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We propose an algorithm to impute and forecast a time series by transforming the observed time series into a

matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing

linear regression to make predictions. At the core of our analysis is a representation result, which states that

for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this

generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to

establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link

is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done

in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for

imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of

our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise

distribution in the observations. The noise agnostic property of our approach allows us to recover the latent

states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering

the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson.

Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a

matrix estimation based method—coupled with a novel, non-standard matrix estimation error metric—to solve

the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and

real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R

libraries) in the presence of missing data as well as high levels of noise.
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1 INTRODUCTION
Time series data is of enormous interest across all domains of life: from health sciences and

weather forecasts to retail and finance, time dependent data is ubiquitous. Despite the diversity of

applications, time series problems are commonly confronted by the same two pervasive obstacles:

interpolation and extrapolation in the presence of noisy and/or missing data. Specifically, we
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consider a discrete-time setting with t ∈ Z representing the time index and f : Z → R1
representing

the latent discrete-time time series of interest. For each t ∈ [T ] := {1, . . . ,T } and with probability

p ∈ (0, 1], we observe the random variable X (t ) such that E[X (t )] = f (t ). While the underlying

mean signal f is of course strongly correlated, we assume the per-step noise is independent across

t and has uniformly bounded variance. Under this setting, we have two objectives: (1) interpolation,

i.e., estimate f (t ) for all t ∈ [T ]; (2) extrapolation, i.e., forecast f (t ) for t > T . Our interest is in
designing a generic method for interpolation and extrapolation that is applicable to a large model

class while being agnostic to the time dynamics and noise distribution.

We develop an algorithm based on matrix estimation, a topic which has received widespread

attention, especially with the advent of large datasets. In the matrix estimation setting, there is

a “parameter” matrix M of interest, and we observe a sparse, corrupted signal matrix X where

E[X ] = M . The aim then is to recover the entries ofM from noisy and partial observations given in

X . For our purposes, the attractiveness of matrix estimation derives from the property that these

methods are fairly model agnostic in terms of the structure ofM and distribution of X givenM .

We utilize this key property to develop a model and noise agnostic time series imputation and

prediction algorithm.

1.1 Overview of contributions

Time series as a matrix. We transform the time series of observations X (t ) for t ∈ [T ] into what

is known as the Page matrix (cf. [23]) by placing contiguous segments of size L > 1 (an algorithmic

hyper-parameter) of the time series into non-overlapping columns; see Figure 1 for a caricature of

this transformation.

As the key contribution, we establish that—in expectation—this generated matrix is either exactly

or approximately low-rank for a large class of models f . Specifically, f can be from the following

families:

Linear Recurrent Formulae (LRF): f (t ) =
∑G
д=1 αд f (t − д).

Compact Support: f (t ) = д(φ(t )) where φ : Z → [−C1,C1] has the form φ(t + s) =
∑G
l=1 αlal (t )bl (s)

with αl ∈ [−C2,C2],al : Z → [0, 1],bl : Z → [0, 1] for some C1,C2 > 0; and д : [−C1,C1] → R is

L-Lipschitz
2 3

.

Sublinear : f (t ) = д(t ) where д : R → R and

���dд(s )ds

��� ≤ Cs−α for some α ,C > 0, and ∀s ∈ R.

Over the past decade, the matrix estimation community has developed a plethora of methods

to recover an exact or approximately low-rank matrix from its noisy, partial observations in a

noise and model agnostic manner. Therefore, by applying such a matrix estimation method to

this transformed matrix, we can recover the underlying mean matrix (and thus f (t ) for t ∈ [T ])
accurately. In other words, we can interpolate and de-noise the original corrupted and incomplete

time series without any knowledge of its time dynamics or noise distribution. Theorem 4.1 and

Corollary 4.1 provide finite-sample analyses for this method and establish the consistency property

of our algorithm, as long as the underlying f satisfies Property 4.1 and the matrix estimation method

satisfies Property 2.1. In Section 5, we show that any additive mixture of the three function classes

listed above satisfies Property 4.1. Effectively, Theorem 4.1 establishes a statistical reduction between

1
We denote R as the field of real numbers and Z as the integers.

2
We say д : R → R is L-Lipschitz if there exists a L ≥ 0 such that ∥д(x ) − д(y)∥ ≤ L ∥x − y ∥ for all x, y ∈ R and ∥ · ∥

denotes the standard Euclidean norm on R.
3
It can be verified that ifφ is an LRF satisfyingφ(t ) =

∑H
h=1 γhφ(t−h), then it satisfies the formφ(t +s ) =

∑G
д=1 αдaд (t )bд (s )

for G = H with appropriately defined constants αд , functions aд, bд ; see Proposition D.2 of Appendix D for details.
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time series imputation and matrix estimation. Our key contribution with regards to imputation lies

in establishing that a large class of time series models (see Section 5) satisfies Property 4.1.

Fig. 1. Caricature of imputation and forecast algorithms. We first transform the noisy time series X (t ) (with
“?” indicating missing data) into a Page matrix X with non-overlapping entries. For imputation, we apply a
matrix estimation (ME) algorithm with input X to obtain the estimates ˆfI (t ) for the de-noised and filled-in
entries. For forecasting, we first apply ME to X̃ (i.e., X excluding the last row), and then fit a linear model β
between the last row and all other rows to obtain the forecast estimates ˆfF (t ).

It is clear that for LRF, the last row of the mean transformed matrix can be expressed as a linear

combination of the other rows. An important representation result of the present paper, which

generalizes this notion, is that an approximate LRF relationship holds for the other two model

classes. Therefore, we can forecast f (t ), say for t = T + 1, as follows: apply matrix estimation to the

transformed data matrix as done in imputation; then, linearly regress the last row with respect

to the other rows in the matrix; finally, compute the inner product of the learnt regression vector

with the vector containing the previous L − 1 values that were estimated via the matrix estimation

method. Theorem 4.2 and Corollary 4.2 imply that the mean-squared error of our predictions decays

to zero provided the matrix estimation method satisfies Property 2.2 and the underlying model f
satisfies Property 4.2. Similar to the case of imputation, establishing that Property 4.2 holds for the

three function classes is novel (see Section 5).

Noisy regression. Our proposed forecasting algorithm performs regression with noisy and in-

complete features. In the literature, this is known as error-in-variable regression. Recently, there

has been exciting progress to understand this problem especially in the high-dimensional setting
[11, 24, 39]. Our algorithm offers an alternate solution for the high-dimensional setting through

the lens of matrix estimation: first, utilize matrix estimation to de-noise and impute the feature

observations, and then perform least squares with the pre-processed feature matrix. We demon-

strate that if the true, underlying feature matrix is (approximately) low-rank, then our algorithm

provides a consistent estimator to the true signal (with finite sample guarantees). Our analysis
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further suggests the usage of a non-standard error metric, the max row sum error (MRSE) (see

Property 2.2 for details).

Class of applicable models. As aforementioned, our algorithm enjoys strong performance guar-

antees provided the underlying mean matrix induced by the time series f satisfies certain structural

properties, i.e., Properties 4.1 and 4.2. We argue that a broad class of commonly used time series

models meets the requirements of the three function classes listed above.

LRFs include the following important family of time series: a finite sum of products of ex-

ponentials (exp{αt}), harmonics (cos(2πωt + ϕ)), and finite degree polynomials (Pm(t )) [29], i.e.,
f (t ) =

∑G
д=1 exp

{
αдt

}
cos

(
2πωдt + ϕд

)
Pmд (t ). Further, since stationary processes and L2 integrable

functions are well approximated by a finite summation of harmonics (i.e., sin and cos), LRFs en-

compass a vitally important family of models. For this model, we show that indeed the structural

properties required from the time series matrix for both imputation and prediction are satisfied.

However, there are many important time series models that do not admit a finite order LRF

representation. A few toy examples include cos(sin(t)), exp
{
sin

2
(t )

}
, log t ,

√
t . Time series models

with compact support, on the other hand, include models composed of a finite summation of

periodic functions (e.g., cos(sin(t)), exp
{
sin

2
(t )

}
). Utilizing our low-rank representation result, we

establish that models with compact support possess the desired structural properties. We further

demonstrate that sublinear functions, which include models that are composed of a finite summation

of non (super-)linear functions (e.g., log t ,
√
t ), also possess the necessary structural properties.

Importantly, we argue that the finite mixture of the above processes satisfy the necessary structural

properties.

Recovering the hidden state. Our algorithm, being noise and time-dynamics agnostic, makes it

relevant to recover the hidden state from its noisy, partial observations as in a Hidden Markov-like

Model. For example, imagine having access to partial observations of a time-varying truncated

Poisson process
4 without knowledge that the process is Poisson. By applying our imputation

algorithm, we can recover time-varying parameters of this process accurately and, thus, the hidden

states. If we were to apply an Expectation-Maximization (EM) like algorithm, it would require

knowledge of the underlying model being Poisson; moreover, theoretical guarantees are not clear

for such an approach.

Sample complexity. Given the generality and model agnostic nature of our algorithm, it is

expected that its sample complexity for a specific model class will be worse than model aware

optimal algorithms. Interestingly, our finite sample analysis suggests that for the model classes

stated above, the performance loss incurred due to this generality is minor. See Section 5.6 for a

detailed analysis.

Experiments. Using synthetic and real-world datasets, our experiments establish that our method

outperforms existing standard software packages (including R) for the tasks of interpolation and

extrapolation in the presence of noisy and missing observations. When the data is generated

synthetically, we “help" the existing software package by choosing the correct parametric model and

algorithm while our algorithm remains oblivious to the underlying model; despite this disadvantage,

our algorithm continues to outperform the standard packages with missing data.

Further, our empirical studies demonstrate that our imputation algorithm accurately recovers

the hidden state for Hidden Markov-like Models, verifying our theoretical imputation guarantees

(see Theorem 4.1). All experimental findings can be found in Section 6.

4
Let C denote a positive, bounded constant, and X a Poisson random variable. We define the truncated Poisson random

variable Y as Y = min{X , C }.
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1.2 Related works
There are two related topics: matrix estimation and time series analysis. Given the richness of both

fields, we cannot do justice in providing a full overview. Instead, we provide a high-level summary

of known results with references that provide details.

Matrix estimation. Matrix estimation is the problem of recovering a data matrix from an incom-

plete and noisy sampling of its entries. This has become of great interest due to its connection to

recommendation systems (cf. [18–20, 25, 34–36, 38, 41]), social network analysis (cf. [1–3, 8, 32]),

and graph learning (graphon estimation) (cf. [5, 14, 15, 54]). The key realization of this rich literature

is that one can estimate the true underlying matrix from noisy, partial observations by simply

taking a low-rank approximation of the observed data. We refer an interested reader to recent

works such as [14, 19] and references there in.

Time series analysis. The question of time series analysis is potentially as old as civilization in

some form. Few textbook style references include [16, 17, 30, 43]. At the highest level, time series

modeling primarily involves viewing a given time series as a function indexed by time (integer

or real values) and the goal of model learning is to identify this function from observations (over

finite intervals). Given that the space of such functions is complex, the task is to utilize function

form (i.e., “basis functions”) so that for the given setting, the time series observation can fit a sparse

representation. For example, in communication and signal processing, the harmonic or Fourier

representation of a time series has been widely utilized, due to the fact that signals communicated

are periodic in nature. The approximation of stationary processes via harmonics or ARIMA has

made them a popular model class to learn stationary-like time series, with domain specific popular

variations, such as ‘Autoregressive Conditional Heteroskedasticity’ (ARCH) in finance. To capture

non-stationary or “trend-like” behavior, polynomial bases have been considered. There are rich

connections to the theory of stochastic processes and information theory (cf. [22, 28, 42, 47]).

Popular time series models with latent structure are Hidden Markov Models (HMM) in probabilistic

form (cf. [10, 33] and Recurrent Neural Networks (RNN) in deterministic form (cf. [44]).

The question of learning time series models with missing data has received comparatively less

attention. A common approach is to utilize HMMs or general State-Space-Models to learn with

missing data (cf. [26, 48]). To the best of the authors’ knowledge, most work within this literature

is restricted to such class of models (cf. [27]). Recently, building on the literature in online learning,

sequential approaches have been proposed to address prediction with missing data (cf. [9]).

Time series and matrix estimation. The use of a matrix structure for time series analysis has

roughly two streams of related work: SSA for a single time series (as in our setting), and the use of

multiple time series. We discuss relevant results for both of these topics.

Singular Spectrum Analysis (SSA) of time series has been around for some time. Generally, it assumes

access to time series data that is not noisy and fully observed. The core steps of SSA for a given time

series are as follows: (1) create a Hankel matrix from the time series data; (2) perform a Singular

Value Decomposition (SVD) of it; (3) group the singular values based on user belief of the model

that generated the process; (4) perform diagonal averaging for the “Hankelization" of the grouped

rank-1 matrices outputted from the SVD to create a set of time series; (5) learn a linear model for

each “Hankelized" time series for the purpose of forecasting.

At the highest level, SSA and our algorithm are cosmetically similar to one another. There

are, however, several key differences: (i) matrix transformation—while SSA uses a Hankel matrix

(with repeated entries), we transform the time series into a Page matrix (with non-overlapping

structure); (ii) matrix estimation—SSA heavily relies on the SVD while we utilize general matrix

estimation procedures (with SVD methods representing one specific procedural choice); (iii) linear
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regression—SSA assumes access to fully observed and noiseless data while we allow for corrupted

and missing entries.

These differences are key in being able to derive theoretical results. For example, there have been

numerous recent works that have attempted to apply matrix estimation methods to the Hankel

matrix inspired by SSA for imputation, but these works do not provide any theoretical guarantees

[45, 46, 49]. In effect, the Hankel structure creates strong correlation of noise in the matrix, which is

an impediment for proving theoretical results. Our use of the Page matrix overcomes this challenge

and we argue that in doing so, we still retain the underlying structure in the matrix. With regards

to forecasting, the use of matrix estimation methods that provide guarantees with respect to MRSE

rather than standard MSE is needed (which SSA provides no theoretical analysis for). While we do

not explicitly discuss such methods in this work, such methods are explored in detail in [4]. With

regards to imputation, SSA does not provide direction on how to group the singular values, which

is instead done based on user belief of the generating process. However, due to recent advances in

matrix estimation literature, there exist algorithms that provide data-driven methods to perform

spectral thresholding (cf. [19]). Finally, it is worth nothing that to the best of the authors’ knowledge,

the classical literature on SSA seem to be lacking finite sample analysis in the presence of noisy

observations, which we do provide for our algorithm.

Multiple time series viewed as matrix. In a recent line of work [6, 7, 21, 40, 51, 53], multiple time

series have been viewed as a matrix with the primary goal of imputing missing values or de-noising

them. Some of these works also require prior model assumptions on the underlying time series. For

example in [53], as stated in Section 1, the second step of their algorithm changes based on the

user’s belief in the model that generated the data along with the multiple time series requirement.

In summary, to the best of our knowledge, ours is the first work to give rigorous theoretical

guarantees for a matrix estimation inspired algorithm for a single, univariate time series.

Recovering the hidden state. The question of recovering the hidden state from noisy observa-

tions is quite prevalent and a workhorse of classical systems theory. For example, most of the

system identification literature focuses on recovering model parameters of a Hidden Markov Model.

While Expectation-Maximization or Baum-Welch are the go-to approaches, there is limited the-

oretical understanding of it in generality (for example, see a recent work [52] for an overview)

and knowledge of the underlying model is required. For instance, [13] proposed an optimization

based, statistically consistent estimation method. However, the optimization “objective” encoded

knowledge of the precise underlying model.

It is worth comparing our method with a recent work [6] where the authors attempt to recover

the hidden time-varying parameter of a Poisson process via matrix estimation. Unlike our work,

they require access to multiple time series. In essence, our algorithm provides the solution to the

same question without requiring access to any other time series!

1.3 Notation
For any positive integer N , let [N ] = {1, . . . ,N }. For any vector v ∈ Rn

, we denote its Euclidean

(ℓ2) norm by ∥v ∥
2
, and define ∥v ∥2

2
=

∑n
i=1v

2

i . In general, the ℓp norm for a vector v is defined as

∥v ∥p =

( ∑n
i=1 |vi |

p
)
1/p

.

For am × n real-valued matrix A = [Ai j ], its spectral/operator norm, denoted by ∥A∥, is defined

as ∥A∥
2
= max1≤i≤k |σi |, where k = min{m,n} and σi are the singular values of A (assumed to

be in decreasing order and repeated by multiplicities). The Frobenius norm, also known as the

Hilbert-Schmidt norm, is defined as ∥A∥2F =

∑m
i=1

∑n
j=1A

2

i j =

∑k
i=1 σ

2

i . The max-norm, or sup-norm,
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is defined as ∥A∥
max

= maxi, j
��Ai j

��
. The Moore-Penrose pseudoinverse A†

of A is defined as

A†
=

k∑
i=1

(1/σi )yix
T
i , where A =

k∑
i=1

σixiy
T
i ,

with xi and yi being the left and right singular vectors of A, respectively.
For a random variable X we define its sub-gaussian norm as

∥X ∥ψ2

= inf

{
t > 0 : E exp

(
X 2/t2

)
≤ 2

}
.

If ∥X ∥ψ2

is bounded by a constant, we call X a sub-gaussian random variable.

Let f and д be two functions defined on the same space. We say that f (x ) = O(д(x )) if and only if

there exists a positive real numberM and a real number x0 such that for all x ≥ x0, | f (x )| ≤ M |д(x )|.
Similarly, we say f (x ) = Ω(д(x )) if and only if for all x ≥ x0, | f (x )| ≥ M |д(x )|.

1.4 Organization
In Section 2, we list the desired properties needed from a matrix estimation estimation method in

order to achieve our theoretical guarantees for imputation and prediction. In Section 3, we formally

describe the matrix estimation based algorithms we utilize for time series analysis. In Section 4,

we identify the required properties of time series models f under which we can provide finite

sample analysis for imputation and prediction performance. In Section 5, we list a broad set of time

series models that satisfy the properties in Section 4, and we analyze the sample complexity of our

algorithm for each of these models. Lastly, in Section 6, we corroborate our theoretical findings

with detailed experiments.

2 MATRIX ESTIMATION
2.1 Problem setup
Consider anm × n matrixM of interest. Suppose we observe a random subset of the entries of a

noisy signal matrix X , such that E[X ] = M . For each i ∈ [m] and j ∈ [n], the (i, j)-th entry Xi j is a

random variable that is observed with probability p ∈ (0, 1] and is missing with probability 1 − p,

independently of all other entries. Given X , the goal is to produce an estimator M̂ that is “close” to

M . We use two metrics to quantify the estimation error:

(1) mean-squared error,

MSE(M̂,M) := E
[
1

mn

m∑
i=1

n∑
j=1

(M̂i j −Mi j )
2

]
; (1)

(2) max row sum error,

MRSE(M̂,M) := E
[
1

√
n
max

i ∈[m]

( n∑
j=1

(M̂i j −Mi j )
2

)
1/2]
. (2)

Here, M̂i j and Mi j denote the (i, j)-th elements of M̂ and M , respectively. We highlight that the

MRSE is a non-standard matrix estimation error metric, but we note that it is a stronger notion

than the RMSE(M̂,M)
5
; in particular, it is easily seen that MRSE(M̂,M) ≥ RMSE(M̂,M). Hence,

for any results we prove in Section 4 regarding the MRSE, any known lower bounds for RMSE

of matrix estimation algorithms immediately hold for our results. We now give a definition of a

matrix estimation algorithm, which will be used in the following sections.

5
RMSE(M̂ , M ) := E

[
1√
mn

( ∑m
i=1

∑n
j=1(M̂i j −Mi j )

2

)
1/2]

.
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Definition 2.1. A matrix estimation algorithm, denoted as ME : Rm×n → Rm×n , takes as input a
noisy matrix X and outputs an estimator M̂ .

2.2 Required properties of matrix estimation algorithms
As aforementioned, our algorithm (Section 3.3) utilizes matrix estimation as a pivotal “blackbox”

subroutine, which enables accurate imputation and prediction in a model and noise agnostic

setting. Over the past decade, the field of matrix estimation has spurred tremendous theoretical and

empirical research interest, leading to the emergence of a myriad of algorithms including spectral,

convex optimization, and nearest neighbor based approaches. Consequently, as the field continues

to advance, our algorithm will continue to improve in parallel. We now state the properties needed

of a matrix estimation algorithm ME(·) to achieve our theoretical guarantees (formalized through

Theorems 4.1 and 4.2); refer to Section 1.3 for matrix norm definitions.

Property 2.1. Let ME satisfy the following: Define Y = [Yi j ] where Yi j = Xi j if Xi j is observed,
and Yi j = 0 otherwise. Then, for all p ≥ max(m,n)−1+ζ and some ζ ∈ (0, 1), the produced estimator
M̂ = ME(X ) satisfies 


p̂M̂ − pM




2
F
≤

1

mn
C1 ∥Y − pM ∥ ∥pM ∥∗. (3)

Here, p̂ 6 denotes the proportion of observed entries in X and C1 is a universal constant.

We argue the two quantities in Property 2.1, ∥Y − pM ∥ and ∥M ∥∗, are natural. ∥Y − pM ∥ quantifies

the amount of noise corruption on the underlying signal matrixM ; for many settings, this norm

concentrates well (e.g., a matrix with independent zero-mean sub-gaussian entries scales as

√
m+

√
n

with high probability [50]). ∥M ∥∗ quantifies the inherent model complexity of the latent signal

matrix; this norm is well behaved for an array of situations, including low-rank and Lipschitz

matrices (e.g., for low-rank matrices, ∥M ∥∗ scales as
√
rmn where r is the rank of the matrix, see

[19] for bounds on ∥M ∥∗ under various settings). We note the universal singular value thresholding

algorithm proposed in [19] is one such algorithm that satisfies Property 2.1. We provide more

intuition for why we choose Property 2.1 for our matrix estimation methods in Section 4.2, where

we bound the imputation error.

Property 2.2. Let ME satisfy the following: For all p ≥ p∗(m,n), the produced estimator M̂ = ME(X )

satisfies

MRSE(M̂,M) ≤ δ3(m,n) (4)

where limm,n→∞ δ3(m,n) = 0.

Property 2.2 requires the normalized max row sum error to decay to zero as we collect more

data. While spectral thresholding and convex optimization methods accurately bound the average

mean-squared error, minimizing norms akin to the normalized max row sum error require matrix

estimation methods to utilize “local" information, e.g., nearest neighbor type methods. For instance,

[54] satisfies Property 2.2 for generic latent variable models (which include low-rank models) with

p∗(m,n) = 1; [36] also satisfies Property 2.2 for p∗(m,n) ≫ min(m,n)−1/2; [14] establishes this for
low-rank models as long as p∗(m,n) ≫ min(m,n)−1.

6
Precisely, we define p̂ = max{ 1

mn
∑m
i=1

∑n
j=1 1Xi j observed,

1

mn }.
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3 ALGORITHM
3.1 Notations and definitions
Recall that X (t ) denotes the observation at time t ∈ [T ] where E[X (t )] = f (t ). We shall use the

notation X [s : t] = [X (s), . . . ,X (t )] for any s ≤ t . Furthermore, we define L > 1 to be an algorithmic

hyperparameter and N = ⌊T /L⌋ − 1. For any L × N matrix A, let AL = [ALj ]j≤N represent the

the last row of A. Moreover, let Ã = [Ai j ]i<L, j≤N denote the (L − 1) × N submatrix obtained by

removing the last row of A.

3.2 Viewing a univariate time series as a matrix.
We begin by introducing the crucial step of transforming a single, univariate time series into the

corresponding Page matrix. Given time series data X [1 : T ], we construct L different L×N matrices

X (k )
defined as

X (k )
= [X (k )

i j ] = [X (i + (j − 1)L + (k − 1))]i≤L, j≤N , (5)

where k ∈ [L]7. In words, X (k )
is obtained by dividing the time series into N non-overlapping

contiguous intervals each of length L, thus constructing N columns; for each k ∈ [L],X (k )
is the k-th

shifted version with starting value X (k). For the purpose of imputation, we shall only utilize X (1)
.

In the case of forecasting, however, we shall utilize X (k )
for all k ∈ [L]. We defineM (k )

analogously

to X (k )
using f (t ) instead of X (t ).

3.3 Algorithm description
We will now describe the imputation and forecast algorithms separately (see Figure 1).

Imputation. Due to the matrix representation X (1)
of the time series, the task of imputing missing

values and de-noising observed values translates to that of matrix estimation.

(1) Transform the data X [1 : T ] into the matrix X (1)
via the method outlined in Subsection 3.2.

(2) Apply a matrix estimation method (as in Definition 2.1) to produce M̂ (1)
= ME(X (1)

).

(3) Produce estimate: f̂I (i + (j − 1)L) := M̂ (1)

i j for i ∈ [L] and j ∈ [N ].

Forecast. In order to forecast future values, we first de-noise and impute via the procedure outlined

above, and then learn a linear relationship between the the last row and the remaining rows through

linear regression.

(1) For each k ∈ [L], apply the imputation algorithm to produce
̂̃M (k )

from X̃ (k )
.

(2) For each k ∈ [L], define ˆβ (k ) = argminv ∈RL−1





X (k )
L − (

̂̃M (k )
)
Tv





2
2

.

(3) Produce the estimate at time t > T as follows:

i) Let vt = [X (t − L + 1) : X (t − 1)] and k = (t mod L) + 1.

ii) Define αt = argminα ∈RN





vt − ̂̃M (k )
α





2
2

.

iii) Let v
proj

t =
̂̃M (k )

αt .

iv) Produce the estimate:
ˆfF (t ) = (v

proj

t )
T · ˆβ (k ).

Why X (k ) is necessary for forecasting: For imputation, we are attempting to de-noise all obser-

vations made up to time T ; hence, it suffices to only use X (1)
since it contains all of the relevant

information. However, in the case of making predictions, we are only creating an estimator for the

7
Technically, to define each X (k )

, we need access to T ′
= T + L time steps of data. To reduce notational overload and since

it has no bearing on our theoretical analysis, we let T ′
= T .
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last row. Thus, if we take X (1)
for instance, then it is not hard to see that our prediction algorithm

only produces estimates for X (L),X (2L),X (3L), . . . , and so on. Therefore, we must repeat this

procedure L times in order to produce an estimate for each entry.

Choosing the number of rows L: Theorems 4.1 and 4.2 (and the associated corollaries) suggest

L should be as large as possible with the requirement L = o(N ). Thus, it suffices to let N = L1+δ for

any δ > 0, e.g., N = L2 = T 2/3
.

4 MAIN RESULTS
4.1 Properties
We now introduce the required properties for the matrices X (k )

andM (k )
to identify the time series

models f for which our algorithm provides an effective method for imputation and prediction.

Under these properties, we state Theorems 4.1 and 4.2, which establish the efficacy of our algorithm.

The proofs of these theorems can be found in Appendices B and C, respectively. In Section 5, we

argue these properties are satisfied for a large class of time series models.

Property 4.1. (r ,δ1)-imputable
Let matrices X (1) andM (1) satisfy the following:

A. For each i ∈ [L] and j ∈ [N ]:
1. X (1)

i j are independent sub-gaussian random variables8 satisfying E[X (1)

i j ] = M (1)

i j and



X (1)

i j





ψ2

≤ σ .

2. X (1)

i j is observed with probability p ∈ (0, 1], independent of other entries.
B. There exists a matrixM(r ) of rank r such that for δ1 ≥ 0,


M (1) −M(r )





max

≤ δ1.

Property 4.2. (Cβ ,δ2)-forecastable
For all k ∈ [L], let matrices X (k ) andM (k ) satisfy the following:

A. For each i ∈ [L] and j ∈ [N ]:
1. X (k )

i j = M (k )
i j + ϵi j , where ϵi j are independent sub-Gaussian random variables satisfying E[ϵi j ] = 0

and Var(ϵi j ) ≤ σ 2.
2. X (k )

i j is observed with probability p ∈ (0, 1], independent of other entries.
B. There exists a β∗(k ) ∈ RL−1 with



β∗(k )


1
≤ Cβ for some constant Cβ > 0 and δ2 ≥ 0 such that


M (k )

L − (M̃ (k )
)
T β∗(k )





2

≤ δ2.

For forecasting, we make the more restrictive additive noise assumption since we focus on linear

forecasting methods. Such methods generally require additive noise models. If one can construct

linear forecasters under less restrictive assumptions, then we should be able to lift the analysis of

such a forecaster to our setting in a straightforward way.

8
Recall that this condition only requires the per-step noise to be independent; the underlying mean time series f remains

highly correlated.
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4.2 Imputation
The imputation algorithm produces

ˆfI = [
ˆfI (t )]t=1:T as the estimate for the underlying time series

f = [f (t )]t=1:T . We measure the imputation error through the relative mean-squared error:

MSE(
ˆfI , f ) :=

E



 ˆfI − f




2
2

∥ f ∥2
2

. (6)

Recall from the imputation algorithm in Section 3.3 thatM (1)
is the Page matrix corresponding

to f and M̂ (1)
is the estimate ME produces; i.e. M̂ (1)

= ME(X (1)
). It is then easy to see that for any

matrix estimation method we have

MSE(
ˆfI , f ) =

E



M̂ (1) −M (1)




2
F

M (1)



2
F

. (7)

Thus, we can immediately translate the (un-normalized) MSE of any matrix estimation method to

the imputation error MSE(
ˆfI , f ) of the corresponding time series.

However, to highlight how the rank and the low-rank approximation error δ1 of the underlying
mean matrix M (1)

(induced by f ) affect the error bound, we rely on Property 2.1, which eluci-

dates these dependencies through the quantity ∥M ∥∗. Thus, we have the following theorem that

establishes a precise link between time series imputation and matrix estimation methods.

Theorem 4.1. Assume Property 4.1 holds and ME satisfies Property 2.1. Then for someC1,C2,C3, c4 >
0,

MSE(
ˆfI , f ) ≤

C1σ

p

(
LNδ1

∥ f ∥2
2

+

√
rLNδ1

∥ f ∥2
2

+

√
rN

∥ f ∥
2

)
+

C2(1 − p)

pLN
+C3e

−c4N . (8)

Theorem 4.1 states that any matrix estimation subroutine ME that satisfies Property 2.1 will

accurately filter noisy observations and recover missing values. This is achieved provided that the

rank ofM(r ) and our low-rank approximation error δ1 are not too large. Note that knowledge of
r is not required apriori for many standard matrix estimation algorithms. For instance, [19] does

not utilize the rank ofM in its estimation procedure; instead, it performs spectral thresholding of

the observed data matrix in an adaptive, data-driven manner. Theorem 4.1 implies the following

consistency property of
ˆfI .

Corollary 4.1. Let the conditions for Theorem 4.1 hold. Let ∥ f ∥2
2
= Ω(T ) 9. Further, suppose f is

(C5L
1−ϵ2 ,C6L

−ϵ1 )-imputable for some ϵ1, ϵ2 ∈ (0, 1) and C5,C6 > 0. Then for p ≫ L
−min

(
2ϵ1,ϵ2

)
lim

T→∞
MSE(

ˆfI , f ) = 0.

We note that Theorem 4.1 follows in a straightforward manner from Property 2.1 and standard

results from random matrix theory [50]. However, we again highlight that our key contribution

lies in establishing that the conditions of Corollary 4.1 hold for a large class of time series models

(Section 5).

9
Note the condition ∥f ∥2

2
= Ω(T ) is easily satisfied for any time series f by adding a constant shift to every observation

f (t ).
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4.3 Forecast
Recall

ˆfF (t ) can only utilize information until time t − 1. For all k ∈ [L], our forecasting algorithm

learns
ˆβ (k ) with the previous L − 1 time steps. We measure the forecasting error through:

MSE(
ˆfF , f ) :=

1

T − L + 1

E



 ˆfF − f




2
2

. (9)

Here,
ˆfF = [

ˆfF (t )]t=L:T denotes the vector of forecasted values. The following result relies on a

novel analysis of how applying a matrix estimation pre-processing step affects the prediction error

of error-in-variable regression problems (in particular, it requires analyzing a non-standard error

metric, the MRSE).

Theorem 4.2. Assume Property 4.2 holds and ME satisfies Property 2.2, with p ≥ p∗(L,N )
10. Let

r̂ := max

k ∈[L]
rank(

̂̃M (k )
). Then,

MSE(
ˆfF , f ) ≤

1

N − 1

(
(δ2 +

√
CβNδ3)

2
+ 2σ 2r̂

)
.

Note that r̂ is trivially bounded by L = o(N ) by assumption (see Section 3). If the underlying matrix

M is low-rank, then ME algorithms such as the USVT algorithm (cf. [19]) will output an estimator

with a small r̂ . However, since our bound holds for general ME methods, we explicitly state the

dependence on r̂ .
In essence, Theorem 4.2 states that any matrix estimation subroutine ME that satisfies Property

2.2 will produce accurate forecasts from noisy, missing data. This is achieved provided the linear

model approximation error δ2 is not too large (recall δ3 = o(1) by Property 2.2). Additionally,

Theorem 4.2 implies the following consistency property of
ˆfF .

Corollary 4.2. Let the conditions for Theorem 4.2 hold. Suppose f is (C1,C2

√
NL−ϵ1 )-forecastable for

any ϵ1,C1,C2 > 0 andN = L1+δ for any δ > 0. Then forp ≥ p∗(L,N ), such that limL,N→∞ δ3(L,N ) = 0

for p∗(L,N ),
lim

T→∞
MSE(

ˆfF , f ) = 0.

Similar to the case of imputation, a large contribution of this work is in establishing that the

conditions of Corollary 4.2 hold for a large class of time series models (Section 5). Effectively,

Corollary 4.2 demonstrates that learning a simple linear relationship among the singular vectors

of the de-noised matrix is sufficient to drive the empirical error to zero for a broad class of time

series models. The simplicity of this linear method suggests that our estimator will have low

generalization error, but we leave that as future work.

We should also note that for auto-regressive processes (i.e., f (t ) =
∑G
д=1 αд f (t−1)+ϵ(t )where ϵ(t )

is mean zero noise), previous works (e.g., [37]) have already shown that simple linear forecasters

are consistent estimators. For such models, it is easy to see that the underling mean matrixM (k )
is

not (approximately) low-rank, and so it is not necessary to pre-process the data matrix via a matrix

estimation subroutine as we propose in Section 3.3.

5 FAMILY OF TIME SERIES THAT FIT OUR FRAMEWORK
In this section, we list out a broad set of time series models that satisfy Properties 4.1 and 4.2, which

are required for the results stated in Section 4. The proofs of these results can be found in Appendix

D. To that end, we shall repeatedly use the following model types for our observations.

10
Refer to Section 2.2 for lower bounds on p∗(L, N ) for various ME algorithms. The dependence of the bound on p is

implicitly captured in δ3.
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Model Type 1. For any t ∈ Z, let X (t ) be a sequence of independent sub-gaussian random variables

with E[X (t )] = f (t ) and ∥X (t )∥ψ2

≤ σ . Note the noise on f (t ) is generic (e.g., non-additive).
Model Type 2. For t ∈ Z, let X (t ) = f (t ) + ϵ(t ) where ϵ(t ) are independent sub-gaussian random

variables with E[ϵ(t )] = 0 and Var(ϵ(t )) ≤ σ 2
.

5.1 Linear recurrent functions (LRFs)
For t ∈ Z, let

f LRF(t ) =
G∑
д=1

αд f (t − д). (10)

Proposition 5.1. .

(i) UnderModel Type 1, f LRF satisfies Property 4.1 with δ1 = 0 and r = G11.
(ii) Under Model Type 2, f LRF satisfies Property 4.2 with δ2 = 0 and Cβ = CG for all k ∈ [L] where

C > 0 is an absolute constant.

By Proposition 5.1, Theorems 4.1 and 4.2 give the following corollaries:

Corollary 5.1. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C ·

(
G

δ 2error

)
2+δ

,

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Corollary 5.2. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C ·

(
σ 2

δerror −Gδ 2
3

) 2+δ
δ

,

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

We now provide the rankG of an important class of time series methods—a finite sum of the product

of polynomials, harmonics, and exponential time series functions.

Proposition 5.2. Let Pma be a polynomial of degreema . Then,

f (t ) =
A∑
a=1

exp{αat} cos(2πωat + ϕa)Pma (t )

admits a representation as in (10). Further the order G of f (t ) is independent of T , the number of
observations, and is bounded by

G ≤ A(mmax + 1)(mmax + 2)

wheremmax = maxa∈Ama .

11
To see this, take G = 2 for example. WLOG, let us consider the first column. Then f (3) = f (2) + f (1), which in turn gives

f (4) = f (3) + f (2) = 2f (2) + f (1) and f (5) = f (4) + f (3) = 3f (2) + 2f (1). By induction, it is not hard to see that this holds

more generally for any finite G .
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5.2 Functions with compact support
For t ∈ Z, let

f Compact
(t ) = д(φ(t )) (11)

where φ : Z → [−C1,C1] takes the form φ(t + s) =
∑G
l=1 αlal (t )bl (s) with αl ∈ [−C2,C2],al : Z →

[0, 1],bl : Z → [0, 1]; and д : [−C1,C1] → R is L-Lipschitz for some C1,C2 > 0.

Proposition 5.3. For any ϵ ∈ (0, 1),

(i) Under Model Type 1, f Compact satisfies Property 4.1 with δ1 = CL
Lϵ and r = LGϵ for some C > 0.

(ii) UnderModel Type 2, f Compact satisfies Property 4.2 with δ2 = 2δ1
√
N andCβ = 1 for all k ∈ [L].

Using Proposition 5.3, Theorems 4.1 and 4.2 immediately lead to the following corollaries.

Corollary 5.3. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1), if

T ≥ C

((
1

δerror

) 2

1−Gϵ
+

(
L

δerror

) 1

ϵ

)
2+δ

,

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Corollary 5.4. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1), if

T ≥ C

(
σ 2

δerror −
(
L
Lϵ + δ3

)
2

) 2+δ
δ

,

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

As the following proposition will make precise, any Lipschitz function of a periodic time series

falls into this family.

Proposition 5.4. Let

f Harmonic
(t ) =

R∑
r=1

φr
(
sin(2πωr t + ϕ)

)
, (12)

where φr is Lr -Lipschitz and ωr is rational, admits a representation as in (11). Let xlcm denote the
fundamental period.12 Then the Lipschitz constant L of f Harmonic

(t ) is bounded by

L ≤ 2π ·max

r ∈R
(Lr ) ·max

r ∈R
(ωr ) · xlcm.

12
The “fundamental period”, x

lcm
, of {ω1, . . . , ωG } is the smallest value such that x

lcm
/(qa/pa ) is an integer for all

a ∈ A. Let S ≡ {qa/pa : д ∈ G } and let p
lcm

be the least common multiple (LCM) of {p1, . . . , pG }. Rewriting S as{q1 ∗ plcm/p1
p
lcm

, . . . ,
qG ∗ p

lcm
/pG

p
lcm

}
, we have the set of numerators, {q1 ∗ plcm/p1, . . . , qG ∗ p

lcm
/pA } are all integers

and we define their LCM as d
lcm

. It is easy to verify that x
lcm

= d
lcm

/p
lcm

is indeed a fundamental period. As an example,

consider x = {n, n/2, n/3, . . . , n/n − 1}, in which case the above computation results in x
lcm

= n.
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5.3 Finite sum of sublinear trends
Consider f Trend(t ) such that ����d f Trend(t )dt

���� ≤ C∗t
−α

(13)

for some α ,C∗ > 0.

Proposition 5.5. Let
����df Trend(t )dt

���� ≤ C∗t
−α for some α ,C∗ > 0. Then for any ϵ ∈ (0,α ),

(i) UnderModel Type 1, f Trend satisfies Property 4.1 with δ1 = C∗

Lϵ /2 and r = Lϵ/α +
L−Lϵ /α
Lϵ /2 .

(ii) UnderModel Type 2, f Trend satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1 for all k ∈ [L].

By Proposition 5.5 and Theorems 4.1 and 4.2, we immediately have the following corollaries on the

finite sample performance guarantees of our estimators.

Corollary 5.5. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C ·

(
1

δ 2(α+1)/αerror

)
2+δ

,

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Corollary 5.6. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and for any ϵ ∈ (0,α ), if

T ≥ C ·

(
σ 2

δerror − (L−ϵ/2 + δ3)2

) 2+δ
δ

,

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proposition 5.6. For t ∈ Z with αb < 1 for b ∈ [B],

f Trend(t ) =
B∑
b=1

γbt
αb

+

Q∑
q=1

log

(
γqt

)
(14)

admits a representation as in (13).

5.4 Additive mixture of dynamics
We now show that the imputation results hold even when we consider an additive mixture of any

of the models described above. For t ∈ Z, let

f Mixture
(t ) =

Q∑
q=1

ρq fq (t ). (15)

Here, each fq is such that under Model Type 1 with E[X (t )] = fq (t ), Property 4.1 is satisfied with

δ1 = δq and r = rq for q ∈ [Q].

Proposition 5.7. Under Model Type 1, f Mixture satisfies Property 4.1 with δ1 =

∑Q
q=1 ρqδq and

r =
∑Q
q=1 rq .

Proposition 5.7 and Corollary 4.1 imply the following.

Corollary 5.7. Under Model Type 1, let the conditions of Theorem 4.1 hold. For each q ∈ [Q], let
δq ≤ C ′

qL
−ϵq and rq = o(L) for some ϵq ,C ′

q > 0. Then, limT→∞ MSE(
ˆfI , f

Mixture
) = 0.
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In summary, Corollaries 5.1, 5.3, 5.5 and 5.7 imply that for any additive mixture of time series dynamics
coming from f LRF, f Compact, and f Trend, the algorithm in Section 3.2 produces a consistent estimator
for an appropriate choice of L.

5.5 Hidden State

Latent f (1) f (2) f (t )

X (1) X (2) X (t )Observed

. . .. . .

Fig. 2. Hidden State Model with E[X (t )] = f (t ) and ∥X (t )∥ψ2

≤ σ .

A common problem of interest is to uncover the hidden dynamics of latent variables given noisy

observations. For example, consider the problem of estimating the true weekly demand rate of

umbrellas at a retail store given its weekly sales of umbrellas. This can be mathematically described

as uncovering the underlying parameters of a time varying truncated Poisson process
13
whose

samples are the weekly sales reports, (cf. [6]). In general, previous methods to learn the hidden

states either require multiple time series as inputs or require that the underlying noise model is

known (refer to Section 1.2 for a detailed overview).

In contrast, by viewing f (t ) as the time-varying latent variables (see Figure 2), we are well

equipped to handle more generic noise distributions and complicated hidden dynamics. Specifically,

our imputation and forecast algorithms can uncover the latent dynamics if: (i) per-step noise is sub-

gaussian (additive noise is needed for forecasting); (ii) E[X (t )] = f (t ). Moreover, our algorithm is

model and noise agnostic, robust to missing entries, and comes with strong theoretical consistency

guarantees (Theorems 4.1 and 4.2). Given these findings, our approach is likely to become a useful

gadget in the toolkit for dealing with scenarios pertinent to uncovering latent states a la Hidden

Markov-like models. We corroborate our findings through experiments in Section 6.

5.6 Sample complexity
As discussed, our algorithm operates for a large class of models—it is not tailored for a specific

model class (e.g., sum of harmonics). In particular, for a variety of model classes, our algorithm

provides consistent estimation for imputation while the forecasting MSE scales with the quality of

the matrix estimation algorithm δ3. Naturally, it is expected that to achieve accurate performance,

the number of samples T required will scale relatively poorly compared to model specific optimal

algorithms. Corollaries 5.1 - 5.6 provide finite sample analysis that quantifies this “performance

loss” and indicates that this loss is minor. As an example, consider imputation for any periodic time

series with periods between [n]. By proposition 5.2, it is easy to see that the order G of such a time

series is 2n. Thus, corollary 5.1 indicates that the MSE decays to 0 with T ∼ n2+δ for any δ > 0 as

n → ∞. For such a time series, one expects such a result to require T ∼ n logn even for a model

aware optimal algorithm.

13
Recall that a truncated Poisson random variable Y (t ) is defined as Y (t ) = min{X (t ), C }, where C denotes a positive,

bounded constant and X (t ) = Poisson(f (t )).
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6 EXPERIMENTS
We conduct experiments on real-world and synthetic datasets to study the imputation and predic-

tion performance of our algorithm for mixtures of time series processes under varying levels of

missing data. Additionally, we present the applicability of our algorithm to the hidden state setting

(see Section 5.5).

Mixtures of time series processes. For the synthetically generated datasets, we utilize mixtures

of harmonics, trend, and auto-regressive (AR) processes with Gaussian additive noise (since AR

is effectively a noisy version of LRF). When using real-world datasets, we are unaware of the

underlying time series processes; nevertheless, these processes appear to display periodicity, trend,

and auto-regression.

Comparisons. For forecasting, we compare our algorithm to the state-of-the-art time series fore-

casting library of R, which decomposes a time series into stationary auto-regressive, seasonal, and

trend components. The library learns each component separately and combines them to produce

forecasts. Given that our synthetic and real-world datasets involve additive mixtures of these

processes, this serves as a strong baseline to compare against our algorithm. We note that we do

not outperform optimal model-aware methods for single model classes with all of the data present,

at least as implemented in the R-package. However, these methods are not necessarily optimal

with missing data and/or when the data is generated by a mixture of multiple model types, which

is the setting in which we see our model agnostic method outperform the R-package. For our

imputation experiments, we compare our algorithm against AMELIA II ([31]), which is another

R-based package that is widely believed to exhibit excellent imputation performance.

Metric of evaluation. Our metric of comparison is the root mean-squared error (RMSE).

Algorithmic hyper-parameters. For both imputation and forecasting, we apply the Universal

Singular Value Thresholding (USVT) algorithm ([19]) as our matrix estimation subroutine. We

use a data-driven approach to choose the singular value threshold µ and the number of rows in

the time series matrix L in our algorithm. Specifically, we reserve 30% of our training data for

cross-validation to pick µ and L.

Summary of results. Details of all experiments are provided below. Recall that p is the probability

of observation of each datapoint.

Synthetic data: For forecasting, we determine the forecast RMSE of our algorithm and R’s forecast

library (see below for how the synthetic data was generated). Our experimental results demonstrate

that we outperform R’s forecast library, especially under high levels of missing data and noise. For

imputation, we outperform the imputation library AMELIA under all levels of missing data.

Real-world data: We test against two real world datasets: (i) Bitcoin price dataset from March 2016

at 30s intervals; (ii) Google flu trends data for Peru from 2003-2012. In both cases, we introduce

randomly missing data and then use our algorithm and R’s forecast library to forecast into the

future. Corroborating the results from the synthetic data experiments, our algorithm’s forecast

RMSE continues to be lower than that of the R library.

Hidden State Model: We generate a time series according to a Poisson process with latent time-

varying parameters. These parameters evolve according to a mixture of time series processes, i.e.,

sum of harmonics and trends. Our interest is in estimating these time-varying hidden parameters
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(a) 70% data missing. (b) 50% data missing.

(c) No data missing.

Fig. 3. Plots for three levels of missing data (p ∈ {0.3, 0.5, 1}) showing the original time series (means) and
forecasts produced by the R-library (baseline) and our algorithm.

using one realization of integer observations, of which several are randomly missing. For p ranging

from 0.3 to 1.0, the imputation RMSE is always < 0.2 while the R2
is always > 0.8, which should

be considered excellent. This illustrates the versatility of our algorithm in solving a diverse set of

problems.

6.1 Synthetically generated data
We generate a mixture process of harmonics, trend, and auto-regressive components. The first

70% of the data points are used to learn a model (training) and point-predictions, i.e., forecasts are

performed on the remaining 30% of the data. In order to study the impact of missing data, each

entry in the training set is observed independently with probability p ∈ (0, 1].

Forecasts. Figures 3a-3c visually depict the predictions from our algorithm when compared to the

state-of-the-art time series forecasting library in R. We provide the R library the number of lags of

the AR component to search over, in effect making its job easier. It is noticeable that the forecasts

from the R library always experience higher variance. As p becomes smaller, the R library’s forecasts

also contain an apparent bias. These visual findings are confirmed in Figure 4b, which shows that

our algorithm produces a lower RMSE than that of the R forecasting library when working with

mixtures of AR, harmonic, and trend processes; in particular, our algorithm’s RMSE ranges from

[0.03, 0.11] vs. [0.09, 0.16] for R’s forecasting library.

Imputation. Figure 4a shows that our algorithm outperforms the state-of-the-art AMELIA library

for multiple time series imputation under all levels of missing data. The RMSE of our algorithm

ranged between [0.09, 0.13] vs. [0.14, 0.24] for AMELIA. Note that AMELIA is much better than

the baseline, i.e., imputing all missing entries with the mean.

Note that this experiment involved multiple time series where the outcome variable of interest

and the log of its squared power were also included. The additional time series components were

included to help AMELIA impute missing values because it is unable to impute missing entries in a
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(a) Imputation RMSE (mixture AR, har-
monic, trend).

(b) Prediction RMSE (mixture AR, harmonic,
trend).

Fig. 4. Plots showing the Imputation and Prediction RMSE as a function of p.

single time series. However, our algorithm did not use these additional time series; instead, our

algorithm was only given access to the original time series with missing, noisy observations.

6.2 Real-world data
We use two real-world datasets to evaluate the performance of our algorithm in situations where

the identities of the time series processes are unknown. This set of experiments is intended to

highlight the versatility of our algorithm and applicability to practical scenarios involving time

series forecasting. We again highlight that for the following datasets, we do not know the true

mean processes. Therefore, it is not possible to generate the metric of interest (RMSE) using the

means. Instead, we use the observations themselves as the reference to compute the metric.

Bitcoin. Figures 5a and 5b show the forecasts for Bitcoin prices (in Yuans) in March 2016 at regular

30s time intervals, which demonstrates classical auto-regressive properties. We provide a week’s

data to learn and forecast over the next two days. Figure 5a shows that our algorithm and the R

library appear to do an excellent job of predicting the future even with 50% data missing. Figure

5b shows the RMSE of the predictions for our algorithm and the R library as a function of p; our
algorithm had RMSE’s in the range [0.55, 1.85] vs [0.48, 2.25] for the R library, for p ranging from

1.0 to 0.5 (note that prices are not normalized). This highlights our algorithm’s strength in the

presence of missing data.

Google flu trends (Peru). Figures 6a and 6b show the forecasts for Google flu search-trends in

Peru which shows significant seasonality. We provide weekly data from 2003-2012 to learn and

then forecast for each week in the next three years. Figure 6a shows that our algorithm outperforms

R when predicting the future with 30% data missing. Figure 6b shows the RMSE of the predictions

as a function of p indicating outperformance of our algorithm under all levels of missing data; our

algorithm had RMSE’s in range [8.0, 17.5] vs. [9.0, 26.0] for the R library, with p ranging from 1.0
to 0.5 (note that prices are not normalized).

6.3 Hidden state
We generate a time series from a Poisson process with time-varying parameters, which are hidden.

These parameters evolve according to a mixture of sums of harmonics and trends. Our interest is in

estimating these time-varying hidden parameters using one realization of integer observations, of

which several are randomly missing. Specifically, each point in the original time series is a Poisson
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(a) Price predictions for Bitcoin. (b) RMSE for Bitcoin predictions.

Fig. 5. Bitcoin price forecasts and RMSE as a function of p.

(a) Flu trends predictions (Peru). (b) RMSE flu trend predictions.

Fig. 6. Peru’s Google flu trends forecasts and RMSE as a function of p.

random variable with parameter λ(t ), i.e., X (t ) ∼ Poisson(λ(t )). Further, we let λ(t ) = f (t ), where
f (t ) is a time-dependent sum of harmonics and logarithmic trend components. Each X (t ) is then
observed independently with probability p to produce a random variable Y (t ). We normalize all

parameters and observations to lie between [−1, 1]. Observe that E[Y (t )] = pλ(t ). Note that this
is similar to the settings described earlier in this work. It is important to highlight that we have

imposed a generic noise model as opposed to an additive noise model. Our goal is to estimate the

mean time series process under randomly missing data profiles.

Figures 7a-7b show the mean time series process can be estimated via imputation using the

algorithm proposed in our work. These two plots show the original time series (with randomly

missing data points set to 0), the true means and our estimation. With only 1% missing data, our

algorithm is able to impute the means accurately with the performance degrading slightly with

10% missing data. We note that these are relatively small datasets with only 25,000 points. Figure

7d shows the same process under 10% missing data but for 50,000 data points. As expected, our

algorithm performs better when given access to a greater number of data points.

Figure 7c shows plots of RMSE and R2
for the imputed means of the process. Note these apply to

the smaller time series of 25,000 data points. The metrics are computed only on the data points

that were missing. Observe that the R2
value rises while the RMSE falls as p increases. Both of

these profiles confirm our intuition that the imputation improves as a function of p. Overall, our
performance is fairly robust (RMSE < 0.2 and R2 > 0.8) under all levels of missing data.
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(a) 1% missing data. 25,000
points.

(b) 10% missing data. 25,000
points.

(c) RMSE and R2 vs p. 25,000
points.

(d) 10% missing data. 50,000
points.

Fig. 7. Imputation of the means of a Poisson time series. The first three plots correspond to the time series
with 25,000 data points and a resulting matrix of dimension 50 × 500. The last figure is for the same process,
but with twice as much data and matrix dimensions of 100×500. Note that the randomly missing observations
are set to 0 and the entire process is normalized to lie between [−1, 1].

7 CONCLUSION
In this paper, we introduce a novel algorithm for time series imputation and prediction using

matrix estimation methods, which allows us to operate in a model and noise agnostic setting. At

the same time, we offer an alternate solution to the error-in-variables regression problem through

the lens of matrix estimation. We provide finite sample analysis for our algorithm, and identify

generic conditions on the time series model class under which our algorithm provides a consistent

estimator. As a key contribution, we establish that many popular model classes and their mixtures

satisfy these generic conditions. Using synthetic and real-world data, we exhibit the efficacy of

our algorithm with respect to a state-of-the-art software implementation available through R. Our

experimental results agree with our finite sample analysis. Lastly, we demonstrate that our method

can provably recover the hidden state of dynamics, which could be of interest in its own right.
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A USEFUL THEOREMS
Theorem A.1. Bernstein’s Inequality. [12]
Suppose that X1, . . . ,Xn are independent random variables with zero mean, and M is a constant such
that |Xi | ≤ M with probability one for each i . Let S :=

∑n
i=1Xi and v := Var(S). Then for any t ≥ 0,

P(|S | ≥ t ) ≤ 2 exp

(
−

3t2

6v + 2Mt

)
.

Theorem A.2. Norm of matrices with sub-gaussian entries. [50]
LetA be anm ×n random matrix whose entries Ai j are independent, mean zero, sub-gaussian random
variables. Then, for any t > 0, we have

∥A∥ ≤ CK (
√
m +

√
n + t )

with probability at least 1 − 2 exp

(
−t2

)
. Here, K = maxi, j



Ai j



ψ2

.

B IMPUTATION ANALYSIS
Lemma B.1. Let X be an L × N random matrix (with L ≤ N ) whose entries Xi j are independent
sub-gaussian entries where E[Xi j ] = Mi j and



Xi j



ψ2

≤ σ . Let Y denote the L × N matrix whose
entries Yi j are defined as

Yi j =

{
Xi j w.p. p,
0 w.p. 1 − p,

for some p ∈ (0, 1]. Let p̂ = max

{
1

LN
∑L

i=1
∑N

j=1 1Xi j observed,
1

LN

}
. Define events E1 and E2 as

E1 :=
{
|p̂ − p | ≤ p/20

}
, (16)

E2 :=
{
∥Y − pM ∥ ≤ C1σ

√
N

}
. (17)

Then, for some positive constant c1

P(E1) ≥ 1 − 2e−c1LNp − (1 − p)LN , (18)

P(E2) ≥ 1 − 2e−N . (19)

Proof. Let p̂0 =
1

LN
∑L

i=1
∑N

j=1 1Xi j observed, which implies E[p̂0] = p. We define the event E3 :=

{p̂0 = p̂}. Thus, we have that

P(Ec
1
) = P(Ec

1
∩ E3) + P(Ec

1
∩ Ec

3
)

= P(|p̂0 − p | ≥ p/20) + P(Ec
1
∩ Ec

3
)

≤ P(|p̂0 − p | ≥ p/20) + P(Ec
3
)

= P(|p̂0 − p | ≥ p/20) + (1 − p)LN ,

where the final equality follows by the independence of observations assumption and the fact that

p̂0 ̸= p̂ only if we do not have any observations. By Bernstein’s Inequality, we have that

P(|p̂0 − p | ≤ p/20) ≥ 1 − 2e−c1LNp .

Furthermore, since E[Yi j ] = pMi j , Theorem A.2 yields

P(E2) ≥ 1 − 2e−N .

□
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Corollary B.1. Let E := E1 ∩ E2. Then,

P(Ec ) ≤ C1e
−c2N , (20)

where C1 and c2 are positive constants independent of L and N .

Proof. By DeMorgan’s Law and the Union Bound, we have that

P(Ec ) = P(Ec
1
∪ Ec

2
)

≤ P(Ec
1
) + P(Ec

2
)

≤ C1e
−c2N , (21)

where C1, c2 > 0 are appropriately defined, but are independent of L and N . □

Lemma B.2. LetM (1) be defined as in Section 4.1 and satisfy Property 4.1. Then,


M (1)





∗
≤ L

√
Nδ1 +

√
rLNδ1 +

√
r ∥M ∥F .

Proof. By the definition ofM (1)
and the triangle inequality property of nuclear norms,


M (1)





∗
≤




M (1) −M(r )





∗
+



M(r )



∗

(a)
≤

√
L



M (1) −M(r )





F
+



M(r )



∗

(b)
≤ L

√
Nδ1 +



M(r )



∗
.

Note that (a) makes use of the fact that ∥Q ∥∗ ≤
√
rank(Q)∥Q ∥F for any real-valued matrixQ and

(b) utilizes Property 4.1. Since rank(M(r )) = r , we have


M(r )




∗
≤

√
r


M(r )




F . Applying triangle

inequality and Property 4.1 again further yields

M(r )



F ≤



M(r ) −M



F + ∥M ∥F ≤

√
LNδ1 + ∥M ∥F .

This completes the proof. □

Theorem (4.1). Assume Property 4.1 holds andME satisfies Property 2.1. Then for someC1,C2,C3, c4 >
0,

MSE(
ˆfI , f ) ≤

C1σ

p

(
LNδ1

∥ f ∥2
2

+

√
rLNδ1

∥ f ∥2
2

+

√
rN

∥ f ∥
2

)
+

C2(1 − p)

pLN
+C3e

−c4N .

Proof. By (7), it suffices to analyze the time series imputation error by measuring the relative

mean-squared error of M̂ (1)
. For notational simplicity, let us drop the superscripts on M̂ (1)

andM (1)
.

Let E := E1 ∩ E2, where E1 and E2 are defined as in Lemma B.1. By the law of total probability, we

have that

E



M̂ −M




2
F
≤ E

[


M̂ −M



2
F
| E

]
+ E

[


M̂ −M



2
F
| Ec

]
P(Ec ). (22)

We begin by bounding the first term on the right-hand side of (22). By Property 2.1 and assuming

E occurs, we have that


p̂M̂ − pM



2
F
≤ C1∥Y − pM ∥ ∥pM ∥∗ ≤ C2σ

√
N ∥M ∥∗.

Therefore,

p2



M̂ −M




2
F
≤ C3p̂

2




M̂ −M



2
F
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≤ C3




p̂M̂ − pM



2
F
+C3(p̂ − p)2∥M ∥2F

≤ C4pσ
√
N ∥M ∥∗ +C3(p̂ − p)2∥ f ∥2

2

for an appropriately defined C4. Observe that E(p̂ − p)2 = p(1 − p)/LN . Thus using Corollary B.1

and taking expectations, we obtain

E



M̂ −M




2
F
≤ C4p

−1σ
√
N ∥M ∥∗ +

C3(1 − p)∥ f ∥2
2

pLN
+C5∥ f ∥

2

2
e−c6N .

Normalizing by ∥ f ∥2
2
gives

MSE(
ˆfI , f ) ≤

C4σ
√
N ∥M ∥∗

p ∥ f ∥2
2

+

C3(1 − p)

pLN
+C5e

−c6N .

Invoking Lemma B.2, we obtain

MSE(
ˆfI , f ) ≤

C4σ

p

(
LNδ1

∥ f ∥2
2

+

√
rLNδ1

∥ f ∥2
2

+

√
rN

∥ f ∥
2

)
+

C3(1 − p)

pLN
+C5e

−c6N .

The proof is complete after relabeling constants.

□

C FORECAST ANALYSIS
Let us begin by analyzing the forecasting error for any k ∈ [L].

Lemma C.1. For each k ∈ [L], assume Property 4.2 holds and ME(·) satisfies Property 2.2. Then,

E

[ ∑
t ∈Sk

(
ˆfF (t ) − f (t )

)
2

]
≤

(
δ2 +

√
CβNδ3

)
2

+ 2σ 2r̂k . (23)

Here, Sk := {t ∈ [T ] : (t mod L) + 1 = k} and r̂k := rank( ̂̃M (k )
).

Proof. Observe that we can write

E





M (k )
L − (

̂̃M (k )
)
T ˆβ (k )





2
2

≡ E

[ ∑
t ∈Sk

(
ˆfF (t ) − f (t )

)
2

]
. (24)

For notational simplicity, letQ := (M̃ (k )
)
T
and Q̂ := (

̂̃M (k )
)
T
. Similarly, we will drop all superscripts

(k) throughout this analysis for notational ease. RecallXL = ML+ϵL . Then note that by the definition
of the optimization in step 2 of the forecast algorithm,


XL − Q̂ ˆβ




2
2

≤




XL − Q̂β∗



2
2

=




ML − Q̂β∗



2
2

+ ∥ϵL ∥
2

2
+ 2ϵTL (ML − Q̂β∗). (25)

Moreover, 


XL − Q̂ ˆβ



2
2

=




ML − Q̂ ˆβ



2
2

+ ∥ϵL ∥
2

2
− 2ϵTL (Q̂

ˆβ −ML). (26)

Combining (25) and (26) and taking expectations, we have

E



ML − Q̂ ˆβ




2
2

≤ E



ML − Q̂β∗




2
2

+ 2E[ϵTL Q̂(
ˆβ − β∗)]. (27)
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Let us bound the final term on the right hand side of (27). Under our independence assumptions,

observe that

E[ϵTL Q̂]β∗ = E[ϵTL ]E[Q̂]β∗ = 0. (28)

Recall
ˆβ = Q̂†XL = Q̂†ML + Q̂†ϵL . Using the cyclic and linearity properties of the trace operator

(coupled with similar independence arguments), we further have

E[ϵTL Q̂ ˆβ] = E[ϵTL Q̂Q̂†
]ML + E[ϵTL Q̂Q̂†ϵL]

= E
[
Tr

(
ϵTL Q̂Q̂†ϵL

)]
= E

[
Tr

(
Q̂Q̂†ϵLϵ

T
L

)]
= Tr

(
E[Q̂Q̂†

] · E[ϵLϵ
T
L ]

)
≤ σ 2E

[
Tr

(
Q̂Q̂†

)]
. (29)

Let Q̂ = USVT
be the singular value decomposition of Q̂ . Then

Q̂Q̂†
= USVTVS†UT

= U ˜IUT . (30)

Here,
˜I is a block diagonal matrix where its nonzero entries on the diagonal take the value 1.

Plugging in (30) into (29), and using the fact that the trace of a square matrix is equal to the sum of

its eigenvalues,

σ 2E
[
Tr

(
Q̂Q̂†

)]
= σ 2E[rank(Q̂)]. (31)

We now turn our attention to the first term on the right hand side of (27). By Property 4.2, we

obtain 


ML − Q̂β∗




2

=




ML − (Q −Q + Q̂)β∗




2

≤ ∥ML −Qβ∗∥
2
+




(Q − Q̂)β∗




2

≤ δ2 +



(Q − Q̂)β∗





2

.

Thus we have that

E



(Q − Q̂)β∗





2

= E





(M̃ −
̂̃M)

T β∗





2

(32)

≤
L−1∑
i=1

��β∗i �� · E[( N∑
j=1

(M̂i j −Mi j )
2

)
1/2

]
(33)

≤ ∥β∗∥
1
· E

[(
max

1≤i<L

N∑
j=1

(M̂i j −Mi j )
2

)
1/2

]
(34)

=: Cβ
√
N ·MRSE(

̂̃M, M̃). (35)

Putting everything together, we obtain our desired result. □
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Theorem (4.2). Assume Property 4.2 holds and ME satisfies Property 2.2, with p ≥ p∗(L,N ). Let

r̂ := max

k ∈[L]
rank(

̂̃M (k )
). Then,

MSE(
ˆfF , f ) ≤

1

N − 1

(
(δ2 +

√
CβNδ3)

2
+ 2σ 2r̂

)
.

Proof. For simplicity, define δ (k) := (δ2 +
√
Nδ3)

2
+ 2σ 2r̂k . By Lemma C.1, for all k ∈ [L] we have

E

[ ∑
t ∈Sk

(
ˆfF (t ) − f (t )

)
2

]
≤ δ (k). (36)

Let δmax := (δ2 +
√
CβNδ3)

2
+ 2σ 2r̂ . Recall Sk := {t ∈ [T ] : (t mod L) + 1 = k}. Then, it follows that

MSE(
ˆfF , f ) ≤

δmax

N − 1

.

□

D MODEL ANALYSIS
We first define a somewhat technical Property D.1, that will aid us in proving that the various

models in Section 5 satisfy Property 4.1 and 4.2. Recall f is the underlying time series we would

like to estimate. Define ηk : Z × Z → R such that

ηk (θi , ρ j ) B f (i + (j − 1)L + (k − 1)), (37)

where θi = i and ρ j = (j − 1)L + (k − 1).

Intuitively, (37) is representing f (t ) as a function of two parameters: θi = i and ρ j = (j−1)L+(k−1).
As a result, we can express f as a latent variable model, a representation which is very amenable

to theoretical analysis in the matrix estimation literature. Specifically, [M (k )
i j ] = [ηk (θi , ρ j )] by the

construction ofM (k )
. Effectively, the latent parameters (θi , ρ j ) encode the amount of shift in the

argument to f (t ) so as to obtain the appropriate entry in the matrixM (k )
.

Property D.1. For all k ∈ [L], let matrices X (k ) andM (k ) satisfy the following:
A. For each i ∈ [L] and j ∈ [N ]:
1. X (k )

i j are independent sub-gaussian random variables with E[X (k )
i j ] = M (k )

i j and



X (k )

i j





ψ2

≤ σ .

2. X (k )
i j is observed with probability p ∈ (0, 1], independently.

B. There existsM(r ) ∈ RL×N such that:
1. M(r ) has r4 distinct rows where r4 < L.
2.



M (k ) −M(r )



max

≤ δ4.

We begin with Proposition D.1, which motivates the use of linear methods in forecasting.

Proposition D.1. For all k ∈ [L], letM (k ), defined as in Section 4.1, satisfy Property D.1. Then, there
exists a β∗ such that 


M (k )

L − (M̃ (k )
)
T β∗





2

≤ 2δ4
√
N ,

where ∥β∗∥
0
= 1.

Proof. We drop the dependence on k fromM (k )
and ηk for notational convenience. Furthermore,

we prove it for the case of k = 1 since the proofs for a general k follow from identical arguments

after first making an appropriate shift in the entries of the matrix of interest. Assume we have

access to data from X [1:T + r4 − 1]. Let us first construct a matrix with overlapping entries,
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M = [M i j ] = [f (i + j − 1)], of dimension L × (T + r4 − 1). We have M i j = η( ¯θi , ρ̄ j ) with ¯θi = i and
ρ̄ j = (j − 1), where η is as defined in (37). By construction, the skew-diagonal entries from left to

right ofM are constant, i.e.,

Mki := {Mk−j,i+j : 1 ≤ k − j ≤ L, 1 ≤ i + j ≤ T + r4 − 1}. (38)

Under this setting, we note that the columns ofM are subsets of the columns ofM . Specifically, for

all 0 ≤ j < N and k ≤ L,

Mk, jL+1 = Mk, j+1. (39)

Analogously to howM was constructed with respect toM , we defineM (r ) with respect toM(r ).

Observe that by construction, every entry withinM exists withinM . Hence,M i, j = Mi′, j′, M
(r )
i, j =

M (r )
i′, j′ for some (i ′, j ′), and ���M i, j −M

(r )
i, j

��� = ���Mi, j −M (r )
i, j

���
≤



M −M(r )



max

≤ δ4,

where the inequality follows from Condition B.2 of Property D.1.

By Condition B.1 of Property D.1 and applying the Pigeonhole Principle, we observe that within

the last r4 + 1 rows of M(r ), at least two rows are identical. Without loss of generality, let these

two rows be denoted as M (r )
L−r1

= [M (r )
L−r1,i

]i≤N and M (r )
L−r2

= [M (r )
L−r2,i

]i≤N , respectively, where

r1 ∈ {1, . . . , r4 − 1}, r2 ∈ {2, . . . , r4}, and r1 < r2. Consequently, it must be the case that the same

two rows inM (r ) are also identical; i.e., for all i ≤ T + r4 − 1,

M
(r )
L−r1,i = M

(r )
L−r2,i . (40)

Using this fact, we have that for all i ≤ T + r4 − 1,���ML−r1,i −ML−r2,i

��� ≤ ���ML−r1,i −M
(r )
L−r1,i

��� + ���ML−r2,i −M
(r )
L−r2,i

��� + ���M (r )
L−r1,i −M

(r )
L−r1,i

��� ≤ 2δ4, (41)

where the last inequality follows from (40) and the construction of M (r ). Additionally, by the

skew-diagonal property ofM as described above by (38), we necessarily have the following two

equalities:

MLi = ML−r1,r1+i (42)

ML−∆r ,i = ML−r2,r1+i , (43)

where ∆r = r2 − r1. Thus, by (41), (42), and (43), we obtain for all i ≤ T ,���MLi −ML−∆r ,i

��� = ���ML−r1,r1+i −ML−r2,r1+i

���
≤ 2δ4. (44)

Thus, applying (39) and (44), we reach our desired result, i.e., for all i ≤ N ,��MLi −ML−∆r ,i
�� ≤ 2δ4. (45)

Recall M̃ = [Mi j ]i<L, j≤N excludes the last row ofM . From above, we know that there exists some

row ℓ := L − ∆r < L such that ∥ML −Mℓ ∥2 ≤ 2δ4
√
N . Clearly, we can express

Mℓ = M̃T β∗, (46)
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where β∗ ∈ RL−1
is a 1-sparse vector with a single nonzero component of value 1 in the ℓth index.

This completes the proof.

□

Corollary D.1. For all k ∈ [L], let M (k ), defined as in Section 4.1, satisfy Property D.1 with δ4, r4.
ThenM (k ) obeys,

(i) UnderModel Type 1, Property 4.1 is satisfied with δ1 = δ4 and r = r4.
(ii) UnderModel Type 2, Property 4.2 is satisfied with δ2 = 2δ4

√
N .

Proof. Condition A of both Property 4.1 and 4.2 is satisfied by definition. (i) Condition B.1, B.2

of Property D.1 together imply Condition B of Property 4.1 for the same δ1, r4. (ii) Proposition D.1

implies Condition B of Property 4.2 by scaling δ4 with 2

√
N . □

D.1 Proof of Proposition 5.1
Proposition (5.1). .

(i) UnderModel Type 1, f LRF satisfies Property 4.1 with δ1 = 0 and r = G;
(ii) UnderModel Type 2, f LRF satisfies Property 4.2 with δ2 = 0 and Cβ = C ·G where C > 0 is an

absolute constant.

Proof. Let f (t ) = f LRF. By definition of f (t ), we have that for all i ∈ {G + 1, . . . ,L} and

j ∈ {1, . . .N },

M (k )
i j = f (i + (j − 1)L + (k − 1))

=

G∑
д=1

αд f ((i − д) + (j − 1)L + (k − 1))

=

G∑
д=1

αдM
(k )
(i−д)j .

In particular,M (k )
Lj =

∑G
д=1 αдM

(k )
(L−д)j for all j ∈ {1, . . .N }, and so we immediately have condition (ii)

of the Proposition with C = maxд∈G αд . Since every row from G + 1, . . . ,L is a linear combination

of the rows above, the rank ofM (k )
is at mostG . Ergo, we have condition (i) of the Proposition. □

Proposition D.2. Let f (t ) = f LRF be defined as in (5.1). Then, for any given L ≥ 1 and N ≥ 1, for all
1 ≤ s ≤ L, 1 ≤ t ≤ N , f admits decomposition

f (t + s) =
G∑
д=1

αдaд(t )bд(s) (47)

for some scalars αд and functions aд : [L] → R, bд : [N ] → R.

Proof. Let T = LN , consider f restricted to {1, . . . ,T = LN }. Now, by Proposition 5.1, we have

that the rank ofM (k )
is at most G. Thus, the singular value decomposition ofM (k )

has the form

M (k )
=

G∑
д=1

αдaдb
T
д ,

where αд are the singular values, and aд ,bд are the corresponding left and right singular vectors of

M (k )
, respectively. Therefore, the (i, j)-th entry ofM (k )

has the form

M (k )
i j = f (i + (j − 1)L + (k − 1)) =

G∑
д=1

αдaд(i)bд(j), (48)
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where aд(i) corresponds to the i-th entry of the д-th left singular vector, and bд(j) corresponds to
the j-th entry of the д-th right singular vector. Thus, aд : [L] → R and bд : [N ] → R. □

Corollary (5.1). UnderModel Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C

(
G

δ 2error

)
2+δ

,

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Proof. By Proposition 5.1, we have for some C1,C2,C3, c4 > 0

MSE(
ˆfI , f

LRF
) ≤

C1σ

p

√
G

L
+C2

(1 − p)

LNp
+C3e

−c4N .

We require the r.h.s of the term above to be less than δerror. Thus, we have that

C1σ

p

√
G

L
+C2

(1 − p)

LNp
+C3e

−c4N
(a)
≤ C

(√
G

L
+

1

LN
+ e−c4N

)
(b)
≤ C

(√
G

L

)
where (a) follows for appropriately defined C > 0 and by absorbing p,σ into the constant; (b)

follows since
1

LN ≤ G
L and e−c4N ≤

√
G
L for sufficiently large L,N and by redefining C . Hence, it

suffices that δerror ≥ C

(√
G
L

)
=⇒ T ≥ C

(
G

δ 2

error

)
2+δ

. □

Corollary (5.2). UnderModel Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C

(
σ 2

δerror −Gδ 2
3

) 2+δ
δ

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proof. By Proposition 5.1, we have

MSE( ˆfF , f LRF) ≤
1

N − 1

(Gδ 2
3
N + 2σ 2r̂ ).

We require the r.h.s of the term above to be less than δerror. Since
1

N σ
2r̂ ≤ 1

Lδ σ
2
, it suffices that

δerror
(a)
≥ C

(
Gδ 2

3
+

1

Lδ
σ 2

)
=⇒ Lδ

(b)
≥ C

(
σ 2

δerror −Gδ 2
3

)

=⇒ T ≥ C

(
σ 2

δerror −Gδ 2
3

) 2+δ
δ

where (a) and (b) follow for an appropriately defined C > 0. □
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D.2 Proof of Proposition 5.2
Proposition (5.2). Let Pma be a polynomial of degreema . Then,

f (t ) =
A∑
a=1

exp{αat} cos(2πωat + ϕa)Pma (t )

admits a representation as in (10). Further the order G of f (t ) is independent of T , the number of
observations, and is bounded by

G ≤ A(mmax + 1)(mmax + 2)

wheremmax = maxa∈Ama .

Proof. This proof is adapted from [29]; we state it here for completeness. First, observe that if

there exists latent functionsψl : {1, . . . ,L} → R and ρl : {1, . . . ,N } → R for l ∈ [G] such that for

all (i, j) ∈ [L] × [N ]

f (i + j) =
G∑
l=1

ψl (i)ρl (j), (49)

then eachM (k )
(induced by f for k ∈ [L]) has rank at most G.

Second, observe that time series that admit a representation of the form in (49) form a linear

space, which is closed with respect to term-by-term multiplication, i.e.,

f (i + j) = f (1) ◦ f (2) =
( G1∑
l=1

ψ (1)

l (i) ρ(1)l (j)
) ( G2∑

l=1
ψ (2)

l (i) ρ(2)l (j)
)
, (50)

where G1 and G2 are the orders of the f (1) and f (2) respectively.
Given the two observations above, it suffices to show separately that f (1)(t ) = exp{αt} cos(2πωt + ϕ)

and f (2)(t ) = Pm (t ) have a representation of the form in (49).

We begin with f (1)(t ) = exp{αt} cos(2πωt + ϕ). For (i, j) ∈ [L] × [N ],

f (1)(i + j) = exp{α (i + j)} cos(2πω(i + j) + ϕ)

(a)
= exp{αi} cos(2πωi) · exp{α j} cos(2πωj + ϕ)

− exp{αi} sin(2πωi) · exp{α j} sin(2πωj + ϕ)

:= ψ1(i)ρ1(j) +ψ2(i)ρ2(j),

where in (a) we have used the trigonometric identity cos(a + b) = cos(a) cos(b)− sin(a) sin(b). Thus,
for f (1)(t ), we have G = 2.

For f (2)(t ) = Pm (t ), with (i, j) ∈ [L]× [N ], we have Pm (i + j) =
∑m
l=0 cl (i + j)

l
. By expanding (i + j)l ,

it is easily seen (using the Binomial theorem) that there are l + 1 unique terms involving powers of

i and j. Hence, for f (2)(t ), G ≤
∑m+1

l=1 l = (m+1)(m+2)

2

14
.

Nowwe boundG for f (t ) =
∑A

a=1 exp{αat} cos(2πωat + ϕa)Pma (t ). For f
(1)
(t ) = exp{αt} cos(2πωt + ϕ),

we have G(1)
= 2. For f (2)(t ) = Pma (t ), we have G

(2) ≤
(ma+1)(ma+2)

2
≤

(mmax+1)(mmax+2)

2
. By (50), it is

clear that the order,G(1,2)
, for f (1) ◦ f (2) is bounded byG(1) ·G(2) ≤ (mmax + 1)(mmax + 2). Since there

are A such terms, it follows immediately that for f (t ), we have G ≤ A(mmax + 1)(mmax + 2), which

completes the proof. □

14
To build intuition, consider f (t ) = t 2, in which case f (i + j ) = i2 + j2 + (2i )(j ) := ψ1(i )ρ1(j ) +ψ2(i )ρ2(j ) +ψ3(i )ρ3(j ). Here,

G = 3.
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D.3 Proof of Proposition 5.3
Proposition (5.3). For any ϵ ∈ (0, 1),

(i) Under Model Type 1, f Compact satisfies Property 4.1 with δ1 = CL
Lϵ and r = LGϵ for some C > 0.

(ii) UnderModel Type 2, f Compact satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1.

Proof. Recall f Compact
= д(φ(t ))whereφ : Z → [−C1,C1] takes the formφ(t+s) =

∑G
l=1 αlal (t )bl (s)

with αl ∈ [−C2,C2],al : Z → [0, 1],bl : Z → [0, 1] for some C1,C2 > 0; and д : [−C1,C1] → R
is L-Lipschitz. Without loss of generality, we drop the dependence of k on ηk to decrease nota-

tional overload. Recall that η (as defined in (37)) has row and column parameters {θ1 · · · θL} and
{ρ1 · · · ρN }, which denote shifts in an integer time index.

For some δ > 0, we define the set P ( δ
C2L

) ⊂ [0, 1]G such that for all i ∈ [0, 1]G , there exists

an i ′ ∈ P ( δ
C2L

) where ∥i − i ′∥
1
≤ δ

C2L
. It is easily shown that we can construct this set such that���P ( δ

C2L
)

��� ≤ (
3C2L

δ )
G
.

For any i ∈ [L], let ā(i) = [a1(i), . . . ,aG (i)]. Thus, from the construction of P ( δ
C2L

), there must exist

an ā∗(i) = [a∗
1
(i), . . . ,a∗G (i)] ∈ P ( δ

C2L
) such that ∥ā − ā∗∥

1
≤ δ

C2L
. Therefore, for any (i, j) ∈ [L]×[N ],

we have�����η(i, (j − 1)L) − д
( G∑
l=1

αla
∗
l (i)bl ((j − 1)L)

)����� =
�����f (i + (j − 1)L) − д

( G∑
l=1

αla
∗
l (i)bl ((j − 1)L)

)�����
=

�����д( G∑
l=1

αlal (i)bl ((j − 1)L)
)
− д

( G∑
l=1

αla
∗
l (i)bl ((j − 1)L)

)�����
≤ L

����� G∑l=1 αlal (i)bl ((j − 1)L) −
G∑
l=1

αla
∗
l (i)bl ((j − 1)L)

�����
= L

����� G∑l=1 αl (al (i) − a∗l (i)) · bl ((j − 1)L)

�����
≤ L

G∑
l=1

��αl (al (i) − a∗l (i)) · bl ((j − 1)L)
��

≤ C2L
G∑
l=1

��al (i) − a∗l (i)
��

= C2L ∥ā(i) − ā∗(i)∥
1

≤ δ .

For each (i, j) ∈ [L] × [N ], we define η∗(i, (j − 1)L) = д
( ∑G

l=1 αla
∗
l (i)bl ((j − 1)L)

)
. LetM(r ) be the

matrix whose (i, j)-th element is η∗(i, (j − 1)L). Consequently, we have for all k


M (k ) −M(r )





max

≤ δ .

Observe that for i1, i2 ∈ [L], if ā(i1) and ā(i2) map to the same element ā∗(i) ∈ P ( δ
C2L

), then rows

i1, i2 in M(r ) will be identical. Therefore, there are at most

���P ( δ
C2L

)

��� distinct rows in M(r ). For an

appropriately defined C > 0, choosing δ = CLL−ϵ gives
���P ( δ

C2L
)

��� ≤ LGϵ .
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Hence, Property D.1 is satisfied with δ4 = CLL−ϵ and r4 = LGϵ . By Corollary D.1, we have: under
Model Type 1, Property 4.1 is satisfied with δ1 = δ4 and r = r4; under Model Type 2, Property 4.2 is

satisfied with δ2 = 2δ1
√
N . This completes the proof. □

Corollary (5.3). UnderModel Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1) if

T ≥ C

((
1

δerror

) 2

1−Gϵ
+

(
L

δerror

) 1

ϵ

)
2+δ

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Proof. By Proposition 5.3, for any ϵ ∈ (0, 1) and some C1,C2,C3, c4 > 0,

MSE( ˆfI , f Compact
) ≤

C1σ

p

(
L

Lϵ
+

1

L(1−Gϵ )/2

)
+C2

(1 − p)

LNp
+C3e

−c4N .

We require the r.h.s of the term above to be less than δerror. Thus, we have

C1σ

p

(
L

Lϵ
+

1

L(1−Gϵ )/2

)
+C2

(1 − p)

LNp
+C3e

−c4N

(a)
≤ C

(
L

Lϵ
+

1

L(1−Gϵ )/2
+

1

LNp
+ e−c4N

)
(b)
≤ C

(
L

Lϵ
+

1

L(1−Gϵ )/2

)
where (a) follows for an appropriately defined C > 0 and by absorbing p,σ into the constant; (b)

follows since
1

LN ≤ L
Lϵ , e

−c4N ≤ L
Lϵ for sufficiently large L,N and by redefining C .

To have
C

L(1−Gϵ )/2 ≤ δerror/2, it suffices that L ≥

(
2C

δerror

)
2/(1−Gϵ )

. Similarly, we solve
CL
Lϵ ≤ δerror/2

to get L ≥

(
2CL
δerror

) 1

ϵ
. Thus for appropriately defined C , we require L to be

L ≥ C

((
1

δerror

) 2

1−Gϵ
+

(
L

δerror

) 1

ϵ

)
(51)

=⇒ T ≥ C

((
1

δerror

) 2

1−Gϵ
+

(
L

δerror

) 1

ϵ

)
2+δ

. (52)

□

Corollary (5.4). UnderModel Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1) if

T ≥ C

(
σ 2

δerror −
(
L
Lϵ + δ3

)
2

) 2+δ
δ

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.
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Proof. By Proposition 5.3, for any ϵ ∈ (0, 1) and some C > 0,

MSE(
ˆfF , f

Compact
) ≤

1

N − 1

((CL
Lϵ

+ δ3
)
2

N + 2σ 2r̂

)
.

We require the r.h.s of the term above to be less than δerror. Since
1

N σ
2r̂ ≤ 1

Lδ σ
2
, it suffices that

δerror
(a)
≥ C

((
L

Lϵ
+ δ3

)
2

+

1

Lδ
σ 2

)
=⇒ Lδ

(b)
≥ C

σ 2

δerror −
(
L
Lϵ + δ3

)
2

=⇒ T ≥ C

(
σ 2

δerror −
(
L
Lϵ + δ3

)
2

) 2+δ
δ

where (a) and (b) follow for an appropriately defined C > 0.

□

Proposition (5.4).

f Harmonic
(t ) =

R∑
r=1

φr (sin(2πωr t + ϕ))

where φr is Lr -Lipschitz and ωr is rational, admits a representation as in (11). Let xlcm denote the
fundamental period. Then the Lipschitz constant L of f Harmonic

(t ) is bounded by

L ≤ 2π ·max

r ∈R
(Lr ) ·max

r ∈R
(ωr ) · xlcm.

Proof. The fact that f Harmonic
has a representation as in (11) follows immediately. It remains to

show the explicit dependence of L on the parameters of f Harmonic
. Observe that

f Harmonic
(t ) = f Harmonic

(ψ (t )),

whereψ (t ) = t mod xlcm. By bounding the derivative of f Harmonic
(t ), it is easy to see that

L ≤ 2π ·max

r ∈R
(Lr ) ·max

r ∈R
(ωr ) · xlcm.

This completes the proof. □

D.4 Proof of Proposition 5.5

Proposition (5.5). Let
����df Trend(t )dt

���� ≤ C∗t
−α for some α ,C∗ > 0. Then for any ϵ ∈ (0,α ),

(i) UnderModel Type 1, f Trend satisfies Property 4.1 with δ1 = C∗

Lϵ /2 and r = Lϵ/α +
L−Lϵ /α
Lϵ /2

(ii) UnderModel Type 2, f Trend satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1.

Proof. Without loss of generality, we drop the dependence of k on ηk to decrease notational

overload. Let f (t ) = f Trend. We construct our mapping p : [L] → [L] in two steps:

Step 1: For i < Lϵ/α , with ϵ ∈ (0,α ), let p(i) = i (i.e., the i-th row ofM(r ) is equal to the i-th row

ofM (k )
).
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Step 2: For rows i ≥ Lϵ/α , we construct the following mapping (similar to [19]). Let R and D refer

to the set of row and column parameters of the sub-matrix ofM (k )
corresponding to its last L− i + 1

rows, {θLϵ /α , · · · ,θL} and {ρ1, · · · , ρN }, respectively.
Let f ′ denote the derivative of f , and θ ∈ (min(i, i ′) + (j − 1)L,max(i, i ′) + (j − 1)L). Then, we

have that for all i, i ′ ∈ R

|η(i, (j − 1)L) − η(i ′, (j − 1)L)| = | f (i + (j − 1)L) − f (i ′ + (j − 1)L)|

(a)
≤ | f ′(θ )| · |i + (j − 1)L − (i ′ + (j − 1)L)|

(b)
≤ C∗(L

ϵ/α
)
−α · |i − i ′ |

= C∗L
−ϵ · |i − i ′ |,

where (a) follows from theMean Value Theorem, and (b) uses the fact that | f ′(θ )| ≤ C∗ min(i, i ′)−α ≤

C∗(L
ϵ/α

)
−α

.

We define a partition P (ϵ) of R into continuous intervals of length Lϵ/2. Then, for any A ∈ P (ϵ),
we have |θ −θ

′

|≤ Lϵ/2 (recall that θi = i) whenever θ ,θ
′

∈ A. It follows that |P (ϵ)|= (L−Lϵ/α )/Lϵ/2 =

L1−ϵ/2 − Lϵ (
1

α − 1

2
)
.

Let T be a subset of R that is constructed by selecting exactly one element from each partition in

P (ϵ), i.e., |T |= |P (ϵ)|. For each θ ∈ R, let p(θ ) be the corresponding element from the same partition

in T . Therefore, it follows that for each θ ∈ R, we can find p(θ ) ∈ T so that θ and p(θ ) belong to the

same partition of P (ϵ).
Hence, we can define the (i, j)-th element ofM(r ) in the following way: (1) for all i < Lϵ/α , let

p(θi ) = θi such thatM (r )
i j = η(θi , ρ j ); (2) for i ≥ Lϵ/α , letM (r )

i j = η(p(θi ), ρ j ). Consequently for all k ,


M (k ) −M(r )





max

≤ max

i ∈[L], j ∈[N ]

|η(θi , ρ j ) − η(p(θi ), ρ j )|

= max

i ∈[j≥Lϵ /α ], j ∈[N ]

|η(θi , ρ j ) − η(p(θi ), ρ j )|

≤ max

i ∈[j≥Lϵ /α ]
|θi − p(θi )| L

−ϵC∗

≤ C∗L
−ϵ/2.

Now, if θi and θ j belong to the same element of P (ϵ), then p(θi ) and p(θ j ) are identical. Therefore,

there are at most |P (ϵ)| distinct rows in the last L−Lϵ/α rows ofM(r ) where |P (ϵ)|= L1−ϵ/2−Lϵ (
1

α − 1

2
)
.

Let P(θ ) := {p(θi ) : i ∈ [L]} ⊂ {θ1, . . . ,θL}. By construction, since ϵ ∈ (0,α ), we have that

|P(θ )| = Lϵ/α + |P (ϵ)| = o(L).

Hence, Property D.1 is satisfied with δ1 =
C∗

Lϵ /2 and r = Lϵ/α +
L−Lϵ /α
Lϵ /2 . By Corollary D.1, we have:

under Model Type 1, Property 4.1 is satisfied with δ1 = δ4 and r = r4; under Model Type 2, Property

4.2 is satisfied with δ2 = 2δ1
√
N . This completes the proof. □

Corollary (5.5). UnderModel Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C

(
1

δ (2(α+1)/α )error

)
2+δ

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



40:38 A. Agarwal et al.

Proof. By Proposition 5.5, for any ϵ ∈ (0,α ) and some C1,C2,C3, c4 > 0,

MSE( ˆfI , f Trend) ≤
C1σ

p

(
C∗

Lϵ/2
+

1

(L1−ϵ/α + Lϵ/2)1/2

)
+C2

(1 − p)

LNp
+C3e

−c4N .

We require the r.h.s of the term above to be less than δerror. We have,

C1σ

p

(
C∗

√
pLϵ/2

+

1

√
p(L1−ϵ/α + Lϵ/2)1/2

)
+C2

(1 − p)

LNp
+C3e

−c4N

(a)
≤ C

(
1

Lϵ/2
+

1

(L1−ϵ/α + Lϵ/2)1/2
+

1

LN
+ e−c4N

)
(b)
≤ C

(
1

Lϵ/2
+

1

(L1−ϵ/α + Lϵ/2)1/2

)
≤ C

(
1

Lϵ/2
+

1

(L1−ϵ/α )1/2

)
where (a) follows for an appropriately defined C > 0 and by absorbing p,σ into the constant; (b)

follows since
1

LN ≤ 1

Lϵ /2 , e
−c4N ≤ 1

Lϵ /2 for sufficiently large L,N and by redefining C .

Setting
ϵ
2
=

1−ϵ/α
2

, we get ϵ =
α
α+1 < α , which satisfies the condition that ϵ ∈ (0,α ) in Proposition

5.5. Therefore, it suffices that δerror ≥ CL
α

2(α+1) =⇒ T ≥ C
(

1

δ
2(α+1)

α
error

)
2+δ

.

□

Corollary (5.6). Under Model Type 2, let the conditions of Theorem 4.2 hold.. Let N = L1+δ for any
δ > 0. Then for some C > 0 and for any ϵ ∈ (0,α ) if

T ≥ C

(
σ 2

δerror −
(

1

Lϵ /2 + δ3
)
2

) 2+δ
δ

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proof. By Proposition 5.5, for any ϵ ∈ (0,α ),

MSE( ˆfF , f Trend) ≤
1

N − 1

(
(

C∗

Lϵ/2
+ δ3)

2N + 2σ 2r̂
)
.

We require the r.h.s of the term above to be less than δerror. Since
1

N σ
2r̂ ≤ 1

Lδ σ
2
, it suffices that

δerror
(a)
≥ C

((
1

Lϵ/2
+ δ3

)
2

+

1

Lδ
σ 2

)
=⇒ Lδ

(b)
≥ C

σ 2

δerror −
(

1

Lϵ /2 + δ3
)
2
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=⇒ T ≥ C

(
σ 2

δerror −
(

1

Lϵ /2 + δ3
)
2

) 2+δ
δ

where (a) and (b) follow for an appropriately defined C > 0. □

Proposition (5.6). For t ∈ Z with αb < 1 for b ∈ [B],

f Trend(t ) =
B∑
b=1

γbt
αb

+

Q∑
q=1

log

(
γqt

)
.

admits a representation as in (13).

Proof. The proof follows immediately from the definition of f Trend. □

D.5 Proof of Proposition 5.7

Proposition (5.7). Under Model Type 1, f Mixture satisfies Property 4.1 with δ1 =

∑Q
q=1 ρqδq and

r =
∑Q
q=1 rq .

Proof. LetM (1)

д refer to the underlying mean matrix induced by each Xд(t ). Similarly, as defined

in Property 4.1, letMд, (r ) be the low rank matrix associated withM (1)

д . We have

M (1)
=

G∑
д
αдM

(1)

д .

We defineM(r ) as

M(r ) =
G∑
д
αдMд, (r ).

As a result, we have that rank(M(r )) ≤
∑G
д rд , and


M (1) −M(r )





max

=






 G∑
д
αдM

(1)

д −
G∑
д
αдMд, (r )







max

≤
G∑
д
αд




M (1)

д −Mд, (r )





max

=

G∑
д
αдδд .

This completes the proof. □
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