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We propose an algorithm to impute and forecast a time series by transforming the observed time series into a
matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing
linear regression to make predictions. At the core of our analysis is a representation result, which states that
for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this
generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to
establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link
is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done
in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for
imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of
our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise
distribution in the observations. The noise agnostic property of our approach allows us to recover the latent
states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering
the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson.
Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a
matrix estimation based method—coupled with a novel, non-standard matrix estimation error metric—to solve
the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and
real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R
libraries) in the presence of missing data as well as high levels of noise.
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1 INTRODUCTION

Time series data is of enormous interest across all domains of life: from health sciences and
weather forecasts to retail and finance, time dependent data is ubiquitous. Despite the diversity of
applications, time series problems are commonly confronted by the same two pervasive obstacles:
interpolation and extrapolation in the presence of noisy and/or missing data. Specifically, we
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40:2 A. Agarwal et al.

consider a discrete-time setting with ¢ € Z representing the time index and f : Z — R representing
the latent discrete-time time series of interest. For each t € [T] := {1, ..., T} and with probability
p € (0, 1], we observe the random variable X(t) such that E[X(#)] = f(¢). While the underlying
mean signal f is of course strongly correlated, we assume the per-step noise is independent across
t and has uniformly bounded variance. Under this setting, we have two objectives: (1) interpolation,
i.e., estimate f(¢) for all ¢t € [T]; (2) extrapolation, i.e., forecast f(t) for t > T. Our interest is in
designing a generic method for interpolation and extrapolation that is applicable to a large model
class while being agnostic to the time dynamics and noise distribution.

We develop an algorithm based on matrix estimation, a topic which has received widespread
attention, especially with the advent of large datasets. In the matrix estimation setting, there is
a “parameter” matrix M of interest, and we observe a sparse, corrupted signal matrix X where
E[X] = M. The aim then is to recover the entries of M from noisy and partial observations given in
X. For our purposes, the attractiveness of matrix estimation derives from the property that these
methods are fairly model agnostic in terms of the structure of M and distribution of X given M.
We utilize this key property to develop a model and noise agnostic time series imputation and
prediction algorithm.

1.1 Overview of contributions

Time series as a matrix. We transform the time series of observations X(¢) for ¢ € [T] into what
is known as the Page matrix (cf. [23]) by placing contiguous segments of size L > 1 (an algorithmic
hyper-parameter) of the time series into non-overlapping columns; see Figure 1 for a caricature of
this transformation.

As the key contribution, we establish that—in expectation—this generated matrix is either exactly
or approximately low-rank for a large class of models f. Specifically, f can be from the following
families:

Linear Recurrent Formulae (LRF): f(t) = Zngl agf(t - g).

Compact Support: f(t) = g(e(t)) where ¢ : Z — [-Cy, C1] has the form ¢(t +s) = Zle ajai(t)bi(s)
with a; € [-C5,Cy],a; : Z — [0,1],b; : Z — [0, 1] for some C;,Cy > 0; and g : [-C1,C1] — Riis
L-Lipschitz ? 3.

dg(

Sublinear: f(t) = g(t) where g : R — R and |TS) < Cs™“ for some a,C > 0, and Vs € R.

Over the past decade, the matrix estimation community has developed a plethora of methods
to recover an exact or approximately low-rank matrix from its noisy, partial observations in a
noise and model agnostic manner. Therefore, by applying such a matrix estimation method to
this transformed matrix, we can recover the underlying mean matrix (and thus f(¢) for t € [T])
accurately. In other words, we can interpolate and de-noise the original corrupted and incomplete
time series without any knowledge of its time dynamics or noise distribution. Theorem 4.1 and
Corollary 4.1 provide finite-sample analyses for this method and establish the consistency property
of our algorithm, as long as the underlying f satisfies Property 4.1 and the matrix estimation method
satisfies Property 2.1. In Section 5, we show that any additive mixture of the three function classes
listed above satisfies Property 4.1. Effectively, Theorem 4.1 establishes a statistical reduction between

!We denote R as the field of real numbers and Z as the integers.

2We say g : R — Ris L-Lipschitz if there exists a £ > 0 such that ||g(x) — g(y)|| < L]||x — y|| forall x, y € Rand ||-||
denotes the standard Euclidean norm on R.

31t can be verified that if ¢ is an LRF satisfying ¢(t) = Zi’;l Yr@(t—h), then it satisfies the form ¢(t +s) = ZgG=l agag(t)by(s)

for G = H with appropriately defined constants a4, functions ag4, by; see Proposition D.2 of Appendix D for details.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



Model Agnostic Time Series Analysis via Matrix Estimation 40:3

time series imputation and matrix estimation. Our key contribution with regards to imputation lies
in establishing that a large class of time series models (see Section 5) satisfies Property 4.1.

Matrix Transformation

X(1) X@) ... ? “X(Ln) ?.AX(2L)| [X(T—L+1)A..X(T)
X(1) X(L+1) X(T-L+1)
X@ 7
X =
7X@y X(T)
ME(X) _
Imputation
f10) i@ +1) fi(T = L+1) et
f1(2) fr(L+2) ME(X)
M = .
fi(L) fi(2L) fr(1)
Forecast
Fr() (T -L+1)
= Features w
M = Y\ Linear
/Regression
| e () Target T

Fig. 1. Caricature of imputation and forecast algorithms. We first transform the noisy time series X(t) (with
“?” indicating missing data) into a Page matrix X with non-overlapping entries. For imputation, we apply a
matrix estimation (ME) algorithm with input X to obtain the estimates f](t) for the de-noised and filled-in
entries. For forecasting, we first apply ME to X (i.e., X excluding the last row), and then fit a linear model 8
between the last row and all other rows to obtain the forecast estimates fp(t).

It is clear that for LRF, the last row of the mean transformed matrix can be expressed as a linear
combination of the other rows. An important representation result of the present paper, which
generalizes this notion, is that an approximate LRF relationship holds for the other two model
classes. Therefore, we can forecast f(t), say for t = T + 1, as follows: apply matrix estimation to the
transformed data matrix as done in imputation; then, linearly regress the last row with respect
to the other rows in the matrix; finally, compute the inner product of the learnt regression vector
with the vector containing the previous L — 1 values that were estimated via the matrix estimation
method. Theorem 4.2 and Corollary 4.2 imply that the mean-squared error of our predictions decays
to zero provided the matrix estimation method satisfies Property 2.2 and the underlying model f
satisfies Property 4.2. Similar to the case of imputation, establishing that Property 4.2 holds for the
three function classes is novel (see Section 5).

Noisy regression. Our proposed forecasting algorithm performs regression with noisy and in-
complete features. In the literature, this is known as error-in-variable regression. Recently, there
has been exciting progress to understand this problem especially in the high-dimensional setting
[11, 24, 39]. Our algorithm offers an alternate solution for the high-dimensional setting through
the lens of matrix estimation: first, utilize matrix estimation to de-noise and impute the feature
observations, and then perform least squares with the pre-processed feature matrix. We demon-
strate that if the true, underlying feature matrix is (approximately) low-rank, then our algorithm
provides a consistent estimator to the true signal (with finite sample guarantees). Our analysis
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further suggests the usage of a non-standard error metric, the max row sum error (MRSE) (see
Property 2.2 for details).

Class of applicable models. As aforementioned, our algorithm enjoys strong performance guar-
antees provided the underlying mean matrix induced by the time series f satisfies certain structural
properties, i.e., Properties 4.1 and 4.2. We argue that a broad class of commonly used time series
models meets the requirements of the three function classes listed above.

LRFs include the following important family of time series: a finite sum of products of ex-
ponentials (exp{at}), harmonics (cos(2rwt + ¢)), and finite degree polynomials (Py,(t)) [29], i.e.,
f@) = Zgzl exp{agt} cos(2wgyt + g{)g)Pmy(t). Further, since stationary processes and L, integrable
functions are well approximated by a finite summation of harmonics (i.e., sin and cos), LRFs en-
compass a vitally important family of models. For this model, we show that indeed the structural
properties required from the time series matrix for both imputation and prediction are satisfied.

However, there are many important time series models that do not admit a finite order LRF
representation. A few toy examples include cos(sin(t)), exp{sin2(t)}, log t, Vt. Time series models
with compact support, on the other hand, include models composed of a finite summation of
periodic functions (e.g., cos(sin(t)), exp{sinz(t)}). Utilizing our low-rank representation result, we
establish that models with compact support possess the desired structural properties. We further
demonstrate that sublinear functions, which include models that are composed of a finite summation
of non (super-)linear functions (e.g., logt, V), also possess the necessary structural properties.
Importantly, we argue that the finite mixture of the above processes satisfy the necessary structural
properties.

Recovering the hidden state. Our algorithm, being noise and time-dynamics agnostic, makes it
relevant to recover the hidden state from its noisy, partial observations as in a Hidden Markov-like
Model. For example, imagine having access to partial observations of a time-varying truncated
Poisson process® without knowledge that the process is Poisson. By applying our imputation
algorithm, we can recover time-varying parameters of this process accurately and, thus, the hidden
states. If we were to apply an Expectation-Maximization (EM) like algorithm, it would require
knowledge of the underlying model being Poisson; moreover, theoretical guarantees are not clear
for such an approach.

Sample complexity. Given the generality and model agnostic nature of our algorithm, it is
expected that its sample complexity for a specific model class will be worse than model aware
optimal algorithms. Interestingly, our finite sample analysis suggests that for the model classes
stated above, the performance loss incurred due to this generality is minor. See Section 5.6 for a
detailed analysis.

Experiments. Using synthetic and real-world datasets, our experiments establish that our method
outperforms existing standard software packages (including R) for the tasks of interpolation and
extrapolation in the presence of noisy and missing observations. When the data is generated
synthetically, we “help" the existing software package by choosing the correct parametric model and
algorithm while our algorithm remains oblivious to the underlying model; despite this disadvantage,
our algorithm continues to outperform the standard packages with missing data.

Further, our empirical studies demonstrate that our imputation algorithm accurately recovers
the hidden state for Hidden Markov-like Models, verifying our theoretical imputation guarantees
(see Theorem 4.1). All experimental findings can be found in Section 6.

4Let C denote a positive, bounded constant, and X a Poisson random variable. We define the truncated Poisson random
variable Y as Y = min{X, C}.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



Model Agnostic Time Series Analysis via Matrix Estimation 40:5

1.2 Related works

There are two related topics: matrix estimation and time series analysis. Given the richness of both
fields, we cannot do justice in providing a full overview. Instead, we provide a high-level summary
of known results with references that provide details.

Matrix estimation. Matrix estimation is the problem of recovering a data matrix from an incom-
plete and noisy sampling of its entries. This has become of great interest due to its connection to
recommendation systems (cf. [18-20, 25, 34-36, 38, 41]), social network analysis (cf. [1-3, 8, 32]),
and graph learning (graphon estimation) (cf. [5, 14, 15, 54]). The key realization of this rich literature
is that one can estimate the true underlying matrix from noisy, partial observations by simply
taking a low-rank approximation of the observed data. We refer an interested reader to recent
works such as [14, 19] and references there in.

Time series analysis. The question of time series analysis is potentially as old as civilization in
some form. Few textbook style references include [16, 17, 30, 43]. At the highest level, time series
modeling primarily involves viewing a given time series as a function indexed by time (integer
or real values) and the goal of model learning is to identify this function from observations (over
finite intervals). Given that the space of such functions is complex, the task is to utilize function
form (i.e., “basis functions”) so that for the given setting, the time series observation can fit a sparse
representation. For example, in communication and signal processing, the harmonic or Fourier
representation of a time series has been widely utilized, due to the fact that signals communicated
are periodic in nature. The approximation of stationary processes via harmonics or ARIMA has
made them a popular model class to learn stationary-like time series, with domain specific popular
variations, such as ‘Autoregressive Conditional Heteroskedasticity’ (ARCH) in finance. To capture
non-stationary or “trend-like” behavior, polynomial bases have been considered. There are rich
connections to the theory of stochastic processes and information theory (cf. [22, 28, 42, 47]).
Popular time series models with latent structure are Hidden Markov Models (HMM) in probabilistic
form (cf. [10, 33] and Recurrent Neural Networks (RNN) in deterministic form (cf. [44]).

The question of learning time series models with missing data has received comparatively less
attention. A common approach is to utilize HMMs or general State-Space-Models to learn with
missing data (cf. [26, 48]). To the best of the authors’ knowledge, most work within this literature
is restricted to such class of models (cf. [27]). Recently, building on the literature in online learning,
sequential approaches have been proposed to address prediction with missing data (cf. [9]).

Time series and matrix estimation. The use of a matrix structure for time series analysis has
roughly two streams of related work: SSA for a single time series (as in our setting), and the use of
multiple time series. We discuss relevant results for both of these topics.

Singular Spectrum Analysis (SSA) of time series has been around for some time. Generally, it assumes
access to time series data that is not noisy and fully observed. The core steps of SSA for a given time
series are as follows: (1) create a Hankel matrix from the time series data; (2) perform a Singular
Value Decomposition (SVD) of it; (3) group the singular values based on user belief of the model
that generated the process; (4) perform diagonal averaging for the “Hankelization" of the grouped
rank-1 matrices outputted from the SVD to create a set of time series; (5) learn a linear model for
each “Hankelized" time series for the purpose of forecasting.

At the highest level, SSA and our algorithm are cosmetically similar to one another. There
are, however, several key differences: (i) matrix transformation—while SSA uses a Hankel matrix
(with repeated entries), we transform the time series into a Page matrix (with non-overlapping
structure); (ii) matrix estimation—SSA heavily relies on the SVD while we utilize general matrix
estimation procedures (with SVD methods representing one specific procedural choice); (iii) linear
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regression—SSA assumes access to fully observed and noiseless data while we allow for corrupted
and missing entries.

These differences are key in being able to derive theoretical results. For example, there have been
numerous recent works that have attempted to apply matrix estimation methods to the Hankel
matrix inspired by SSA for imputation, but these works do not provide any theoretical guarantees
[45, 46, 49]. In effect, the Hankel structure creates strong correlation of noise in the matrix, which is
an impediment for proving theoretical results. Our use of the Page matrix overcomes this challenge
and we argue that in doing so, we still retain the underlying structure in the matrix. With regards
to forecasting, the use of matrix estimation methods that provide guarantees with respect to MRSE
rather than standard MSE is needed (which SSA provides no theoretical analysis for). While we do
not explicitly discuss such methods in this work, such methods are explored in detail in [4]. With
regards to imputation, SSA does not provide direction on how to group the singular values, which
is instead done based on user belief of the generating process. However, due to recent advances in
matrix estimation literature, there exist algorithms that provide data-driven methods to perform
spectral thresholding (cf. [19]). Finally, it is worth nothing that to the best of the authors’ knowledge,
the classical literature on SSA seem to be lacking finite sample analysis in the presence of noisy
observations, which we do provide for our algorithm.

Multiple time series viewed as matrix. In a recent line of work [6, 7, 21, 40, 51, 53], multiple time
series have been viewed as a matrix with the primary goal of imputing missing values or de-noising
them. Some of these works also require prior model assumptions on the underlying time series. For
example in [53], as stated in Section 1, the second step of their algorithm changes based on the
user’s belief in the model that generated the data along with the multiple time series requirement.
In summary, to the best of our knowledge, ours is the first work to give rigorous theoretical
guarantees for a matrix estimation inspired algorithm for a single, univariate time series.

Recovering the hidden state. The question of recovering the hidden state from noisy observa-
tions is quite prevalent and a workhorse of classical systems theory. For example, most of the
system identification literature focuses on recovering model parameters of a Hidden Markov Model.
While Expectation-Maximization or Baum-Welch are the go-to approaches, there is limited the-
oretical understanding of it in generality (for example, see a recent work [52] for an overview)
and knowledge of the underlying model is required. For instance, [13] proposed an optimization
based, statistically consistent estimation method. However, the optimization “objective” encoded
knowledge of the precise underlying model.

It is worth comparing our method with a recent work [6] where the authors attempt to recover
the hidden time-varying parameter of a Poisson process via matrix estimation. Unlike our work,
they require access to multiple time series. In essence, our algorithm provides the solution to the
same question without requiring access to any other time series!

1.3 Notation

For any positive integer N, let [N] = {1, ..., N}. For any vector v € R”, we denote its Euclidean

(£2) norm by ||v||,, ar}d define ||v||5 = " v In general, the ¢, norm for a vector v is defined as
1
loll, = (22 lod?)

For a m X n real-valued matrix A = [A;}], its spectral/operator norm, denoted by ||A||, is defined
as ||All, = max;<;<k |oi|, where k = min{m, n} and o; are the singular values of A (assumed to
be in decreasing order and repeated by multiplicities). The Frobenius norm, also known as the
Hilbert-Schmidt norm, is defined as ||A||fT =X 20 A?j = Zle oZ. The max-norm, or sup-norm,
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is defined as || Al| ;0 = max; ; |A,- j|. The Moore-Penrose pseudoinverse A" of A is defined as

k k
A= Z(l/ai)yixiT, where A= Z aixiyiT,
i=1 i=1
with x; and y; being the left and right singular vectors of A, respectively.
For a random variable X we define its sub-gaussian norm as

1X1ly, = inf{t > 0: Eexp(X?/t?) < 2}.

If [|X|ly, is bounded by a constant, we call X a sub-gaussian random variable.

Let f and g be two functions defined on the same space. We say that f(x) = O(g(x)) if and only if
there exists a positive real number M and a real number x, such that for all x > xo, |f(x)| < M|g(x)|.
Similarly, we say f(x) = Q(g(x)) if and only if for all x > xo, |f(x)| = M|g(x)|.

1.4 Organization

In Section 2, we list the desired properties needed from a matrix estimation estimation method in
order to achieve our theoretical guarantees for imputation and prediction. In Section 3, we formally
describe the matrix estimation based algorithms we utilize for time series analysis. In Section 4,
we identify the required properties of time series models f under which we can provide finite
sample analysis for imputation and prediction performance. In Section 5, we list a broad set of time
series models that satisfy the properties in Section 4, and we analyze the sample complexity of our
algorithm for each of these models. Lastly, in Section 6, we corroborate our theoretical findings
with detailed experiments.

2 MATRIX ESTIMATION

2.1 Problem setup

Consider an m X n matrix M of interest. Suppose we observe a random subset of the entries of a
noisy signal matrix X, such that E[X] = M. For each i € [m] and j € [n], the (i, j)-th entry X;; isa
random variable that is observed with probability p € (0, 1] and is missing with probability 1 — p,

independently of all other entries. Given X, the goal is to produce an estimator M that is “close” to
M. We use two metrics to quantify the estimation error:

(1) mean-squared error,

n

MSE(M, M) := [E[i i (M;; - MU)Z]; (1)
mn =1 531
(2) max row sum error,
MRSE(M, M) := [E[i max (W —M,-J-)Z)l/z]. @)
Vi ilm] \ <

Here, Mij and M;; denote the (i, j)-th elements of M and M, respectively. We highlight that the
MRSE is a non-standard matrix estimation error metric, but we note that it is a stronger notion
than the RMSE(M, M)®; in particular, it is easily seen that MRSE(M, M) > RMSE(M, M). Hence,
for any results we prove in Section 4 regarding the MRSE, any known lower bounds for RMSE
of matrix estimation algorithms immediately hold for our results. We now give a definition of a
matrix estimation algorithm, which will be used in the following sections.

SRSECRE, M) - £ o (57, 27, - ) |

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



40:8 A. Agarwal et al.

Definition 2.1. A matrix estimation algorithm, denoted as ME : R™" — R™" | takes as input a
noisy matrix X and outputs an estimator M.

2.2 Required properties of matrix estimation algorithms

>

As aforementioned, our algorithm (Section 3.3) utilizes matrix estimation as a pivotal “blackbox’
subroutine, which enables accurate imputation and prediction in a model and noise agnostic
setting. Over the past decade, the field of matrix estimation has spurred tremendous theoretical and
empirical research interest, leading to the emergence of a myriad of algorithms including spectral,
convex optimization, and nearest neighbor based approaches. Consequently, as the field continues
to advance, our algorithm will continue to improve in parallel. We now state the properties needed
of a matrix estimation algorithm ME(:) to achieve our theoretical guarantees (formalized through
Theorems 4.1 and 4.2); refer to Section 1.3 for matrix norm definitions.

Property 2.1. Let ME satisfy the following: Define Y = [Y;;] where Yi; = X;; if X;; is observed,
and Y;; = 0 otherwise. Then, for all p > max(m, n)‘1+§ and some { € (0, 1), the produced estimator
M = ME(X) satisfies

—~ 2 1
M — M” < — G ||Y = pM]| ||pM]].. 3
5% - pM||_ < —culiy - pmi Ipmil, ©
Here, p © denotes the proportion of observed entries in X and C; is a universal constant.

We argue the two quantities in Property 2.1, ||Y — pM|| and ||M]|,, are natural. ||Y — pM|| quantifies
the amount of noise corruption on the underlying signal matrix M; for many settings, this norm
concentrates well (e.g., a matrix with independent zero-mean sub-gaussian entries scales as y/m++/n
with high probability [50]). || M]|, quantifies the inherent model complexity of the latent signal
matrix; this norm is well behaved for an array of situations, including low-rank and Lipschitz
matrices (e.g., for low-rank matrices, ||[M||, scales as v/rmn where 1 is the rank of the matrix, see
[19] for bounds on ||[M||, under various settings). We note the universal singular value thresholding
algorithm proposed in [19] is one such algorithm that satisfies Property 2.1. We provide more
intuition for why we choose Property 2.1 for our matrix estimation methods in Section 4.2, where
we bound the imputation error.

Property 2.2. Let ME satisfy the following: For all p > p*(m, n), the produced estimator M = ME(X)
satisfies

MRSE(M, M) < 85(m, n) (4)
where lim,, ,—c0 d3(m, n) = 0.

Property 2.2 requires the normalized max row sum error to decay to zero as we collect more
data. While spectral thresholding and convex optimization methods accurately bound the average
mean-squared error, minimizing norms akin to the normalized max row sum error require matrix
estimation methods to utilize “local" information, e.g., nearest neighbor type methods. For instance,
[54] satisfies Property 2.2 for generic latent variable models (which include low-rank models) with
p*(m,n) = 1; [36] also satisfies Property 2.2 for p*(m, n) > min(m, n)~'/?; [14] establishes this for
low-rank models as long as p*(m, n) > min(m, n)~1.

- 5 1 1
®Precisely, we define p = max{— X7 % ]'?:1 1 X observeds 7 1
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3 ALGORITHM
3.1 Notations and definitions

Recall that X(t) denotes the observation at time t € [T] where E[X(t)] = f(t). We shall use the
notation X[s : t] = [X(s), ..., X(#)] for any s < t. Furthermore, we define L > 1 to be an algorithmic
hyperparameter and N = |T/L] — 1. For any L X N matrix A, let A; = [Ar;]j<n represent the
the last row of A. Moreover, let A = [Aijli<L, j<n denote the (L — 1) X N submatrix obtained by
removing the last row of A.

3.2 Viewing a univariate time series as a matrix.

We begin by introducing the crucial step of transforming a single, univariate time series into the
corresponding Page matrix. Given time series data X[1 : T], we construct L different L X N matrices
X® defined as

X® =[x = [XG + G = DL+ (k = 1)i<L <N 5)

where k € [L]”. In words, X®) is obtained by dividing the time series into N non-overlapping
contiguous intervals each of length L, thus constructing N columns; for each k € [L], X (*) is the k-th
shifted version with starting value X (k). For the purpose of imputation, we shall only utilize X®.
In the case of forecasting, however, we shall utilize X®) for all k € [L]. We define M) analogously
to XX using f(t) instead of X(t).

3.3 Algorithm description

We will now describe the imputation and forecast algorithms separately (see Figure 1).
Imputation. Due to the matrix representation X(! of the time series, the task of imputing missing
values and de-noising observed values translates to that of matrix estimation.

(1) Transform the data X[1 : T] into the matrix X via the method outlined in Subsection 3.2.

(2) Apply a matrix estimation method (as in Definition 2.1) to produce M®) = ME(X®).

(3) Produce estimate: fi(i + (j - 1)L) := M.} for i € [L] and j € [N].
Forecast. In order to forecast future values, we first de-noise and impute via the procedure outlined
above, and then learn a linear relationship between the the last row and the remaining rows through
linear regression.

=(k) —

(1) For each k € [L], apply the imputation algorithm to produce M~ from X,
ONNE

)'v

(2) For each k € [L], define ﬁ(k> = argmin, g HXEk) - (M
2

(3) Produce the estimate at time ¢t > T as follows:
i) Letv, = [X(t—L+1): X(t—1)]and k = (¢ mod L) + 1.
=~ (k) ||

ii) Define a; = argmin, pn || =M «

o=k
iii) Let o/ = M a.
iv) Produce the estimate: fp(t) = ()T ﬁ(k).
Why X® is necessary for forecasting: For imputation, we are attempting to de-noise all obser-
vations made up to time T; hence, it suffices to only use X @ since it contains all of the relevant
information. However, in the case of making predictions, we are only creating an estimator for the

2

"Technically, to define each X (%), we need access to T’ = T + L time steps of data. To reduce notational overload and since
it has no bearing on our theoretical analysis, we let 77 = T.
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last row. Thus, if we take X! for instance, then it is not hard to see that our prediction algorithm
only produces estimates for X(L), X(2L), X(3L), ..., and so on. Therefore, we must repeat this
procedure L times in order to produce an estimate for each entry.

Choosing the number of rows L: Theorems 4.1 and 4.2 (and the associated corollaries) suggest
L should be as large as possible with the requirement L = o(N). Thus, it suffices to let N = L'*9 for
any 6 > 0, e.g., N = L2 = T2%/3,

4 MAIN RESULTS
4.1 Properties

We now introduce the required properties for the matrices X*) and M%) to identify the time series
models f for which our algorithm provides an effective method for imputation and prediction.
Under these properties, we state Theorems 4.1 and 4.2, which establish the efficacy of our algorithm.
The proofs of these theorems can be found in Appendices B and C, respectively. In Section 5, we
argue these properties are satisfied for a large class of time series models.

Property 4.1. (r, §;)-imputable
Let matrices X1 and MV satisfy the following:

A. Foreachi € [L] andj € [N]:

1 XS) are independent sub-gaussian random variables® satisfying [E[XS.)] = MS) and <o.

12

1)
S

@ . . i ; .
2. X;; is observed with probability p € (0, 1], independent of other entries.
B. There exists a matrix M,y of rank r such that for 5, > 0,

< 4.
max

.

Property 4.2. (Cp,d;)-forecastable
For all k € [L], let matrices X®) and M%) satisfy the following:

A. Foreachi € [L] andj € [N]:
1. ch) = Mgc) + €;j, where €;; are independent sub-Gaussian random variables satisfying E[e;;] = 0
and Var(e;j) < o,
(k) . . . ; :
2. X is observed with probability p € (0, 1], independent of other entries.

B. There exists a f**) € RL™! with | ﬁ*(k)”l < Cg for some constant Cg > 0 and §; > 0 such that

- o] <.

For forecasting, we make the more restrictive additive noise assumption since we focus on linear
forecasting methods. Such methods generally require additive noise models. If one can construct
linear forecasters under less restrictive assumptions, then we should be able to lift the analysis of
such a forecaster to our setting in a straightforward way.

8Recall that this condition only requires the per-step noise to be independent; the underlying mean time series f remains
highly correlated.
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4.2 Imputation

The imputation algorithm produces fI = fl(t)][:l;T as the estimate for the underlying time series
f = [f(t)]t=1.7- We measure the imputation error through the relative mean-squared error:

E

EV T, ©
712

Recall from the imputation algorithm in Section 3.3 that M(!) is the Page matrix corresponding
to f and M\ is the estimate ME produces; i.e. M) = ME(X™"). It is then easy to see that for any
matrix estimation method we have

MSE(f1. f) =

[EH 10 — mo|
_ F

MSE(fy, f) =

)
MO

Thus, we can immediately translate the (un-normalized) MSE of any matrix estimation method to
the imputation error MSE( fI, f) of the corresponding time series.

However, to highlight how the rank and the low-rank approximation error §; of the underlying
mean matrix M (induced by f) affect the error bound, we rely on Property 2.1, which eluci-
dates these dependencies through the quantity ||M]||,. Thus, we have the following theorem that
establishes a precise link between time series imputation and matrix estimation methods.

Theorem 4.1. Assume Property 4.1 holds and ME satisfies Property 2.1. Then for some Cy, Cy, Cs,cq4 >
0,

Cio (LNS;, VrLNS, VrN +C2(1—p)

— + + + Cye N, (3)
poVIFE  IAE LAl pLN ’

MSE(f1, f) <

Theorem 4.1 states that any matrix estimation subroutine ME that satisfies Property 2.1 will
accurately filter noisy observations and recover missing values. This is achieved provided that the
rank of M, and our low-rank approximation error §; are not too large. Note that knowledge of
r is not required apriori for many standard matrix estimation algorithms. For instance, [19] does
not utilize the rank of M in its estimation procedure; instead, it performs spectral thresholding of
the observed data matrix in an adaptive, data-driven manner. Theorem 4.1 implies the following
consistency property of ﬁ

Corollary 4.1. Let the conditions for Theorem 4.1 hold. Let || f||5 = Q(T) °. Further, suppose f is

min (261, €

(CsL'=¢2, C4L™% )-imputable for some €1, €, € (0,1) and Cs,Cs > 0. Then forp > L~
Jim MSE(f;, f) = 0.

We note that Theorem 4.1 follows in a straightforward manner from Property 2.1 and standard
results from random matrix theory [50]. However, we again highlight that our key contribution
lies in establishing that the conditions of Corollary 4.1 hold for a large class of time series models
(Section 5).

Note the condition ||f H% = Q(T) is easily satisfied for any time series f by adding a constant shift to every observation

f@).
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4.3 Forecast

Recall fp(t) can only utilize information until time ¢ — 1. For all k € [L], our forecasting algorithm
learns B*) with the previous L — 1 time steps. We measure the forecasting error through:

MSE(fr, f) = = - f]]. ©)

Here, fp = fF(t)]t: .1 denotes the vector of forecasted values. The following result relies on a
novel analysis of how applying a matrix estimation pre-processing step affects the prediction error
of error-in-variable regression problems (in particular, it requires analyzing a non-standard error
metric, the MRSE).

Theorem 4.2. Assume Property 4.2 holds and ME satisfies Property 2.2, with p > p*(L, N)'°. Let
=(k)
7 := max rank(M ). Then,
ke[L]

MSE(f, f) < Nl_ - ((52 + \/C,TN&)Z + 252f).

Note that  is trivially bounded by L = o(N) by assumption (see Section 3). If the underlying matrix
M is low-rank, then ME algorithms such as the USVT algorithm (cf. [19]) will output an estimator
with a small 7. However, since our bound holds for general ME methods, we explicitly state the
dependence on 7.

In essence, Theorem 4.2 states that any matrix estimation subroutine ME that satisfies Property
2.2 will produce accurate forecasts from noisy, missing data. This is achieved provided the linear
model approximation error §; is not too large (recall §5 = o(1) by Property 2.2). Additionally,

Theorem 4.2 implies the following consistency property of fr.

Corollary 4.2. Let the conditions for Theorem 4.2 hold. Suppose f is (C1, CoVNL™€)-forecastable for
anye€;,C1,Cy > 0andN = L1+d forany & > 0. Then forp > p*(L, N), such thatlimy, N 53(L,N) = 0
forp*(L,N),

lim MSE(fr. ) = 0.

Similar to the case of imputation, a large contribution of this work is in establishing that the
conditions of Corollary 4.2 hold for a large class of time series models (Section 5). Effectively,
Corollary 4.2 demonstrates that learning a simple linear relationship among the singular vectors
of the de-noised matrix is sufficient to drive the empirical error to zero for a broad class of time
series models. The simplicity of this linear method suggests that our estimator will have low
generalization error, but we leave that as future work.

We should also note that for auto-regressive processes (i.e., f(t) = Z§=1 ag f(t—1)+e(t) where e(t)
is mean zero noise), previous works (e.g., [37]) have already shown that simple linear forecasters
are consistent estimators. For such models, it is easy to see that the underling mean matrix M) is
not (approximately) low-rank, and so it is not necessary to pre-process the data matrix via a matrix
estimation subroutine as we propose in Section 3.3.

5 FAMILY OF TIME SERIES THAT FIT OUR FRAMEWORK

In this section, we list out a broad set of time series models that satisfy Properties 4.1 and 4.2, which
are required for the results stated in Section 4. The proofs of these results can be found in Appendix
D. To that end, we shall repeatedly use the following model types for our observations.

10Refer to Section 2.2 for lower bounds on p*(L, N) for various ME algorithms. The dependence of the bound on p is
implicitly captured in Js.
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Model Type 1. For any t € Z, let X(t) be a sequence of independent sub-gaussian random variables
with E[X(#)] = f(¢) and [|X(#)[|y, < o. Note the noise on f(¢) is generic (e.g., non-additive).

Model Type 2. For t € Z, let X(t) = f(t) + e(t) where €(t) are independent sub-gaussian random
variables with E[e(t)] = 0 and Var(e(t)) < o2

5.1 Linear recurrent functions (LRFs)
Fort e Z,let

G
W = D agf(t—g). (10)
g=1

Proposition 5.1.

(i) Under Model Type 1, f'RF satisfies Property 4.1 with §; = 0 and r = G''.
(ii) Under Model Type 2, f'¥F satisfies Property 4.2 with 8, = 0 and Cp = CG for all k € [L] where
C > 0 is an absolute constant.

By Proposition 5.1, Theorems 4.1 and 4.2 give the following corollaries:

Corollary 5.1. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L'*° for any
6 > 0. Then for some C > 0, if
2+6
G
58277‘07' '

Corollary 5.2. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L'*® for any
8 > 0. Then for some C > 0, if

T>C-

we have MSE(f7, fY8F) < Serror.

2+8

s

2
T>C- 0.—2
5error - G53

we have MSE(fF, FIREY < Serror

We now provide the rank G of an important class of time series methods—a finite sum of the product
of polynomials, harmonics, and exponential time series functions.

Proposition 5.2. Let P, be a polynomial of degree m,. Then,

A

f(@) = Z exp{agt} cos(2rwat + ¢g)Pp, (1)

a=1

admits a representation as in (10). Further the order G of f(t) is independent of T, the number of
observations, and is bounded by

G < A(Mmax + 1)(Mmax + 2)

where Mpmayx = MaxXg e My.

HTo see this, take G = 2 for example. WLOG, let us consider the first column. Then f(3) = £(2) + f(1), which in turn gives
f4) =f@3)+f(2) =2f(2)+ f(1) and f(5) = f(4) + f(3) = 3f(2) + 2f(1). By induction, it is not hard to see that this holds

more generally for any finite G.
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5.2 Functions with compact support
Fort e Z, let

FEmR(e) = g(p(1)) (11)

where ¢ : Z — [-Cy, C1] takes the form ¢(t +s) = 216:1 aja;(t)by(s) with a; € [-Cy,Cs],a; : Z —
[0,1],b; : Z — [0,1]; and g : [-C1,C1] — R is L-Lipschitz for some Cy,C, > 0.

Proposition 5.3. Foranye € (0, 1),

(i) Under Model Type 1, fCOmPa<t satisfies Property 4.1 with §; = CL—;C and r = LO¢ for some C > 0.
(ii) Under Model Type 2, fCO™P2t satisfies Property 4.2 with 8, = 28, VN and Cp =1 forallk € [L].

Using Proposition 5.3, Theorems 4.1 and 4.2 immediately lead to the following corollaries.

Corollary 5.3. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L**® for any
& > 0. Then for some C > 0 and any € € (0, 1), if
)2+§

1 \ree (L
rzo\(n) " (5
( 5ermr ’ 5error
Corollary 5.4. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L'*% for any
8 > 0. Then for some C > 0 and any € € (0, 1), if

%ﬁ

2

T> c( 2 2) :
5err0r_ (Lée +53)

o=

we have MSE(fI,fLRF) < Serror

we have MSE(fF, FEREY < Serror

As the following proposition will make precise, any Lipschitz function of a periodic time series
falls into this family.

Proposition 5.4. Let

fHarmonic 4y _ ZR: qor( sin(27r eyt + ¢))’ (12)
r=1

where ¢, is L,-Lipschitz and w, is rational, admits a representation as in (11). Let xjc,, denote the
fundamental period.'? Then the Lipschitz constant £ of fH&moni¢(¢) is bounded by

L <27 - max(L,) - max(wy) - Xiem-
reR reRr

2The “fundamental period”, Xiem, of {@1, - . ., @G} is the smallest value such that Xjc/(qa/pa) is an integer for all

a € A Let S = {qa/pa : g € G} and let pjy be the least common multiple (LCM) of {p, . . ., pG }. Rewriting S as

{ql *plcm/Pl q9G *plcm/pG
Plem B Plem

and we define their LCM as dj¢py,. It is easy to verify that Xjcy, = dlem/Plem 1S indeed a fundamental period. As an example,
consider x = {n, n/2, n/3, ..., n/n — 1}, in which case the above computation results in xj., = n.

}, we have the set of numerators, {q1 * piem/P1> - - -» 4G * Plem/PA } are all integers
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5.3 Finite sum of sublinear trends

Consider f Trencl(t) such that
d Trendt
’% <Ct @ (13)

for some «,C, > 0.

f nd(r)

Proposition 5.5. Let < Cit™“ for some a,C, > 0. Then for any € € (0, @),

(i) Under Model Type 1, fTre“d satisfies Property 4.1 with §; = % andr = L¢/* + L_ng/a
(i) Under Model Type 2, fTr"d satisfies Property 4.2 with 8, = 28; VN and Cp =1 forallk € [L].

By Proposition 5.5 and Theorems 4.1 and 4.2, we immediately have the following corollaries on the
finite sample performance guarantees of our estimators.
Corollary 5.5. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L'*® for any
8 > 0. Then for some C > 0, if
2+8
T>C _
=~ siarn)/a ’

error

we have MSE(f7, fYRF) < Serror.

Corollary 5.6. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L'*® for any
8 > 0. Then for some C > 0 and for any € € (0, ), if

2+8

o? °
T>C- ,
5error - (L_E/z + 63)2

we have MSE(fr, %) < Serror.
Proposition 5.6. Fort € Z withay, < 1 forb € [B],

Trend Z Yut ap Z log )/q (14)

admits a representation as in (13).

5.4 Additive mixture of dynamics

We now show that the imputation results hold even when we consider an additive mixture of any
of the models described above. For t € Z, let

M1xture(t Z quq (15)
Here, each f; is such that under Model Type 1 Wlth E[X(t)] = f4(t), Property 4.1 is satisfied with
61 =d6gandr = ry for q € [Q].
Proposition 5.7. Under Model Type 1, fM*Ure satisfies Property 4.1 with §; = 23:1 pqdq and
r= ZqQ=1 rq
Proposition 5.7 and Corollary 4.1 imply the following.
Corollary 5.7. Under Model Type 1, let the conditions of Theorem 4.1 hold. For each q € [Q], let
8q < CiL % andry = o(L) for some eq, C;; > 0. Then, limr_,co MSE( (fy, fMixture)
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In summary, Corollaries 5.1, 5.3, 5.5 and 5.7 imply that for any additive mixture of time series dynamics
coming from fURE, fCompact qp g fTrend ‘tpe qloorithm in Section 3.2 produces a consistent estimator
for an appropriate choice of L.

5.5 Hidden State

Latent

et () () ()

Fig. 2. Hidden State Model with E[X(#)] = f(¢) and [|X(8)lly, < o

A common problem of interest is to uncover the hidden dynamics of latent variables given noisy
observations. For example, consider the problem of estimating the true weekly demand rate of
umbrellas at a retail store given its weekly sales of umbrellas. This can be mathematically described
as uncovering the underlying parameters of a time varying truncated Poisson process '* whose
samples are the weekly sales reports, (cf. [6]). In general, previous methods to learn the hidden
states either require multiple time series as inputs or require that the underlying noise model is
known (refer to Section 1.2 for a detailed overview).

In contrast, by viewing f(t) as the time-varying latent variables (see Figure 2), we are well
equipped to handle more generic noise distributions and complicated hidden dynamics. Specifically,
our imputation and forecast algorithms can uncover the latent dynamics if: (i) per-step noise is sub-
gaussian (additive noise is needed for forecasting); (ii) E[X(¢)] = f(t). Moreover, our algorithm is
model and noise agnostic, robust to missing entries, and comes with strong theoretical consistency
guarantees (Theorems 4.1 and 4.2). Given these findings, our approach is likely to become a useful
gadget in the toolkit for dealing with scenarios pertinent to uncovering latent states a la Hidden
Markov-like models. We corroborate our findings through experiments in Section 6.

5.6 Sample complexity

As discussed, our algorithm operates for a large class of models—it is not tailored for a specific
model class (e.g., sum of harmonics). In particular, for a variety of model classes, our algorithm
provides consistent estimation for imputation while the forecasting MSE scales with the quality of
the matrix estimation algorithm §s. Naturally, it is expected that to achieve accurate performance,
the number of samples T required will scale relatively poorly compared to model specific optimal
algorithms. Corollaries 5.1 - 5.6 provide finite sample analysis that quantifies this “performance
loss” and indicates that this loss is minor. As an example, consider imputation for any periodic time
series with periods between [n]. By proposition 5.2, it is easy to see that the order G of such a time
series is 2n. Thus, corollary 5.1 indicates that the MSE decays to 0 with T ~ n?*% for any § > 0 as
n — oo. For such a time series, one expects such a result to require T ~ nlogn even for a model
aware optimal algorithm.

3Recall that a truncated Poisson random variable Y(¢) is defined as Y(#) = min{X(t), C}, where C denotes a positive,
bounded constant and X(¢) = Poisson(f(¢)).
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6 EXPERIMENTS

We conduct experiments on real-world and synthetic datasets to study the imputation and predic-
tion performance of our algorithm for mixtures of time series processes under varying levels of
missing data. Additionally, we present the applicability of our algorithm to the hidden state setting
(see Section 5.5).

Mixtures of time series processes. For the synthetically generated datasets, we utilize mixtures
of harmonics, trend, and auto-regressive (AR) processes with Gaussian additive noise (since AR
is effectively a noisy version of LRF). When using real-world datasets, we are unaware of the
underlying time series processes; nevertheless, these processes appear to display periodicity, trend,
and auto-regression.

Comparisons. For forecasting, we compare our algorithm to the state-of-the-art time series fore-
casting library of R, which decomposes a time series into stationary auto-regressive, seasonal, and
trend components. The library learns each component separately and combines them to produce
forecasts. Given that our synthetic and real-world datasets involve additive mixtures of these
processes, this serves as a strong baseline to compare against our algorithm. We note that we do
not outperform optimal model-aware methods for single model classes with all of the data present,
at least as implemented in the R-package. However, these methods are not necessarily optimal
with missing data and/or when the data is generated by a mixture of multiple model types, which
is the setting in which we see our model agnostic method outperform the R-package. For our
imputation experiments, we compare our algorithm against AMELIA 1II ([31]), which is another
R-based package that is widely believed to exhibit excellent imputation performance.

Metric of evaluation. Our metric of comparison is the root mean-squared error (RMSE).

Algorithmic hyper-parameters. For both imputation and forecasting, we apply the Universal
Singular Value Thresholding (USVT) algorithm ([19]) as our matrix estimation subroutine. We
use a data-driven approach to choose the singular value threshold p and the number of rows in
the time series matrix L in our algorithm. Specifically, we reserve 30% of our training data for
cross-validation to pick p and L.

Summary of results. Details of all experiments are provided below. Recall that p is the probability
of observation of each datapoint.

Synthetic data: For forecasting, we determine the forecast RMSE of our algorithm and R’s forecast
library (see below for how the synthetic data was generated). Our experimental results demonstrate
that we outperform R’s forecast library, especially under high levels of missing data and noise. For
imputation, we outperform the imputation library AMELIA under all levels of missing data.

Real-world data: We test against two real world datasets: (i) Bitcoin price dataset from March 2016
at 30s intervals; (ii) Google flu trends data for Peru from 2003-2012. In both cases, we introduce
randomly missing data and then use our algorithm and R’s forecast library to forecast into the
future. Corroborating the results from the synthetic data experiments, our algorithm’s forecast
RMSE continues to be lower than that of the R library.

Hidden State Model: We generate a time series according to a Poisson process with latent time-
varying parameters. These parameters evolve according to a mixture of time series processes, i.e.,
sum of harmonics and trends. Our interest is in estimating these time-varying hidden parameters

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



40:18 A. Agarwal et al.

True Means vs Predictions (p = 0.3) True Means vs Predictions (p = 0.5)

lgorithm) ithm)

(a) 70% data missing.
True Means vs Predictions (p = 1.0)

True Me:

(c) No data missing.

Fig. 3. Plots for three levels of missing data (p € {0.3,0.5, 1}) showing the original time series (means) and
forecasts produced by the R-library (baseline) and our algorithm.

using one realization of integer observations, of which several are randomly missing. For p ranging
from 0.3 to 1.0, the imputation RMSE is always < 0.2 while the R? is always > 0.8, which should
be considered excellent. This illustrates the versatility of our algorithm in solving a diverse set of
problems.

6.1 Synthetically generated data

We generate a mixture process of harmonics, trend, and auto-regressive components. The first
70% of the data points are used to learn a model (training) and point-predictions, i.e., forecasts are
performed on the remaining 30% of the data. In order to study the impact of missing data, each
entry in the training set is observed independently with probability p € (0, 1].

Forecasts. Figures 3a-3c visually depict the predictions from our algorithm when compared to the
state-of-the-art time series forecasting library in R. We provide the R library the number of lags of
the AR component to search over, in effect making its job easier. It is noticeable that the forecasts
from the R library always experience higher variance. As p becomes smaller, the R library’s forecasts
also contain an apparent bias. These visual findings are confirmed in Figure 4b, which shows that
our algorithm produces a lower RMSE than that of the R forecasting library when working with
mixtures of AR, harmonic, and trend processes; in particular, our algorithm’s RMSE ranges from
[0.03,0.11] vs. [0.09, 0.16] for R’s forecasting library.

Imputation. Figure 4a shows that our algorithm outperforms the state-of-the-art AMELIA library
for multiple time series imputation under all levels of missing data. The RMSE of our algorithm
ranged between [0.09,0.13] vs. [0.14, 0.24] for AMELIA. Note that AMELIA is much better than
the baseline, i.e., imputing all missing entries with the mean.

Note that this experiment involved multiple time series where the outcome variable of interest
and the log of its squared power were also included. The additional time series components were
included to help AMELIA impute missing values because it is unable to impute missing entries in a
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Imputation RMSE vs p Prediction RMSE vs p
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(a) Imputation RMSE (mixture AR, har- (b) Prediction RMSE (mixture AR, harmonic,
monic, trend). trend).

Fig. 4. Plots showing the Imputation and Prediction RMSE as a function of p.

single time series. However, our algorithm did not use these additional time series; instead, our
algorithm was only given access to the original time series with missing, noisy observations.

6.2 Real-world data

We use two real-world datasets to evaluate the performance of our algorithm in situations where
the identities of the time series processes are unknown. This set of experiments is intended to
highlight the versatility of our algorithm and applicability to practical scenarios involving time
series forecasting. We again highlight that for the following datasets, we do not know the true
mean processes. Therefore, it is not possible to generate the metric of interest (RMSE) using the
means. Instead, we use the observations themselves as the reference to compute the metric.

Bitcoin. Figures 5a and 5b show the forecasts for Bitcoin prices (in Yuans) in March 2016 at regular
30s time intervals, which demonstrates classical auto-regressive properties. We provide a week’s
data to learn and forecast over the next two days. Figure 5a shows that our algorithm and the R
library appear to do an excellent job of predicting the future even with 50% data missing. Figure
5b shows the RMSE of the predictions for our algorithm and the R library as a function of p; our
algorithm had RMSE’s in the range [0.55, 1.85] vs [0.48, 2.25] for the R library, for p ranging from
1.0 to 0.5 (note that prices are not normalized). This highlights our algorithm’s strength in the
presence of missing data.

Google flu trends (Peru). Figures 6a and 6b show the forecasts for Google flu search-trends in
Peru which shows significant seasonality. We provide weekly data from 2003-2012 to learn and
then forecast for each week in the next three years. Figure 6a shows that our algorithm outperforms
R when predicting the future with 30% data missing. Figure 6b shows the RMSE of the predictions
as a function of p indicating outperformance of our algorithm under all levels of missing data; our
algorithm had RMSE’s in range [8.0, 17.5] vs. [9.0, 26.0] for the R library, with p ranging from 1.0
to 0.5 (note that prices are not normalized).

6.3 Hidden state

We generate a time series from a Poisson process with time-varying parameters, which are hidden.
These parameters evolve according to a mixture of sums of harmonics and trends. Our interest is in
estimating these time-varying hidden parameters using one realization of integer observations, of
which several are randomly missing. Specifically, each point in the original time series is a Poisson
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Fig. 5. Bitcoin price forecasts and RMSE as a function of p.
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Fig. 6. Peru’s Google flu trends forecasts and RMSE as a function of p.

random variable with parameter A(t), i.e., X(¢) ~ Poisson(A(¢)). Further, we let A(¢) = f(¢), where
f(t) is a time-dependent sum of harmonics and logarithmic trend components. Each X(¢) is then
observed independently with probability p to produce a random variable Y(¢). We normalize all
parameters and observations to lie between [—1, 1]. Observe that E[Y(¢)] = pA(¢). Note that this
is similar to the settings described earlier in this work. It is important to highlight that we have
imposed a generic noise model as opposed to an additive noise model. Our goal is to estimate the
mean time series process under randomly missing data profiles.

Figures 7a-7b show the mean time series process can be estimated via imputation using the
algorithm proposed in our work. These two plots show the original time series (with randomly
missing data points set to 0), the true means and our estimation. With only 1% missing data, our
algorithm is able to impute the means accurately with the performance degrading slightly with
10% missing data. We note that these are relatively small datasets with only 25,000 points. Figure
7d shows the same process under 10% missing data but for 50,000 data points. As expected, our
algorithm performs better when given access to a greater number of data points.

Figure 7c shows plots of RMSE and R? for the imputed means of the process. Note these apply to
the smaller time series of 25,000 data points. The metrics are computed only on the data points
that were missing. Observe that the R? value rises while the RMSE falls as p increases. Both of
these profiles confirm our intuition that the imputation improves as a function of p. Overall, our
performance is fairly robust (RMSE < 0.2 and R? > 0.8) under all levels of missing data.
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Time Series of Poisson Random Variables, p = 0.99 ‘Time Series of Poisson Random Variables, p = 0.90
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Fig. 7. Imputation of the means of a Poisson time series. The first three plots correspond to the time series
with 25,000 data points and a resulting matrix of dimension 50 X 500. The last figure is for the same process,
but with twice as much data and matrix dimensions of 100 X 500. Note that the randomly missing observations
are set to 0 and the entire process is normalized to lie between [-1, 1].

7 CONCLUSION

In this paper, we introduce a novel algorithm for time series imputation and prediction using
matrix estimation methods, which allows us to operate in a model and noise agnostic setting. At
the same time, we offer an alternate solution to the error-in-variables regression problem through
the lens of matrix estimation. We provide finite sample analysis for our algorithm, and identify
generic conditions on the time series model class under which our algorithm provides a consistent
estimator. As a key contribution, we establish that many popular model classes and their mixtures
satisfy these generic conditions. Using synthetic and real-world data, we exhibit the efficacy of
our algorithm with respect to a state-of-the-art software implementation available through R. Our
experimental results agree with our finite sample analysis. Lastly, we demonstrate that our method
can provably recover the hidden state of dynamics, which could be of interest in its own right.
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A USEFUL THEOREMS

Theorem A.1. Bernstein’s Inequality. [12]
Suppose that X1, . .., X, are independent random variables with zero mean, and M is a constant such
that |X;| < M with probability one for each i. Let S := 3.7 | X; and v := Van(S). Then for anyt > 0,

PUS| = 1) < 2 3¢
ex _ .
-0 P 6v + 2Mt

Theorem A.2. Norm of matrices with sub-gaussian entries. [50]
Let A be an m X n random matrix whose entries A;j are independent, mean zero, sub-gaussian random
variables. Then, for anyt > 0, we have

Al < CK(Vm +vn +1t)
with probability at least 1 — 2 exp(—t?). Here, K = max; ; ||Aif||¢z'
B IMPUTATION ANALYSIS

Lemma B.1. Let X be an L X N random matrix (with L < N) whose entries X;; are independent
sub-gaussian entries where E[X;;] = M;; and ”XU’“% < 0. Let Y denote the L X N matrix whose
entries Y;; are defined as

Yo = {Xl’f wp-p,
ij
0 w.p.1—p,
for some p € (0,1]. Let p = max {ﬁ ZiLzl Zjlil Lx,; observeds ﬁ} Define events E; and E, as
By = {1p - pl < p/20}, (16)
Ey = {||Y—pM|| < claw/ﬁ}. 17)
Then, for some positive constant c¢;
P(Ey) > 1 —2e"INP _ (1 — p)IN, (18)
P(E;) > 1—2eN. (19)

ProoF. Let po = ﬁ Zle ij\il 1x,; observed> Wwhich implies E[py] = p. We define the event E :=
{po = p}. Thus, we have that

P(ET) = P(E] N E3) + P(E] N E5)
= P(|po — pl > p/20) + P(ES N E5)
< P(lpo — p| = p/20) + P(ES)
= P(lpo — p| = p/20) + (1 — p)*V,

where the final equality follows by the independence of observations assumption and the fact that
po # p only if we do not have any observations. By Bernstein’s Inequality, we have that

P(lpo — pl < p/20) > 1 — 2e"1LNP,
Furthermore, since E[Y;;] = pM;;, Theorem A.2 yields
P(Ey) > 1—2¢V.

]
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Corollary B.1. Let E := E; N E,. Then,
P(E) < Cre™ N, (20)
where Cy and c; are positive constants independent of L and N.
Proor. By DeMorgan’s Law and the Union Bound, we have that
P(E) = P(E] VEY)

< P(E]) + P(E3)

< Cre N, (21)
where Cy, ¢; > 0 are appropriately defined, but are independent of L and N. O

Lemma B.2. Let M) be defined as in Section 4.1 and satisfy Property 4.1. Then,
HM‘” < LVNGS; + VrLN&; + Vr|IM||f.

PRrOOF. By the definition of M) and the triangle inequality property of nuclear norms,

e M,

< “M(l) - M

¢ VE[M© - M|

o+ Mo

< VNG, + Mo

Note that (a) makes use of the fact that ||Q||, < «/rank(Q)||Q|| for any real-valued matrix Q and
(b) utilizes Property 4.1. Since rank(M,)) = r, we have ”M(r) LS ||M(r)||F. Applying triangle
inequality and Property 4.1 again further yields

Ml < My = M|, + [IMIlz < VLNS, + |M]| .

This completes the proof. O

Theorem (4.1). Assume Property 4.1 holds and ME satisfies Property 2.1. Then for some Cy, Cy, C3, ¢4 >
0,

cy N

+ Cge_

Clc(LNCS] \/V_LN(Sl \/m) + CZ(l _P)

MSE(f;, f) € — + +
e VT F A FTERA T AT

Proor. By (7), it suffices to analyze the time series imputation error by measuring the relative
mean-squared error of M. For notational simplicity, let us drop the superscripts on M) and M®.
Let E := E; N Ep, where E; and E, are defined as in Lemma B.1. By the law of total probability, we
have that

—~ 2 —~
el - e < 1 -

1|E] +[E[||A2—M

2 C C
IE ][P(E ). (22)

We begin by bounding the first term on the right-hand side of (22). By Property 2.1 and assuming
E occurs, we have that

o~ 2
5% - oM < cilly - pmMilIpMIl. < CooV M.
Therefore,

—~ 2 —~ 2
i <]
ol =
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<GCs

—~ 2
5% - pM]|_+ 35 - pPIMIE
< CapaVN M, + Cs3(p - p) I f1I2

for an appropriately defined C,. Observe that E(p — p)*> = p(1 — p)/LN. Thus using Corollary B.1
and taking expectations, we obtain

Cs(1-p)lIfll3
LN

—~ 2
¥ - M|, < cotoVN M. + + Csll fllzeesN.

Normalizing by || f ||§ gives

CioVN M. Cs(1-p)

2 C5€_CGN
pIfIS pLN

MSE(f;, f) <

Invoking Lemma B.2, we obtain

MSE(. f) < S22 LN521 . \/r_LNzél L VNY L G -p)
pAIfI Nfll; Wfl) o pIN

The proof is complete after relabeling constants.

+ C5€7C6N.

O
C FORECAST ANALYSIS
Let us begin by analyzing the forecasting error for any k € [L].
Lemma C.1. Foreachk € [L], assume Property 4.2 holds and ME(:) satisfies Property 2.2. Then,
. 2 2
B> ( Folt) f(t)) < (52 " cﬁN(sg) + 2025, (23)
teSy
=(k)
Here, Sg := {t € [T] : (¢t mod L)+ 1 =k} and f := rank(M ).
Proor. Observe that we can write
® 2910l . 2
E|ME - HTAO) =E| S (fen - £0) | (24)
2 teSy

~ ~ =(k)
For notational simplicity, let Q := (M®)T and Q := (M ). Similarly, we will drop all superscripts
(k) throughout this analysis for notational ease. Recall X = My +e€r. Then note that by the definition
of the optimization in step 2 of the forecast algorithm,

—~ A2 ~ 12
[ - 28], = |- 02,
~ 2 —~
[} - @8 + Ll + 2€f 1z - G, (25)
Moreover,
—~ 2 — |2 ~

o - 04|, = |me - @B+ ewt? - 2€] @B - o). (26)

Combining (25) and (26) and taking expectations, we have

2 ~ A
,* 2E[e; Q( — B7)]- (27)

—~ A|12 —-
e -0, < -0
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Let us bound the final term on the right hand side of (27). Under our independence assumptions,
observe that

E[ef Q1" = E[e] JE[Q]S" = 0. (28)

Recall ﬁ = @TX L= QTML + QTEL. Using the cyclic and linearity properties of the trace operator
(coupled with similar independence arguments), we further have

Ele] QF] = Ele] 0Q"IM, + E[e] Q0]

([r(400'a)]

(fr(ea'ac)

- Tr(E[Q0") - Fler€] )

< aZ[E[Tr(QQT)]. (29)

Let é = USVT be the singular value decomposition of Q Then

00f =usvTvstu”
=UIU". (30)

Here, I is a block diagonal matrix where its nonzero entries on the diagonal take the value 1.
Plugging in (30) into (29), and using the fact that the trace of a square matrix is equal to the sum of
its eigenvalues,

aZ[E[Tr(Q(jT)] - o2F[rank(Q)]. (31)

We now turn our attention to the first term on the right hand side of (27). By Property 4.2, we
obtain

|- 087 - [a - 0-0+ 008,
< ML= QF'll, + (@ - Q)F|
<8+ |[(Q-QF| -
Thus we have that
tle-0p|, - [E”(M' - M)p (32
2
L-1 N . 1/2
< > 18] E| ( S0t - M) l (33)
i=1 =1
N 5\ 1/2
<181 - E|( max >0, - M,)?) (34)
i< J=1
= CpVN - MRSE(M, M). (35)
Putting everything together, we obtain our desired result. O
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Theorem (4.2). Assume Property 4.2 holds and ME satisfies Property 2.2, with p > p*(L, N). Let
=(k)

7 := max rank(M ). Then,
ke[L]

MSE(fr, ) < Nl_ (62 + \JCaN& ) + 20%%)

Proor. For simplicity, define §(k) := (52 + VNS3)? + 2027y By Lemma C.1, for all k € [L] we have

E

> (frt- f(t))zl < 5(6). (36)

teSy

Let Spax := (82 + 1/CﬁN§3)2 +20%F. Recall S := {t € [T]: (¢t mod L) + 1 = k}. Then, it follows that

r 5max
MSE(fF, f) < N_1

D MODEL ANALYSIS

We first define a somewhat technical Property D.1, that will aid us in proving that the various
models in Section 5 satisfy Property 4.1 and 4.2. Recall f is the underlying time series we would
like to estimate. Define ny : Z X Z — R such that

Ni(0i, pj) = f(i+ (G = DL+ (k - 1)), (37)
where §; = iand p; = (j — 1)L + (k - 1).

Intuitively, (37) is representing f(t) as a function of two parameters: §; = iand p; = (j—1)L+(k—1).
As a result, we can express f as a latent variable model, a representation which is very amenable
to theoretical analysis in the matrix estimation literature. Specifically, [Mgc)] = [7%(0i, pj)] by the
construction of M), Effectively, the latent parameters (6;, pj) encode the amount of shift in the
argument to f(t) so as to obtain the appropriate entry in the matrix M%),

Property D.1. For all k € [L], let matrices X©) and M) satisfy the following:
A. Foreachi € [L] andj € [N]:

(k) ; : ; : (k)7 _ as0) (k)
1. X;;* are independent sub-gaussian random variables with E[X;;"] = M;;” and HXij <o.

Y2

2. Xg.() is observed with probability p € (0, 1], independently.
B. There exists M(;) € RPN such that:

1. My has ry distinct rows wherery < L.

2. ”M(k) - M(r)“ < 44.

max

We begin with Proposition D.1, which motivates the use of linear methods in forecasting.

Proposition D.1. For all k € [L], let M), defined as in Section 4.1, satisfy Property D.1. Then, there
exists a f* such that

M - @9y || < 28V,

where ||*]|, = 1.

Proor. We drop the dependence on k from M) and 5. for notational convenience. Furthermore,
we prove it for the case of k = 1 since the proofs for a general k follow from identical arguments
after first making an appropriate shift in the entries of the matrix of interest. Assume we have
access to data from X[1:T + ry — 1]. Let us first construct a matrix with overlapping entries,
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M = [My;] = [f(i +j - 1)], of dimension L x (T + ry — 1). We have M;; = (6;, §;) with §; = i and
pj = (j — 1), where 7 is as defined in (37). By construction, the skew-diagonal entries from left to
right of M are constant, i.e.,

My o= {Mgjij: 1 Sk=j<L1<i+j<T+r—1} (38)

Under this setting, we note that the columns of M are subsets of the columns of M. Specifically, for
al0 < j<Nandk <L,

Mk,jLH = Mg j.1. (39)
Analogously to how M was constructed with respect to M, we define M(,) with respect to M.
Observe that by construction, every entry within M exists within M. Hence, Mi, j=Myjy, Mir]) =

(r) YA
Mi,’j, for some (i’, j’), and

‘Mi,j - M| - )M,—,,— - M)
< “M - M(’)“max
< b4y

where the inequality follows from Condition B.2 of Property D.1.
By Condition B.1 of Property D.1 and applying the Pigeonhole Principle, we observe that within
the last r4 + 1 rows of M), at least two rows are identical. Without loss of generality, let these

two rows be denoted as M(Lr_)r1 = [M(Lr_)rbi] i<y and M(Lr_)r2 = [M(Lr_)rz,l.]iSN, respectively, where
rie€{l,....,ra—1},rp € {2,...,r4}, and r; < r;. Consequently, it must be the case that the same
two rows in M, are also identical;ie., foralli < T +ry — 1,
—(r) —(r)
ML—rl,l = ML—rg,l (40)
Using this fact, we have that foralli < T +ry — 1,
— v — =0 | | = | )=o)
Mp i —=Mp_p, | < ’MLfrl,i =Mz il MLy — M2, |+ ‘ML,”J Mo, | <284, (41)

where the last inequality follows from (40) and the construction of M(r). Additionally, by the

skew-diagonal property of M as described above by (38), we necessarily have the following two
equalities:

MLi = ML—h,r1+i (42)
ML—A,«,i = ML—rz,rﬁi’ (43)
where A, = ry — ri. Thus, by (41), (42), and (43), we obtain for all i < T,

|MLi —Mp_p,,i

= )MLfrl,rl-#i = Mpry i
< 26;. (44)
Thus, applying (39) and (44), we reach our desired result, i.e., for all i < N,
|Mpi = Mi—a,.i| < 284 (45)
Recall M = [M;jli<r,j<n excludes the last row of M. From above, we know that there exists some
row £ := L — A, < Lsuch that ||Mp — M|, < 26, VN. Clearly, we can express
M¢ = Mg, (46)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



Model Agnostic Time Series Analysis via Matrix Estimation 40:31

where * € RL71 is a 1-sparse vector with a single nonzero component of value 1 in the ¢th index.
This completes the proof.
m]

Corollary D.1. Forallk € [L], let M), defined as in Section 4.1, satisfy Property D.1 with 64, 14.
Then M%) obeys,

(i) Under Model Type 1, Property 4.1 is satisfied with §; = 84 and r = r4.

(ii) Under Model Type 2, Property 4.2 is satisfied with 8, = 264 VN.

Proor. Condition A of both Property 4.1 and 4.2 is satisfied by definition. (i) Condition B.1, B.2
of Property D.1 together imply Condition B of Property 4.1 for the same &y, 4. (ii) Proposition D.1
implies Condition B of Property 4.2 by scaling &5 with 2VN. O

D.1 Proof of Proposition 5.1
Proposition (5.1).
(i) Under Model Type 1, fL%F satisfies Property 4.1 with 6, = 0 andr = G

(ii) Under Model Type 2, f'®F satisfies Property 4.2 with 8, = 0 and Cp=C-G whereC > 0 is an
absolute constant.

PrOOF. Let f(t) = fRE. By definition of f(t), we have that for all i € {G + 1,...,L} and
je{1,...N},

ME = f(i+ (= DL+ (k - 1)

G

= Sagfi-g)+ (G~ DL+ (k - 1)
-

ST
= Z agM(kg)j
g=1
In particular, M( ) Z M( ) for allj € {1,... N}, and so we immediately have condition (ii)
of the Proposmon Wlth C maxgec ay. Since every row from G + 1,. .., L is a linear combination

of the rows above, the rank of M) is at most G. Ergo, we have condition (i) of the Proposition. 0

Proposition D.2. Let f(t) = fIF be defined as in (5.1). Then, for any given L > 1 and N > 1, for all
1<s<L,1<t<N,f admits decomposition

f(t+5) Z agagy(t)by (47)

for some scalars ay and functions ay : [L] — R, bg :[N]—-R.

Proor. Let T = LN, consider f restricted to {1,...,T = LN}. Now, by Proposition 5.1, we have
that the rank of M(®) is at most G. Thus, the singular value decomposition of M) has the form

G
MK = Z agagbgT,
g=1

where a are the singular values, and ay, by are the corresponding left and right singular vectors of
M®), respectively. Therefore, the (i, j)-th entry of M) has the form

G
ME = fi+ (G- DL+ (k- 1) = D agag(i)by(). (48)
g=1
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where ay(i) corresponds to the i-th entry of the g-th left singular vector, and by(j) corresponds to
the j-th entry of the g-th right singular vector. Thus, a4 : [L] — Rand b, : [N] — R. )

Corollary (5.1). Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L'*% for any

8 > 0. Then for some C > 0, if
2+8

E}
561’70}"

G
T>c(2

we have MSE(f7, fYRF) < Serror.

Proor. By Proposition 5.1, we have for some Cy, Cy, Cs,¢c4 > 0

A Cio |G 1- e
MSE(f;, fLRF) < % I+C2(LN§) + Cye—oN.

We require the r.h.s of the term above to be less than Je;ror- Thus, we have that

Go |G + C2(1 — 1) + Cze™N (;) G + 1 +e ol
» VI LNp VI 'IN

where (a) follows for appropriately defined C > 0 and by absorbing p, o into the constant; (b)

follows since ﬁ < % and e~V < \/% for sufficiently large L, N and by redefining C. Hence, it

2468
suffices that Serror > C(\/%) = T> C(52G ) . -

error

Corollary (5.2). Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L'*? for any
8 > 0. Then for some C > 0, if

25
S

2
recl—2
5error - G53
we have MSE(fF, fLRF) < Serror-

Proor. By Proposition 5.1, we have

1
N-1
We require the r.h.s of the term above to be less than Je;yor. Since %sz < L2, it suffices that

Lo
(@) 1
5err0r > C(G532 + L_‘SO.Z)

s ® a?
= L°>Cl——
5err0r - G53

2+8
S5

MSE(fr, 1) < (GS2 N + 20%F).

0.2

= T2C00—F053
5err0r - G53

where (a) and (b) follow for an appropriately defined C > 0. O
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D.2 Proof of Proposition 5.2
Proposition (5.2). Let Py, be a polynomial of degree m,. Then,

= ﬁ] exp{agt} cos(2rwat + ¢q)Ppm,(t)

a=1

admits a representation as in (10). Further the order G of f(t) is independent of T, the number of
observations, and is bounded by

G=< A(mmax + l)(mmax + 2)
where Mpmayx = Maxg e My.

Proor. This proof is adapted from [29]; we state it here for completeness. First, observe that if
there exists latent functions ¢; : {1,...,L} —» Rand p; : {1,...,N} — R for ! € [G] such that for

all (4, j) € [L] X [N]
G

fG+4) = > @)pi(), (49)
I1=1

then each M(®) (induced by f for k € [L]) has rank at most G.
Second, observe that time series that admit a representation of the form in (49) form a linear
space, which is closed with respect to term-by-term multiplication, i.e.,

f<i+j>:f“>of<2>:(2¢“> %)(zw P0)). (50)

where G and G, are the orders of the f and @ respectively.

Given the two observations above, it suffices to show separately that f1(t) = exp{at} cos(2wwt + ¢)
and f@(t) = P,,(t) have a representation of the form in (49).

We begin with f(t) = exp{at} cos(2zwt + ¢). For (i, ) € [L] x [N],

f(l)(i +j) = exp{a(i + j)} cos(2rw(i + j) + §)

@ exp{ai} cos(2rwi) - exp{aj} cos(2nwj + ¢)

— exp{ai} sin(2rwi) - exp{aj} sin(2rwj + ¢)
= Y1()p10) + ¥2()p20),

where in (a) we have used the trigonometric identity cos(a + b) = cos(a) cos(b) — sin(a) sin(b). Thus,
for fU(t), we have G = 2.
For fA(t) = Pp(t), with (i, j) € [L] x [N], we have P,,,(i + j) = i 0 ¢i(i + j)'. By expanding (i + j)',
it is easily seen (using the Binomial theorem) that there are [ + 1 unique terms involving powers of
i and j. Hence, for f@(t), G < it = W 14
Now we bound G for f () = 2’2 Lexpl{agt} cos(27rwat + ¢a)Pm, (t). For f(t) = exp{at} cos(2nwt + ),
we have G = 2. For f®(t) = P, (t), we have G® < W < w By (50), it is
clear that the order, G2, for f(l) ) f(z) is bounded by GW.G@ < (Mmax + 1)(Mmax + 2). Since there
are A such terms, it follows immediately that for f(¢), we have G < A(Mmax + 1)(Mmax + 2), which
completes the proof. O

14To build intuition, consider f(¢) = t2, in which case £(i + j) = i + j% + (2i)(j) := ¥1(D)p1() + Y2(i)p2(j) + ¥3(i)p3(j). Here,
G =3.
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D.3 Proof of Proposition 5.3

Proposition (5.3). Foranye € (0, 1),
(i) Under Model Type 1, fCO™Pat satisfies Property 4.1 with §; = CL = LY€ for some C > 0.
(ii) Under Model Type 2, fComP2t sqtisfies Property 4.2 with 8, = 26, VN and Cp=1.

PROOF. Recall fCOmPat = g(¢(t)) where ¢ : Z — [—Cy, Cy] takes the form ¢(t+s) = 21G=1 ajai(t)by(s)
with o € [-C2,Cz) a1 : Z — [0,1],b; : Z — [0,1] for some C;,C; > 0;and g : [-C1,C4] — R
is L-Lipschitz. Without loss of generality, we drop the dependence of k on 5 to decrease nota-
tional overload. Recall that 5 (as defined in (37)) has row and column parameters {6; - -- 0.} and
{p1 - pn}, which denote shifts in an integer time index.

For some § > 0, we define the set P(CZ%) c [0, 1]€ such that for all i € [0, 1], there exists

ani’ € P(CZ%) where ||i —i’||; < CZLL It is easily shown that we can construct this set such that

P(cp)| < CH4)°.

G L

Foranyi € [L],leta(i) = [a1(i), . - ., ag(i)]. Thus, from the construction of P( 7 ), there must exist
ana*(i) = [a{(i),...,a5()] € P(c L)suchthat la—all; < CZL.Therefore, for any (i, j) € [L]X[N],
we have

G
= |G+ G =0 - g( > e - VD)
-1

a4

G
.G = D) - g( > wajdbi(G - D))
I=1

@wai(bi(( - L) - (Zaza,mbz nL)

Me

~
I
—_

G

<L Z apai ()b ((j Z aja, 1 Dbi(( = 1)L)
1=1
G

= L2 (@) = a;(i)) - bi((j = DL)
I=1
G

< LY e (@) - a;() - bi(G - VL)
=1

G
<cC Z |ai(i) - a}(3)]

=1
G Lla(i) - a* @)l
é

IA

For each (i, j) € [L] X [N], we define n*(i,j — 1)L) = g( Z Lara; (Db — 1)L)) Let M, be the
matrix whose (i, j)-th element is n*(i, (j — 1)L). Consequently, we have for all k

<4.

max

o s

Observe that for iy, iy € [L], if a(i;) and a(i;) map to the same element a*(i) € P(C;LL), then rows

i1, iy in M(;) will be identical. Therefore, there are at most P(C;LL)‘ distinct rows in M. For an

P(CZLL)| < LCe.

appropriately defined C > 0, choosing § = CLL™¢ gives
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Hence, Property D.1 is satisfied with §, = CLL™€ and ry = L°¢. By Corollary D.1, we have: under
Model Type 1, Property 4.1 is satisfied with §; = 84 and r = r4; under Model Type 2, Property 4.2 is
satisfied with 8, = 26, VN. This completes the proof. m]

Corollary (5.3). Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L'*% for any
& > 0. Then for some C > 0 and any € € (0,1) if

) . 2+
r= C((al)c ¥ (5£))

we have MSE(ﬁ,fLRF) < Serror-

Proor. By Proposition 5.3, for any € € (0, 1) and some Cy, Cy, Cs,cq4 > 0,

ClO' L 1 (1—p) _
MSE(fr, fmt) < » (Le +L(1_G€)/2) Copnp * Coe N,

We require the r.h.s of the term above to be less than Jeyror. Thus, we have

Co| L . 1 L C (1 —P) oo
P L€ 1L(1-Ge)/2 2 NP

(%)C £+;+L+67C4N
LE 1L(1-Ge)/2 LNP

(Z)C L 1
= U\ e ra=carz

where (a) follows for an appropriately defined C > 0 and by absorbing p, o into the constant; (b)

follows since ﬁ < Lé —alN < L for sufficiently large L, N and by redefining C.
)2/(1 Ge)

To have L(l_—gw < Oerror/2, it suffices that L > (L . Similarly,

581’1’ or

i‘fC S 5err0r/2

1
toget L > ( ;efrf ) °. Thus for appropriately defined C, we require L to be

L> c((éejm)lfcf . (5:;)2) -
= 1) +(5efm)é)2+5. -
m]

Corollary (5.4). Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L'*% for any
& > 0. Then for some C > 0 and any € € (0,1) if

T5

2

T> c( d 2)
5error_ (LLe +53)

we have MSE(fr, %) < Serror.
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Proor. By Proposition 5.3, for any € € (0, 1) and some C > 0,

cL
LE

. 1 2
MSE(fF,fcompaCt) < N1 (( + 53) N +20°%7].

We require the r.h.s of the term above to be less than Je;yo,. Since #sz < L%crz, it suffices that
(a) L 21
Serror 2 C((— + 53) + _0'2)

Le LS

0_2

s®
= L°>C 5
5err0r - (LLE + 53)

2+f$

0.2

S5
Oerror — (Lé + 53)2)

= TZC(

where (a) and (b) follow for an appropriately defined C > 0.

Proposition (5.4).
R

fHarmoniC(t) _ Z (pr(sin(Zﬂ'wrt + ¢))

r=1
where ¢, is L,-Lipschitz and w, is rational, admits a representation as in (11). Let xjc,, denote the
fundamental period. Then the Lipschitz constant £ of fH&monic(¢) is bounded by

L < 27r-max(L,) - max(w,) * Xiem.
reR rer

PrOOF. The fact that f14monic has a representation as in (11) follows immediately. It remains to
show the explicit dependence of £ on the parameters of f4monic_Qbserve that

fHarmoniC(t) _ fHarmoniC(l//(t))
where /(t) = t mod Xicr,. By bounding the derivative of fHemonic(¢) it is easy to see that
L < 2r-max(L,) - max(w;) - Xjem-
rer rer
This completes the proof. O

D.4 Proof of Proposition 5.5

df (t)

Proposition (5.5). Let < C.t™“ for some a,Cy > 0. Then for any € € (0, @),

Le/a
Le/z

(i) Under Model Type 1, fT" satisfies Property 4.1 with 8; = Ldz andr = L€/* +

(ii) Under Model Type 2, fTr"d satisfies Property 4.2 with 8, = 26, VN and Cp=1

Proor. Without loss of generality, we drop the dependence of k on n; to decrease notational
overload. Let f(t) = ™", We construct our mapping p : [L] — [L] in two steps:

Step 1: For i < L¢/%, with € € (0, a), let p(i) = i (i.e., the i-th row of M(;) is equal to the i-th row
of M%),
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Step 2: For rows i > L¢/*, we construct the following mapping (similar to [19]). Let R and D refer
to the set of row and column parameters of the sub-matrix of M*) corresponding to its last L —i + 1
rows, {Oresa,-+-,01} and {p1, - - -, pN}, respectively.

Let f’ denote the derivative of f, and 0 € (min(i, i") + (j — 1)L, max(i, i’) + (j — 1)L). Then, we
have that for all i,i” € R

10, G = DI) — (&', — VD) = 1fG + G~ DI) = £ + G~ D)
Q1O i G- DL+ G- D)

®)
< CULEYY @ i - i
=CL ¢ |i-i|,

where (a) follows from the Mean Value Theorem, and (b) uses the fact that | f*(0)| < C. min(i, i")™* <
C*(Le/a)—a.
We define a partition P(€) of R into continuous intervals of length L¢/2. Then, for any A € P(e),
we have |0 —6'|< L¢/2 (recall that 6; = i) whenever 0, 0" € A. It follows that | P(¢)|= (L—L¢/®)/L¢/? =
L= €/2 _Le(,_,

Let T be a subset of R that is constructed by selecting exactly one element from each partition in
P(e), i.e., |T|= |P(e)|. For each 6 € R, let p(6) be the corresponding element from the same partition
in T. Therefore, it follows that for each 6 € R, we can find p(0) € T so that 8 and p(6) belong to the
same partition of P(¢).

Hence, we can define the (i, j)-th element of M, in the following way: (1) for all i < L€/%, let

p(0;) = 0; such that Mf;) = 1(0;, pj); (2) for i > LE/%, let M(r) = n(p(6:), pj). Consequently for all k,

< 0;, 0;
< [glagmln( ;) = n((0:), pj)

= max [7(0:, p;) — n(p(6:), p))l

ie[j>Le¢/«],je[N]

< max |0 —p(0;)| L”°C
ielj>Le/a]

< C.L¢2,

-

Now, if 0; and 0, belong to the same element of P(e), then p(6;) and p(0;) are identical. Therefore,
there are at most |P(¢)| distinct rows in the last L — L¢/% rows of M,y where |P(e)|= L'~ /2 _pe(z=3),
Let P(0) := {p(6;) : i € [L]} < {64,...,0L}. By construction, since € € (0, a), we have that
[P©O)] = L/ + |P(e)| = o(L).

Hence, Property D.1 is satisfied with §; = ;= / > and r = L€/ _L = By Corollary D.1, we have:
under Model Type 1, Property 4.1 is satisfied with ; = 6, and r = ry; under Model Type 2, Property
4.2 is satisfied with &, = 26, VN. This completes the proof. O

Corollary (5.5). Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L'*% for any
8 > 0. Then for some C > 0, if
2+
1
C( (2(a+1)/a))
587707'

we have MSE(f7, fY8F) < Serror.
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Proor. By Proposition 5.5, for any € € (0, ) and some C;, Cy, Cs3, ¢4 > 0,

P Cio| C 1
Trend 1 *
MR P = T(W ' W)
(L]:[g) + C36_64N.

We require the r.h.s of the term above to be less than Je;ror. We have,

Gio
p

*C4N

C 1 P el )
\/j—)Le/Z \/ﬁ(Ll_E/a + Le/2)1/2 2 LNP

+ C3€

@ [ 1 1 CeN
< C(Le/z + (Ll—e/a + Le/2)1/2 LN te

(i) c 1 1
- Le/z + (Ll—e/a +Le/2)1/2

1 1
<

- C(m + (Ll—e/a)l/z)

where (a) follows for an appropriately defined C > 0 and by absorbing p, ¢ into the constant; (b)

follows since W < Lel/z, e N < = L for sufficiently large L, N and by redefining C.
Setting & = = 2/ we get € = =% < «, which satisfies the condition that € € (0, @) in Proposition

2+6
5.5. Therefore, it suffices that 5em,r > CLT® = T > C(+1)) .

5err0r

]

Corollary (5.6). Under Model Type 2, let the conditions of Theorem 4.2 hold.. Let N = L'*® for any
8 > 0. Then for some C > 0 and for any e € (0, a) if

245

( 2 ) S
T>C
5err0r (Le/Z 53)

we have MSE(fK fLRF) < 5error-

Proor. By Proposition 5.5, for any € € (0, ),

MSE(fF,fTrend) <

N—((LG/Q +83)°N + 20 r)

We require the r.h.s of the term above to be less than Jeyyor. Since %O’Zf < L%Gz, it suffices that

(a) 1 2 1
(Serror > C((m + 53) + L_(SO.Z)
(®) o?

= L'>cC
éerror - (Le/z + 53)
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2+8

2 S
o
= T> C( )
5error - (Le/Z + 53)

where (a) and (b) follow for an appropriately defined C > 0.

Proposition (5.6). Fort € Z withay, < 1 forb € [B],

Trend(t Z ybta’b + Z log Yq

admits a representation as in (13).

Proor. The proof follows immediately from the definition of

D.5 Proof of Proposition 5.7

fTrend.

40:39

Proposition (5.7). Under Model Type 1, fMXWe satisfies Property 4.1 with §; = Z§=1 pqdq and

Z“q 17q

PROOF. Let M;l) refer to the underlying mean matrix induced by each X,(t). Similarly, as defined

in Property 4.1, let My () be the low rank matrix associated with M;l). We have

G
(1)
MY =3 o M.
g9
We define M) as

G
Moy = 2 @My, ).
g
As a result, we have that rank(M,)) < Zg rg, and

-

G
(1)
s Z “g“Mg - My,

max

This completes the proof.
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