simulation together with the
results of the calculation are given in table 3. It is instructive
to perform a similar calculation, for the ongoing 2S-6P
experiment in the same apparatus. Corresponding results are
given in table 4.

X

i

28

w

. Pl — T
x o[ | — vp—2L— 5 (50)

7ot — 7]

4.4. Collisions with background gas

Here, we consider the pressure shift caused by collisions with
the background gas. A precise calculation of this shift has no
practical interest because of the unknown fraction of atomic
hydrogen in the background gas, and fluctuations of the
pressure in the 2S—4P spectroscopy region caused by cryo-
pump working cycles. Thus, our goal is to conservatively
estimate the shift from beam-background collisions, assuming
that the effect from the molecules is less than or comparable
to that caused by the atomic hydrogen in the background gas.
In fact, because of a much smaller Cq coefficients for the
atom-molecule as compared to the atom-atom collisions (see
section 5 of [14]), this assumption should be well justified.
The calculation described below takes only the effect of
collisions with atomic hydrogen into account. In fact, we can
easily do the calculation analytically under the assumption
that the velocities of the atoms in the atomic beam are much
smaller than the velocities of the background gas.
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Table 3. Results are given for a Monte-Carlo evaluation of the total intra-beam collisional shift f(X) = w.,, as defined in equation (48), where X is
a delay interval, as discussed in the text. The data are relevant for the 2S—4P experiment, and the corresponding Cj coefficients. The Cg coefficient
is given in atomic units (i.e. in units of Ej, ag), while the frequency shifts are given in Hz. The notation f(7; — 72) = weo(T1 — 72)/(27) denotes a
frequency shift in Hz, computed for the delay window from 7, to 7, i.e. for atoms that arrive within the given delay interval after the beam
blocking. The values of 7; are given in yus. The uncertainty of the Monte-Carlo evaluation is on the order of 3%.

System 1S-(25-4P, ;)  25+25-4Py;))  1S—(25-4P5;;)  25-(25-4P5)))
Ce (au.) 1.296 x 10° 9.090 x 10° —5.921 x 10° 3296 x 10°
£(10-60) (Hz) 5.4 0.92 —10.0 0.61
F(60-110) (Hz) 5.3 0.75 -938 0.50
F(110-160) (Hz) 5.1 0.61 -93 0.41
£(160-210) (Hz) 47 0.48 -8.7 0.32
£(210-260) (Hz) 4.6 0.35 -85 0.24
£(260-310) (Hz) 45 0.25 8.2 0.17
£(310-410) (Hz) 45 0.17 -83 0.11
f(410-610) (Hz) 438 0.076 -88 0.051
£(610-810) (Hz) 52 0.024 —9.6 0.016
£(810-2560) (Hz) 6.1 0.005 ~113 0.003

Table 4. Results are given for a Monte-Carlo evaluation of the intra-beam collisional shift f(X) = w.,y, as defined in equation (48), with X
denoting a delay interval. Here, we consider the 25—6P experiment and the corresponding Cg coefficients. The Cg coefficients are given in
atomic units and the frequency shifts in Hz. The notation f(7, — 72) = weoi(T1 — T2)/(27) means a frequency shift in Hz, computed for the
delay window from 7 to 75, i.e. for atoms that arrive within the given delay interval after the beam blocking. The values of 7; are given in yus.
The uncertainty of the Monte-Carlo evaluation is on the order of 3%.

System 1S-(25-6P, )5)  25+(25-6P))  1S—(25-6P3/5)  25~(25-6Ps3)5)
Cs (au.) 2074 x 10 4280 x 10"  —1.336 x 10° 2.918 x 10"
£(10-60) (Hz) 2.6 1.7 -55 1.5
F(60-110) (Hz) 2.6 1.4 54 12
£(110-160) (Hz) 24 1.1 —-52 0.99
F(160-210) (Hz) 2.3 0.89 —4.9 0.76
£(210-260) (Hz) 22 0.66 —46 0.56
£(260-310) (Hz) 22 0.48 —4.6 0.41
F(310-410) (Hz) 22 0.31 —4.6 0.26
£(410-610) (Hz) 23 0.13 —49 0.12
£(610-810) (Hz) 25 0.05 -53 0.04
f(810-2560) (Hz) 2.9 0.009 6.2 0.008

The general setting is as follows. We consider an atomic
beam, at a temperature of about 5.8 K, with hydrogen atoms
inside the beam being perturbed by a 300 K background gas,
consisting of atomic hydrogen in the ground state. The 15-2S
excitation probability depends on the velocity of the atom and
the chosen experimental delay group, but for all delay groups,
the average velocity of 2§ atoms in the beam is less than
300 ms™'. The thermal velocity of the background gas atoms
is about 3 km sfl, which means that we can neglect the
movement of the spectator atom A in comparison with the
perturber atom B. Thus, the velocity of the collision is
v = |y — vg| ~ vg. The pressure shift and the pressure
broadening can be calculated from the known cross-sections:

c=n [ 9wy PO,

w mfo o @)y P()dv

= f c© W)y P(v)dv, (51)
, O

11

where P(v) is the velocity distribution of the background gas
and m is the number density of 1S atoms. For our estimation,
we can use a Maxwellian velocity distribution, which reads as
follows,

3/2 )
P(v) = /% I vZexp _m
s kBT 2kBT

where m is a mass of background gas particle (hydrogen
atom), kg is a Boltzmann constant, 7 = 300 K is a back-
ground gas temperature.

Putting o (v) = £0v=>/% and o (v) = £Pv2/5, the
integral (51) can be computed analytically with the result

we = —213/lor(9)m g@("B_T)W

(52)

T g m
3/10
=129388 x m ggﬁ’)(kB—T) , (53)
m
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3/10
7% = 129388 x n §§>(/‘B—T) / ) (54)
"\m
3.
Consequently, both w, and ~, are also proportional to C62/ 3,

At a temperature of 300 K and a pressure less than 10~°
mbar, the density of the background gas does not exceed
2.4 x 10" m3. Under these conditions, the background shift
in the 25-nP experiments (with n = 4, 6) does not exceed the
following values:

we(1S — 4Py 5) = 27 x 124 Hz,

We recall that both the & ff) and 526) are proportional to

(1S — 4Py ) = 27 x 170 Hz, (55a)
we (1§ — 4P5,,) = =27 x 2.34 Hz,
(1S — 4Py )) = 27 x 3.22 Hz, (55b)
we(1S — 6P p) =27 x 0.57 Hz,
’YC(IS — 6P1/2) =27 x 0.78 Hz, (55¢)
wo(1S — 6P3 ) = —27 x 1.29 Hz,
’YL(IS — 6P3/2) =2m x 1.78 Hz. (SSd)

The quantities w,. and 7, in equations (55a)—(55d) are the
hyperfine-structure averages of the shifts. For both the fre-
quency shift as well as the broadening, the averaging scheme
outlined in equations (40) has been used,

we ~ (ICel?/3), e ~ (ICel*3). (56)

The importance of the proper averaging procedure is dis-
cussed in appendix B.

5. Conclusions

In this paper, we have outlined a procedure for the calculation of
pressure shifts in the Garching 2S—4P/6P experiments; how-
ever, similar approaches can be used in other modern high-
precision spectroscopic atomic-beam experiments. The treatment
is based on the impact approximation (section 2), in which the
phase and frequency shifts in the collisions are modeled on the
basis of ‘quasi-instantaneous’ impacts onto the spectator atoms,
by colliding with perturber atoms. The basis for the calculation
of the collisional shifts and broadenings is discussed in section 3.
An integration of the frequency shift, and of the pressure
broadening, over the impact parameter b, leads to results for the
frequency-shift and broadening cross sections which are pro-
portional to |Cg|%/3, where Cg is the van der Waals coefficient
(see section 3.3). The data in table 2, with appropriate mod-
ifications of the hyperfine averages [12—14], could be used for
the description of pressure shifts in 15-nS (n =2, 3, 4) and
25-nP experiments (n = 4, 6).

An application of the developed formalism to recent and
planned 25—4P and 2S-6P experiments is discussed in section 4.
After a discussion of the experimental apparatus in section 4.1,
an analytic estimate of the frequency shift is presented in
section 4.2, and a more elaborate Monte Carlo simulation is
discussed in section 4.3. Using the Monte-Carlo simulation, we
can implement the computation of the pressure shifts for the
delayed measurement scheme used in the Garching experiment.
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The collisional velocity spectrum and the number of the 2§
atoms strongly depend on the delay [1, 4, 5]. Our approach
allows us to take into account all those effects.

Finally, in addition to intra-beam collisions, the effect of
beam-background collisions is discussed in section 4.4. The
beam-background collisions can be treated in the approx-
imation that the velocity of the particles in the beam is much
smaller than the average velocity of background gas particles.
Numerical results for intra-beam, and beam-background col-
lisional shifts, are given in tables 3 and 4, respectively.

For the 25—4P experiment [1], it is shown that the possible
shift in the current configuration of the experiment is on the
order of magnitude of 10Hz, which is two orders of magnitude
smaller than the current uncertainty of the experiment. In order
to put this number into perspective, we observe that the leading
uncertainties of the 2S—4P experiment [1] are the uncertainty of
the Doppler shift compensation of 2.9 kHz, the quantum inter-
ference shift compensation of 0.33 kHz, and light force shifts of
0.4 kHz. The first-order Doppler effect also causes a broadening
of the observed lineshape on the level of 10 MHz. While the
collisional effects are thus smaller than other sources of uncer-
tainty in the experiment, they require a rather subtle analysis, as
discussed here. The model presented in this work allows us also
to estimate the collisional shift for the ongoing 25-6P experi-
ments in the Garching laboratory. In view of data presented in
table 2, the approach can easily be generalized to other
transitions.
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Appendix A. First-order van der Waals shifts and
pressure shift

We aim to show that the first-order van der Waals long-range
interaction, proportional to 1 /R3 , does not contribute to the
pressure shift of an atomic transition after proper averaging
over the impact parameters b and the collisional velocities 7.
To this end, we first recall and rewrite equation (9) as

(emiwmr=mn) = exp(—v | " a(@)[1-e791dg)

— e b0, (A
where
b= [ a@ - et
. mfoo b [l —ei9]db. (A2)
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In equation (A.2), we have used equation (24) to eliminate a
(¢) d¢. For any velocity distribution P(v), the quantity

0 — J; 0(v)P(v)dv (A3)
is the impact-broadening operator (also called the #-operator,
see [15]). It is called an ‘operator’ because, as we shall see,
the phase shift ¢ can depend on dipole-operator matrix ele-
ments evaluated for the two atoms. Being inspired by
equation (23), where a directionally averaged interaction,
proportional to 1/R", was considered, one can go ‘one step
back’ and consider a general interaction U (z, I_i),

b= d(v, b) = %f dt UR(t, 7, b)), (A4)
where R(1) = R(t, v, b) = b + ¥ t describes the trajectory
of the atom with impact parameter vector b, which we choose
so that the closest point of approach is reached at t = 0 (see
equation (4) of [20]). This, in particular, implies that
V-b=0. Consequently, the §-operator can be expressed as

0:27nnj;m vP(v)me b1

_ exp(—ﬁifm URG 7. 5) dt)] dvdb.  (AS5)

The resonance dipole—dipole interaction is given by

1

4rey

U, v,b) =

o da(0) - dy(®) — 3(d(1) - R()(ds(0) - R (1))

IR||?

da(0) - dy(t)
(b2 + vztz)s/z

[da(t) - (b + ¥ D][ds(t) - (b + V 1)]
(b2 + v2t2)5/2

1

4rey

-3

]. (A.6)

where c_l;(t) = e 1(¢) is the electric dipole operator for the
atomi=A,BandR = ﬁ/||ﬁ|| is the unit vector along R().
The pressure shift is given by the imaginary part of the
average value of #-operator. For resonance dipole-dipole
interaction, we have [20]

o, = Im(a| fla), o, = Re(a| O]a). (A7)

Here, |«) is the ket corresponding to the reference state of the
two-atom system. Note that the operators J, (1) in equation (A.6)
enter the interaction Hamiltonian in the interaction picture, i.e.
they acquire a time dependence due to the time dependence of
the atomic states involved in the transition. (Strictly speaking,
the exponential in equation (A.6) is time-ordered, in the sense of
an S-matrix element.) The question now is whether the first-
order (in the van der Waals interaction) effect could lead to a
frequency shift. To this end, we observe that a potential first-
order effect is relevant only in the space of perfectly degenerate
states of the two-atom system, which can be reached via a dipole
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transition. Within this space, however, we can replace

di(t) = exp(iHy 1) d; exp(—iHy t) — d;, (A.8)

because the operator acts in a degenerate subspace of H,, which
is the unperturbed Hamilton operator of the atom. We thus get,
to first order in perturbation theory (see equation (5) of [20]),

1 — exp(—ﬁifoo dr U, b, v))
2

4mey /v b?

— (dp - D)(dg - D1,

[dy - dg — 2(dy - b)(dp - b)

(A.9)

where b and ¥ are the unit vectors in the directions of the vectors
b and V. The average over angles of the scalar product
(dy - X)(dp - X) is given as

((dy - ©)(dp - %)) (A.10)

1o =
EdA-dB.

As a result, the pressure shift in the resonance dipole—dipole
interaction, in first-order perturbation theory, i.e. the average of
the quantity

dy-dg — 2(dy - b)(dy - b) — (dy - V)(dp - D),  (A1l)

vanishes after angular averaging over the directions of b, and of
V. Note that the necessity of taking this average has been
implied, but not explicitly written, in equation (A.3). The same
approach is followed in [20].

Appendix B. Averaging the cross sections

For reference, we give some unified formulas which illustrate
the averaging procedure outlined in the discussion sur-
rounding equation (40), and the formulas for the cross
sections given in equations (32)—(33b). Recall equations (53)
and (54) for w. and 7, and substitute §(f) and 5(76) from
equations (32). we have

735 — 5 () 0(2) 710

27/5
3/10 2/5
X m(kB—T) sgn(Cﬁ)(@)

m V/3
|Cel

3/10 2/5
) sgn(Cs) (7) > (B.1)

355+ I)F(—%)F(%) 9/10
- 27055
X ln(

)3/10(|C6| )2/5
=15.229 06 m(

We =

T

=-3.799 13 m(

Ye =

T
m 7
ksT 1Gel

3/10 2/5

It is clear from equations (B.1) and (B.2) that both the pres-
sure shift and the broadening cross-section depend on Cg and
T according to a functional dependence of the form |Cg|*/> and

(B.2)
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73/'° The average shifts and the broadening can be written as
We = Ry <|C6|2/5>, Ve = Ry <|C6|2/5>, (B3)
where

T

3/10
Ko = —3.799 13 m( ) sgn(Ce) 272/%, (B.4)

3/10
) 572/5

and the (|C4*/°) average is defined in equation (40). The cross
sections are now given as

kg T

m

Ky = 5.229 06 m( (B.5)

1 .
we =Ky — »m(ICI D,
M 7

1 .
%= ry — > (IG5 (B.6)
M J
Keeping in mind that almost all atoms in the background are
in the 1§ state, we obtain the pressure-shift w,. and the pres-
sure-broadening 7. for 1S—4P; and 1S-6P, transitions as

given in Eqs (55a)—(55d) above. One should, however, note
that

1 .
(G2 =5 2o |CP/3
J

2/5
1 .
I(—Z'mjlcé”ll = (5. B
M J

Numerically, calculations show that for the atomic systems
under consideration here, the difference between the two
averaging procedures is relatively small but significant.

Appendix C. Deflection radius

We assume that R(r) is the time-dependent distance between
the atoms, where b is the impact parameter. Then, the dis-
tance-dependent energy shift £ and the force F can be
expressed as follows (see equations (17a) and (19)),

g Co p_ _OE_ _ G
OR R’

RS’
R(t) = /(v 1)? + b2.

By Newton’s first law, in nonrelativistic approximation, we
can write the transverse acceleration a | (f) and the transverse
velocity v, (7) as

F cos?

my
b

Vi +b
T

where my is the mass of the hydrogen atom, approximately
equal to the proton mass. The modulus of the final transverse
velocity after the collision is

(C.1)

cuo= [ama,

a (t) =

cost = (C2)

157  Cg

. C3
b my v €3

vm:‘im@(t)dt‘z
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The deflection angle « is given by the relation

157 Cs
8 meHVZ‘

Vo
tana = — =

14

(C4)

A quick calculation with R = 100 gy and v = 300 m/s shows
that the deflection angle is of the order of about 10~ rad and
can thus fully be neglected for Cg = 10° a.u., i.e. for 4P-1S
collisions (see section 3 of [14]), but the atom is fully kicked
out of its path for Cq = 10° a.u., which is the relevant range
for 4P-2S collisions (see section 4 of [14]). As explained here
in section 4, atoms which are kicked out from the beam only
contribute to the experimental background. Yet, as table 3
shows, the contribution of 4P-2S collisions to the collisional
frequency shift is much smaller than that of 4P-18, so that an
over-estimation of the former has negligible effect on the total
estimate of the collisional frequency shift.

A last remark is in order. For reference, we can point
out that by setting tana = 1, we can define a ‘deflection

radius’ pp,
1/6
Pp = ( ) )

which is the radius below which the deflection of an incoming
atom becomes significant; it is the analog of the well-known
Weisskopf radius which describes the onset of a significant
phase shift during a collision. For our experimental conditions, a
numerical estimate shows that the deflection radius and the
Weisskopf radius are of the same order-of-magnitude, implying
some of the atoms otherwise affected by collisional are being
kicked out of the beam. As explained in section 4, the estimates
of the collisional frequency shifts obtained here, thus constitute
upper limits for the effect in the Garching experiment [1].

157 G

8 mypv

- (C.5)
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