JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 16, AUGUST 15, 2019

4125

A Tutorial on Machine Learning for Failure
Management in Optical Networks

Francesco Musumeci *?, Cristina Rottondi

, Giorgio Corani, Shahin Shahkarami, Filippo Cugini ",

and Massimo Tornatore

(Invited Tutorial)

Abstract—Failure management plays a role of capital impor-
tance in optical networks to avoid service disruptions and to sat-
isfy customers’ service level agreements. Machine learning (ML)
promises to revolutionize the (mostly manual and human-driven)
approaches in which failure management in optical networks has
been traditionally managed, by introducing automated methods for
failure prediction, detection, localization, and identification. This
tutorial provides a gentle introduction to some ML techniques that
have been recently applied in the field of the optical-network fail-
ure management. It then introduces a taxonomy to classify failure-
management tasks and discusses possible applications of ML for
these failure management tasks. Finally, for a reader interested in
more implementative details, we provide a step-by-step descrip-
tion of how to solve a representative example of a practical failure-
management task.

Index Terms—Failure management, machine learning.

1. INTRODUCTION

HE importance of failure management in Optical Networks
(ONs) is superior to any other network domain, as fail-
ures in ONs can induce service interruption to thousands, if not
millions, of users. Consider, e.g., the case of the fiber cuts in
Mediterranean Sea in 2008 that caused loss of 70% of Egypts
connection to outside world and more than 50% of Indias con-
nectivity on the westbound route [1]. Even in much less disrup-
tive scenarios, the ability of an ON operator to quickly recover
a failure is crucial to meet Service Level Agreements (SLAS) to
its customers.
Despite its importance, ON Failure Management (ONFM)
still often requires complex and time-consuming human
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intervention, and increased automation of failure recovery is
a fundamental element in operators’ roadmaps for the years to
come. A promising direction moves towards the utilization of ad-
vanced statistical/mathematical instruments of Machine Learn-
ing (ML) to automate the ONFM tasks.

The application of ML in ONFM is challenging for several
reasons: 7) the quantity of data that can be monitored in modern
ONs is enormous, and scalable “analytics” techniques must be
considered [2], [3]; 72) several kinds of failures (not only fiber
cuts, but also equipment malfunctioning and misconfiguration,
network ageing, etc.) can affect an ON connection (lightpath);
111) failure management in ONs tends to be more challenging
than in other domains (e.g., at [P-level) as ONFM is inherently
cross-layer, i.e., it must jointly consider physical-layer and
network-layer aspects. To deal with this multifaceted problem,
effective ONFM shall be constituted by several sequential
tasks, in each of which ML can play an important role towards
automation. To provide a complete introduction to the topic, in
this tutorial:

® we motivate the usage of ML in ONFM and provide a gen-
tle introduction to the main ML principles and categories
of ML techniques, focusing on those algorithms that have
been already used in previous works,

e we categorize the various phases of ONFM as optical per-
formance monitoring, failure prediction and early detec-
tion, failure detection, failure localization, failure identifi-
cation and failure magnitude estimation,

e for each of category, we provide a description and some
examples, and we discuss which ML methodologies can
be applied for solving them,

* we finally provide a step-by-step description of how to
practically solve a representative ONFM procedure, break-
ing down the various steps (collection and preparation of
data, algorithm design, performance analysis).

While surveys summarizing existing proposals for ML ap-
plications in ONs have recently appeared [4], [5], this paper
adopts a more tutorial style and is intended to offer a specific
introduction to the application of ML methodologies for failure
management. We also refer the readers to other two recent tuto-
rials (Refs. [6] and [7]) that comprehensively cover ML applica-
tions in the field of optical networking and optical communica-
tions, respectively, but do not provide the same focus on failure
management.
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The paper is structured as follows. Section II elaborates on
the main motivations for the application of ML in ONFM.
Section III provides basic notions on the most-promising ML
algorithms for ONFM. Section IV presents our taxonomy for
ONFM tasks and discusses, for each task, some proposed ML
solution. In Section V we describe, step-by-step, how a com-
prehensive ML-based solution, covering the task described in
Section IV, can be structured. Finally, Section VI discusses some
future directions and current standardization activities.

II. MOTIVATION
A. Why ML?

Why ML, a very well-investigated methodological area (its
first applications date back to the 60s), has been attracting at-
tention for ONFM only in recent years? While the answer in
not necessarily purely technical, we can identify some recent
technological trends in ONs that are paving the way towards
effective ML applications:

i) Modern optical equipment (transceivers, reconfig-
urable optical add-drop multiplexers, amplifiers) are
now installed with built-in monitoring capabilities
[8], and they are capable to generate a large amount
of data, which can be leveraged to automate ONFM
using ML.

ii) The large amount of data collected through such

monitors can now be collected and elaborated in (at
least logically) centralized locations thanks to new
advanced control/management solutions, as network
telemetry, SDN [9] and/or orchestration frameworks
[10].
Network intelligence (computing capabilities) can
now be placed virtually everywhere (e.g., leveraging
Network Function Virtualization and/or Mobile Edge
Computing).

iif)

B. How Does ML Work?

ML algorithms aim at extracting knowledge from data, based
on some characterizing inputs, often referred to as attributes or
features. Depending on the available data and on the objective
of the model to be developed, ML techniques can be classified
at high level in the following categories:

e Supervised ML algorithms are given as input labelled data,
i.e., there is a set of historical training data samples con-
taining both the input values (features) and the correspond-
ing output, namely the labels. Such labels can be either nu-
merical values in a continuous range or discrete/categorical
values. In these two cases, supervised learning takes the
form of a regression or classification problem, respectively.
Consider e.g., the case in Fig. 1(a), where the objective is to
identify the nature of a fault based on a series of Bit Error
Rate (BER) measurements collected at the receiving nodes
of various lightpaths during past fault events. Each light-
path is characterized by a set of features including route,
modulation format, wavelength used for transmission and
observed BER trend. The ML algorithm learns how to as-
sociate such features to the correct failure cause (e.g., an
amplifier malfunctioning or a fiber bending).
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(b) unsupervised learning for fault detection and localization

Fig. 1. Supervised vs. unsupervised learning in ONFM.

e In unsupervised ML algorithms, data is not labelled.
Now, given the available/collected data, the objective is
to identify if there are useful similarities among data (this
is usually referred as clustering) or if there are notable
exceptions in the data set (this is usually referred to as
“anomaly detection”). An intuitive application is shown in
Fig. 1(b), where the objective of applying ML is to detect
a failure based on historical BER measurements. After
collecting enough data representing faulty and faultless
lightpaths, the algorithm learns to discriminate where
a fault is occurring (in this case on the path A-B-C-D).
After detection, failure localization can also be performed
by correlating the faulty and faultless routes: since paths
A-B-C and A-D-C are faultless, the only possible location
of the failure is on link B-D.

e Semi-supervised algorithms are hybrid of the previous
two categories. These algorithms lend themselves to solve
problems where only few data points are labelled and most
of them are unlabelled (consider, those cases when la-
belled data are scarce or expensive, e.g., when labelled data
require ad-hoc probing). Their application is particularly
promising in the field of ONFM, as will be discussed later.

e Reinforcement learning (RL) is another area of machine
learning in which an agent learns how to optimally behave
(i.e., how to maximize the reward obtained over a certain
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time horizon) by interacting with the environment, receiv-
ing a feedback after each action and updating accordingly
its knowledge. Yet, RL is not covered in this tutorial.

In particular, in the case of supervised learning (see the first
row of Fig. 2), the training phase includes the following steps:

e Raw training data are preprocessed to extract and se-
lect features containing useful information for the regres-
sion/classification task, i.e., showing statistical correlation
with the output value/class.

® A suitable learning algorithm is selected. Several learn-
ing algorithms, with different characteristics in terms of
achievable accuracy, scalability and computational effort,
have been proposed. In the next Section, we overview the
most widely-adopted methods in ONFM.

e The chosen algorithm learns the regression/classification
model, i.e., a mapping between the space of features and
the associated outputs.

e To assess and improve the generalization properties of the
algorithm developed at training phase, the ML algorithm
can be applied over one or more validation datasets for
which labels are also known, in order to fine-tune the al-
gorithm parameters so as to avoid overfitting.

Once the training phase is concluded, the ML algorithm can be
used over a fest dataset containing new instances characterized
by the same type of features of the training set (see second row
of Fig. 2) and for which the corresponding outputs are known
(i.e., they represent the ground truth), but are not used to perform
the prediction. In general, in the test phase, the following steps
are performed:

e Data are preprocessed for feature extraction and selection.

e The learned model is applied on the test dataset.

e The outputs provided by the algorithm are elaborated to
be visualized and/or validated, by comparing the output of
the model with the ground truth. To do this assessment, a
wide set of metrics are used [11] (see Section III-G).

On the other hand, in the case of unsupervised learning, the
training phase is typically skipped and only the test phase is
performed. However, note that in some cases, e.g., when per-
forming anomaly-detection, a training phase can be present also
in unsupervised algorithms.

Note that, in general, a ML algorithm is only part of a com-
plex ONFM procedure, where the outputs of the ML algorithm
(e.g., the output of aregression, a classification or a clustering al-
gorithm) are exploited to perform further tasks. As an example,
when considering ONFM, a ML algorithm can be developed and
adopted to accurately identify the location of a failure within the
network, i.e., to detect which network device is affected. After
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knowing the location of the failure, i.e., exploiting the output of
the ML algorithm, the operator can take further actions (e.g., per-
form lightpath re-routing to bypass the failed network element),
exploiting a different approach, not relying on ML (e.g., select
the new path based on a precomputed list of alternative paths,
or calculate the new path via other routing algorithms such as
Dijkstra).

In summary, ML algorithms can become useful ONFM tools
whenever an unknown relation between a set of input features
(e.g., a set of alarms) and their corresponding output (e.g., if
a certain element of the network must be substituted before it
fails) must be identified. In the next section, we will outline the
main ML algorithms used in ONFM.

III. BACKGROUND ON ML TECHNIQUES FOR
FAILURE MANAGEMENT

This section provides a high-level introduction to some ML
techniques adopted in ONFM. We assume the reader to be al-
ready familiar with basic concepts such as decision trees, deci-
sion boundaries, and linear models for regression and classifi-
cation. A gentle introduction to these topics is given in [12]. We
also recommend the website [13], which provides tutorials on
the most important ML algorithms.

A. Bagging and Random Forests

Bagging combines the predictions of different models into
a single decision. In case of classification, it takes a vote: the
prediction is the class predicted by most models. In the case of
regression, the prediction is the average of the predictions of the
different models. Bagging creates different models by training
them on training data sets of the same size, which are obtained
by modifying the original training data. In particular, some in-
stances are randomly deleted while some others are randomly
replicated; this resampling procedure is called bootstrap. Bag-
ging creates via bootstrap B different training sets, with B being
typically between 20 and 100. It then learns a different decision
tree on each training set. Bagging is generally more accurate
than a single decision tree. As we have seen, bagging generates
an ensemble of classifiers by randomizing the original training
data.

Differently from bagging, in Random forest (RF) the diversity
among the decision trees is increased by randomizing the feature
choice at each node. In particular, the generation (“induction”)
of decision trees requires selecting the best attribute to split on
at each node; it is randomized by first choosing a random subset
of attributes and then selecting the best among them. The RF
algorithm usually achieves better accuracy than bagging, both
in regression and in classification. An empirical comparison of
different implementations of RF, with recommendations about
default settings, is given by [14]. See [11, Chap.15] for a more
detailed discussion of RF. In ONFM, RFs are applied for clas-
sification or regression tasks on time series constituted by sam-
ples of the monitored network parameters (e.g., BER, received
power, etc.). Classification algorithms can be adopted, e.g., to
distinguish between different root causes of failures occurring
in optical networks (failure identification). Instead, regression
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might be used to predict the future values of an observed net-
work parameter based on a historical trend, so as to possibly raise
alarms if the predicted value falls above/below given thresholds
(failure prediction/early detection).

B. Bayesian Networks

A Bayesian Network (BN) is a compact representation of
the joint distribution of multiple discrete variables. Assume the
involved discrete variables to be X, Y and Z; for simplicity, as-
sume that each variable has cardinality k. The joint distribution
P(X,Y, Z) assigns a probability to each possible combination
of values of X, Y and Z; thus it requires storing k3 values.
The size of an explicit representation of the joint distribution
increases exponentially with the number of variables, and it is
generally infeasible in real-world problems. Yet a BN efficiently
represents the joint distribution of even thousands of variables
by exploiting the conditional independences that exist among
variables. If X and Y are independent given Z (i.e., X and Y
are conditionally independent), then the joint distribution can
be factorized as P(X,Y,Z) = P(Z)P(X|Z)P(Y|Z), which
requires storing only k + 2k? values. By exploiting conditional
independences, a BN model sharply decreases the number of
values that is needed to represent the joint distribution. Such
independences can be either discovered from data or suggested
from experts. The independences are then encoded into a di-
rected acyclic graph. As BNs are typically learned on discrete
data, they are typically adopted in classification tasks.

Once the network is learned, we can use it for making predic-
tions, for instance computing the posterior probability for the
remaining unobserved variables. This task is called inference.
The most recent advances [15] allow learning and performing
inference with Bayesian networks also in domains containing
thousands of variables. See [16] for a book focused on model-
ing and inference with Bayesian networks; see [17] for a book
which covers also other types of probabilistic graphical models.
In the context of ONFM, BNs are applied for failure localiza-
tion and root cause identification purposes, as they can cap-
ture correlations among thousands of interdependent networks
components.

C. Artificial Neural Networks (ANN)

ANNs are a powerful tool for estimating unknown relations
between features and outputs. An ANN is constituted by con-
nected units (neurons), that are organized into layers (Fig. 3).
Each neuron receives a set of values, one from each neuron of
the previous layer. It computes a weighted sum of such values
and it applies a non-linear transformation (sigmoid, Rectified
linear unit (Relu), tanh, etc. [11]); the output of this function
is then passed to the neurons of the next layer. Given a large
enough number of neurons, the ANN model can approximate
any function with arbitrary precision, thus constituting a univer-
sal approximator.

The estimation of the weights between the layers of an ANN
is performed through the back-propagation algorithm. Finding
the optimal architecture of the network (e.g., deciding how many
neurons to place in each layer) has to be done via trial-and-error,
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Fig. 3. Example of a feed-forward NN with one hidden layer.

paying attention to avoid overfitting (which implies poor predic-
tions on instances which have are not present in the training set).
See [18, Chap.5] for a detailed discussion of training ANNS.
Similarly to RF, ANN are mainly applied for failure prediction
and identification in optical networks.

When ANNSs are characterized by multiple hidden layers, they
are referred to as Multi-Layer Perceptron (MLP). Moreover,
Deep Neural Networks (DNNs) constitute a particular form of
MLP, where a high number of hidden layers are used. In general,
adopting several hidden layers as happens in DNNSs, increases
the flexibility of the model, i.e., with DNNs more accurate mod-
els of complex input/output relations can be obtained. In simpler
“shallow” ANNSs, a hand-designed selection of input features is
typically performed, so an accurate knowledge of the problem
to be solved is required from a human expert. On the contrary,
leveraging their multiple-hidden-layer hierarchy, DNNs enables
an automatic learning of the importance of each input feature
onto the output variables, thus simplifying the process of fea-
tures selection [19].

For these reasons, DNNs excel in pattern recognition tasks
[20], such as the extraction of features from images, the recog-
nition of handwritten character recognition, the processing of
natural language. In the context of OFNM, the advantage of
deep ANN is that they can be directly fed with raw measure-
ments acquired from optical monitors, without need of feature
extraction and selection procedures.

D. Support Vector Machines

Support vector machine (SVM) is a kernel methods [22]. Con-
sider a bunch of points being classified into two classes by a sin-
gle straight line as shown in Fig. 4. In this case, we can say that
the two classes are separable. In an n-dimensional space, the op-
timal hyperplane is the one that represents the largest separation
(margin) between the two classes. The instances that are closest
to the maximum-margin hyperplane are called support vectors.
SVMs identify such maximum-margin hyperplane and then use
it as decision boundary. SVMs extend [12, Chap.7.2] the linear
models (e.g., linear and logistic regression) as they learn the de-
cision boundary in a high-dimensional space derived from the
problem features.

Note that, while data might be not separable in the original
low-dimensional space of the attributes, they often become sep-
arable in an induced high-dimensional space. The function used
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to map an observation of the original attributes into a higher-
dimensional space is called kernel function. Different kernel
functions can be adopted with SVMs, such as, e.g., linear, poly-
nomial or radial basis function kernels [11]. SVMs tend to be
slower than other algorithms, but they often produce accurate
classifiers. Like RFs and ANNs, SVMs are mainly applied in
failure prediction and root cause identification.

E. Gaussian Processes

The Gaussian process (GP) is a state-of-the-art approach for
regression and classification; it can be seen as a Bayesian kernel
method (Fig. 5). A comprehensive book about GPs is [23] while
many tutorials can be found in [24]. The optimization problems
required for training SVMs and GPs are similar [23, Chap.6];
yet GP is a fully probabilistic model, hence its predictions are
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naturally accompanied by an assessment of their uncertainty.
An interesting link can be drawn also with ANNS, as it has been
shown that certain ANNs with one hidden layer are equivalent
to a Gaussian process (but they lack the uncertainty assessment
of the GP) [23, ch. 7]. Another important advantage of the GP
is that it can be trained without overfitting also on small data
sets, unlike neural networks. On the other hand, the training
procedure becomes heavy on very large data sets as its com-
putational complexity increases cubically with the number of
instances (sparse GPs algorithms have been developed recently
to deal efficiently with big data [25]).

Given the probabilistic characterization of their output, GPs
are particularly useful in ONFM whenever an assessment on
the reliability of a classification/regression is required. As GPs
return the probability that the instance belongs to one class, de-
pending on such outcome, different actions could then be trig-
gered: for example, if the probability associated to class yes is
99%, traffic rerouting would be applied, whereas if the probabil-
ity is 51%, it could be better to wait for additional measurements
before rerouting.

F. Network Kriging

Network Kriging (NK) is a mathematical framework that aims
at individuating correlations among linear parameters. It was
initially proposed in [27] to evaluate performance metrics of
transmission paths spanning multiple links of a given network
topology: NK considers path level measurements of a given per-
formance metric, which is assumed to be a linear function of the
values of the same metric measured along each link compos-
ing the path. As path monitoring in ONFM requires expensive
equipment, NK is aimed at identifying a subset of deployed
paths to be monitored: the choice of the monitored lighpaths
is performed in such a way that deduction of path-level met-
rics of the non-monitored lightpaths is possible, based on the
measurements collected on the monitored ones.

This technique finds direct application in ONFM, since op-
tical monitors are typically placed at receiver nodes and thus
provide path-level metrics, whereas link-level metrics (which
are of more interest for, e.g., failure localization) can be directly
obtained only at the price of installing additional monitoring de-
vices at intermediate nodes. However, kriging works only under
assumption that a linear relationship holds between link-level
and path-level metrics. Such assumption typically does not hold
for BER and Q-factor.

G. Cross-Validation and Statistical Analysis of the Results

The classical method for estimating the accuracy of a ML
algorithm is k-folds cross-validation (CV) [12, ch. 5.4]. First,
the data are split into & non-overlapping partitions (folds). At
the i-th iteration, (k-1) folds are joined, forming the training set
Dj_; the remaining fold constitutes instead the test set D;_. The
classifier is learned on D}, and its accuracy is assessed on D%,
Such training / test procedure is repeated several times, until
each fold has been used once as test set. Sometimes, Leave One
Out Cross Validation (LOOCV) is adopted. It corresponds to
n-fold cross-validation, where n is the number of instances in



4130 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 16, AUGUST 15, 2019
Optical Network
Failure Management
{ Proactive Vo Reactive \
i approaches D approaches ]
i Optical Performance Failure Prediction E i Failure Failure Failure Failure Magnitude E
; Monitoring and Early-Detection | ! ! | Detection Localization Identification Estimation i
Failure Prevention Failure Recovery
Fig. 6. Taxonomy of optical network failure management.

the dataset. Each instance in turn is left out, and the classifier
is trained on all the remaining instances. See [12, ch. 5.4] for a
more detailed discussion of the statistical properties of LOOCV.

The simplest measure of the quality of a classifiers is the ac-
curacy, i.e., the proportion of instances which are correctly clas-
sified. Using cross-validation, the accuracy that will be achieved
on future unseen data is estimated by averaging the accuracies
obtained on the different test sets.

However, accuracy assumes that all errors are equally bad,
while usually different types of error have different costs. For
simplicity, assume the classification problem to be characterized
by two classes, the positive and the negative one. Assume the
positive class to be the rarer outcome; for example the failure
in an ON. The negative class is instead the common outcome,
hence the regular functioning of the network.

The most important goal is retrieve all the positive instances,
i.e., all the failures; to this end we are willing to accept that some
negative instances are labeled as positive, hence triggering some
false alarms. A false positive (predicting a failure as regular) is
hence a more severe error than a false negative (predicting a
regular case to be a failure). In problems of this type, recall
and precision [12, Chap. 5.7] are more relevant metrics than
accuracy:

number of positive cases predicted as positive

recall = —
total number of positive cases

number of positive cases predicted as positive

recision = — —
P number of positive predictions
Precision and recall are two contrasting objectives and differ-
ent algorithms give different trade-offs on these measures. The
F-score (or F-measure) can be used to characterize the perfor-
mance with a single measure:

2 - recall - precision

F-score = —

recall + precision
Sometimes it is necessary to choose between two or more al-
gorithms, given their cross-validation results. Statistical analysis
of the cross-validation results is typically carried out through hy-
pothesis testing. This procedure allows to ascertain whether the
difference of performance between two algorithms can be due

to random fluctuations, or if instead the difference between al-
gorithms is statistically significant. See [28] for a discussion of
the statistical tests used to compare cross-validated classifiers;
see instead [29] for state-of-art Bayesian approaches to analyze
cross-validation results.

IV. A TAXONOMY OF FAILURE MANAGEMENT IN
OPTICAL NETWORKS

As depicted in Fig. 6, ONFM involves a variety of tasks that
can be broadly categorized into 1) Proactive approaches and 2)
Reactive approaches. At a high level, proactive approaches aim
at prevention (i.e., avoidance) of service disruption, by antici-
pating failure occurrence, whereas reactive approaches respond
to a failure after or during its occurrence, by quickly activating
recovery procedures to repair or substitute the failed equipment
in the shortest possible time.

Failure prevention is typically implemented by continuously
monitoring transmission-quality parameters, such as BER, Op-
tical Signal to Noise Ratio (OSNR), etc. This way, transmission
parameters such as, e.g., modulation format, transmitted power,
etc., can be adaptively set to meet the desired quality of trans-
mission. However, reconfiguring transmission parameters is not
always sufficient to avoid failures, hence it is still important
to be able to predict failure occurrences and implement proper
countermeasures. For example, service can be maintained by
pre-allocating multiple alternative lightpaths between a given
node pair, such that, in case of a predicted failure on the pri-
mary lightpath, actual downtime can be avoided by preventively
rerouting traffic on a backup lightpath before any service disrup-
tion. Depending on the resiliency requirements to be achieved,
different protection approaches can be adopted, e.g., dedicated
and shared protection either at path or link level [30], [31].

On the other hand, in failure recovery information retrieved
by network monitors and/or alarms (e.g., which equipment
has failed, etc.) can be leveraged to quickly perform lightpath
restoration. Lightpath restoration is usually implemented by
means of a dynamic discovery of alternative routes [32], al-
though preplanned schemes (e.g., following a static association
between primary and backup paths) can be also followed.
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TABLE I

DIFFERENT USE CASES IN ONFM AND THEIR CHARACTERISTICS
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Algorithm Task Description Ref.
Random Forests Detection BER anomaly detection [33]
Identification equiment failure type identification [34]
Artificial Neural Networks Monitoring OSNR monitoring [35]-[37]
Monitoring eye diagram monitoring [38]-[43]
Monitoring phase portrait monitoring [44]
Prediction/Identification equipment failure prediction [45], [46]
Detection/Identification BER anomaly detection and identification [33]
Support Vector Machines Prediction equipment failure prediction [47]
Detection BER anomaly detection [33]
Localization/Identification  filter failure identification and localization [34]
Gaussian Processes Monitoring OSNR monitoring [48]
Localization/Identification  link failure identification and localization [49]

Bayesian Networks Localization/Identification

localization and identification of tight filter- [50]

ing anc inter-channel interference

Identification

Network Kriging Localization

failure diagnosis
link failure localization [55]

[51]-[54]

In the following, we describe the various ONFM procedures,
and overview some of the existing work addressing ONFM by
means of ML algorithms. A summary of this overview is pro-
vided in Table I, where we map some existing work with the
adopted ML algorithms, as described in Sec. IIT with the ONFM
tasks described in the following subsections.

Note that the interest in automation of ONFM has started sev-
eral years ago, and even standardizations, in the early 2000s,
had been issued to define automatic procedures, e.g., based on
events-correlation [33], which can partially replace human inter-
vention in failure management. However, traditional automated
approaches are based on static and often simplistic rules, not
suitable for modern optical networks, which are characterized
by high dynamics and a large amount of diverse network man-
agement parameters. In this view, ML is a promising technique
to dynamically adapt failure management procedures to the pro-
gressively changing network conditions, thanks to its ability of
automatically learning from the observed network data.

A. Optical Performance Monitoring (OPM)

During a lightpath’s lifetime, various transmission-
performance parameters are constantly controlled by dedicated
monitors installed at optical receivers (especially in coherent
receivers [57]) or in other strategic points (e.g., in regenerators
or intermediate nodes traversed by a lightpath). Typically mon-
itored parameters are, e.g., pre-Forward Error Correction BER
(preFEC-BER), OSNR, Polarization Mode Dispersion (PMD),
Polarization-dependent loss (PDL), State of Polarization (SOP)
in the Stokes space, Chromatic Dispersion (CD) and statistics
extracted from the eye diagram. Degradation in one or more of
such performance indicators may lead to a failure, unless proper
lightpath adjustment is triggered to restore signal quality with-
out service disruption. For example, whenever OPM results in
the observation of signal quality degradation, ON operators may
adjust some optical parameters at the transmission side (such
as, e.g., modulation format, launch power, etc.) or even along
the lightpath route (e.g., by activating dispersion compensator
modules) to prevent lightpath failure.

Current big-data-analysis techniques enable real-time collec-
tion, processing and storage of enormous volumes of ONFM

data, as demonstrated in the field trial in [36]. On top of this,
ML offers powerful tools to perform OPM thanks to the capabil-
ity of automatically learning complex mapping between samples
or features extracted from the received symbols and channel pa-
rameters. The most widely used ML tools for OPM are ANN:Ss,
which can be fed either with the statistical features of moni-
tored data, or directly with the raw monitored data. Examples
of features are Q-factor, closure, variance, root-mean-square jit-
ter and crossing amplitude, extracted from power eye diagrams
[39]-[42], [58], [59] and phase portraits [45], asynchronous con-
stellation diagrams including transitions between symbols [39],
or histograms of the asynchronously sampled signal amplitudes
[41], [42]. When directly fed with raw monitored data, ANNs re-
quire complex architectures with a high number of neurons and
hidden layers and a massive amount of training data to enable
automatic extraction of signal quality indicators, such as PMD,
PDL, CD, etc. [37], [38], whereas using pre-computed input fea-
tures allows for the adoption of simpler ANN structures, which
can be trained with smaller datasets.

Alternative learning approaches based on Gaussian processes
have also been proposed [49], which show reduced complexity
with respect to ANNSs, increased robustness against noisy inputs
and easier integration within control plane.

B. Failure Prediction and Early-Detection

In some cases, signal quality cannot be simply restored by
adjusting transmission parameters as seen in the previous sub-
section, as signal may keep degrading until a failure occurs. This
gradual signal degradation is often referred to as soft-failure, as
opposed to hard-failures, where signal is totally disrupted due
to unpredictable events (e.g., a sudden fiber cut). In such cases,
prompt detection of soft-failures before a critical threshold is vi-
olated is essential as it would allow the operator to gain precious
time to devise effective countermeasures. As an example of the
application of such proactive approach, the reader is referred to
[60], where the authors propose a cloud service restoration strat-
egy which exploits forecasts of link failures in an optical cloud
infrastructure.

Several ML algorithms for anomaly detection can be applied
directly in the time series of monitored parameters (see Fig. 7)
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Fig. 7. Examples of anomalous pre-FEC BER and received power patterns,

depending on different fault types [61].

even when their values are still within tolerable ranges. In Fig. 7
we report a simplified graphical representation of the time series
of different types of failures. Note that only the “gradual drift”
represents a predictable soft-failure, corresponding to a gradual
pre-FEC BER degradation due slow filter misalignment. Con-
versely, both “signal overlap” and “cyclic drift” result in a more
sudden degradation of pre-FEC BER, hence predicting such fail-
ures is more challenging.

Threshold-based approaches for early-failure detection have
been proposed to detect fiber deterioration before the occurrence
of a break [62] or to identify anomalous BER trends[61], [63],
[64]. In the former scenario, the fiber SOP rotation speed in the
Stokes coordinates is monitored and compared to a threshold. If
such threshold is exceeded, pre-trigger and post-trigger samples
are provided to a ML naive-Bayes classifier, which returns the
most likely cause (e.g., fiber bending, shaking, hit or up-and-
down events). In the latter scenario, a BER anomaly detection
algorithm running at every network node is proposed to identify
unexpected BER patterns indicating potential failures along the
monitored lightpath. The algorithm takes as input statistics about
historical and monitored BER data and returns different types
of alerts, depending on whether the current BER exceeds given
thresholds or remains within pre-defined boundaries. In [48],
statistical features of input/output optical power, laser bias cur-
rent, laser temperature offset and environment temperature are
used by an SVM classifier to predict equipment failure. Sim-
ilarly, optical power levels, amplifier gain, shelf temperature,
current draw and internal optical power are used in [46] to fore-
cast failures using statistical regression and ANNSs.

C. Failure Detection

Differently from early-detection, which aims at identifying
an imminent fault before the violation of a certain threshold, the
goal of failure detection is to trigger an alert after the values of
the monitored parameters exceed the threshold for a sustained
period of time.

While, traditionally, these alerts were manually issued, in re-
sponse to continued growth in network complexity, manual man-
agement has been progressively replaced by expert systems [33],
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Fig. 8. Qualitative pre-FEC BER behaviour vs time under normal and anoma-
lous situations.

that were leveraging predefined sets of if-then rules, that could
be integrated in the control plane. However, in modern optical
networks, failure detection methods based on predefined fixed
thresholds and/or if-then rules might still be overly simplified,
and not be able to adapt to rapid network dynamics generated,
e.g., by on-demand circuit provisioning or by changes in recon-
figurable transmission parameters as FEC or modulation format.
ML promises to more rapidly evolve and re-adapt failure detec-
tion procedures, e.g., by introducing the capability of detecting
unknown failure types (i.e., performing “anomaly detection”)
and adapting to changing network condition thanks to periodic
algorithm re-training.

In [34] a set of ML algorithms, including Binary SVM, Ran-
dom Forest (RF), Multiclass SVM, and ANNSs have been used to
perform failure detection over an optical-transmission testbed,
where pre-FEC BER traces at the receiver are used to detect
anomalies in pre-FEC BER behaviour. Two examples of the pre-
FEC BER behaviour vs time are shown in Fig. 8 for the cases
of normal and anomalous (i.e., corresponding to a failure) BER
behaviour. An application of ML algorithms to failure detection
will be illustrated in Section V.

D. Failure Localization

After a failure has been detected, the failed element (e.g., the
node or link responsible for the failure) must be localized in
the network. Existing approaches (also based on ML) correlate
alarms coming from different receivers and verify if spatial cor-
relation can provide useful information. Data for failure localiza-
tion can be collected through: ¢) monitors located at receivers or
intermediate nodes of working lightpaths; #4) monitors acquired
through probe lightpaths that do not carry user traffic and are
strategically deployed to help disambiguating the location of a
failure.

Correlation methods not relying on probe lightpaths are used
in [50], [51]. In particular, in [50], ambiguous localizations are
resolved by binary GP classifiers (one for each link suspected of
failure), which compute a failure probability after being trained
with a dataset of past failure incidents. In [56] NK is adopted
to localize failures, assuming that the total number of alarms
(i.e., failures) along every lightpath is known. If knowledge on
number of failures per lightpath does not allow for unambiguous
localization, additional probe lightpaths are installed to increase
the rank of the routing matrix. Probe lightpaths are also adopted
in [35] for failure localization during the lightpath commission-
ing testing phase (i.e., prior to the final deployment): low-cost
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optical testing channels are deployed to collect BER measure-
ments from each traversed node, which are then compared to
theoretical BER values. In case of significant discrepancies, a
failure alarm is raised for the considered span. The same work
also proposes a failure localization algorithm for operative light-
paths, which takes as input some statistical characteristics of the
received optical spectrum signal.

E. Failure Identification

Even after failure localization, it might still be complex to
understand the exact cause/source of the failure (e.g., inside a
network node, the signal degradation can be due to filter mis-
alignment, optical amplifier malfunctioning, etc.). Today, failure
identification is still a time-expensive process and consumes lot
of precious maintenance human resources [65].

ML classifiers can be used to estimate the most likely fail-
ure cause, after being trained with a comprehensive set of time
series collected in presence of known failures, as well as dur-
ing failure-free network operation. For example, probabilistic
graphical models such as BNs can be adopted to provide com-
pactrepresentations of distributions (which would be intractably
large to be explicitly described) taking advantage of the sparse
dependencies among variables.

In [51], statistics about received BER and power are given as
input to a BN which outputs a probability of failure occurrence
along the ligthpath (thus performing localization, as mentioned
in Section IV-D, and additionally returning the most likely cause,
either tight filtering or inter-channel interference).

BN have also been proposed for failure diagnosis in
GPON/FTTH networks [52], [54], [S5]. the ON is represented
using a multilayer approach, where the lower layer represents the
physical network topology (where nodes are ONTs and ONUs),
while the middle layer models local failure propagation inside a
single network component (e.g., a single node). Finally the up-
per layer offers a junction tree representation of the two layers
below. Since conditional probabilities in the BN cannot be eas-
ily learned in case of missing measurements, in [53] the same
authors propose an adaptation of the Expectation Maximization
(EM) algorithm for Maximum Likelihood Estimation from in-
complete data.

Alternatively to BNs, frameworks incorporating multiple ML
algorithms have been proposed, where each algorithm focuses
on a specific task (e.g., the identification of a particular cate-
gory of failures), as in [34] and [46], [47] where ANNSs are used
to perform failure identification in controlled ON testbeds. In
[61], the output of the BER anomaly detection mentioned in
Section IV-B is fed into a probabilistic algorithm together with
historical BER time series, which then returns the most probable
failure type from a predefined set of possible causes. Similarly,
in [35], features extracted from the spectrum of received sig-
nal (including, e.g., power levels across the central frequency
and around other cut-off points of the spectrum) are used as
inputs of a multi-class decision-tree classifier which outputs a
predicted class among three options: normal, laser drift, or filter
failure. Then, a more refined diagnosis on laser failures is per-
formed using SVMs to discriminate between filter shift or tight
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filtering, whereas a linear regressor is adopted to estimate laser
drift.

A detailed step-by-step description on failure identification,
as an extended version of the one in [34], will be provided
in Section V, where ML classifiers are used to distinguish be-
tween two failure causes, i.e., amplifier gain reduction or filter
misalignment.

F. Failure Magnitude Estimation

After determining a failure location and cause, the estima-
tion of failure magnitude can provide additional information to
understand failure severity. As an example, based on the estima-
tion of failure magnitude, a network operator can decide whether
an equipment reconfiguration is sufficient or equipment repara-
tion, or even substitution, is necessary. Note that, even though
we categorize failure magnitude estimation and identification as
areactive approached, they can also be considered as a proactive
approached whenever a potential failure is early-detected (i.e.,
predicted).

ML classification has been already investigated for failure
magnitude estimation in [35] where, in addition to fault local-
ization and identification algorithms (respectively discussed in
Sections IV-D and IV-E), the authors adopt a linear regression
model to estimate failure magnitude in the case of filter shift,
filter tightening and laser drift failures, using as features var-
ious frequency-amplitude points extracted from optical signal
spectrum at the receiver.

Preliminary results on failure magnitude estimation will be
provided in Section V for the optical amplifier malfunctioning
and filter misalignment failures mentioned in Section IV-E.

V. A CASE STUDY FOR ML IN ONFM

The objective of this section is to guide the reader through
some of the steps needed to develop a ML-based ONFM frame-
work using a case-study example.

Among the tasks described in Section IV, we consider 1) Fail-
ure Detection, 2) Failure Identification, and 3) Failure Magni-
tude Estimation, all performed by analyzing BER traces' by
means of a ML-based multi-stage approach (summarized in
Fig. 9). We describe how we designed our ML-based approaches
(e.g., adopted algorithms, selection of hyper-parameters, cross-
validation methods, etc.), and then show illustrative numerical
results obtained on a controlled testbed.

A. Design of ML-Based Modules for Failure Management

Data preprocessing and windows formation: As first opera-
tion, BER data as those in Fig. 8 shall be prepared to be analyzed
by ML algorithms. This procedure is called Data preprocessing
and generically consists of transforming raw data, e.g., raw in-
formation from network monitors, into a more “tractable” format
that can be handled by ML algorithms. A good practice when
performing data preprocessing is to visualize the collected data,
e.g., by plotting the data in a 2D or 3D space, and to perform

'In the following we use the term “BER” to refer to “Pre-FEC BER.”
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outlier removal and/or features normalization. Note that, in case
the problem is characterized by a /NV-dimensional features space
(N > 3), data preprocessing can also include dimensionality-
reduction, e.g., performed through Principal Component Anal-
ysis (PCA) [11], which allows to transform the features space
and enable data visualization into a 2D or 3D space.

After data preprocessing, we prepare sets of contiguous BER
windows, i.e., groups of consecutive BER samples, character-
ized by two main parameters: i) Tpgr, i.e., the time between
two consecutive BER observations in the window, and i) win-
dow size, i.e., its time-duration, W. The idea is that, analyzing
different consecutive BER windows at the receiver, in case one
or more failures are observed, a failure alarm can be issued by
the network operator, and the failure cause and its magnitude can
be estimated. Note that different windows may overlap, e.g., if
window “a” contains samples from #1 to #15, window “b” can
contain samples #2 to #16.

As shown in Fig. 9, given a BER-window, the objective of the
ML-based framework is to determine:

1) If the window corresponds to a failure (failure de-

tection); as shown in box 1 of Fig. 9, this represents
a binary classification problem, i.e., either the window
corresponds to a failure or not; only in case the window is
classified as corresponding to a failure, it will be given as
input to the next step 2.

2) What is the failure cause (failure identification); when
a failure is detected, the BER window will be classified
by the failure identification module (box 2 in Fig. 9); in
our illustrative numerical analysis, two different failure
causes will be distinguished, i.e., OSNR reduction driven
by undesired excessive attenuation along the path, due to,
e.g., optical amplifier malfunctioning (Low-gain), and ex-
cessive signal filtering, due to, e.g., filter misalignment
in a multi-span optical fiber transmission system (Filter-
ing); therefore, also in this case the ML-module is a binary
classifier.
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3-steps Optical Network Failure Management (ONFM) block diagram (assuming “3-ranges” scenario for failure magnitude estimation).

3) What is the failure magnitude (failure magnitude es-
timation); according to the failure cause identified in
step 2, a proper ML-based classifier is triggered, which
analyzes the BER-window and provides the range of
the failure magnitude for Low-gain and Filtering fail-
ures, respectively. In both cases (see boxes 3a and 3b
in Fig. 9), the ML modules represent multi-class clas-
sifiers; that is, in case of Low-gain failure, module 3a
estimates the failure magnitude as belonging to class
“[1-4] dB”, “[5-7] dB”, or “[8-10] dB”; on the other
hand, for Filtering failure, module 3b selects one of
the following classes estimates the failure magnitude
as belonging to class “[26-30] GHz”, “[32-36] GHz”,
or “[38-46] GHz”.

Note that, given the 3-steps workflow above, a misclassifica-
tion in a given step will induce a misclassification also in the
subsequent steps, however, such cascaded misclassification er-
rors will be accounted only once when evaluating the overall
classification accuracy.

1) BER-Window Features and Labels: To train the various
ML algorithms, several BER windows are used, each character-
ized by a feature vector x and an output label y.

The same set of features (i.e., the same feature vector x) is
used for the detection, identification and magnitude estimation
tasks. More specifically, for each BER-window, we consider the
following 16 features (i.e., x = {z1, ..., 216 }):

® 1, = min: minimum BER value in the window;

To = max: maximum BER value in the window;

x3 = mean: mean BER value in the window;

x4 = std: BER standard deviation in the window;

x5 = p2p: “peak-to-peak” BER, i.e., p2p = max — min;
x¢ = RM S: BER root mean square in the window;

27 + x16: the ten strongest spectral components in the win-
dow, extracted by applying Fourier transform.

On the other hand, each BER-window is characterized by a
vector of labels, i.e., y = {y1, y2, y3}, where each of the three
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components in the output vector y is used for only one specific
task, as shown in Fig. 9. Namely,

e for failure detection, a univariate binary label is used for
each window, i.e., y; € {0;1}, where y; = 0 corresponds
to a normal BER-window, whereas y; = 1 corresponds to
an anomalous BER window;

e for failure identification, again a univariate binary label
is used for each window, i.e., yo € {0;1}, where yo =0
corresponds to a Low-gain failure, whereas yo = 1 corre-
sponds to a Filtering failure; note that, for the failure identi-
fication problem, ML training is performed by considering
only anomalous BER-windows;

¢ for failure magnitude estimation, a multi-class output la-
bel is used for each window, i.e., y3 € {r1;r2; 73}, where
ys3 = r;,¢ = 1,2, 3indicates the ;-thrange of Low-gain (re-
spectively, Filtering) failure magnitude range, expressed in
dB (respectively, GHz); note that we developed and trained
two different ML-based modules for the Low-gain and Fil-
tering failures, each trained with the corresponding set of
BER windows. Moreover, note that we evaluate the over-
all performance of the framework by considering different
ranges of failure magnitude; more specifically, we con-
sider the cases of “2-ranges” and “3-ranges”. In the for-
mer case, output label for each window is in the form of
y3 € {r1; 72}, while in the latter case each label can take
one out of three possible values, i.e., y3 € {r1;r2;73}, as
shown in the outputs of blocks 3a and 3b in Fig. 9. Con-
sequently, as shown in Fig. 9, in the “3-ranges” scenario,
the BER window is fed into the 3-steps ONFM framework,
where the possible output classes are 7: 1) No-failure, 2)
Low-gain-[rangel ] dB, 3) Low-gain-[range2] dB, 4) Low-
gain-[range3] dB, 5) Filtering-[rangel ] GHz, 6) Filtering-
[range2] GHz or 7) Filtering-[range3] GHz. Similarly, for
the “2-ranges” case, a total of 5 output classes will be
available.

In the following we provide more details on the ML algo-
rithms adopted to perform the three tasks and we answer to
some practical questions as: 2) how often should we collect BER
samples to have an accurate BER detection? ii) how many con-
secutive anomalous windows should we wait before issuing a
failure alarm? Moreover, for each algorithm, we study the trade-
off between classification accuracy and algorithm complexity,
by varying the value of the window time-duration, W (large W
leads to higher accuracy, but also higher computational time).

2) Failure Detection ML Algorithms: The Failure Detection
module has been developed using one-class SVM classifier.
Other types of ML classification algorithms (Random Forest
(RF), Multiclass SVM, and artificial neural network (ANN))
have also been tested and compared with the one-class SVM, in
terms of accuracy and training phase duration. Note that, while
the one-class SVM is an unsupervised classifier, all the other
approaches are supervised (see Section IIT)?.

2In our experiment, for the one-class SVM case, we use only “normal” BER
data (i.e., BER values not resulting into a failure), whereas for the supervised
cases we use a larger data-set, consisting of “normal” BER data and all different
types of failures.
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Fig. 10.

Testbed setup.

The one-class SVM has been implemented with a radial basis
function kernel [11], whereas third-degree polynomial kernel
has been used for the multiclass SVM classifier; Gini impurity
[11] has been used as splitting criteria for decision trees in the
RF algorithm; an ANN with single hidden layer, consisting of
10 hidden neurons with Relu activation function, has been used.
Hyperparameters in all the algorithms, e.g., number of hidden
layers and nodes in the ANN, number of decision trees in RF, ker-
nel in the SVMs, etc., have been selected using cross-validation.
Specifically, for each of the aforementioned algorithms, several
models have been developed, each with a specific hyperparam-
eters settings. The resulting model is selected as the one provid-
ing the best classification accuracy, evaluated using the LOOCV
technique. Note that, in this paper, the results provided in the fol-
lowing analyses are obtained adopting one-class SVM for the
Failure Detection phase. The performance comparison between
the various ML algorithm is out of the scope of this paper.

3) Failure Identification ML Algorithm: Failure Identifica-
tion has been implemented using an ANN with two hidden lay-
ers, each with 5 hidden neurons, and with Relu activation func-
tion. Also in this case cross-validation has been used to fine-tune
hyperparameters, i.e., the number of hidden layers and neurons,
and the activation function.

4) Failure Magnitude Estimation ML Algorithm: To estimate
failure magnitude we adopted ANNs for both low-gain and fil-
tering failures (boxes 3a and 3b in Fig. 9, respectively). For both
modules, we used ANNs with a single hidden layer, considering
Relu activation function in the hidden nodes. As for the num-
ber of hidden neurons, cross-validation has been used to find a
proper balance between model accuracy and training duration,
and it depends on the number of output labels under considera-
tion. Specifically, we consider ANNs with a number of hidden
neurons ranging between 80 and 90 for the “2-ranges” and “3-
ranges” scenarios, for both filtering and low-gain magnitude
estimation cases.

B. Results

1) Testbed Setup: To perform our analysis, BER traces have
been obtained over an experimental testbed as shown in Fig. 10.
Measurements were performed on an 80 km Ericsson OTU-
4 transmission system employing PM-QPSK modulation at
100 Gb/s line rate. Signal is transmitted on central frequency of
192.5 THz (i.e., 1557.36 nm) using 50 GHz spectrum width. The
end-to-end system is constituted by a series of Erbium Doped
Fiber Amplifiers (EDFA) followed by Variable Optical Atten-
uators (VOAs). Note that the numerical analysis in this sec-
tion is based on a simplified point-to-point testbed and can only
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represent a proof of concept for the application of ML to differ-
ent ONFM use cases. Considering more complex and realistic
ON scenarios, e.g., based on a ring/mesh physical topology and a
richer set of ligthpaths, would affect the conclusion of such anal-
ysis, e.g., due to the emergence of non-linear effects on signal
propagation of interfering lightpaths. Further analysis consider-
ing more complex topologies and traffics (and others as, e.g.,
the selection of most effective ML algorithms, or the selection
of other input features among the monitored optical parameters,
such as the OSNR) are out of the scope of this paper and are left
for future work.

A Bandwidth Variable-Wavelength Selective Switch (BV-
WSS) is configured to introduce narrow filtering or additional
attenuation with the intent to emulate two possible impairments
that cause BER degradation, i.e., filter misalignment and an un-
desired amplifier-gain reduction. We have formed our dataset
starting from a “normal” (i.e., non-failed) condition, where a
frequency slot of 50 GHz (i.e., no narrow filtering) and a 0 dB at-
tenuation (i.e., no extra attenuation) are considered. Additional
filtering and low-gain failures are gradually imposed through
the BV-WSS, by reducing its bandpass spectrum from 46 GHz
to 26 GHz at steps of 2 GHz (maintaining a fixed central fre-
quency) and by applying extra attenuation (i.e., to emulate op-
tical amplifier gain reduction) between 1 and 10 dB ad fixed
steps of 1 dB. Thus, we gather data representing two different
BER-degradation causes as well as different magnitude of gain
reduction and filtering, over which we could train and test our
ML-based modules.

For each combination of the above mentioned filtering and
gain reduction values (i.e., 46-to-26 GHz filtering with 2 GHz-
steps, and 1-to-10 dB gain reduction with 1 dB-steps, respec-
tively) and including also normal BER condition (i.e., 50 GHz
spectrum and 0 dB gain-reduction), we collected BER samples
for one hour with a sampling interval of 2 seconds. Therefore,
our overall dataset consists of 24-hours of BER samples col-
lected every 2 seconds, totalling an amount of 43200 BER points.
Note that, as we consider BER-windows as training and test data
instead of individual BER points, the number of (x,y) points de-
pends on the considered values of BER sampling period, Tz R,
and window time-duration, W.

We first assess the performance of the overall ONFM frame-
work considering the case of “2-ranges” for failure magnitude
estimations. To this end, we compare the performance of the
overall ONFM with that of the “isolated” failure detection, iden-
tification and magnitude estimation modules (i.e., modules 1, 2,
3a and 3b in Fig. 9, respectively).

2) Performance Comparison: Common metrics to evaluate
the performance of ML algorithms are the classification accu-
racy and the training-phase duration (that represents the com-
plexity of the ML algorithm). Here, since the amount of data in
the different classes is not ncessarly balanced, we also use other
metrics as, precision, recall and F-score (see Section III).

Fig. 11 shows the overall accuracy of the whole ONFM frame-
work, and of each of its components, for different values of win-
dow duration W, in the “2-ranges” scenario. As expected, accu-
racy increases with window size in all cases. As expected, failure
detection task is the most efficient as it provides classification
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Fig. 12.  Classification accuracy vs window size for different tasks in isolation
and for the overall ONFM (“3-ranges” scenario, T gr = 2 5).

accuracy close to 100% with window size above 2.5 minutes. On
the other hand, our analysis suggests that, to properly perform
failure cause identification, i.e., to distinguish between filter and
low-gain failures with reasonably high accuracy, larger window
size is needed, i.e., in the order of 5 minutes to reach 90% accu-
racy. Considering failure-magnitude estimation, we observe that
increasing window size is more beneficial in the case of filter
failures, as demonstrated by the steeper increase of classification
accuracy for values of W above 1.5 minutes. It is worth noting
that the overall accuracy of ONFM is highly influenced by the
poor performance of the failure identification task, especially
when the window size is below 2.5 minutes.

A similar comparison for the “3-ranges” case is shown in
Fig. 12. Here curves for the isolated failure detection and failure
identification modules are not shown as their accuracy does not
depend on the number of classes used in the magnitude estima-
tion tasks, therefore curves are equivalent to the ones observed
in Fig. 11. Also in this case we observe high benefit in increasing
window size, especially in the filter failure magnitude estima-
tion, where around 100% classification accuracy is reached for
window size above 4 minutes.
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TABLE II
PRECISION (P), RECALL (R) AND F'-SCORE VS WINDOW SI1ZE W (LOW-GAIN
FAILURE MAGNITUDE ESTIMATION)

W [seconds] P R F-score
50 0.84 0.84 0.84
100 0.88 0.88 0.88
150 0.9 0.88 0.89
200 0.92  0.90 0.91
250 0.9 0.93 0.91
300 0.92 0.93 0.92
TABLE III

PRECISION (P), RECALL (R) AND F'-SCORE VS WINDOW SIZE W (FILTERING
FAILURE MAGNITUDE ESTIMATION)

W [seconds] P R F-score
50 0.81 0.8 0.8
100 0.85 0.8 0.83
150 093 0.97 0.95
200 0.96 0.94 0.95
250 098 0.95 0.96
300 098 0.98 0.98

In Tables IT and I11, for the *“2-ranges” scenarios, we show how
the Precision (P), Recall (R) and F'-score measures vary with
increasing window size W, in the cases of low-gain and filtering
failure magnitude estimation, respectively. In both cases the F'-
score steadily increases with window size, despite this is not
always the case for P and R, meaning that in any case a good
balance between these two metrics is obtained when increasing
W. In particular, P shows a decrease in the low-gain failure
magnitude estimation case for W = 250 seconds, whereas R
always increases for this task. On the other hand, in the filter
failure magnitude estimation R decreases from 0.97 down to
0.94 for W = 200 seconds, before increasing again up to 0.98 for
W = 300 seconds. However, the value of P in this case always
increases, which makes the F'-score steadily increase also for
this task.

Note that this study considers a single-lightpath system, but
other sophisticated optimization can be performed in a more
complex network environment, such as, e.g., the selection of
monitor placement. If the previous results are confirmed on a
network-wide operation scenario, the practical benefits for op-
erators would be remarkable. To name few, ¢) this framework
would enable an almost instantaneous troubleshooting (at least
for a certain class of common failures) that can significantly
reduced time to repair (TTR), and 77) early detection can help
eliminate some classes of failure, leading to significant reduction
of service downtime.

VI. FUTURE RESEARCH DIRECTIONS

A. Open Questions

The application of ML in ONFM has only recently gained
attention. Several questions remain open regarding the applica-
bility of ML in operational networks, due to scalability prob-
lems, network conditions changing too rapidly (or too slowly)
to be detected, etc. In this Section, we elaborate on some future
research directions in this field.
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1) How to Deal With Changing Network Conditions: The
classical offline supervised learning approach (applied in al-
most all the studies cited in this paper) should be evolved to
cope with time-evolving network scenarios, e.g., in terms of
traffic variations or ageing of hardware components. To this
aim, semi-supervised and/or unsupervised ML, could be imple-
mented to gradually acquire knowledge from novel input data.
Then, the impact of periodic re-training of supervised mech-
anisms should also be investigated to adapt the ML model to
the current network status. Moreover, in this context, ONFM
would largely benefit if automatic data labeling is applied after
exploiting semi-supervised and/or unsupervised approaches to
identify anomalies in dynamic optical networks. As a matter of
fact, some papers have already appeared tackling this issue. For
example, in [66] the authors concentrate on detecting anomalies
in the signal power levels in lightpaths, due to malfunctioning
in filters, amplifiers, power equalizer, or even due to jamming
attacks. Also in [67] the authors exploit unsupervised learning to
detect jamming attacks, by applying optical performance mon-
itoring to correlate the behaviour of physical layer parameters
(such as, e.g., chromatic dispersion, OSNR, BER, etc.) with ma-
licious traffic.

2) How to Selectively Query the Network to Obtain Useful
Monitoring Information: In several cases, monitored data is ex-
pensive to be acquired and shall be extracted/queried only when
necessary. Active ML approaches, which can interactively ask
to observe training data with specific characteristics, could be
adopted to reduce the size of datasets required to build an accu-
rate prediction model, thus leading to significant savings in case
the data collection process is costly (e.g., when probe lightpaths
have to be deployed).

3) How to Discover Relevant Patterns in Case of Large Scale
Data Sets: This point is the logical counterpart of the previous
point. For some monitoring systems, the amount of generated
data is enormous and the techniques employed to extract useful
information shall be extremely scalable (“big data” analysis).
Some scalable approaches for big-data analysis are in the area
of Association Analysis (AA) (e.g., the a-priori algorithm [68]),
and can find hidden relationships in large-scale data. AA could
distil the redundant alert information to a single or multiple fail-
ure scenarios.

4) Once a Failure Has Been Detected, Can ML Also Help
Making Decision on the Most Appropriate Reaction to The Fail-
ure?: Consider a ML algorithm performing anomaly detection
on the monitored BER data at an optical receiver. Assume that
the ML algorithm detects an anomalous behavior during a time
window covering the last few seconds. What is the best action to
be triggered? Should the lightpath be immediately rerouted, or
maybe it is sufficient to leverage tunable transceiver to reduce
the transmission baud rate/modulation format? These decisions
are far from trivial and if ML can help in this context deserves
further investigation.

B. Network Telemetry: A Key Enabler for ML in ONs

In this tutorial, we assumed monitored data can be retrieved
from equipment and elaborated in suitable control/management
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logical elements. In practice, research is ongoing to identify the
right monitoring and control technologies.

For example, in SDN, two main components are required to
efficiently support ML applications. First, monitoring param-
eters require the definition of common, vendor-neutral YANG
models. Specifically, YANG definitions are required for coun-
ters, power values, protocol stats, up/down events, inventory,
and alarms, originated from data, control, and management
planes. Relevant standardization initiatives and working groups
on YANG modeling are currently active in IETF, OpenCon-
fig [69] and OpenROADM [70]. As of today, YANG models are
moderately mature and preliminarily supported by several ven-
dors, but they are not yet completely inter-operable, and this is
significantly delaying their deployment in production networks.
Second, a streaming telemetry protocol is required to efficiently
retrieve data directly from devices to the Telemetry Collector
running ML algorithms [71]. Moreover, telemetry should en-
able efficient data encoding, secure communication, subscrip-
tion to desired data based on YANG models, and event-driven
streaming activation/deactivation. Traditional monitoring solu-
tions (e.g., SNMP) are not adequate, since they are designed for
legacy implementations, with poor scaling for high-density plat-
forms, and very limited extensibility. Thus innovative solutions
for efficient telemetry protocols have been introduced as gRPC
and Thrift, proposed by Google and Facebook, respectively [72],
[73]. Telemetry has been recently introduced in several optical
nodes as well as included in the aforementioned standardization
initiatives. For example, OpenConfig supports the use of either
gRPC or Thrift to stream telemetry data defined according to
OpenConfig YANG data models.
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