
Efficient Race Detection with Futures
Robert Utterback

Monmouth College

rutterback@
monmouthcollege.edu

Kunal Agrawal

Washington University in

St. Louis

kunal@wustl.edu

Jeremy Fineman

Georgetown University

jfineman@
cs.georgetown.edu

I-Ting Angelina Lee

Washington University in

St. Louis

angelee@wustl.edu

Abstract
This paper addresses the problem of provably efficient and

practically good on-the-fly determinacy race detection in

task parallel programs that use futures. Prior works on de-

terminacy race detection have mostly focused on either task

parallel programs that follow a series-parallel dependence

structure or ones with unrestricted use of futures that gen-

erate arbitrary dependences. In this work, we consider a

restricted use of futures and show that we can detect races

more efficiently than with general use of futures.

Specifically, we present two algorithms: MultiBags and

MultiBags+. MultiBags targets programs that use futures in a

restricted fashion and runs in timeO(T1α(m,n)), whereT1 is
the sequential running time of the program, α is the inverse

Ackermann’s function,m is the total number of memory ac-

cesses, n is the dynamic count of places at which parallelism

is created. Since α is a very slowly growing function (upper

bounded by 4 for all practical purposes), it can be treated as

a close-to-constant overhead. MultiBags+ is an extension of

MultiBags that target programs with general use of futures.

It runs in time O((T1 + k
2)α(m,n)) where T1, α ,m and n are

defined as before, and k is the number of future operations

in the computation. We implemented both algorithms and

empirically demonstrate their efficiency.

*CCS Concepts• Theory of computation → Dynamic
graph algorithms; • Software and its engineering →

Software testing and debugging; Parallel programming lan-

guages; • Computing methodologies→ Parallel comput-

ing methodologies;

*Keywordsdynamic program analysis; determinacy race;

race detection; series-parallel maintenance

1 Introduction
Races constitute amajor source of errors in parallel programs.

Since they lead to nondeterministic program behaviors, they

are extremely challenging to detect and debug. In this work,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00

https://doi.org/10.1145/3293883.3295732

we focus on the problem of race detection for task-parallel

programs, where the programmer denotes the logical paral-
lelism of the computation using high-level parallel control

constructs provided by the platform, and lets the underly-

ing runtime system perform the necessary scheduling and

synchronization. Examples of task parallel platforms include

OpenMP [42], Intel’s TBB [29, 46], IBM’s X10 [14], various

Cilk dialects [17, 25, 30, 34, 36], and Habanero dialects [5, 12].

In the context of task parallel programs, the focus is typi-

cally on detecting determinacy races [19] (also called gen-
eral races [40]), which occur when two or more logically

parallel instructions access the same memory location and

at least one access is a write. In the absence of a determi-

nacy race, a task parallel program for a given input behaves

deterministically.
Over the years, researchers have proposed several deter-

minacy race algorithms [6, 19–21, 39, 44, 45, 53, 57, 60] for

task parallel code. These algorithms perform race detection

on the fly as the program executes, and consist of two main

components: (1) an access history that keeps track of previ-

ous readers and writers for each memory location; and (2) a

reachability data structure for maintaining and querying

whether two instructions are logically in parallel. On each

memory access, the detector checks whether the current ac-

cess is logically parallel with the previous accessors (stored

in the access history) to determine whether a race exists.

Most prior work focuses on a restricted set of compu-

tations, namely computations that can be represented as

series-parallel dags (SP dags) [58] with nice structural

properties, such as ones generated using fork-join paral-

lelism (i.e.,spawn/sync or async/finish). Prior works show
that one can race detect computations that are SP dags ef-

ficiently by exploiting the structural properties. In particu-

lar, the reachability data structure can be maintained and

queried with no asymptotic overhead for both serial [6, 21]

and parallel executions [57]. Moreover, the access history

needs to store only a constant number of accessors per

memory location to correctly race detect for such computa-

tions [19, 20, 39].

The use of futures has become a popular way to extend

fork-join parallelism. Since their proposal [4, 24] in the late

70s, futures have has been incorporated into various parallel

platforms [3, 12–14, 23, 26, 33, 38]. Researchers have studied

scheduling bounds [2, 9] and cache efficiency [27, 51] for

using futures with fork-join computations. Kogan and Her-

lihy [32] study linearizability of concurrent data structures

340

https://doi.org/10.1145/3293883.3295732
https://www.acm.org/publications/policies/artifact-review-badging/#replicated
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#functional

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

accessed using futures. Surendran and Sarkar [52] proposed

using futures to automatically parallelize programs.

The use of futures can form arbitrary dependencies, and

thus computations generated by a parallel program that uses

futures are no longer series-parallel. However, not much

work has been done on race detecting programs with more

general dependence structures.

Two prior works exist on race detection for programs

that use futures and both are sequential (no known paral-

lel algorithms exist). An algorithm proposed by Surendran

and Sarkar [54] has high overheads — the running time is

O(T1(f + 1)(k + 1)) where T1 is the work, or sequential run-
ning time of the programwithout race detection, f is number

of future objects and k is the number of future operations.

That is, the running time of the race detection algorithm

increases quadratically with the total number of futures used

in the program. More recently, Agrawal et al. [1] present a se-

quential algorithm to perform race detection on SP dags with

k added non-series-parallel edges in O(T1 + k
2) time, which

is the best known running time. The algorithm is difficult to

implement however, since it requires storing all the nodes

in the computation graph and traversing the graph during

execution to update labels. Thus, no actual implementation

of the algorithm exists to date.

Contributions
While prior work on race detection has focused on either

structured SP dags or unrestricted use of futures that gen-

erates arbitrary dependences, we consider a restricted use

of futures. Researchers have observed in other contexts [27]

that using futures in a specific restricted manner can reduce

scheduling and cache overheads. We call such a use case

as structured futures and observe that the restricted use

allows race detection to be performed much more efficiently

than general use of futures. This class of futures is quite nat-

ural and can be checked with program analysis. We provide

the precise definition in Section 2; informally, it requires that

the instruction that creates the future is sequentially before

the instruction that uses the handle.

We present two practical algorithms for race detecting pro-

grams with futures: MultiBags and MultiBags+. The main

contribution for both algorithms is a novel reachability data

structure. Both algorithms run the program sequentially for

a given input and report a race if and only if one exists,

following the same correctness criteria as prior work. Multi-

Bags focuses on structured use of futures and incurs very

little overhead — a multiplicative overhead in the inverse

Ackermann’s function, which is upper bounded by 4 for all

practical purposes [16]. MultiBags+ is an extension of Multi-

Bags, which handles general use of futures and has overhead

comparable to the state-of-the-art theoretical algorithm [1]

(i.e., multiplicative overhead of the inverse Ackermann’s

function) and can be implemented efficiently. We have im-

plemented both algorithms and empirically evaluated them.

The empirical results show that both algorithms can main-

tain reachability efficiently for their designated use cases.

Specifically, we make the following contributions:

• MultiBags:We propose MultiBags, an algorithm to race

detect programs that use structured futures (Section 4).

We prove its correctness and show that it race detects in

O(T1α(m,n)) time where T1 is the work, α is the inverse

Ackermann’s function, m is the number of memory ac-

cesses, andn is the dynamic count of places at which paral-

lelism is created. Since α is a very slow-growing function,

this bound is essentiallyO(T1) for all intents and purposes.
• MultiBags+: We propose MultiBags+, an algorithm to

race detect programs that use general futures (Section 5).

We prove its correctness and show that it race detects in

O(T1 + k
2)α(m,n) time where T1, α ,m, and n are defined

as above, and k is the number of future operations in the

computation (Section 5). Compared to the state-of-the-art

algorithm proposed by Agrawal et al. [1], MultiBags+’s

running time has a multiplicative overhead of the inverse

Ackermann’s function. Unlike the state-of-the-art, how-

ever, MultiBags+’s relative simplicity allows it to be imple-

mented efficiently in practice. We provide a more detailed

comparison between our MultiBags+ algorithm and the

state-of-the-art [1] in Section 5.

• FutureRD:We have built a prototype race detector called

FutureRD based on MultiBags and MultiBags+. Empirical

evaluationwith FutureRD shows that our algorithms allow

reachability to be maintained efficiently, incurring almost

no overhead (geometric means of 1.06× and 1.40× over-

head for MultiBags and MultiBags+, respectively). The

overall race detection incurs geometric means of 20.48×
and 25.98× overhead, respectively.

2 Preliminaries and Definitions
Parallel control constructs: Our algorithms are described

assuming parallelism in programs is generated using four

primitives: spawn, sync, fut-create and get. The algo-

rithms themselves are general and can be applied to plat-

forms that use other constructs that generate similar types of

dags. We assume that spawn and sync are used to generate

fork/join or series/parallel structures. In particular, for the

purposes of this paper, function F can spawn off a child func-

tion G, invoking G without suspending the continuation of

F , thereby creating parallelism; similarly, F can invoke sync,
joining together all previously spawned children within the

functional scope.
1
We assume fut-create and get primitives

are used to create and join futures, respectively. Like spawn,
one can precede a function call to G in F with fut-create,
which allows G to execute without suspending F . Unlike
spawn, however, a function call invoked with fut-create

1
Some constructs, such as async/finish primitives have slightly different

restrictions, they still generate SP dags and our algorithms can be modified

to apply to these programs.

341

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

can escape the scope of a sync — a subsequent sync joins

together previously spawned functions but does not wait for

function calls preceded by fut-create to return. Instead,

fut-create of a function instanceG returns a future han-
dle h, and the program must explicitly invoke get on h to

join with G. A call of get on h block until G completes.

Modeling parallel computations: One can model the

execution of a parallel program for a given input as a dag
(directed acyclic graph) Gfull , whose nodes are strands —
sequence of instructions containing no parallel control – and

edges are control dependencies among strands. The dag un-

folds dynamically as the program executes. A strand u is

sequentially before another strand v (denoted by u ≺ v) if
there is a path from u to v in the dag; two nodes u and v are

logically parallel if there is no path from one to the other.

The performance of a computation can be measured in two

terms: the work T1 of the computation is the execution time

of the computation on a single processor; the span (also

called depth or critical-path length) T∞ of the computa-

tion is its execution time on an infinite number of processors

(or, longest sequential path through the dag).

Series-parallel dags: Computations which use only

spawn and sync can be modeled as series-parallel dags
(SP-dag) [58] that have a single source node with no in-

coming edges and a single sink node with no out-going

edges. Upon the execution of a spawn, a fork node is cre-
ated with two outgoing edges: one leads to the first strand in

the spawned child function and one leads to the continuation

of the parent. Upon the execution of a sync, a join node is
created, that has two or more incoming edges, joining the

previously spawned subcomputations.
2

SP dags can be constructed recursively as follows.

• Base Case: the dag consists of a single node that is both
the source and the sink.

• Series Composition: let G1 = (V1,E1) and G2 = (V2,E2)
be SP-dags on distinct nodes. Then a series compositionG
is formed by adding an edge from sink(G1) to source(G2)

with source(G) = source(G1) and sink(G) = sink(G2).

• Parallel Composition: let GL = (VL,EL) and GR =

(VR ,ER) be SP-dags on distinct nodes. Then the parallel

compositionG is formed as follows: add a fork node f with
edges from f to both sources, and a join node j with edges

from both sinks to j. source(G) = f and sink(G) = j. We

refer toGL andGR as the left subdag and right subdag,
respectively, of both the fork f and join j.

Adding futures: We model computations that employ

futures in addition to spawn and sync as a set of independent
SP dags connected to each other via non-SP edges due to
fut-create and get calls. If a function F spawns a function

G, then the strands of F and G are part of the same SP dag.

However, if function G calls H via fut-create, then the

2
For simplicity, our analyses assume that each join has exactly two incoming

edges. One can modify the algorithms to the more general case easily.

first strand, say v , of H is the source of a different SP dag.

The last strand of H will be the sink node of this SP dag.

Therefore, if a program calls fut-create f times, then it

has f + 1 SP dags (f future functions plus the main function)

connected to each other via non-SP edges.

These non-SP edges are incident on strands that end with

fut-create and ones that immediately follow strands that

ended with get. A strand u in function G that ends with

h = fut-create(F) has two outgoing edges — one non-

SP edge to the first strand in F , and one SP edge to the

continuation inG . We say that u is the creator of F denoted

by creator(Fj). The first strand of F is the source of a new

SP-dag which contains all strands of F and the functions it

calls (recursively) using spawn and the last strand of F is

the sink of this SP-dag. Similarly, strand u in H immediately

follows a get(h) call where h is the future handle for future

F has two incoming edges — one SP edge from the strand

that ended with the get call in the current function H and

one non-SP edge from the last strand of the F . We say u is

the getter of Fj denoted as getter(F). We say that u ≺SP v
if there is a path from u to v using only SP edges.

This model is quite general and subsumes computations

that can arise from futures [3, 12–14, 23, 26, 33, 38] or other

future-like (such as “put” and “get” [11, 56]) parallel con-

structs proposed in the literature. Therefore, our algorithm

would work on all of these primitives.

Structured futures: We place the same restrictions on

structured futures as in prior work [27]: (1) Single-touch:
Every future handle is called with get at most once. (2) No
race on future handles: There is a sequential dependence
in the program from the point where a future is created

(via fut-create which initializes a future handle) to the

point where it is read (via get).More precisely, if strand

u terminates with a f = fut-create(F) call and strand v
terminates with a get(f) call, thenu ≺ v in the computation.

Eager execution: Both our algorithms execute the

computation sequentially and execute the program in

depth-first eager order. When the execution reaches

fut-create(F) (after executing creator(F)) call or a

spawn(F) call, it always executes the function F . When F
returns, then the next node of the parent function (the one

after the continuation edge) is executed. This execution or-

der automatically has the property that all functions that

must join at a sync point have already returned when the

execution reaches the sync; therefore, the execution never

blocks at a sync. Similarly, for structured futures, this execu-

tion has the property that the execution will never block at a

get. For general futures, we restrict our attention to compu-

tations where the use of futures is forward-pointing: for
every future F , creator(F) executes before getter(F) in
the depth-first eager execution. Without this restriction, se-

quential execution of the original program could deadlock,

in which case our algorithm race detects up to the point

where it deadlocks.

342

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

3 Managing Access History
As mentioned in Section 1, there are two important com-

ponents in a race detector: access history and reachability

data structure. MultiBags and MultiBags+ differ in how they

maintain reachability but manage access history similarly.

This section discusses how they manage access history —

for each memory location ℓ, the access history maintains

enough information about the previous accesses to ℓ so that

future accesses to ℓ can detect races.

When race detecting a series-parallel program, it is

sufficient to store a constant number of previous reader

strands and a single previous writer strand in the access

history[19, 39]. When a strand s accesses a memory location

ℓ, it checks if some subset (based on whether s is reading
or writing) of ℓ’s previous accessors are in parallel with s .
Therefore, each memory access leads to at most a constant

number of queries into the reachability data structure.

This property no longer holds for programs with futures,

however. The access history for a memory location ℓ still
holds only one writer strand, namely the most recent writer

strand, last-writer(ℓ). However, it must now store a arbi-

trarily number of readers. Race detection proceeds as follows.

Whenever a strand s reads from a memory location ℓ, the
detector checks the reachability data structure to determine

whether s is logically parallel with last-writer(ℓ); if so, a
race is reported. Otherwise, s is added to reader-list(ℓ).
When a strand s writes to a memory location ℓ, the race

detector must check s against all readers in reader-list(ℓ)
and with last-writer(ℓ). If s is in parallel with any of

them, then it declares a race. Otherwise, the reader-list(ℓ)
is set to ∅ and s is stored as last-writer(ℓ). We can

empty the reader-list(ℓ) without missing any races be-

cause anything that executes later that would be in parallel

with these readers must also be in parallel with s (the new
last-writer(ℓ)), and a race will be reported with s .

A key thing to notice here is the following: the total num-

ber of queries into the reachability data structure (i.e., check-

ing one access against another for race) is bounded by the to-

tal number of memory accesses in the computation. Since we

can empty all the reader-list(ℓ) whenever we encounter
a last-writer(ℓ), a reader is checked against some writer

at most twice: when it is inserted into the reader list, and

right before it is removed. Thus, the total number of queries

to the reachability data structure is bounded byO(T1), where
T1 is the work of the computation. We shall relate this obser-

vation formally to the performance bound of MultiBags and

MultiBags+ later in Sections 4 and 5.

4 MultiBags for Structured Futures
We now describe MultiBags, which can race-detect programs

with structured futures in time O(T1α(m,n)) where T1 is the
work of the program, α is the inverse Ackermann’s func-

tion,m is the number of memory accesses in the program

and n is the number of spawn and fut-create calls. Since

the inverse Ackermann’s function is a very slowly growing

function, the bound is close to optimal.

Notation: Note that programmatically, spawn and sync
are subsumed by fut-create and get since we can convert

a spawn to fut-create and sync to a series of get calls,

one on each function spawned in the current function scope.

In the case of general use of futures discussed in Section 5,

we distinguish between SP edges generated by spawn and

sync and non-SP edges generated by fut-create and get
since the bound depends on k , the number of get calls,

and converting all sync calls to get calls will increase this

number. For structured futures, however, the bound does

not depend on k ; therefore, for simplicity in this section, we

assume that we only have fut-create and get constructs

to create parallelism.

The computation dag consists of three kinds of nodes —

regular strands with one incoming and one outgoing edge,

creator strands which end with a fut-create call with two
outgoing edges, and getter strands (the continuation after a

get call) with two incoming edges. It also consists of three

kinds of edges: spawn edges are edges from creator nodes to

the first strand of the future; join edges are edges from last

strand of a future to getter nodes; all other edges (between

strands of the same function instance) are continue edges.

4.1 Algorithm
This algorithm is similar to the SP-Bags algorithm for detect-

ing races for series-parallel programs [19]. As with SP-Bags,

we use a fast disjoint-set data structure [55] to maintains a

dynamic collection D of disjoint sets with three operations:

• A = Make-Set(D,x) : Creates a new set A = {x} and

adds it to the disjoint-set data structure D.
• A = Union(D,A,B) : Unions the set B into A and de-

stroys B. We will sometimes overload notation and say

Union(D,x ,y) where x and y are elements in the set in-

stead of sets. This means that we union the set containing

y into the set containing x .
• Find(D,x) returns the set that contains the element x .

In this section, we only have one disjoint-set data structure

and thus D is implicit.

Like SP-Bags, MultiBags depends on the depth-first eager

execution of the computation. MultiBags maintains a bag (a

set in the data structure) for each function instance F which

has been created and for which get has not yet been called

(these bags can be stored with the future handle). This bag

is labeled either as an S-bag, represented by SF or a P-bag,
represented by PF . The algorithm maintains these bags as

shown in Figure 1. The strands of a particular function F are

always added to SF before they execute.

The algorithm looks similar to SP-Bags [19]. The main

difference is that when the function G returns, its S-bag SG
is renamed as PG bag; in SP-bags, SG would be unioned with

343

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

F calls f = fut-create(G) where u is the first strand of G :

1 SG = Make-Set(u)
G returns to F :
2 PG = SG .

F calls y = get(f) where f is G ’s handle:

3 SF = Union(SF , PG)

// Called when strand v accesses memory location ℓ

// previously accessed by u in a conflicting way:

Query(u, v) // return true iff u ≺ v

4 if Find(u) is an S bag, return true

5 else return false

Figure 1. Pseudocode forMultiBags. The top part shows how

MultiBags maintains the S and P bags when it encounters

future constructs. The bottom part shows the operation of

checking for races upon a memory access.

1

15

16

17

2

10

11

14

3

5

8

9

12

13

E 6

7

4D
C

B
A

F

node D
1 SA = {1}

2 SA = {1}, SB = {2}

3 SA = {1}, SB = {2}, SC = {3}

4 SA = {1}, SB = {2}, SC = {3},SD = {4}

5 SA = {1}, SB = {2}, SC = {3, 5},PD = {4}

6 SA = {1}, SB = {2}, SC = {3, 5},PD = {4}, SE = {6}

7 SA = {1}, SB = {2}, SC = {3, 5},PD = {4}, SE = {6, 7}
8 SA = {1}, SB = {2}, SC = {3, 5, 8},PD = {4}, PE = {6, 7}
9 SA = {1}, SB = {2}, SC = {3, 5, 6, 7, 8, 9},PD = {4}

10 SA = {1}, SB = {2, 10}, PC = {3, 5, 6, 7, 8, 9},PD = {4}

11 SA = {1}, SB = {2, 3, 5, 6, 7, 8, 9, 10, 11},PD = {4}

12 SA = {1}, SB = {2, 3, 5, 6, 7, 8, 9, 10, 11},PD = {4}, SF = {12}

13 SA = {1}, SB = {2, 3, 5, 6, 7, 8, 9, 10, 11}, SF = {4, 12, 13}
14 SA = {1}, SB = {2, 3, 5, 6, 7, 8, 9, 10, 11, 14}, PF = {4, 12, 13}
15 SA = {1, 15}, PB = {2, 3, 5, 6, 7, 8, 9, 10, 11, 14}, PF = {4, 12, 13}
16 SA = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16}, PF = {4, 12, 13}
17 SA = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}

Figure 2. An example execution of MultiBags on a program

with structured use of futures. In this program, there is al-

ways a sequential dependence between each future’s creator

and its corresponding getter’s immediate predecessor in the

same function (e.g., B’s creator and getter are 1 and 16 re-

spectively, and the immediate predecessor of the getter in

the same function is 15). This dag is not a series-parallel dag,

as the spawning and joining of function instances are not

well nested. The table shows the state of the disjoint-set data

structure for maintaining reachability immediately before

the execution of each strand in the order of the execution.

PF , the parent function of G. However, this small difference

is crucial for handling programs with structured futures

rather than series-parallel programs. In addition, the proof

for correctness of this algorithm for structured futures is

significantly different than the proof of correctness of SP-

bags for series-parallel programs.

Figure 2 shows the operation of this algorithm on an exam-

ple program which uses structured futures. Each rectangle

is a function instance and nodes are strands. The straight

dashed lines going towards the left represent fut-create
edges while the curved dashed lines represent get edges.

Consider step 12 when the first node of function F is exe-

cuting. All nodes except node 4 are sequentially before this

strand and are correspondingly in some S-bag. Node 4 is in
parallel with this strand and is in a P-bag.

4.2 Proof of Performance and Correctness
The performance bound of MultiBags and its proof is simi-

lar to that of SP-Bags, but the correctness analysis is quite

different, which we will focus most of our attention on.

Proof of Performance of MultiBags
Theorem 4.1. The running time of MultiBags when detect-
ing races for a program with work T1 is T1α(m,n) where m
is the number of memory accesses and n is the number of
fut-create calls.

Proof. The fast disjoint-set data structure provides the bound
of amortized time O(α(m,n)) per operation wherem is the

number of operations and n is the number of sets. For our

program,m is at most the number of memory accesses and

n is the number of fut-create calls. Note here, again, that

unlike series parallel computations, each write may generate

multiple queries; however, for the reason as explained in

Section 3, the total number of queries is bounded by the two

times the total number of memory accesses since each writer

removes the entire reader-list. Therefore, the total running

time is O(T1α(m,n)). □

Intuition for the Correctness Proof
In order to argue that MultiBags is correct, we must prove

the following theorem.

Theorem 4.2. If the currently executing strand is v , then a
previously executed strand u is currently in an S bag iff u ≺ v .

In order to prove this theorem, we define two more terms.

A node u is a spawn predecessor of a node v if there is a

path from u to v which consists of only spawn and continue

edges. A node u is a join predecessor of v if there is a path

from u to v that consists of only join and continue edges.

Spawn and join successors are defined in the symmetric way.

We will overload notation and say that a strand u is a spawn

predecessor of a function F if there is a path from u to the

first strand of F that consists of only spawn and continue

edges and similarly a strandv is a join successor of F if there

is a path from the last strand of F to v . Each node is its own

spawn and join predecessor and successor.

344

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

The algorithm works due to the following observations.
3

We say that a function is active if it has started executing, but
has not completed (returned). While a function F is active,

SF exists and PF doesn’t because PF is only created upon F ’s
return. All strands of an active function F are in SF . After a
function has returned, SF is destroyed; PF exists if get has

not been called on F ’s future handle and if PF exists, then all

strands of F are in PF . After a function has joined (get has

been called) then neither SF nor PF exist.

Property 1 is a property of eager executions.

Property 1. When a strandv is currently executing, all spawn
predecessors ofv are part of some active function. The converse
is also true; all strandsw that are part of active functions are
spawn predecessors of v .

We need two other properties. The first one is a static

property of paths in a program with structured futures as

follows. If there is a path from a strand u to stand v ,4 then
there must be a path where the first (possibly empty) part of

the path consists of only join and continue edges, while the

second (possibly empty) part of the path contains only spawn

and continue edges. In other words, there is a path where no

join edges follow spawn edges. More formally, for any two

nodes u and v , if u ≺ v , then we can find a nodew where u
is a join-predecessor ofw andw is a spawn predecessor of v .
Combining with Property 1, we get:

Observation 1. Consider a completed strand u and a
currently-executing strand v where u ≺ v . The furthest join
successor of u, sayw , must be part of an active function.

This observation allows us to concern ourselves only with

paths that go through nodes of active functions. In particular,

to detect races, it is sufficient to try to check if the furthest

join successorw of any previously executed node u is part of

an active function. If so, the observation implies that u ≺ w
and we already know from Property 1 thatw ≺ v ; therefore,
u ≺ v . If not, then u ⊀ v .

The second property is a dynamic property of MultiBags

which allows to precisely check this. In particular, it states the

following (which combined with the previous observation

gives us the theorem):

Observation 2. Consider an already completed node u. Say,
at time t , u’s furthest join successorw is part of a functionG . If
G is active, then u is inG’s S bag, otherwise u is inG’s P bag.

An informal argument about why this property is true

follows: In Line 3, MultiBags unions PG into SF when G
joins with an active function F . This suggests the following:
Consider a particular strand u in functionG . Say at time t ,w
is the furthest join successor strand of u which has executed

3
We implicitly assume that when we refer to any strand (or function), it is

either currently executing or has already executed (we have no knowledge

of strands or functions that are still to execute).

4
In general, there can be many paths from u to v .

(or is executing). (This strand is well defined since there is

no branching in a path that contains only join and continue

edges.) Sayw is part of function F . Then at time t , u is in F ’s
bag. F ’s bag is an S bag if F is active. Therefore, to check if

u’s furthest join successorw is active, it suffices to check if

u is in an S bag, which is precisely what MultiBags does.

If we combine Observations 1 and 2, we get the theorem.

Say v is executing at time t and consider a previously exe-

cuted node u and sayw is the furthest join successor of u. If
u ≺ v , then by the first observation, w is part of an active

function and therefore, by the second observation, u is in an

S bag. On the other hand, if u ∥ v , thenw can not be part of

an active function — if it was, then by Property 1,w ≺ v and

therefore, u ≺ v (a contradiction). Therefore, u is in a P bag.

When the computation does a memory access, it simply

checks if the previous accesses are in an S In order to do

queries, the algorithm operates as follows:

1. Currently executing strand s reads location ℓ: check
if last-writer(ℓ) is in a P bag; if so, declare a race.

Otherwise, append r to reader-list(ℓ)
2. Currently executing strand s writes to location ℓ: check

if any reader r ∈ reader-list(ℓ) is in a P bag; if so,

declare a race. Otherwise, empty the reader list and

set last-writer(ℓ) = w .

Proof of Correctness of MultiBags
First, we prove the static property stated in Observation 1.

In order to prove it, we first define a canonical order on the

futures of the program and show that we can always order

the functions in this canonical order.

Lemma 4.3. We can always find a canonical order.

Proof. The order starts with the main function; we then pro-

gressively add futures to the computation. A future F can

only be added if its creator strand and getter strand have

already both been added.

We will induct on adding new futures. We can always

start since the main function is added first. At some point,

we have already added some futures, say a set S . Next, we
will add the future F such that there is no future G such

that creator(F) ≺ creator(G) where both creator nodes

are in S . There must be some such future (if there are more

than one, we can choose arbitrarily). Since no future was cre-

ated sequentially after F was created, and the strand before

the getter(F) is sequentially after creator(F), getter(F)
must also be in S ; therefore, it is legal for us to pick F as the

next future in our canonical order. □

We now use this canonical order to induct on the futures.

In particular, we can show that the static property stated

in Observation 1 (stated more formally and completely in

the following lemma) by inducting on the futures in the

canonical order.

345

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Lemma 4.4. If u ≺ v , then there exists a path from u to
v that contains two sections: the first path (possibly empty)
contains only join and continue edges and the second part
(possibly empty) contains only spawn and continue edges. In
other words there is never a spawn edge followed by a join
edge on this path. In addition, this path is unique. Therefore, If
u ≺ v , then there is some nodew (possibly u or v) which is a
join successor of u and a spawn predecessor of v .

Proof. Induct on futures in the canonical order (which we

can always find according to Lemma 4.3) and show that this

is true as we add futures one by one.

Base case: We first have only the main strand, so this is

true trivially.

Inductive case: Assume that after we have added a set S of

futures, the statement is true. We now add a new future F ′
.

Consider any nodes u and v in this new dag where u ≺ v .
If neither u nor v are in F ′

, then the addition of F ′
does not

add any new paths betweenu andv (since the only new path

added is between creator(F) and getter(F) and there was
already a path between them before we added F ′

). In addition,

any new path added does have a spawn followed by a join —

therefore, the uniqueness is preserved. Therefore, we only

need consider pairs where either u or v are in F ′
. If u is in

F ′
and v is not, then the path from u to v must go from the

last strand of F ′
to getter(F ′) and then to v . By inductive

hypothesis, the path from getter(F ′) already follows the

desired property and the path from u to getter(F ′) only

contains join and continue edges. Therefore, the property

still holds. A symmetric argument applies whenv is in F ′
. □

We then prove the dynamic property stated in Observa-

tion 2 by looking at the execution as it unfolds. For each

function F , we define its operating function G as the func-

tion containing the “furthest join descendant” of the last

executed strand of F . An active function is its own operating

function. If a function is not active (it has returned), it may

be confluent if its operating function is active; otherwise it

is non-confluent. By definition, the operating function of

a non-confluent function is always non-confluent. A conflu-

ent function can never be its own operating function, but a

non-confluent function F may be its own operating function

if its getter(F) has not yet executed.
The following lemma is proved by induction on the pro-

gram as it executes.

Lemma 4.5. (a)When a function F is active, all its strands are
in its S bag. (b) If a function F is confluent, then all its strands
are in its operating function G’s S bag. (c) If a function F is
non-confluent, then all its strands are in its operating function
G’s P bag.

Proof. When a function is first called, it has an S bag and

its strands are placed in the S bag. They remain in this S
bag while it is active. Once the function returns, all its items

move to a P bag. For the other two statements, we induct on

time after F returns.

Base Case: When F returns, getter(F) has not yet been
called. Therefore, it is its own operating function; it is non-

confluent; and all its strands are in its own P bag.

Inductive Case: We will do this by two cases:

Case 1: F is non-confluent and G is its (non-confluent)

operating function; by inductive hypothesis, all strands of F
are inG’s P bag. The only thing that can change the location

of its strands is if getter(G) executes, say by function H .

At this point, H (currently active) becomes the operating

function for both G and F — therefore, F is now confluent.

All strands of F (and incidentally G) move to H ’s S bag.

Case 2: F is confluent andG is its (active) operating func-

tion; by inductive hypothesis, all strands of F are inG’s S bag.
The only thing that changes the location of F ’s strands is if
G returns. At this pointG becomes non-confluent (since it is

no longer active); therefore F also becomes non-confluent.

All of F ’s strands move to G’s P bag. □

The combination of static and dynamic properties leads

to the proof of correctness. The intuition is that if a function

F is confluent, then there is some strand w in its (active)

operating procedure which is a join successor of all strands

of F and a spawn predecessor of currently executing strand.

Theorem 4.2. If the currently executing strand is v , then a
previously executed strand u is currently in an S bag iff u ≺ v .

Proof. By Lemma 4.4, we know that if u ≺ v , then we can

find a nodew such that u is a join predecessor ofw andw is

a spawn predecessor ofv . By Property 1, sincev is executing,

the function containingw , sayG , is still active. Therefore, by
definition, the function containing u is confluent. Therefore,

by Lemma 4.5, u is an S bag.

If u does not precede v , then there is no path from u to

v , and u cannot have a path to any strand w in any active

function (otherwise by Property 1, since w has path to v ,
u will also have a path to v). Thus, by definition, u is non

confluent. By Lemma 4.5, u is in a P bag. □

5 MultiBags+ for General Futures
We now consider general use of futures for programs that use

both spawn/sync constructs and also futures. In particular,

we consider programs where most of the parallelism is cre-

ated using spawn and sync, but there are also k future get
operations. For these programs, we provide a race detection

algorithm that runs in total time O(T1α(m,n) + k
2), where

T1 is the work of the program, α is the inverse Ackermann’s

function,m is the number ofmemory accesses in the program

and n is the number of spawn and fut-create calls. To put

this bound in context, a series-parallel program has k = 0 —

in this case (and in fact, for any program where k = O(
√
T1)),

the MultiBags+ runs in time O(T1α(m,n)). Since the inverse

346

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

Ackermann’s function grows slowly (upper bounded by 4),

this bound is close to asymptotically optimal.

As mentioned in Section 2, MultiBags+ depends on eager

execution of the computation and we assume that our futures

are forward-pointing. Therefore, the depth-first execution

never blocks on a get call since the corresponding future

has already finished executing.

Notation: Unlike in Section 4, we must distinguish be-

tween spawn and fut-create (similarly, between sync and
get) for MultiBags+. The computation dag consists of five

kinds of nodes: (1) regular strands with one incoming and

one outgoing edge; (2) spawn strands which end with a

spawn instruction and have with two outgoing edges; (3)

creator strands which end with a fut-create instruction

and have with two outgoing edges; (4) sync strands which
begin immediately after a instruction and have with two

incoming edges; and (5) getter strands which begin imme-

diately after get instruction and have with two incoming

edges. Some strands can have two incoming and two out-

going edges (if they start immediately after a get or sync
instruction and end with a spawn or fut-create); these
strands are correspondingly in both categories.

The computation dag also consists of five kinds of edges:

spawn edges are from spawn nodes to the first strand of

the corresponding spawned function; join edges are from

last strand of a spawned function to the corresponding sync

node; create edges from the creator strand to the first stand

of the future function; and get edges from the last strand of a

future function to the corresponding getter node. Each future

can have multiple get edges if it is a multi-touch future.
5

Reachability data structures: Recall that we can model

computations that employ futures as a set of series-parallel

dags (SP dags) plus some non-SP edges (Section 2). When

we need to check if u ≺ v , if they are already in the same

SP dag (i.e., SP-Dag(u) = SP-Dag(v), as defined in Section 2),

the disjoint-set data structure maintained by MultiBags can

readily answer the reachability query correctly. We only run

into trouble due to use of general futures when SP-Dag(u) ,
SP-Dag(u) but a path exists between them via (possibly more

than one) non-SP edges.

Thus, MultiBags+ maintains two data structures, and both

utilize fast disjoint-set data structure described in Section 4.

The first disjoint-set data structure, called DSP , is virtually

identical to the data structure used in Section 4: we maintain

S and P bags for each function, and the operations performed

on DSP are identical to those described in Section 4 in the

case of fut-create, and spawn is treated in the same way

as fut-create. In addition, sync is treated like get. The
only difference is that we do not perform any operation

on this data structure on get (since we allow multi-touch

futures). We can use DSP to correctly answer reachability

5
For context, in Section 4, both spawn and create edges were called spawn

edges and both join and get edges were called join edges.

query between two strands if they are in the same SP dag.

Intuitively, for reasons similar to the structured case, all

strands that are currently stored in an S bag are sequentially

before the currently executing strand. Note that all strands

that are stored in a P bag are not necessarily in parallel with

the current strand, due to non-SP edges — we will use the

second data structure to answer that query.

The second data structure handles the additional compli-

cation in reachability query when two strands are connected

via non-SP edges. This data structure has two components:

(1) a disjoint-set data structure called DNSP that maintains a

collection of disjoint-set, and each strand is added to DNSP
when encountered; and (2) a separate dag called R that con-

tains some of the sets from DNSP . The high-level idea is

that these sets are made of connected series-parallel subdags

of the original dag Gfull . For any two nodes u and v in dif-

ferent SP dags, MultiBags+ ensures that u ≺ v in Gfull iff

Find(DNSP ,u) ≺ Find(DNSP ,v) in R (the sets they are in

are connected in R).

We call sets also in R as the attached sets, which store

nodes that are subdags which start and/or end with creator
or getter strands.

6 R explicitly maintains reachability rela-

tionship that arises due to non-SP edges between nodes in

the attached sets. R is simply a dag (with each node being

an attached set), but it is not series-parallel. Thus, to answer

reachability queries quickly between nodes in R, MultiBags+

maintains a full transitive closure of all sets in R — when-

ever a set is added to R, its reachability from all sets already

added to R is explicitly computed and stored. Therefore, one

can check if A ≺ B in R in constant time.

If every set could be in R we would be done. We must

keep R small, however, since every time we add a set to R

we compute a full transitive closure, which is expensive. It

turns out that it is difficult to simultaneously put all strands

in attached sets and keep R small. In order to cope with this,

some strands are in unattached sets, which are only stored

in DNSP . Intuitively, an unattached set contains nodes of a

complete series-parallel subdag which have no incident non-

SP edges. Each unattached setU has two additional fields, at-
tached predecessor and attached successor, which point

to attached sets that act as U ’s proxies when querying R.

U ’s attached predecessor, denoted asU .attPred , is set when
U is created; therefore, it always points to some attached set.

U ’s attached successor, denoted asU .attSucc , is set at some

later point; it either points to some attached set or may be

null. An attached set is always its own attached predeces-

sor and successor. We will overload notation and say that

node u’s attached predecessor is Find(DNSP ,u)’s attached
predecessor (and similarly for attached successor).

Answering queries: Figure 3 shows how the reachability

data structures are queried to find out if a path exists between

6
This is not quite accurate; for technical reasons, some attached sets

start/end with regular, spawn, and join nodes as well.

347

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Query(u, v) // return true iff u ≺ v in Gfull

1 if Find(DSP , u) is an S -bag, // Query DSP first

2 return true

3 Sv = Find(DNSP , v)
4 if Sv is unattached

5 Sv = Sv .attPred

6 Su = Find(DNSP , u)
7 if Su is unattached

8 Su = Su .attSucc
9 if Su = null return false

10 ans = query R to determine if Su ≺ Sv
11 return ans

Figure 3. Code for querying reachability.

u is the first strand of the computation:

1 add u to an attached set with no predecessor.

Function F calls spawn (G):

// u is the strand in F immediately before the spawn
// v is the strand in F right after spawn
// w is the first strand of G

2 SG = Make-Set(DSP , w)

3 Uv = Make-Set(DNSP , v) and make Uv unattached.

4 Uv .attPred = Find(DNSP , u).attPred
5 Uw = Make-Set(DNSP , w) and make Uw unattached.

6 Uw .attPred = Find(DNSP , u).attPred

Function F calls fut-create(G):

// u is the strand in F immediately before the fut-create
// v is the strand in F immediately after the fut-create
// w is the first strand of G

7 SG = Make-Set(DSP , w)

8 Attachify(u)
9 Av = Make-Set(DNSP , v) and make Av attached.

10 Add an arc from Find(DNSP , u) to Av in R.

11 Aw = Make-Set(DNSP , w) and make Aw attached.

12 Add an arc from Find(DNSP , u) to Aw in R

Function G returns:

13 PG = SG ; deallocate SG

Function F calls get (G):

// u is the strand in F that ended with the get

// v is the strand immediately after u in F
// w is the last strand of G .

14 Attachify(u)
15 Av = Make-Set(DNSP , v) and make Av attached.

16 Add an arc from Find(DNSP , u) to Av in R

17 Add an arc from Find(DNSP , w) to Av in R;

// Find(DNSP , w) is guaranteed to be attached.

Attachify(u) // make the set containing u attached if not already.

18 Uu = Find(DNSP , u)
19 if Uu is unattached

20 mark Uu as attached

21 add Uu to R

22 add the arc (Uu .attPred, Uu) to R

Function F calls sync with child function G :

23 SF = Union(DSP , SF , PG); deallocate PG
24 look at the corresponding fork

25 let f be the strand immediately preceding the fork

26 let s1 and s2 be f ’s two immediate successors of f
// i.e., the first strand of G and the first strand of the continuation

27 let j be the strand immediately after the sync

28 let t1 and t2 be j ’s immediate predecessors of the sync

// i.e., the last strand of the G and the continuation

29 if neither Find(DNSP , t1) nor Find(DNSP , t2) is attached
// No non-SP edges

30 Union(DNSP , f , t1)
31 Union(DNSP , f , t2)
32 Union(DNSP , f , Make-Set(j))
33 elseif both Find(DNSP , t1) and Find(DNSP , t2) are attached
34 Attachify(f)
35 add arc (Find(DNSP , f), Find(DNSP , s1)) to R

36 add arc (Find(DNSP , f), Find(DNSP , s2)) to R

37 Aj = Make-Set(DNSP , j) and make Aj attached

38 add a node Aj to R

39 add arc (Find(DNSP , t1), Aj) to R

40 add arc (Find(DNSP , t2), Aj) to R

41 else let ta be the attached one and tu be the unattached one

42 correspondingly sa is attached and su is unattached

43 if Find(DNSP , f) is not attached
44 Union(DNSP , sa, f)
45 Union(DNSP , ta, Make-Set(j))
46 Find(DNSP , tu).attSucc = Find(DNSP , j)

Figure 4. The actions taken by the algorithm to maintain DSP , DNSP and R

some previously executed nodeu and the currently executing

nodev . In the first part of the query (lines 1–2), we queryDSP
and if u is in the S bag, then we can conclude that u ≺full v
and return. If u is in the P bag, then we check if attached

successor of u precedes the attached predecessor of v in R;

if so, we say that u ≺full v . Otherwise u is in parallel with v .
MaintainingDSP ,DNSP , andR: Figure 4 shows the code

for maintaining reachability relationships between nodes

in the computation. The first thing we do during a spawn,
fut-create, return and sync is to manipulate DSP (lines

2, 7, 13, and 23) in a manner identical to Section 4.
7

Now lets consider the manipulations of DNSP and R.

It uses an auxiliary function Attachify(u), which simply

7
Since we are assuming binary forking, we sync with one function at a time.

checks ifUu = Find(DNSP ,u) is an unattached set, and if so,

converts it into an attached set by adding it to R and adding

an edge fromUu .attPred toUu in R.

The attached and unattached sets change as the execution

continues. MultiBags+ unions sets in DNSP growing both

attached and unattached sets. Two attached sets are never

unioned together. Whenever we union an attached set and

an unattached set, we always union the unattached set into

the attached set; therefore, the resulting set is attached and

remains in R. On the other hand, an unattached set contains

nodes of a complete series-parallel subdag which have no

incident non-SP edges. In particular, consider a parallel com-

position of two series-parallel subdagsG1 andG2. SayG1 has

no incident non-SP edges. Then all nodes of G1 constitute

348

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

1
32

4
5

18

1917

16
15

14

13

8
6

7

20
22219

1110
12

24

23

28
3029

31

25

26

27
32

33

34

Z
X

Y

A

B
C

D
E

I

K

L

M

N

F

HG

J

A

ZX

Y

B

C

E
D

F
G

H

I

J

M

N

L

K

G R

Figure 5. An example of general futures. The left figure

shows the full dag. The dashed edges are fut-create and

get edges. The numbering shows the order in which the

nodes execute in depth-first eager execution. The orange

ovals (solid outline) are attached sets while the green ovals

(dashed outlines) are unattached. The right figure shows R

at the end of the computation. The thick blue lines indicate

an attached predecessor relationship while a thick red line

indicates an attached successor relationship.

an unattached set if either the join node that joinsG1 andG2

has not executed yet, or if G2 has an incident non-SP edge.

At a high-level, this design allows us to have the property

that each non-SP edge only leads to a constant number of at-

tached sets. Since only attached sets are in R, this idea allows

us to keep R small, allowing us to get good performance.

Figure 5 shows a computation dag with futures and its

corresponding R at the end of the computation. As can be

seen in this example, sets X ,Y and Z are all unattached and

each have the above property.

Due to space limitations, all the proofs are omitted to

the arXiv version of the paper
8
. Here we simply state the

performance and correctness theorems.

Theorem 5.1. MultiBags+ detects races in time
O(T1α(m,n) + k2) for programs with T1 work, k get
calls,m memory accesses, and n number of strands.

Theorem 5.2. If the program is executed in a depth first eager
execution order,Query(u,v) returns true iff u ≺ v in Gfull .

Comparison to Algorithm by Agrawal et al. [1]
As we have fully described the MultiBags+ algorithm, we

discuss the differences between MultiBags+ and the the-

of-the-art algorithm by Agrawal et al. [1] and provide an

analytical analysis as to why the algorithm by Agrawal et al.

is much more challenging to implement in practice.

The algorithm by Agrawal et al. utilizes the following

data structures to answer reachability queries: 1) an order-

maintenance data structure for answering series-parallel

queries; 2) the full computation DAG to update and maintain

“anchor-predecessors” and “proxies” used to infer “anchor-

successors;” and 3) a reachability matrix R which contains

8
Available at https://arxiv.org/abs/1901.00622

anchor nodes to answer reachability queries involving non-

SP edges. The functionalities served by these data structures

are similar to that of DSP , DNSP , and R in MultiBags+; in

particular, their algorithm utilize anchor-predecessors and

anchor-successors to allow for correct reachability queries

involving non-SP edges, sharing similar roles as the attached

predecessors and attached successors in MultiBags+. The

main difference is in the second data structure and how the

anchor-predecessors and anchor-successors are maintained.

In the algorithm by Agrawal et al., the mechanism for

maintaining anchor-predecessors and proxies (which are

used to infer anchor-successors) are more complex. In partic-

ular, to maintain anchor-predecessors, the algorithm main-

tains the full computation dag, and each strand (a node in

the dag) explicitly stores its anchor-predecessor. However,

anchor-predecessors can sometimes change as the program

executes. When that occurs, the algorithm must explicitly

traverse subpart of the dag and update some of the predeces-

sors explicitly. The asymptotic complexity of such updates

is still ok because the paper argues that a strand’s anchor

predecessor can only change a constant number of times.

Similarly, the algorithmmaintains a proxy per strand, used

to infer a strand’s anchor-successor. A proxy for a strand is

stored instead of its anchor-successor is because, while an

anchor-predecessor of a node can change a constant number

of times, its anchor-successor can change many times. Thus

instead, the algorithm maintains a proxy, which indirectly

allows the algorithm to deduce its anchor-successor. Like

the anchor-predecessor, a proxy of a node can only change

a constant number of times, and when that occurs, the al-

gorithm again explicitly traverses the relevant subdag and

updates the proxies explicitly.

We argue that this algorithm is harder to implement and

likely has higher overheads due to the following reasons.

First, explicitly maintaining the entire program dag and also

storing each strand’s anchor-predecessor and proxy would

be more memory intensive than keeping these strands in

union-find data structures which are tagged appropriately.

Second, explicit dag traversals in order to update proxies

and anchor-predecessors of nodes would be expensive (even

though the asymptotic complexity is manageable). This prior

work establishes the state-of-the art time bound for race

detecting programs that use general futures, but no imple-

mentation exists.

6 Experimental Evaluation
This section empirically evaluates FutureRD that implements

MultiBags and MultiBags+ described earlier. We first eval-

uate the practical efficiency of these algorithms and then

the performance difference between them, focusing on the

impact of the additional k2 overhead that MultiBags+ incurs,

where k is the number of get operations.

349

https://arxiv.org/abs/1901.00622

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Implementation of FutureRD
FutureRD works by instrumenting parallel program execu-

tions: upon the execution of a parallel construct (i.e., spawn,
sync, fut-create, and get), it invokes the necessary oper-

ations to update the reachability data structures; likewise,

upon the execution of a memory access, it invokes the nec-

essary operations to update the access history data structure

and query both data structures.

We use Intel Cilk Plus [28] as our language front end,

which is a C/C++ based task parallel platform that readily

supports fork-join parallelism. Cilk Plus does not currently

support the use of futures, however, so we have implemented

our own future library. Since our race detector executes the

program sequentially with eager evaluation of futures, the

future library never actually interacts with Cilk Plus runtime

during race detection.

Both MultiBags and MultiBags+ utilize disjoint-set data

structures to maintain reachability as described in Section 4).

MultiBags+ additionally needs to maintain R as part of its

reachability data structure (defined in Section 5). Conceptu-

ally, R is simply a boolean reachability matrix where each

cell (i, j) indicates whether there is a path from attached set

i to attached set j. FutureRD maintains R as a vector of bit

vectors, representing the reachability between any two sets

using a single bit. Whenever an edge is added to R, reacha-

bility is transitively propagated via parallel bit operations.

FutureRD maintains the access history like a two-level

direct-mapped cache, and keeps track of the reader list and

last writer at four-byte granularity (all our benchmarks per-

form four-byte or larger accesses). That is, to query or update

readers/writers for an address a, the more significant bits of

a are used to index into the top-level table and the rest of

the bits are used to index into the second-level table.

Experimental Setup
We evaluate FutureRD using six benchmarks: longest-

common subsequence (lcs), Smith-Waterman (sw), ma-

trix multiplication without temporary matrices (mm), binary
tree merge (bst) as described by Blelloch and Reid-Miller

[10], Heart Wall Tracking (heartwall), and Dedup (dedup).
Heart Wall Tracking and Dedup both contain parallel pat-

terns that cannot be easily implemented using fork-join con-

structs alone. The Heart Wall Tracking algorithm is adapted

from the Rodinia benchmark suite [15] that tracks the move-

ment of a mouse heart over a sequence of ultrasound images.

Dedup is a compression program that exhibits pipeline par-

allelism [8], taken from the Parsec benchmark suite [7]. All

but dedup have two implementations: structured and gen-

eral futures; dedup does not utilize the flexibility of general

futures. Figure 6 shows input and base case sizes of the bench-

marks used for the experiments. The input and base case

sizes shown are the default used for Figures 7 and 8. In these

experiments, we use base case B =
√
N for lcs, mm, and sw

to keep the work the same for the baseline, MultiBags, and

MultiBags+ (since MultiBags+ has k2 additional overhead).
We vary the base case size for experiments shown in Figure 9.

We ran our experiments on an Intel Xeon E5-4620 with

32 2.20-GHz cores on four sockets. Each core has a 32-KByte

L1 data cache, 32-KByte L1 instruction cache, a 256-KByte

L2 cache. There is a total of 500 GB of memory, and each

socket shares a 16-MByte L3-cache. All benchmarks are com-

piled with LLVM/Clang 3.4.1 with -O3 -flto running on

Linux kernel version 3.10. Each data point is the average of

5 runs with standard deviation less than 5% with the excep-

tion of running dedup with full race detection, which sees a

standard deviation under 9%.

Practical Efficiency of FutureRD
First, we evaluate the overhead of FutureRD and show that

the algorithms can be implemented efficiently. To get the

sense of where the overhead comes from, we ran the appli-

cation benchmarks with four configurations:

• baseline: running time without race detection;

• reachability: running time with only the reachability

components, including the instrumentation overhead to

capture parallel control constructs;

• instrumentation: running time with memory-access in-

strumentation overhead on top of the reachability config-

uration, but does not maintain or query the access history;

• full: running time with the full race detection overhead.

Figure 7 shows the list of programs that employ structured

futures running with different configurations, where Futur-

eRD maintains reachability using the MultiBags algorithm.

First, observe that the reachability configuration incurs al-

most no overhead, except for bst, which has very little work

per parallel construct. Since the operations on the disjoint-set

data structure are very efficient, as long as there is sufficient

work per parallel construct, the overhead of maintaining

reachability in MultiBags should be low. These program con-

tains large number of memory accesses, however, and thus

adding instrumentation for memory accesses alone incurs

additional 2–4.5× overhead.

Going from the instrumentation configuration to the full

race detection incurs another 6–10× overhead, with the ex-

ception of dedup. We expect the additional overhead in-

curred to be about 8–10× because the full configuration

transforms every memory access into updates to access his-

tory and queries to both access history and reachability data

structures. Thus, each memory access is translated into a

few function calls and several pointer chases to multiple

data structures. The benchmark heartwall only incurs ad-

ditional 6×, because it spends non-negligible amount of time

performing I/O (reading in image files). Finally, dedup is an

outlier because dedup calls into a dynamic library to perform

compression, which we could not recompile to include instru-

mentation. Thus, any memory accesses performed within

350

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

structured general
bench N base case reads writes fork-join ops future ops # strands fork-join ops future ops # strands

lcs 16384 128 1.27e09 2.69e08 0 32768 49152 13 48897 65302

sw 2048 64 8.59e09 4.20e06 0 2048 3072 13 3009 4054

mm 2048 64 1.72e10 1.80e08 858 65536 99690 42142 65536 177902

heartwall 10 (images) n/a 1.73e10 1.64e08 85 9180 13935 4261 10557 22242

dedup “large” n/a 8.20e08 1.89e07 0 375856 563784 0 375856 563784

bst 8e6 & 4e6 depth limit= 5 4.51e08 2.55e08 62 0 93 62 434 744

Figure 6. Input sizes and characteristics of benchmarks used.

bench baseline reachability instr full
lcs 2.19 2.23 (1.02×) 6.65 (3.04×) 54.27 (24.77×)

sw 14.78 14.25 (0.96×) 28.79 (1.95×) 325.10 (22.00×)

mm 13.94 13.82 (0.99×) 58.84 (4.22×) 468.75 (33.61×)

heartwall 13.86 13.77 (0.99×) 63.39 (4.58×) 340.04 (24.54×)

dedup 12.38 12.15 (0.98×) 13.79 (1.11×) 26.43 (2.14×)

bst 1.37 1.92 (1.41×) 2.65 (1.94×) 10.94 (8.02×)

Figure 7. The execution times for the benchmarks using

structured futures, shown in seconds, with MultiBags used

for race detection. Numbers in the parentheses show the

overhead compared to the baseline.

bench baseline reachability instr full
lcs 2.03 2.30 (1.14×) 6.47 (3.19×) 54.95 (27.13×)

sw 14.73 14.65 (0.99×) 27.87 (1.89×) 380.19 (25.82×)

mm 13.13 15.07 (1.15×) 64.04 (4.88×) 498.65 (37.99×)

heartwall 13.82 13.89 (1.00×) 56.58 (4.09×) 487.95 (35.31×)

dedup 12.11 27.73 (2.29×) 29.60 (2.44×) 52.39 (4.33×)

bst 1.44 6.01 (4.16×) 6.79 (4.70×) 18.18 (12.60×)

Figure 8. The execution times for the benchmarks using

general futures, shown in seconds, with MultiBags+ used

for race detection. Numbers in the parentheses show the

overhead compared to the baseline.

the library do not incur additional overhead. Since the com-

pression takes up a substantial amount of execution time,

the additional overhead is small.

Figure 8 shows the runtime of programs that employ gen-

eral futures where FutureRD maintains reachability using

the MultiBags+ algorithm. The additional overhead incurred

going from one configuration to the next is similar to Fig-

ure 7 except the higher overhead from MultiBags+ is evident

in the reachability configuration.

Over five benchmarks (excluding dedup, since we could
not instrument its compression library), we see a geometric

mean overhead of 1.06× and 1.40× to maintain reachabil-

ity using MultiBags and MultiBags+, respectively. Full race

detection exhibits 20.48× and 25.98× overhead, respectively.

Comparison between MultiBags and MultiBags+
Next, we compare the performance difference betweenMulti-

Bags and MultiBags+. To evaluate the overhead difference

between them, we run the same programs (i.e., with struc-

tured futures) with both algorithms. Although MultiBags+

is designed for general futures, it also works with programs

that use structured futures, albeit with an additional k2 over-
head, where k is the number of get calls.

For lcs, sw, and mm, k is dictated by how much the base

case is coarsened — the smaller the base case, the more get
calls, and the higher k is (which leads to higher overhead).

Runtimes shown before used base case of B =
√
N to keep

the work asymptotically the same across baseline, Multi-

Bags, and MultiBags+. Now we decrease the base case size

below (i.e., increase k) to see how the overhead of MultiBags+

changes compared with the overhead of MultiBags.

reachability
bench base case baseline MultiBags MultiBags+
lcs 128 2.20 2.25 (1.02×) 2.39 (1.09×)

lcs 64 2.14 2.20 (1.03×) 4.68 (2.19×)

lcs 32 2.14 2.09 (0.98×) 39.82 (18.63×)

sw 64 14.57 14.13 (0.97×) 14.74 (1.01×)

sw 32 14.68 14.56 (0.99×) 14.25 (0.97×)

mm 64 13.83 13.97 (1.01×) 14.52 (1.05×)

mm 32 13.08 13.12 (1.00×) 49.11 (3.75×)

Figure 9. The execution times under the baseline and reach-

ability configurations (both MultiBags and MultiBags+) for a

subset of benchmarks implemented with structured futures.

Numbers in the parentheses show the overhead compared

to the baseline.

Figure 9 shows the measurements for running programs

with structured futures using MultiBags and MultiBags+ in

the reachability configuration with different base cases. The

overhead difference between MultiBags and MultiBags+ can

readily be observed in Figures 7 and 8 — compared to Multi-

Bags, MultiBags+ incurs 2+×more overhead running dedup
and 3 + × more running bst for maintaining reachability.

Here we show additional numbers for benchmarks where

varying base case sizes changes k .
The measurements with lcs and mm bear out the extra

overhead of MultiBags+. The lcs benchmark hasΘ(n2)work
versus (n/B)2 futures, while mm has more work (Θ(n3)), but
also requires (n/B)3 futures. With a higher ratio of futures

to total work, the overhead is more apparent. Moreover, the

memory required for the reachability matrix R becomes

substantial for small base cases, adding more overhead. The

sw benchmark, however, hasΘ(n3)work compared to (n/B)2

futures, so the effect of smaller base cases is small.

351

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

7 Related Work
Besides works discussed in Section 1, researchers have

considered race detection for other structured computa-

tions. Dimitrov et al. [18] propose a sequential near-optimal

race detection algorithm for two-dimensional dags which

also exhibit nice structural properties. Subsequently, Xu

et al. [60] propose a race detector for two-dimensional dags

with asymptotically optimal parallel running time. Lee and

Schardl [35] propose a sequential race detector for fork-join

computations with reductions, where the computation dag is

almost series-parallel except when reductions are performed.

Beyond task parallel code, there is a rich literature on race

detection for programming models that generate nondeter-

ministic computations, such as ones that employ persistent

threads and locks. For such models, since the dag necessarily

depends on the schedule, the best correctness guarantee that

a race detector can provide is for a given program, for a given

input, and for a given schedule. Early work [48, 59] employs

lock-set algorithm, which provides wide coverage but can

lead to many false positives, because it cannot precisely cap-

ture happens-before (HB) relations formed between threads.

A vector-clock (VC) based algorithm such as one proposed

by Flanagan and Freund [22] can capture HB precisely for a

given schedule. Such algorithm can be used on computation

with arbitrary dependences, but naively applying it to task

parallel code would be impractical, since it requires storing

a VC of length n with each each memory location querying

against it per access, incurring a multiplicative factor of

n overhead on top of the work, where n is the number of

strands, which can be on the order of millions.

In the context of race detecting nondeterministic code, re-

searchers have investigated hybrid approaches incorporating

VC and lock-set [41, 43, 49, 61] to trade-off precisions and cov-

erage. More recently, researchers have proposed predictive

analysis to explore alternative feasible schedules among close

by instructions to increase the coverage (e.g. [31, 37, 47, 50])

while keeping the precision.

8 Conclusion
In this paper, we have shown that race detection can be per-

formed more efficiently when the program employs only

structured futures. As such, an interesting question to ask is

how much benefit does the general use of futures provides.

The flexibility of general futures lends itself to express par-

allelism that are not strictly fork-join and can potentially

allow for slightly higher parallelism (such as in the case of

pipelined binary-tree merge bst due to [10]). Moreover, we

find that, writing code using structured futures can require

more effort from the programmer, due to the fact that it needs

to be single touch, such as in the case of dynamic program-

ming examples lcs and sw. However, for most benchmarks,

these benefits are not as evident. As we have shown experi-

mentally, the additionalO(k2) overhead (k being the number

of future operations) can impact performance in practice.

Currently, both of our algorithms execute the computation

serially. An interesting avenue of future work is how to

parallelize race detection for programs that use futures. Both

of our algorithms depend on the depth-first execution order

and extension to parallel execution appears to be non-trivial.

Acknowledgements
This research was supported in part by National Science

Foundation under grants CCF-1150036, CCF-1527692, CCF-

1733873, and XPS-1439062. We thank the referees and our

shepherd for their excellent comments.

A Artifact Appendix
A.1 Abstract
Our implementation is open source and available at https:
//github.com/wustl-pctg/futurerd.git. The version used for

artifact evaluation has DOI 10.5281/zenodo.2510564. The

library is provided under an MIT license, though other code

packaged with it is licensed separately. A brief summary of

the artifact is provided below; more details can be found in

the repository README.md file. Please send feedback or file

bug reports by opening issues in the Github repository.

A.2 Software Dependencies
The headers installed by gcc 6+ are likely to cause prob-

lems when compiling the compiler; we recommend using

the Docker container provided (instructions in README.md).
To fully reproduce the results, link-time optimization should

be used (-flto) with the GNU gold linker installed as ld.
The dedup benchmark requires several dependencies which

are documented in the repository.

The benchmark script requires GNU datamash, which

can be installed using apt-get in Ubuntu 14+ or can be ob-

tained from https://www.gnu.org/software/datamash. Bash
4+ should be used to run the scripts.

A.3 Evaluation
After compiling all components and running the benchmark

script, full results can be found in the files times.ss.csv
(benchmarks used MultiBags race detection algorithm

with structured futures), times.ns.csv (benchmarks

used MultiBags+ algorithm with structured futures), and

times.nn.csv (benchmarks used MultiBags+ algorithm

with general futures). Although absolute times will differ on

your machine, you should see similar relative overhead for

the benchmarks. Compare the results to figures 7 and 8 in

the paper. Comparison to figure 11 can by done by modifying

the benchmark scripts and the base cases of the lcs, sw, and
mm (called matmul_z in the repository).

352

https://github.com/wustl-pctg/futurerd.git
https://github.com/wustl-pctg/futurerd.git
https://www.gnu.org/software/datamash

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Utterback et al.

References
[1] Kunal Agrawal, Joseph Devietti, Jeremy T. Fineman, I-Ting Angelina

Lee, Robert Utterback, and Changming Xu. 2018. Race Detection

and Reachability in Nearly Series-parallel DAGs. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’18). Society for Industrial and Applied Mathematics,

New Orleans, Louisiana, 156–171. http://dl.acm.org/citation.cfm?id=
3174304.3175277

[2] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread

Scheduling for Multiprogrammed Multiprocessors. In 10th Annual
ACM Symposium on Parallel Algorithms and Architectures. 119–129.

[3] Arvind, R.S. Nikhil, and K.K. Pingali. 1986. I-structures: Data Struc-

tures for Parallel Computing. In Proceedings of the Graph Reduction
Workshop.

[4] Henry C. Baker, Jr. and Carl Hewitt. 1977. The incremental garbage

collection of processes. SIGPLAN Notices 12, 8 (1977), 55–59.
[5] Rajkishore Barik, Zoran Budimlić, Vincent Cavè, Sanjay Chatterjee, Yi

Guo, David Peixotto, Raghavan Raman, Jun Shirako, Sağnak Taşırlar,

Yonghong Yan, Yisheng Zhao, and Vivek Sarkar. 2009. The Habanero

Multicore Software Research Project. In Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Programming Sys-
tems Languages and Applications (OOPSLA ’09). ACM, Orlando, Florida,

USA, 735–736.

[6] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.

Leiserson. 2004. On-the-Fly Maintenance of Series-Parallel Relation-

ships in Fork-Join Multithreaded Programs. In 16th Annual ACM Sym-
posium on Parallel Algorithms and Architectures. 133–144.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In PACT. ACM, 72–81.

[8] Christian Bienia and Kai Li. 2010. Characteristics of Workloads Using

the Pipeline Programming Model. In ISCA. Springer-Verlag, 161–171.
[9] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Girija J. Narlikar.

1997. Space-Efficient Scheduling of Parallelism with Synchronization

Variables. In 9th Annual ACM Symposium on Parallel Algorithms and
Architectures. 12–23.

[10] Guy E. Blelloch andMargaret Reid-Miller. 1997. Pipeliningwith futures.

In SPAA. ACM, 249–259.

[11] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff

Lowney, Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar,

Frank Schlimbach, and Sağnak Taşırlar. 2010. Concurrent Collections.

Journal of Scientific Programming 18, 3-4 (Aug. 2010), 203–217.

[12] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.

Habanero-Java: the new adventures of old X10. In Proceedings of the
9th International Conference on Principles and Practice of Programming
in Java (PPPJ ’11). 51–61.

[13] Rohit Chandra, Anoop Gupta, and John L. Hennessy. 1994. COOL: An

Object-Based Language for Parallel Programming. IEEE Computer 27,
8 (Aug. 1994), 13–26.

[14] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform Clus-

ter Computing. In 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 519–538.

[15] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-

mark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC). 44–54.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. 2009. Introduction to Algorithms (third ed.). The MIT Press.

[17] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. 2008.

Programming with exceptions in JCilk. Science of Computer Program-
ming 63, 2 (Dec. 2008), 147–171.

[18] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. 2015. Race Detec-

tion in Two Dimensions. In Proceedings of the 27th ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA ’15). ACM, Portland,

Oregon, USA, 101–110. https://doi.org/10.1145/2755573.2755601
[19] Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of

Determinacy Races in Cilk Programs. In Proceedings of the Ninth An-
nual ACM Symposium on Parallel Algorithms and Architectures (SPAA).
1–11.

[20] Mingdong Feng and Charles E. Leiserson. 1999. Efficient Detection of

Determinacy Races in Cilk Programs. Theory of Computing Systems
32, 3 (1999), 301–326.

[21] Jeremy T. Fineman. 2005. Provably Good Race Detection That Runs in
Parallel. Master’s thesis. Massachusetts Institute of Technology, De-

partment of Electrical Engineering and Computer Science, Cambridge,

MA.

[22] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient

and precise dynamic race detection. SIGPLAN Not. 44, 6 (June 2009),
121–133.

[23] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2010. Im-

plicitly Threaded Parallelism in Manticore. Journal of Functional
Programming 20, 5-6 (Nov. 2010), 537–576. https://doi.org/10.1017/
S0956796810000201

[24] D.P. Friedman and D.S. Wise. 1978. Aspects of Applicative Program-

ming for Parallel Processing. IEEE Trans. Comput. C-27, 4 (1978),

289–296.

[25] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

Implementation of the Cilk-5 Multithreaded Language. In PLDI. ACM,

212–223.

[26] Robert H. Halstead, Jr. 1985. Multilisp: A Language for Concurrent

Symbolic Computation. ACM TOPLAS 7, 4 (Oct. 1985), 501–538.
[27] Maurice Herlihy and Zhiyu Liu. 2014. Well-structured Futures

and Cache Locality. In Proceedings of the 19th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP
’14). ACM, Orlando, Florida, USA, 155–166. https://doi.org/10.1145/
2555243.2555257

[28] Intel 2013. Intel® Cilk
™
Plus. https://www.cilkplus.org. (2013).

[29] Intel Corporation 2012. Intel(R) Threading Building Blocks. Intel Cor-
poration. Available from http://software.intel.com/sites/products/
documentation/doclib/tbb_sa/help/index.htm.

[30] Intel Corporation 2013. Intel® Cilk™ Plus Language Extension Specifica-
tion, Version 1.1. Intel Corporation. Document 324396-002US. Available

from http://cilkplus.org/sites/default/files/open_specifications/Intel_
Cilk_plus_lang_spec_2.htm.

[31] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dy-

namic Race Prediction in Linear Time. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). ACM, New York, NY, USA, 157–170.

https://doi.org/10.1145/3062341.3062374
[32] Alex Kogan and Maurice Herlihy. 2014. The Future(s) of Shared Data

Structures. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing (PODC ’14). ACM, Paris, France, 30–39. http:
//doi.acm.org/10.1145/2611462.2611496

[33] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. 1989. Mul-T:

A High-Performance Parallel Lisp. In PLDI. ACM, 81–90.

[34] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E.

Leiserson. 2010. Using Memory Mapping to Support Cactus Stacks in

Work-Stealing Runtime Systems. In PACT. ACM, 411–420.

[35] I-Ting Angelina Lee and Tao B. Schardl. 2015. Efficiently Detecting

Races in Cilk Programs That Use Reducer Hyperobjects. In SPAA ’15:
Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures (SPAA ’15). ACM, Portland, Oregon, USA, 111–122.

http://doi.acm.org/10.1145/2755573.2755599
[36] Charles E. Leiserson. 2010. The Cilk++ Concurrency Platform. J.

Supercomputing 51, 3 (2010), 244–257.

[37] Peng Liu, Omer Tripp, and Xiangyu Zhang. 2016. IPA: Improving

Predictive Analysis with Pointer Analysis. In Proceedings of the 25th

353

http://dl.acm.org/citation.cfm?id=3174304.3175277
http://dl.acm.org/citation.cfm?id=3174304.3175277
https://doi.org/10.1145/2755573.2755601
https://doi.org/10.1017/S0956796810000201
https://doi.org/10.1017/S0956796810000201
https://doi.org/10.1145/2555243.2555257
https://doi.org/10.1145/2555243.2555257
https://www.cilkplus.org
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
https://doi.org/10.1145/3062341.3062374
http://doi.acm.org/10.1145/2611462.2611496
http://doi.acm.org/10.1145/2611462.2611496
http://doi.acm.org/10.1145/2755573.2755599

Efficient Race Detection with Futures PPoPP ’19, February 16–20, 2019, Washington, DC, USA

International Symposium on Software Testing and Analysis (ISSTA
2016). ACM, New York, NY, USA, 59–69. https://doi.org/10.1145/
2931037.2931046

[38] Li Lu, Weixing Ji, and Michael L. Scott. 2014. Dynamic Enforcement

of Determinism in a Parallel Scripting Language. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, Edinburgh, United Kingdom,

519–529. https://doi.org/10.1145/2594291.2594300
[39] John Mellor-Crummey. 1991. On-the-fly Detection of Data Races

for Programs with Nested Fork-Join Parallelism. In Proceedings of
Supercomputing’91. 24–33.

[40] Robert H. B. Netzer and Barton P. Miller. 1992. What are Race Con-

ditions? ACM Letters on Programming Languages and Systems 1, 1
(March 1992), 74–88.

[41] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data

Race Detection. In Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’03). ACM,

New York, NY, USA, 167–178.

[42] OpenMP 4.0 2013. OpenMP Application Program Interface, Version 4.0.
[43] Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data

Race Detection in Multithreaded C++ Programs. (2003), 179–190.

[44] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2010. Efficient Data Race Detection for Async-Finish

Parallelism. In Runtime Verification, Howard Barringer, Ylies Falcone,

Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore

Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in

Computer Science, Vol. 6418. Springer Berlin / Heidelberg, 368–383.

[45] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection for

Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’12). 531–542.

[46] James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++
for Multi-core Processor Parallelism. O’Reilly Media, Inc.

[47] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011.

Generating Data Race Witnesses by an SMT-based Analysis. In Pro-
ceedings of the Third International Conference on NASA Formal Meth-
ods (NFM’11). Springer-Verlag, Berlin, Heidelberg, 313–327. http:
//dl.acm.org/citation.cfm?id=1986308.1986334

[48] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. 1997. Eraser: A Dynamic Race Detector for Multi-

Threaded Programs. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles (SOSP).

[49] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-

tizer: Data Race Detection in Practice. In Proceedings of the Workshop
on Binary Instrumentation and Applications (WBIA ’09). ACM, New

York, New York, 62–71.

[50] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and

Cormac Flanagan. 2012. Sound Predictive Race Detection in Poly-

nomial Time. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL

’12). ACM, New York, NY, USA, 387–400. https://doi.org/10.1145/
2103656.2103702

[51] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert

Harper. 2009. Beyond Nested Parallelism: Tight Bounds on Work-

stealing Overheads for Parallel Futures. In Proceedings of the Twenty-
first Annual Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’09). ACM, Calgary, AB, Canada, 91–100. https://doi.org/
10.1145/1583991.1584019

[52] Rishi Surendran and Vivek Sarkar. 2016. Automatic Parallelization of

Pure Method Calls via Conditional Future Synthesis. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2016). ACM,

New York, NY, USA, 20–38. https://doi.org/10.1145/2983990.2984035

[53] Rishi Surendran and Vivek Sarkar. 2016. Brief Announcement: Dy-

namic Determinacy Race Detection for Task Parallelism with Futures.

In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’16). ACM, Asilomar State Beach, CA, USA,

95–97.

[54] Rishi Surendran and Vivek Sarkar. 2016. Dynamic Determinacy Race
Detection for Task Parallelism with Futures. Springer International

Publishing, Cham, 368–385. https://doi.org/10.1007/978-3-319-46982-
9_23

[55] Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set

Union Algorithm. J. ACM 22, 2 (April 1975), 215–225.

[56] Sağnak Taşırlar and Vivek Sarkar. 2011. Data-Driven Tasks and Their

Implementation. In Proceedings of the 2011 International Conference
on Parallel Processing (ICPP ’11). IEEE Computer Society, Taipei City,

Taiwan, 652–661.

[57] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting An-

gelina Lee. 2016. Provably Good and Practically Efficient Parallel Race

Detection for Fork-Join Programs. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’16).
ACM, Asilomar State Beach, CA, USA, 83–94.

[58] Jacobo Valdes. 1978. Parsing Flowcharts and Series-Parallel Graphs.
Ph.D. Dissertation. Stanford University. STAN-CS-78-682.

[59] Christoph von Praun and Thomas R. Gross. 2001. Object Race Detec-

tion. In Proceedings of the 16th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA
’01). ACM, Tampa Bay, FL, USA, 70–82.

[60] Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal. 2018. Efficient

Parallel Determinacy Race Detection for Two-dimensional Dags. In

Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’18). ACM, Vienna, Austria,

368–380. http://doi.acm.org/10.1145/3178487.3178515
[61] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient

Detection of Data Race Conditions via Adaptive Tracking. In Proceed-
ings of the Twentieth ACM Symposium on Operating Systems Principles
(SOSP ’05). ACM, New York, NY, USA, 221–234.

354

https://doi.org/10.1145/2931037.2931046
https://doi.org/10.1145/2931037.2931046
https://doi.org/10.1145/2594291.2594300
http://dl.acm.org/citation.cfm?id=1986308.1986334
http://dl.acm.org/citation.cfm?id=1986308.1986334
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/1583991.1584019
https://doi.org/10.1145/1583991.1584019
https://doi.org/10.1145/2983990.2984035
https://doi.org/10.1007/978-3-319-46982-9_23
https://doi.org/10.1007/978-3-319-46982-9_23
http://doi.acm.org/10.1145/3178487.3178515

	Abstract
	1 Introduction
	2 Preliminaries and Definitions
	3 Managing Access History
	4 MultiBags for Structured Futures
	4.1 Algorithm
	4.2 Proof of Performance and Correctness

	5 MultiBags+ for General Futures
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Software Dependencies
	A.3 Evaluation

	References

