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When evaluating the impact of a policy (e.g., gun control) on a metric of interest (e.g., crime-rate), it may

not be possible or feasible to conduct a randomized control trial. In such settings where only observational

data is available, synthetic control (SC) methods [2–4] provide a popular data-driven approach to estimate a

“synthetic” or “virtual” control by combining measurements of “similar” alternatives or units (called “donors”).

Recently, robust synthetic control (RSC) [7] was proposed as a generalization of SC to overcome the

challenges of missing data and high levels of noise, while removing the reliance on expert domain knowledge

for selecting donors. However, both SC and RSC (and its variants) suffer from poor estimation when the

pre-intervention period is too short.

As the main contribution of this work, we propose a generalization of unidimensional RSC to multi-

dimensional Robust Synthetic Control, mRSC. Our proposed mechanism, mRSC, incorporates multiple types of

measurements (or metrics) in addition to the measurement of interest for estimating a synthetic control, thus

overcoming the challenge of poor inference due to limited amounts of pre-intervention data. We show that

the mRSC algorithm, when using K relevant metrics, leads to a consistent estimator of the synthetic control

for the target unit of interest under any metric. Our finite-sample analysis suggests that the mean-squared

error (MSE) of our predictions decays to zero at a rate faster than the RSC algorithm by a factor of K and
√
K for the training (pre-intervention) and testing (post-intervention) periods, respectively. Additionally, we

propose a principled scheme to combine multiple metrics of interest via a diagnostic test that evaluates if

adding a metric can be expected to result in improved inference.

Our mechanism for validating mRSC performance is also an important and related contribution of this

work: time series prediction. We propose a method to predict the future evolution of a time series based on

limited data when the notion of time is relative and not absolute, i.e., where we have access to a donor pool

that has already undergone the desired future evolution.

We conduct extensive experimentation to establish the efficacy of mRSC in three different scenarios:

predicting the evolution of a metric of interest using synthetically generated data from a known factor model,

and forecasting weekly sales and score trajectories of a Walmart store and Cricket game, respectively.

CCS Concepts: • General and reference→ Estimation; Evaluation; • Theory of computation→ Sample
complexity and generalization bounds; • Computing methodologies → Latent variable models.

Additional Key Words and Phrases: Causal Inference; Synthetic Control; Matrix Estimation; Cricket

Authors’ addresses: Muhammad Amjad, mamjad@mit.edu, Massachusetts Institute of Technology, Cambridge, MA, USA,

02139; Vishal Misra, vishal.misra@columbia.edu, Columbia University, New York, NY, USA, 10027; Devavrat Shah, devavrat@

mit.edu, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139; Dennis Shen, deshen@mit.edu, Massachusetts

Institute of Technology, Cambridge, MA, USA, 02139.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2019/6-ART37 $15.00

https://doi.org/10.1145/3326152

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 37. Publication date: June 2019.

https://doi.org/10.1145/3326152


37:2 Muhammad Amjad, Vishal Misra, Devavrat Shah, and Dennis Shen

ACM Reference Format:
Muhammad Amjad, Vishal Misra, Devavrat Shah, and Dennis Shen. 2019. mRSC: Multi-dimensional Robust

Synthetic Control. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 37 (June 2019), 28 pages. https://doi.org/
10.1145/3326152

1 INTRODUCTION
Quantifying the causal effect of interventions is a problem of interest across a wide array of

domains. From policy making to engineering and medicine, estimating the effect of an intervention

is critical for innovation and understanding existing systems. In any setting, with or without an

intervention, we only observe one set of outcomes. In casual analysis, the fundamental problem is

that of estimating what wasn’t observed, i.e., the counterfactual.
In order to estimate the counterfactual, observational studies rely on the identification (or

estimation) of a control unit. This can be achieved by relying on expert domain knowledge, or via

techniques such as matching the target unit to existing control units (called donors) on covariates

features or propensity scores (see [18, 21]). A popular data-driven approach to estimating the

control is known as the Synthetic Control (SC) method [2–4]. SC assigns convex weights to the

donors such that the resulting synthetic unit most closely matches the target unit according to a

chosen metric of interest. A generalization of this approach, Robust Synthetic Control (RSC) [7],

removes the convexity constraint and guarantees a consistent estimator that is robust to missing

data and noise.

While SC, its many variants, and RSC exhibit attractive properties, they all suffer for poor

estimation when the amount of training data (i.e., the length of the pre-intervention period) is

small (e.g., see Figure 2 in Section 5.2). In many of these scenarios with little pre-intervention data,

there may be other data available which is related to the type of data (or metric) of interest. For

example, we might be interested in crime-rate and might also have median household income and

high-school graduation rate data available. Therefore, one remedy to the limited pre-intervention

data is to utilize data from multiple metrics.

1.1 Contributions
As the main contribution of this work, we propose multi-dimensional Robust Synthetic Control

(mRSC), a generalization of unidimensional RSC. Unlike standard SC-like methods, mRSC incorpo-

rates multiple types of data in a principled manner to overcome the challenge of forecasting the

counterfactual from limited pre-intervention data. We show that the mRSC method is a natural

consequence of the popular factor model that is commonly utilized in the field of econometrics.

Through this connection, we provide a data-driven falsifiability test for mRSC, which determines

whether mRSC can be expected to produce a consistent estimation of the counterfactual evolution

across all metrics for a target unit (exposed to intervention) in both the pre- and post-intervention

stages (see Section 3.3).

Further, we demonstrate that prediction power of mRSC improves over RSC as the number

of included relevant data types increases. Specifically, the mean-squared error(MSE) vanishes at

a rate scaling with K and

√
K for pre- and post-intervention estimates, respectively, where K

denotes the number of metrics (see Theorems 4.1 and 4.2, respectively, in Section 4); we highlight

that K = 1 reduces to the vanilla RSC framework. Additionally, desirable properties of the RSC

algorithm, namely robustness to missing data and noise, carry over. Finally, we conduct extensive

experimentation to establish the efficacy of this generalized method in comparison to RSC via

synthetically generated datasets and two real-world case-studies: product sales in retail and score

trajectory forecasting in the game of Cricket. We now summarize these contributions in greater

detail.
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Model. We consider a natural generalization of the factor (or latent variable) model considered

in the literature cf. [7], where the measurement associated with a given unit at a given time for

a given metric is a function of the features associated with the particular unit, time, and metric.

A special case of such models, the linear factor models, are the bread and butter models within

the Econometrics literature, and are assumed in [2–4]. We argue that as long as the function is

Lipschitz and the features belong to a compact domain, then the resulting factor model can be well

approximated by low-rank third-order tensor (see Proposition 2.1 in Section 2.2) with the dimensions

of the tensor corresponding to the unit, time, and metric, respectively. Therefore, to simplify this

exposition, we focus on the setup where the underlying model is indeed a low-rank tensor. We

assume that our observations are a corrupted version of the ground truth low-rank tensor with

potentially missing values. More specifically, we assume we have access to pre-intervention data

for all units and metrics, but only observe the post-intervention data for the donor units. Our goal is

to estimate the “synthetic control” using all donor units and metrics in the pre-intervention period.

The estimated synthetic control can then help estimate the future (post-intervention) ground-truth
measurements for all metrics associated with the treatment unit.

Algorithm and analysis. The current SC literature [2–4, 7] relies on the following key assumption:

for any metric of interest, the treatment unit’s measurements across time can be expressed as a

linear combination of the donor units’ measurements. In this work, we start by arguing that we need

not make this assumption as it holds naturally under the low-rank tensor model (Proposition 4.1 in

Section 4). Furthermore, the low-rank tensor model suggests that the identical linear relationship

holds across all metrics simultaneously with high probability. That is, in order to utilize measure-

ments from other metrics to estimate the synthetic control for a given metric and unit of interest, we

can effectively treat the measurements for other metric as additional measurements for our metric

of interest! In other words, the number of pre-intervention measurements is essentially multiplied

by the number of available metrics. The resulting mRSC algorithm is natural extension of RSC but

with multiple measurements. Using a recently developed method for analyzing error-in-variable

regression in the high-dimensional regime, we derive finite-sample guarantees on the performance

of the mRSC algorithm. We conclude that the pre- and post-intervention MSE for mRSC decays

faster than that of RSC by a factor K and

√
K , respectively, where K is the number of available

metrics (Theorems 4.1 and 4.2, respectively, in Section 4). This formalizes the intuition that data

from other metrics can be treated as belonging to the original metric of interest. In summary, mRSC

provides a way to overcome limited pre-intervention data by simply utilizing pre-intervention data

across other metrics.

Experiments: synthetic data. To begin, we utilize synthetically generated data as per our factor

model to both verify the tightness of our theoretical results and utility of our diagnostic test, which

evaluates when mRSC is applicable. We argue that flattening the third-order tensor of measurement

data into a matrix (by stacking the unit by time slices across metrics) is valid if the resulting matrix

exhibits a similar singular value spectrum (rank) as that of the matrix with only a single metric of

interest (see Section 3.3). Our results demonstrate that data generated as per our model pass the

diagnostic test; the test, however, fails when the data does not come from our model. Finally, our

empirical findings support our theoretical results.

Experiments: retail. Next, we study the efficacy of mRSC in a real-world case-study regarding

weekly sales data across multiple departments at various Walmart stores (data obtained from

Kaggle [1]). The store locations represent units, weeks represent time, and product-departments

represent different metrics. Our goal is to forecast the sales of a given product-department at a

given location using a subset of the weekly sales reports as the pre-intervention period. We study
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the performance of mRSC and compare it with RSC across different intervention times and different

department-product subgroups, which represent the available metrics. Across all our experiments,

we consistently find that mRSC significantly outperforms RSC when the pre-intervention data is

small; however, the twomethods perform comparably in the presence of substantial pre-intervention

data. These empirical findings are in line with our theoretical results, i.e., in the presence of sparse

training data, mRSC provides significant gains over RSC by utilizing information from auxiliary

metrics. Specifically, Table 3 demonstrates that the test prediction error of mRSC is 5-7x better

compared to vanilla RSC when very limited pre-intervention data is available. Further, even if the

pre-intervention data is significant, mRSC’s test prediction error continues to outperform that of

RSC.

Experiments: cricket. We consider the task of forecasting score trajectories in cricket. Since

cricket has twometrics of interest, runs scored and wickets lost, cricket is an ideal setting to employ

mRSC. We first provide a brief primer on cricket as we do not expect the reader(s) to be familiar

with the game. This is followed by an explanation as to why forecasting the score trajectory is a

perfect fit for mRSC. We conclude with a summary of our findings.

Cricket 101. Cricket, as per a Google Search on “how many fans world-wide watch cricket", is the

second most popular sport after soccer. It is played between two teams and is inherently asymmetric

in that both teams take turns to bat and bowl. Among the multiple formats with varying durations

of a game, we focus on one format called “50 overs Limited Over International (LOI)”. Here, each

team bats for an “inning” of 50 overs or 300 balls, during which, at any given time, two of its players

(batsmen) are batting to score runs. Meanwhile, the other team fields all of its 11 players, one of

whom is bowling and the others are fielding with the goal of getting the batsmen out or preventing

the batsmen from scoring. Each batsman can get out at most once, and an inning ends when either

300 balls are bowled or 10 batsmen are out. At the end, the team that scores more runs wins. For

more details relevant to this work, refer to Section 5.3.

Forecasting trajectory using mRSC. As an important contribution, we utilize the mRSC algorithm

to forecast an entire score trajectory of a partially observed cricket inning. As the reader will

notice, the utilization of mRSC for forecasting the trajectory of game is generic, and is likely to be

applicable to other games such as basketball, which would be an interesting future direction. To

that end, we start by describing how mRSC can be utilized for forecasting the score trajectory of an

“inning”. We view each inning as a unit, the balls as time, and the runs scored and wickets lost as

two different metrics of interest. Consequently, past innings are effectively donor units. The inning

of interest, for which we might have observed scores/wickets up to some number of balls (or time),

is the treatment unit, and the act of forecasting is simply coming up with a “synthetic control” for

this unit in order to estimate the score/wicket trajectory for remainder of the game.

We collect data for historical LOI over the period of 1999-2017 for over 4700 innings. Each inning

can go to 300 balls long for both metrics: runs and wickets. We find that the approximately low-rank

structure of the matrix with only scores (4700 by 300) and that with both scores and wickets (4700

by 600) remains the same (see Figure 3). This suggests that mRSC can be applicable for this scenario.

Next, we evaluate the predictive performance on more than 750 recent (2010 to 2017) LOI innings.

For consistency of comparisons, we conduct a detailed study for forecasting at the 30th over or 180

balls (i.e., 60% of the inning). We measure performance through the mean-absolute-percentage-error

(MAPE) and R-square (R2
). The median of the MAPE of our forecasts varies from 0.027 or 2.7% for

5 overs ahead to 0.051 or 5.1% for 20 overs ahead. While this is significant in its own right, to get a

sense of the absolute performance, we evaluate the R2
of our forecasts. We find that the R2

of our

forecast varies from 0.92 for 5 overs to 0.79 for 15 overs. That is, for the 5 over forecast, we can
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explain 92% of “variance” in the data, which is surprisingly accurate. Further, we establish the value

of the de-noising and regression steps in the mRSC algorithm. Through one important experiment,

we demonstrate that a commonly held belief—i.e., the donor pool should only comprise of innings

involving the team we are interested in forecasting for—actually leads to worse estimation. This

is related to Stein’s Paradox [14], which was first observed in baseball. Finally, using examples of

actual cricket games, we show that the mRSC algorithm successfully captures and reacts to nuances

of cricket.

1.2 Related Works
There are three bodies of literature relevant to this work: matrix estimation for sequential data

inference, synthetic control, and multi-dimensional causal inference.

In this work, we rely on low-rank estimation which is a key subproblem in the rich domain of

matrix estimation. We refer the interested reader to [8, 11, 12, 16] for extensive surveys of the matrix

estimation literature. These works, in particular [8, 16] also use the latent variable model (LVM)

which is at the heart of the mRSC model presented in this work. In the context of sequential data

inference and forecasting, matrix estimation techniques have recently been proposed as important

subroutines. Using low-rank factorizations to learn temporal relationships has been addressed in

[13, 20, 25, 26]. However, these works make specific assumptions about the particular time series

under consideration which is a major difference to our work where we make no assumptions about

the specifics of the temporal evolution of the data. [5, 8] present algorithms closely related to the

mRSC algorithm presented in this work to capture relationships across both time- and location

without making assumptions about the particular form of temporal relationships. However, in [5]

the authors consider a single (one-dimensional) time series and convert it to a Page Matrix and then

apply matrix estimation. The goal in that work is to estimate the future only using data from the

single time series and up to present time. In this work, the notion of time is relative, i.e. there is a

temporal ordering but the temporal axis is not absolute, there are many other units (donors) and the

estimation of the counterfactual happens longitudinally, i.e. as a function of all other units (donors).

Finally, we note that in this work the donor units have all their future observations realized while

that is certainly not the case in time series forecasting.

The data driven method to estimate “synthetic control” was original proposed in [2, 3] (SCM).

The robust synthetic control (RSC) algorithm was presented as a recent generalization of the SCM

making it robust to missing data and noise. For a detailed theoretical analysis of the RSC and an

overview of the more recent developments of the synthetic control method, we refer the reader to

[7]. A key limitation of the RSC and other SCM variants is that they are only concerned with a

single metric of interest red (K = 1) and perform poorly when the pre-intervention (training) period

is short. The mRSC algorithm presented in this work generalizes the RSC and allows a principled

way to handle multiple related metrics of interest (K > 1).

Causal inference has long been an interest for researchers from a wide array of communities,

ranging from economics to machine learning (see [18, 19, 21, 22] and the references therein).

Recently there has been work in multidimensional causal inference, specifically building causal

models that fuse multiple datasets collected under heterogeneous conditions. A general, non-

parametric approach to fusing multiple datasets that handles biases has been presented in [10].

This body of work is similar in spirit to the contribution of our paper, namely generalizing robust

synthetic control to utilize multiple metrics of interest.

Forecasting the scores and, more specifically, the winner of a cricket game has also been of

interest. Works such as [9] use multi-regression models to predict the winner of a cricket game.

However, predicting the winner is not a goal of this work. Our work focuses on forecasting the

future average trajectory of an innings given its partial observation. Some prior efforts in this

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 37. Publication date: June 2019.



37:6 Muhammad Amjad, Vishal Misra, Devavrat Shah, and Dennis Shen

domain include the WASP method [15], which calculates the mean future scores via a dynamic

programming model instead of learning these solely from past data like we do. Recent efforts,

such as [17], have also focused on forecasting trajectories of the remainder of the innings using

complex models that quantify specific features of an innings/game that affect scoring and game

outcomes. However, like WASP, these recent methods are also parametric, and their accuracy is a

strict function of whether the model is accurately able to capture the complex and evolving nature

of the game. In summary, all known prior works on score forecasting make parametric assumptions

to develop their methods. In contrast, we make minimal modeling assumptions and instead rely on

the generic latent variable model to use the mRSC algorithm to capture nuances of the game of

cricket.

1.3 Organization
The rest of this work is organized as follows: we review the relevant bodies of literature next (Section

1.2) followed by a detailed overview of our proposed model and problem statement (Section 2).

Next, in Section 3, we describe the mRSC algorithm, which is followed by a simple diagnostic

test to determine the model applicability to a problem. We present the main theoretical results in

Section 4 followed by a synthetic experiment and “real-world” retail case study to compare the

mRSC algorithm to the RSC (Section 5). Finally, in Section 5.3, we have the complete case study for

the game of cricket to demonstrate the versatility of the proposed model and the mRSC’s superior

predictive performance.

2 PROBLEM SETUP
Suppose there are N units indexed by i ∈ [N ], across T time periods indexed by j ∈ [T ], and K
metrics of interest indexed by k ∈ [K]. LetMi jk denote the ground-truth measurement of interest

and Xi jk the noisy observation ofMi jk . Without loss of generality, let us assume that our interest

is in the measurement associated with unit i = 1 and metric k = 1. Let 1 ≤ T0 < T represent

the time instance in which unit one experiences an intervention. Our interest is to estimate the

measurement evolution of metric one for unit one if no intervention occurred. To do so, we utilize

the measurements associated with the “donor” units (2 ≤ i ≤ N ), and possibly all metrics k ∈ [K].

2.1 Model description
For all 2 ≤ i ≤ N , j ∈ [T ], and k ∈ [K], we posit that

Xi jk = Mi jk + ϵi jk , (1)

where ϵi jk denotes the observation noise. We assume that unit one obeys the same model relation-

ship during the pre-intervention period across all metrics, i.e., for all j ∈ [T0] and k ∈ [K],

X1jk = M1jk + ϵ1jk . (2)

If unit one was never exposed to the treatment, then the relationship described by (2) would

continue to hold during the post-intervention period, i.e., for j ∈ {T0 + 1, . . . ,T }.

2.2 Structural assumptions on mean tensor
LetM = [Mi jk ] ∈ RN×T×K

be a third-order tensor denoting the underlying, deterministic means in

the absence of any treatment. We assume thatM satisfies the following low-rank and boundedness

properties:
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Property 2.1. LetM be a third-order tensor with rank r , i.e., r is the smallest integer such that the
entries ofM can be expressed as

Mi jk =

r∑
z=1

UizVjzWkz , (3)

whereU = [Ui j ] ∈ RN×r , V = [Vi j ] ∈ RT×r ,W = [Wi j ] ∈ RK×r .

Property 2.2. There exists an absolute constant Γ ≥ 0 such that |Mi jk |≤ Γ for all (i, j,k) ∈ [N ] ×

[T ] × [K].

WhyM should be low-rank. A natural generalization of the typical factor model, which is commonly

utilized in the Econometrics literature, is the generic latent variable model (LVM), which posits that

Mi jk = f (θi , ρ j ,ωk ). (4)

Here, θi ∈ Rd1 , ρ j ∈ Rd2
, and ωk ∈ Rd3

are latent feature vectors capturing unit, time, and

metric specific information, respectively, for some d1,d2,d3 ≥ 1; and the latent function f :

Rd1 × Rd2 × Rd3 → R captures the model relationship. If f is “well-behaved” and the latent spaces

are compact, then it can be seen that M is approximately low-rank. This is made more rigorous by

the following proposition.

Proposition 2.1. LetM satisfy (4). Let f be an L-Lipschitz function with θi ∈ [0, 1]d1 , ρ j ∈ [0, 1]d2 ,
and ωk ∈ [0, 1]d3 for all (i, j,k) ∈ [N ] × [T ] × [K]. Then, for any δ > 0, there exists a low-rank
third-order tensor T of rank r ≤ C · δ−(d1+d3) such that

∥M − T ∥
max

≤ 2Lδ .

Here,C is a constant that depends on the latent spaces [0, 1]d1 and [0, 1]d3 , ambient dimensions d1 and
d3, and Lipschitz constant L.

In Section 4, we will demonstrate that the low-rank property of M is central to establishing

that M satisfies the key property of synthetic control-like settings, i.e., the target unit can be

expressed as a linear combination of the donor pool across all metrics (see Proposition 4.1). Hence,

in effect, observations generated via a generic latent variable model, which encompass a large class

of models, naturally fit within our multi-dimensional synthetic control framework.

2.3 Structural assumptions on noise
Before we state the properties assumed on ϵ = [ϵi jk ] ∈ RN×T×K

, we first define an important class

of random variables/vectors.

Definition 2.1. For any α ≥ 1, we define theψα -norm of a random variable X as

∥X ∥ψα = inf

{
t > 0 : E exp(|X |α /tα ) ≤ 2

}
. (5)

If ∥X ∥ψα < ∞, we call X a ψα -random variable. More generally, we say X in Rn
is a ψα -random

vector if the one-dimensional marginals ⟨X ,v⟩ areψα -random variables for all fixed vectorsv ∈ Rn
.

We define theψα -norm of the random vector X ∈ Rn
as

∥X ∥ψα = sup

v ∈Sn−1
∥⟨X ,v⟩∥ψα , (6)

where Sn−1
:= {v ∈ Rn

: ∥v ∥
2
= 1} denotes the unit sphere in Rn

and ⟨·, ·⟩ denotes the inner
product. Note that α = 2 and α = 1 represent the class of sub-gaussian and sub-exponential random

variables/vectors, respectively.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 37. Publication date: June 2019.



37:8 Muhammad Amjad, Vishal Misra, Devavrat Shah, and Dennis Shen

We now impose the following structural assumptions on ϵ . For notational convenience, we will
denote ϵ ·, j,k ∈ RN

as the column fiber of ϵ at time j and for metric k .

Property 2.3. Let ϵ be a third-order tensor where its entries ϵi jk are mean-zero,ψα -random variables
(for some α ≥ 1) with variance σ 2, that are independent across time j ∈ [T ] and metrics k ∈ [K], i.e.,
there exists an α ≥ 1 and Kα < ∞ such that ∥ϵ ·, j,k ∥ψα ≤ Kα for all j ∈ [T ] and k ∈ [K].

Property 2.4. For all j ∈ [T ] and k ∈ [K], let ∥E[ϵ ·, j,kϵT·, j,k ]∥≤ γ 2.

2.4 Missing data
In addition to noise perturbations, we allow for missing data within our donor pool of observations.

In particular, we observe (a possibly sparse) donor pool tensor Z = [Zi jk ] ∈ R(N−1)×T×K
where

each entry Zi jk is observed with some probability ρ ∈ (0, 1], independent of other entries. This is
made formal by the following property.

Property 2.5. For all (i, j,k) ∈ [N − 1] × [T ] × [K],

Zi jk =

{
X(i+1)jk w.p. ρ
⋆ w.p. 1 − ρ

is sampled independently. Here, ⋆ denotes an unknown value.

2.5 Problem statement
In summary, we observe Z, which represents the observations associated with the donor pool

across the entire time horizon and for all metrics. However, we only observe the pre-intervention

observations for unit one, i.e., X1jk for all j ∈ [T0] and k ∈ [K]. In order to investigate the effects of

the treatment on unit one, we aim to construct a “synthetic” unit one to compute its counterfactual

sequence of observations M1jk for all j ∈ [T ] and k ∈ [K], with particular emphasis the post-

intervention period (namely, T0 < j ≤ T ), using only the observations described above. We will

evaluate our algorithm based on its prediction error. More specifically, we assess the quality of our

estimate M̂ (k )
1

∈ RT
for any metric k ∈ [K] in terms of its (1) pre-intervention mean-squared error

(MSE)

MSET0 (M̂
(k )
1
) =

1

T0
E

[
T0∑
j=1

(
M̂ (k )

1j −M1jk

)
2

]
, (7)

and (2) overall MSE (pre- and post-intervention included)

MSE(M̂ (k )
1
) =

1

T
E

[
T∑
j=1

(
M̂ (k )

1j −M1jk

)
2

]
. (8)

We summarize our model assumptions in Table 1
1
.

Notation. For any general n1 × n2 × n3 real-valued third-order tensor T , we denote T·, j,k ,Ti, ·,k ,
and Ti, j, · as the column, row, and tube fibers of T , respectively. Similarly, we denote Ti, ·, ·,T·, j, ·, and
T·, ·,k as the horizontal, lateral, and frontal slices of T , respectively. We will denote the n1 × n2 · n3
matrixT as the flattened version of T , i.e.,T is formed by concatenating the n3 frontal slices T·, ·,k
of T . We defineTi, · andT ·, j as the i-th row and j-th column ofT , respectively. Finally, we denote
poly(α1, . . . ,αn ) as a function that scales at most polynomially in its arguments α1, . . . ,αn .

1
With regards to Property 2.5, we specifically mean Zi jk = Xi jk · 1(πi jk = 1) +⋆ · 1(πi jk = 0).
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Table 1. Summary of Model Assumptions

Mean Tensor T Observation Noise ϵ
MaskingZ

Low-rank Boundedness ψα -norm Covariance

rank(M) = r
��Mi jk

�� ≤ Γ



ϵ ·, j,k

ψα ≤ Kα ∥E[ϵ ·, j,kϵT·, j,k ]∥ ≤ γ 2 πi jk ∼ Bernoulli(ρ)

Property 2.1 Property 2.2 Property 2.3 Property 2.4 Property 2.5

3 ALGORITHM
3.1 Setup
Suppose there are K datasets corresponding to K metrics of interest. For each k ∈ [K], let
Z (k ) ∈ R(N−1)×T

denote the k-th donor matrix, which contains information on the k-th metric

for the entire donor pool and across the entire time horizon. We denote X (k )
1

∈ R1×T0
as the vector

containing information on the k-th metric for the treatment unit (unit one), but only during the

pre-intervention stage.

The mRSC algorithm, to be introduced in Section 3.2, is a generalization of the RSC algorithm

introduced in [7]. The RSC algorithm utilizes a hyper-parameter λ ≥ 0, which thresholds the

spectrum of the observation matrix; this value effectively serves as a knob to trade-off between the

bias and variance of the estimator [7]. The mRSC also utilizes such a hyper-parameter. In addition,

it utilizes

∆ = diag

(
1

δ1
, . . . ,

1

δ1︸       ︷︷       ︸
T0

, . . . ,
1

δK
, . . . ,

1

δK︸        ︷︷        ︸
T0

)
∈ RKT0×KT0 , (9)

which weighs the importance of the K different metrics by simply multiplying the corresponding

observations. For instance, the choice of δ1 = · · · = δK = 1 renders all metrics to be equally

important. On the other hand, if the only metric of interest is k = 1, then setting δ1 = 1 and

δ2 = · · · = δK = 0 effectively reduces the mRSC algorithm to the RSC algorithm for metric one. The

choice of hyper-parameters can be chosen in a data-driven manner via standard machine learning

techniques such as cross-validation.

3.2 Robust multi-metric algorithm.

Given Z (k )
and X (k )

1
for all k ∈ [K], we are now ready to describe the mRSC algorithm. Recall that

the goal is to estimate the post-intervention observations (in the absence of any treatment) for

a particular unit of interest (unit one). This estimated forecast is denoted by M̂ (k )
1

for all metrics

k ∈ [K].

Remark. We note that all the features of the vanilla RSC algorithm naturally extend to the mRSC
algorithm (see Section 3.4 of [7]). Specifically, properties of RSC regarding solution interpretability,
scalability, and independence from using covariate information are also features of the mRSC algorithm.
Effectively, the mRSC algorithm is a generalization of the RSC algorithm in that it incorporates learning
based on multiple metrics of interest.

3.3 Diagnostic: rank preservation
While it may be tempting to includemultiplemetrics in any analysis, theremust be some relationship

between the metrics to allow for improved inference. In order to determine whether the additional
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Algorithm 1Multi Robust Synthetic Control (mRSC)

Step 1. Concatenation.
(1) Construct Z ∈ R(N−1)×KT

as the concatenation of Z (k )
for all k ∈ [K].

(2) Construct X1 ∈ R1×KT0
as the concatenation of X (k )

1
for all k ∈ [K].

Step 2. De-noising.
(1) Compute the singular value decomposition (SVD) of Z :

Z =

N−1∧KT∑
i=1

siuiv
T
i . (10)

(2) Let S = {i : si ≥ λ} be the set of singular values above the threshold λ.
(3) Apply hard singular value thresholding to obtain

M̂ =

1

ρ̂

∑
i ∈S

siuiv
T
i . (11)

Here, ρ̂ denotes the proportion of observed entries in Z . Further, we partition M̂ =

[M̂ (1), . . . , M̂ (K )
] into K blocks of dimension (N − 1) ×T .

Step 3. Weighted Least Squares.
(1) Construct M̂T0 ∈ R(N−1)×KT0

as the concatenation of M̂ (k )
·, j for j ∈ [T0] and k ∈ [K].

(2) Weight the donor matrix and treatment vector by ∆, i.e.,

M̂T0 := M̂T0 · ∆ (12)

X1 := X1 · ∆. (13)

(3) Perform linear regression:

β̂ ∈ argmin

v ∈R(N−1)




X1 −v
T M̂T0




2
2

. (14)

(4) For every k ∈ [K], define the corresponding estimated (counterfactual) means for the treat-

ment unit as

M̂ (k )
1

= β̂T M̂ (k ). (15)

metrics should be incorporated in the mRSC model, we propose a rank-preservation diagnostic. As

discussed in Proposition 2.1, the crucial assumption is that the mean data tensor is low-rank. For

the mRSC algorithm to make sense, the row and column relationships must extend similarly across

all metrics. Specifically, under a LVM, the latent row and column parameters, θi ∈ Rd1
and ρ j ∈ Rd2

(as described in Section 2.2), must be the same for all metrics being considered. This implies that

the rank of the matrices for each metric (frontal slices of the tensor) and their concatenation are

identical. If, however, the row and column parameters vary with the metric, then concatenated

matrix rank may increase.

For concreteness, we present an analysis from a simple idealized experiment (detailed in Section

5.1) with two metrics (metric1 and metric2) and matrix dimensions N = 100,T = 120. We compare

the percentages of the power of the cumulative spectrum contained in the top few singular values

for metric1, metric2, and two of their combinations: one where the row and column parameters are

held constant and another where the parameters are different. Table 2 shows the resulting ranks of

the mean matrices. We see that the rank of the combined metrics where the latent parameters are

different is roughly twice that of metric1, metric2, and their combination with identical row and
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column parameters across metrics. This is an important diagnostic, which can be used to ascertain

if the model assumptions are (approximately) satisfied by the data in any multi-metric setting.

In real-world case studies where the latent variables and mean matrices are unknown, the same

analysis can be conducted using the singular value spectrums of the observed matrices. We point

to Figure 3 for a specific instance of this diagnostic using real-world noisy observation data.

Matrix Approx. Rank

metric1 9

metric2 9

combined 9

(same row and column params)

combined 17

(different row and column params)

Table 2. Ranks of the mean matrices for each metric and their concatenated matrices when the latent row
and column parameters are held constant across metrics and otherwise.

4 MAIN RESULTS
Here, we present our main results, which bound the pre- and post-intervention prediction errors of

our algorithm. We begin, however, with a crucial observation on the underlying mean tensorM,

which justifies our algorithmic design.

Proposition 4.1. Assume Property 2.1 holds. Suppose the target unit is chosen uniformly at random
amongst theN units; equivalently, let the units be re-indexed as per some permutation chosen uniformly
at random. Then, with probability 1 − r/N , there exists a β∗ ∈ R(N−1) such that the target unit
(represented by index 1) satisfies

M1jk =

N∑
z=2

β∗z ·Mzjk , (16)

for all j ∈ [T ] and k ∈ [K].

Thus, under the low-rank property ofM (Property 2.1), the target/treatment unit is shown to

be a linear combination of the donor units across all metrics with high probability. This is the

key property that is necessary in all synthetic control-like settings, and it allows us to flatten our

third-order tensor into a matrix in order to utilize information across multiple metrics since the

target unit is a linear combination of the donor pool across all metrics.
More specifically, Proposition 4.1 establishes that for every metric k ∈ [K], the first row of the

lateral slice M1, ·,k is a linear combination of the other rows within that slice with high probability.

Therefore, we can flattenM into a N × kT matrixM by concatenating the K slicesM ·, ·,k ofM,

and still maintain the linear relationship between the first row ofM and its other rows, i.e.,

M = [M ·, ·,1, . . . ,M ·, ·,K ]. (17)

This linear relationship across all metrics allows us to combine the datasets from different metrics

to effectively augment the pre-intervention period (Step 1 of Algorithm 1). For the rest of this

exposition, letM have the following SVD:

M =

r∑
i=1

τiµiν
T
i , (18)
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where τi denote the singular values, and µi ,νi denote the left and right singular vectors, respectively.

Pre-intervention Error.We state the following pre-intervention prediction error bound, which

decays linearly with K . Since K = 1 reduces to the RSC setting, we note that this convergence rate

is faster than that of the RSC method by a factor of K , as evident from Theorem 4 of [7].

Theorem 4.1. Let the algorithmic hyper-parameter ∆ = I (the identity matrix). Let r and β∗ be
defined as in (3) and (16), respectively. Suppose the following conditions hold:
(1) Properties 2.1, 2.2, 2.3 for some α ≥ 1, 2.4, and 2.5.
(2) The thresholding parameter λ is chosen s.t. rank(M̂) = r .
(3) T0 = Θ(T ).
(4) The target unit, unit one, is chosen uniformly at random amongst the N units.

Then with probability at least 1 − r
N ,

K∑
k=1

MSET0 (M̂
(k )
1
) ≤

4σ 2r

KT0
+C1C(α ) · ∥β

∗∥2
1
·
log

2

(KNT0)

ρ2KT0
·

(
r +

(
(KT0)

2ρ + KNT0
)
log

3

(KNT0)

ρ2τ 2r

)
,

where C1 = (1 + γ + Γ + Kα )
4, C(α ) is a positive constant that may depend on α ≥ 1, and τr is the r -th

singular value ofM .

Overall error. We now proceed to bound the overall MSE (including pre- and post-intervention)

of our proposed algorithm. We begin, however, by stating the model class under consideration:

F = {β ∈ RN−1
: ∥β ∥2 ≤ B, ∥β ∥0 ≤ r },

where B is a positive constant. As is commonly assumed in generalization error analyses for

regression problems, we consider candidate vectors β ∈ RN−1
that have bounded ℓ2-norm. Further,

by Proposition 4 of [6], if rank(M̂) = r , then for any β̂ ∈ RN−1
, there exists a β ∈ RN−1

such that

β̂T M̂ = βT M̂ and ∥β ∥0≤ r ; hence, we can restrict our model class to r -sparse linear predictors.
Combining the above observations, we consider the collection of candidate regression vectors

within F , i.e., the subset of vectors in RN−1
that have bounded ℓ2-norm and are r -sparse.

Generating process. Let us assume M is generated as per a linear LVM. Specifically, for all (i, j,k) ∈
[N ] × [T ] × [K],

Mi jk = f (θi , ρ j ,ωk ) =
r∑
ℓ=1

λℓ θi, ℓ ρ j, ℓ ωk, ℓ,

where λℓ ∈ R,θi ∈ [0, 1]d1 , ρ j ∈ [0, 1]d2 , and ωk ∈ [0, 1]d3 for some d1,d2,d3 ≥ r , and r is defined
as in (3). Further, we make the natural assumption that θi , ρ j , and ωk are sampled i.i.d. from some

underlying (unknown) distributions Θ, P , and Ω, respectively. This gives rise to the following

statement.

Theorem 4.2. Let the conditions of Theorem 4.1 hold. Further, let β̂ ∈ F . Then,

EΘ,P,Ω

[
K∑
k=1

MSE(M̂ (k )
1
)

]
≤ EΘ,P,Ω

[
K∑
k=1

MSET0 (M̂
(k )
1
)

]
+

C2r
3/2α̂2

√
KT0

∥β∗∥1

with probability at least 1 − r
N . Here,

∑K
k=1 MSET0 (M̂

(k )
1
) is the pre-intervention error across all K

metrics, as defined in Theorem 4.1; further, C2 = CB2
Γ for some C > 0, and α̂2

= E[∥M̂ ∥2
max

]; lastly,
EΘ,P,Ω is taken with respect to the randomness in the underlying θi , ρ j ,ωk ’s, which are sampled i.i.d.
from the product distribution Θ × P × Ω.
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Implications. The statement of Theorem 4.1 requires that the correct number of singular values

are retained by the mRSC algorithm. In settings where all r singular values ofM are roughly equal,

i.e.,

τ1 ≈ τ2 ≈ . . . ≈ τr = Θ

(√
(KNT0)/r

)
,

the pre-intervention prediction error vanishes as long asKT0 scales faster thanmax(σ 2r , ρ−4r log5(N )).

Further, as long as r = O(log
1/4

(N )), the overall error vanishes with the same scaling of KT0. How-
ever, the question remains: how does one find a good r in practice?

The purpose of the generalization error, such as that implied by Theorem 4.2, is to precisely

help resolve such a dilemma. Specifically, it suggests that the overall error is at most the pre-

intervention (training) error plus term that scales as r 3/2/
√
KT0. Therefore, one should choose the r

that minimizes this bound – naturally, as r increases, the pre-intervention error is likely to decrease,

but the additional term r 3/2/
√
KT0 will increase; therefore, a unique minima (in terms of the value

of r ) exists, and it can be found in a data driven manner.

5 EXPERIMENTS
We establish the validity of our mRSC algorithm in three settings:

(1) Idealized synthetic-data experiment: using data generated by a knownmodel (outlined in

Section 2), we conduct this experiment to empirically verify Theorems 4.1 and 4.2. In situations

where the data-generating mechanism and unobserved means are known, we demonstrate

that the mRSC algorithm outperforms the vanilla RSC algorithm [7] by achieving a lower

forecasting prediction error.

(2) Retail: using Walmart sales data, we provide an instance of a “real-world” setting where

mRSC outperforms RSC in forecasting future sales (the counterfactual).

(3) Cricket: considering the problem of forecasting scores in cricket, we first show that the

trajectory of scores can be modeled as an instance of the mRSC model with multiple natural

metrics of interest, and then, through extension experimentation, demonstrate the predictive

prowess of the algorithm, which is also successful in capturing the nuances of the game.

5.1 Idealized synthetic-data experiment
Experimental setup. We consider a setting where we have two metrics of interest, metricA and

metricB. The data is generated as follows: we first sample sets of latent row and column parameters

Sr ,Sc , where Sr = {sk |sk ∼ Uniform(0, 1), 1 ≤ k ≤ 10} and Sc = {sk |sk ∼ Uniform(0, 1), 1 ≤ k ≤

10}. We then fix the latent row and column parameters, θi and ρ j , by sampling (with replacement)

from Sr and Sc . Note that 1 ≤ i ≤ N and 1 ≤ j ≤ T , where N and T represent the dimensions of

the matrices for each metric. In this experiment, we fix T = 50 and vary N in the range [50, 500].
For each metric, we use functions fa (θi , ρ j ) and fb (θi , ρ j ) to generate the mean matrixMa and

Mb . Specifically,

fa (θi , ρ j ) =
10

1 + exp

(
−θi − ρ j − (αaθiρ j )

) ,
where αa = 0.7. fb (θi , ρ j ) is defined similarly but with αb = 0.3. We then let Ma = [ma,i j ] =

[fa (θi , ρ j )] andMb = [mb,i j ] = [fb (θi , ρ j )], for 1 ≤ i ≤ N , 1 ≤ j ≤ T .
Next, we generate the mean row of interest for each metric by using a fixed linear combination

of the rows of the matricesMa andMb , respectively. We append these rows of interest to the top

of both matrices. We refer to them as rowsma,0 andmb0 , respectively.
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Fig. 1. RMSE for mRSC and RSC algorithms for metricA and metricB for the experiment described in Section
5.1.

Independent Gaussian noise, N(0, 1) is then added to each entry of the matrices, Ma and Mb ,

including the mean rows of interest at the top. This results in the observation matrices Ya and Yb
for metricA and metricB.

Given the (N +1)×T matricesYa andYb , and an intervention time,T0 < T , the goal is to estimate

the unobserved rows m̂a,0 and m̂b0 in the post-intervention period, i.e., for columns j where j > T0.
We achieve this by using estimates provided by the following:

(1) mRSC algorithm presented in Section 3. This algorithm combines the two (N +1)×T matrices

in to one matrix of dimensions (N + 1) × 2T . For the regression step we use equal weights for

both metrics given the form of the generating functions fa and fb .
(2) RSC algorithm of [7] applied separately to Ya and Yb to generate estimates of each metric,

independently.

We conduct the experiment 100 times for each combination of N and T and average the resulting

RMSE scores for the forecasts.

Results. Figure 1 shows the results of the experiment. We note that for all levels of N ∈ [50, 500],
mRSC produces a lower RMSE value for the estimates for the first row of both metricA and metricB.

This is perfectly in line with the expectations set by Theorems 4.1 and 4.2. Note that while the

bounds in Theorem 4.2 improve by a factor of

√
2, it is an upper bound and we do not expect the

RMSE values to necessarily shrink by that amount.

5.2 Forecasting in retail
We consider the problem of forecasting weekly sales in retail. Here, we highlight a key utility of

mRSC over RSC in the presence of sparse data. More specifically, our results demonstrate that when

the pre-intervention period (training set) is short, then standard RSC methods fail to generalize well.

On the other hand, by using auxiliary information from other metrics, mRSC effectively “augments”

the training data, which allows it to overcome the difficulty of extrapolating from small sample

sizes.

Experimental setup. We consider the Walmart dataset, which contains T = 143 weekly sales

information across N = 45 stores and K = 81 departments. We arbitrarily choose store one as the

treatment unit, and introduce an “artificial” intervention at various points; this is done to study

the effect of the pre-intervention period length on the predictive power for both mRSC and RSC

methods. In particular, we consider the following pre-intervention points to be 15, 43, and 108

weeks, representing small to large pre-intervention periods (roughly 10%, 30%, and 75% of the
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entire time horizon T , respectively). Further, we consider three department subsets (representing

three different metric subgroups): Departments {2, 5, 6, 7, 14, 23, 46, 55}, {17, 21, 22, 32, 55}, and
{3, 16, 31, 56}.

Results. In Table 3, we show the effect of the pre-intervention length on the RSC and mRSC’s

ability to forecast. In particular, we compute the average pre-intervention (training) and post-

intervention (testing) MSEs across each of the three departmental subgroups (as described above)

for both methods and for varying pre-intervention lengths. Although the RSC method consistently

achieves a smaller average pre-intervention error, the mRSC consistently outperforms the RSC

method in the post-intervention regime, especially when the pre-intervention stage is short.

We present Figure 2 to highlight two settings, departments 56 (left) and 22 (right), in which

mRSC drastically outperforms RSC in extrapolating from a small training set (T0 = 15 weeks). As

seen from these plots, the RSC method struggles to extrapolate beyond the training period since

the pre-intervention period is short. In general, the RSC method compensates for lack of data

by overfitting to the pre-intervention observations and, thus, misinterpreting noise for signal (as

seen also by the smaller pre-intervention error in Table 3). Meanwhile, the mRSC overcomes this

challenge by incorporating sales information from other departments. By effectively augmenting

the pre-intervention period, mRSC becomes robust to sparse data. However, it is worth noting that

both methods are able to extrapolate well in the presence of sufficient data.

Fig. 2. mRSC (top) and RSC (bottom) forecasts for departments 56 (left) and 22 (right) of store 1 usingT0 = 15

weeks.

5.3 Forecasting scores in cricket
We now focus our attention on another real-world problem: forecasting scores in the game of

cricket. A-priori, there is nothing obvious which indicates that this problem has any relationship

to the model introduced in Section 2. As an important contribution of this work, we show how

cricket innings can be modeled as an instance of mRSC and we conduct extensive experimentation

to demonstrate mRSC’s excellent predictive performance.
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Train Error (10
6
) Test Error (10

6
)

T0 RSC mRSC RSC mRSC

10% 1.54 3.89 21.0 5.25
30% 2.21 3.51 19.4 4.62
75% 4.22 5.33 3.32 2.48
10% 0.67 2.61 14.4 2.48
30% 0.79 1.21 2.13 1.97
75% 1.18 2.78 1.31 0.77
10% 1.28 6.10 84.6 12.5
30% 2.60 3.45 3.72 4.13

75% 2.29 2.65 4.92 4.72
Table 3. Average pre-intervention (train) and post-intervention (test) MSE for RSC and mRSC methods.

As a starting point, we note that the mRSC setting is a natural candidate for modeling cricket

because the game has two key metrics: runs and wickets. While the winner is the team that makes

more total runs, the state of the game cannot be described by runs, alone. Wickets lost are as

important as runs scored in helping determine the current state of the game. Additionally, it is

well-understood among the followers and players of the game that the trajectory of runs scored

and wickets lost are both crucial in determining how well a team can be expected to do for the

remainder of the game. We formalize this intuition to model cricket innings and estimate the future

total runs scored (and wickets lost) by a team using the mRSC algorithm.

In what follows, we first describe the most important aspects of the game of cricket. Next, we

describe how to model an inning in cricket as an instance of mRSC. Finally, we use the mRSC

algorithm to forecast scores in several hundred actual games to establish its predictive accuracy. In

the process, we show that (a) both steps in the mRSC algorithm, i.e., de-noising and regression,

are necessary when estimating the future scores in a cricket inning; (b) a learning algorithm that

considers only runs, e.g., the RSC algorithm, would be insufficient and, thus, perform poorly because

wickets lost are a critical component of the game; (c) somewhat counterintuitively, constraining

the “donor pool” of innings to belong to the team of interest leads to poor predictive performance;

and (d) using real examples, the mRSC model and algorithm are able to do justice in capturing the

nuances of the game of cricket.

5.3.1 A primer on cricket. Cricket is one of the most popular sports in the world. According to

BBC, over a billion people tuned in on television to watch India play Pakistan in the ICC Cricket

World Cup 2015 ([23, 24]). It is a fundamentally different game compared to some its most popular

rivals. Unlike football (soccer), rugby, and basketball, cricket is an asymmetric game where both

teams take turns to bat and bowl; and unlike baseball, cricket has far fewer innings, but each inning

spans a significantly longer time. While cricket is played across three formats, the focus of this

work is on the 50-over Limited Overs International (LOI) format, where each team only bats once

and the winning team is the one that scores more total runs.

A batting inning in a LOI cricket game is defined by the total number of times the ball is bowled

to a batter (similar to a “pitch” in baseball). In a 50-over LOI inning, the maximum number of balls

bowled is 300. A group of six balls is called an “over”. Therefore, for the format under consideration,

an inning can last up to 50 overs or 300 balls. Each batting team gets a budget of 10 “outs”, which

are defined as the number of times the team loses a batter. In cricket, a batter getting “out” is also

referred to as the team having lost a “wicket”. Therefore, the state of a cricket inning is defined by

the tuple of (run scores, wickets lost) at each point in the inning. We shall call the trajectory of an
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inning by a sequence of such tuples. In the event that the team loses all 10 of its wickets before the

maximum number of balls (300) are bowled, the innings ends immediately. The team batting second

has to score one more run than the team batting first to win the game. As an example, in the ICC

Cricket World Cup Final in 2015, New Zealand batted first and lost all ten wickets for a cumulative

score of 183 in 45 overs (270 balls). Australia were set a target of 184 in a maximum of 50 overs but

they chased it successfully in 33 overs and 1 ball (199 balls) for the loss of only 3 wickets.

5.3.2 The forecasting problem. We consider the problem of score trajectory forecasting, where the
goal is to estimate or predict the (score, wicket) tuple for all the future remaining balls of an ongoing

inning. We wish to develop an entirely data-driven approach to address this problem while avoiding

the complex models employed in some of the prior works (see Section 1.2). Just as in the rest of

this work, we are using the mRSC setting as a vehicle for predictions.

5.3.3 An mRSC model. Given that the problem involves twin-metrics of runs and wickets, the

vanilla RSC algorithm would be unsatisfactory in this setting. We cast this problem as an instance

of the mRSC model outlined in Section 2. However, it is not obvious how an inning in cricket can

be reduced to an instance of the mRSC problem. We proceed to show that next.

Intuition. It is important to establish the validity of the latent variable model and, hence, the factor
model or low-rank tensor model in this setting. It is motivated by the following minimal property

that sports fans and pundits expect to hold for a variety of sports: the performance of a team is

determined by (1) the game context that remains constant through the duration of the game and

(2) the within innings context that changes during the innings. In cricket, the game context may

correspond to the players, coach, the mental state of the players, the importance of the game (e.g.,

world cup final), the game venue and fan base, the pitch or ground condition, etc. At the same

time, the within innings context may correspond to stage of the innings, power play, etc. Next, we

formalize this seemingly universal intuition across sports in the context of cricket.

Formalism. The performance, as mentioned before, is measured by the runs scored and the wickets

lost. To that end, we shall index an inning by i , and ball within the inning by j. Let there be a total
of n innings and b balls (within LOI, b = 300). Let Xi j andWi j denote the runs scored and wickets

lost on ball j within inning i . We shall model Xi j andWi j as independent random variables with

meanmi j = E[Xi j ] and λi j = E[Wi j ]. Further, let

mi j = fr (θi , ρ j ) ≡ f (θi , ρ j ,ωr ), (19)

λi j = fw (θi , ρ j ) ≡ f (θi , ρ j ,ωw ) (20)

for all i ∈ [n], j ∈ [b]2 where latent parameter θi ∈ Ω1 = [r1, s1]
d1

captures the game context;
latent parameter ρ j ∈ Ω2 = [r2, s2]

d2
captures the within innings context; latent functions fr , fw :

Ω1 × Ω2 → [0,∞) capture complexity of the underlying model for runs scored and wickets lost;

and these functions are thought be coming from a class of parametric functions formalized as

fr (·, ·) ≡ f (·, ·,ωr ) and fw (·, ·) ≡ f (·, ·,ωw ) for some parameters ωr ,ωw ∈ Ω3 = [r3, s3]
d3
. For

simplicity and without loss of generality, we shall assume that r1 = r2 = r3 = 0, s1 = s2 = s3 = 1,

d1 = d2 = d3 = d ≥ 1. Now this naturally fits the Latent variable model or factor model we have

considered in this work. Therefore, in principle, we can apply mRSC approach for forecasting run /

wicket trajectory.

Diagnostic. Proposition 2.1 suggests that if indeed our model assumption holds in practice, then the

data matrix of score and wicket trajectories and their combination ought to be well approximated

by a low-rank matrix. Moreover, for the mRSC model to hold, we expect the ranks of all these

2
We use notation [x ] = {1, . . . , x } for integer x .
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Fig. 3. The Singular Value spectrum for all innings in the dataset (runs, wickets and combined matrices of
dimensions 4700 × 300. Only showing the top 50 singular values, in descending order.

matrices to be approximately equal, as discussed in Section 3.3. For the low-rank to manifest, each

matrix’s spectrum should be concentrated on top few principal components. This gives us way to

test falsifiability of our model for the game of cricket, and more generally any game of interest.

In the context of cricket, we consider a matrix comprising 4700 LOI innings from 1999 to 2017, i.e.

as many rows and 300 columns. Figure 3 shows the spectrum of the top 50 singular values (sorted

in descending order) for each matrix. Note that the magnitude of the singular values is expected

to different between the two metrics owing to the assumed differences between the generating

functions, fr and fw . It is the relative proportions between the various singular values that we are

interested in. The plots clearly support the implications that most of the spectrum is concentrated

within the top few (8) principal components. The shapes for all three spectrums are also nearly

identical, the magnitude differences notwithstanding. Indeed, we note that the over 99.5% of the

“energy” in each matrix is captured by the top 8 singular values. We determine this by calculating

the ratio of the sum of squares of the top 8 singular values to the sum of squares of all singular

values of each matrix.

5.3.4 Experiments and Evaluation. We describe the details of the experiments to evaluate the

performance of the algorithm.

Data. For all experiments described in the rest of this section, we consider 750 most recent LOI

innings spanning seven years (2010-2017) and introduce an arbitrary intervention at the 30 over

mark (180 balls), unless stated otherwise. For each inning, forecasts for the entire remainder of the

innings (i.e., 20 overs (or 120 balls)) are estimated using our mRSC algorithm. For the donor pool,

we take into consideration all LOI (first) innings from the year 1999 onwards, which comprises

about 2400 innings.

Objective. Even though the twin metrics, runs scored and wickets lost, are equally important in

helping to determine the current state of the game and in forecasting the future, the key evaluation

metric we will consider is the runs scored. We focus on this particular metric since the winner of

game is solely a function of the number of runs scored. i.e., if team A scores more runs than team

B, then team A is declared the winner if even team A has lost more wickets. Therefore, while we

use both runs and wickets to train the mRSC model, all evaluations will only focus on the total

number of runs scored.

Evaluation Metrics. Given that the ground truth (i.e., the mean trajectory of runs scored and

wickets lost) are latent and unobserved, we use the actual observations from each of these innings

to measure our forecasting performance. We will use two metrics to statistically evaluate the

performance of our forecast algorithm:
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MAPE. We split the run forecast trajectories into four durations of increasing length: 5 overs (30-35

overs), 10 overs (30-40 overs), 15 overs (30-45 overs), and 20 overs (30-50 overs). Next, we compute

the mean absolute percentage error (MAPE) in the range [0, 1] for each inning and forecast period.

MAPE helps us quantify the quality of runs-forecasts. A distribution of these errors, along with the

estimated mean and median values, are reported.

R2. To statistically quantify how much of the variation in the data is captured by our forecast

algorithm, we compute the R2
statistic for the forecasts made at the following overs: {35, 40, 45}.

For each of these points in the forecast trajectory, we compute the R2
statistic over all innings

considered. The baseline for R2
computations is the sample average (runs) of all innings in the donor

pool at the corresponding overs, i.e., {35, 40, 45}. This is akin to the baseline used in computing the

R2
statistic in regression problems, which is simply the sample average of the output variables in

the training data.

Comparison. In order to establish the efficacy of the mRSC algorithm, we conduct the following

comparisons to study the importance of each facet of the mRSC algorithm:

(1) Criteria 1: value of the WLS. comparison with an algorithm that uses the de-noised donor

pool matrix (result of step 1 of the algorithm), but takes the sample average of the donor pool

runs instead of a weighted least squared regression;

(2) Criteria 2: value of de-noising. comparison with an algorithm that ignores the de-noising

step (step 1 of the algorithm) and performs a WLS regression directly on the observed data

in the donor pool;

(3) Criteria 3: value of using all data (Stein’s Paradox). comparison with an algorithm that

restricts the donor pool to belong to past innings played by the same team for which we are

making the prediction. It is commonly assumed that in order to predict the future of a cricket

innings, the “context” is represented by the identity of the team under consideration. This

was also assumed about baseball and refuted (ref. Stein’s Paradox [14]). Filtering the donor

pool to belong to innings played by the same team will allow us to test such an assumption.

(4) Criteria 4: value of wickets. we look for examples of actual innings in cricket where

considering a single metric (e.g., runs) would not properly do justice to the state of the

innings and one would expect runs-based forecasts from the vanilla RSC algorithm to be

inferior to the mRSC algorithm, which is capable of taking the loss of wickets into account

as well.

(5) Criteria 5: value of our model. finally, and perhaps most significantly, we compare the

algorithm’s forecasts with the context and details within some selected actual games/innings.

Such a comparison against actual game context and cricketing intuition will help determine

whether our algorithm (and by extension, the mRSC model) was able to capture the nuances

of the game.

5.3.5 Statistical Performance Evaluation. Figure 4 shows the distribution of MAPE statistic for the

runs-forecasts from our algorithm for each of the four forecasts: 5 over, 10 over, 15 over, and 20

over periods with the intervention at the 30th over mark. The clear left-skew hints at most errors

being small. The MAPE statistic is larger the longer the forecast horizon considered, which is to be

expected. The median MAPE from our algorithm over the longest forecast horizon (20 overs) is only

about 5% while the shortest-horizon forecasts have a median of about 2.5%. In the cricket context,

this should be considered excellent. Table 4 notes the mean and median for the distribution of the

MAPE statistic for our algorithm in comparison to the de-noised donor-pool averaging algorithm

described in Criteria 1 in Section 5.3.4. Our algorithm outperforms the donor-pool averaging
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Fig. 4. MAPE forecast error distributions for interventions made at the 30 over (180 balls) mark. Algorithm
uses the top 5 singular values.

algorithm for all forecast intervals on both the mean and median MAPE statistics. This establishes

the clear value of Step 2 (regression) of the mRSC algorithm.

Forecast mRSC Algorithm Donor-Pool Avg

Interval Mean Median Mean Median

5 overs 0.033 0.027 0.169 0.124

10 overs 0.043 0.037 0.169 0.126

15 overs 0.053 0.043 0.170 0.124

20 overs 0.062 0.051 0.173 0.121

Table 4. Forecasts from the mRSC algorithm vs the donor pool averaging algorithm. MAPE forecast error
means and medians for interventions made at the 30 over (180 balls) mark. Algorithm uses the top 7 singular
values.

Tables 5 and 6 report the R2
statistics for the 5, 10, and 15 over forecasts across all innings

produced by our algorithm in comparison to an algorithm that performs the WLS regression step

without de-noising (see Criteria 2 in Section 5.3.4). Note that the intervention is at the 10th over

mark in Table 5 and at the 30th over mark in Table 6. Both tables show that the de-noising step

can only be an advantage, as originally argued in [7]. However, the advantage of the de-noising

step is more pronounced in situations with less training data, i.e., an earlier intervention. This is

to be expected and is perfectly in line with the other experiments conducted in this work. The R2

values indicate that our algorithm is able to capture most of the variability in the data and that

there is significant benefit in using the mRSC framework. The decline in median R2
values as we

increase the forecast horizon from 5 overs (30 balls) to 15 overs (90 balls) is to be expected because

the forecast accuracy degrades with the length of the forecast horizon.

Intervention: 30th ov 35 ov 40 ov 45 ov

mRSC Algorithm 0.924 0.843 0.791

Regression (noisy) 0.921 0.839 0.787

Table 5. R2 of the forecasts from themRSC algorithm vs the one where no donor-pool de-noising is performed
as a precursor to the WLS regression step. Forecasts at the 35th, 40th, and 45th overs with the intervention at
the 30 over (180 ball) mark. Algorithm uses the top 7 singular values.
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Intervention: 10th ov 15 ov 20 ov 25 ov

mRSC Algorithm 0.69 0.39 0.15

Regression (noisy) 0.67 0.34 0.07

Table 6. R2 of the forecasts from themRSC algorithm vs the one where no donor-pool de-noising is performed
as a precursor to the WLS regression step. Forecasts at the 15th, 20th, and 25th overs with the intervention at
the 10 over (60 ball) mark. Algorithm uses the top 7 singular values.

5.3.6 Stein’s Paradox in cricket. We now show that the famous statistical paradox attributed to

Charles Stein also makes its appearance in cricket. Using baseball as an example, Stein’s para-

dox claims that the better forecasts of the future performance of a batter can be determined by

considering not just the batter’s own past performance but also that of other batters even if their

performance might be independent of the batter under consideration [14]. We use Table 7 to

summarize a similar fact in cricket, using our forecast algorithm. Instead of considering all past

innings in the donor pool, we use a donor pool comprising innings only from the same team as the

one that played the innings we are forecasting. Table 7 shows that the median of MAPE statistics

over all forecast horizons are ∼ 3x lower when using all past innings in the donor pool compared to

a team-specific donor pool. This experiment also validates our latent variable model which allows

a complex set of latent parameters to model cricket innings.

Team Donor Pool 5ov 10 ov 15 ov 20 ov

England All innings 0.025 0.031 0.039 0.043
Restricted 0.065 0.097 0.113 0.127

Pakistan All innings 0.029 0.039 0.046 0.052
Restricted 0.072 0.104 0.113 0.119

India All innings 0.027 0.037 0.045 0.049
Restricted 0.067 0.093 0.101 0.108

Australia All innings 0.027 0.040 0.044 0.053
Restricted 0.063 0.084 0.094 0.104

Table 7. MAPE medians for innings played by specific teams on a donor pool with all innings compared to
one which is restricted to only include past innings from the same team. The rest of the algorithm is exactly
the same for both. The intervention takes place at the 30 over mark and the forecast horizons are 5, 10, 15,
and 20 overs.

5.3.7 Capturing the effect of wickets: comparison to RSC. We first consider the Champions Trophy

2013 game between Sri Lanka and Australia, played on June 17, 2013 at the Kennington Oval in

London. In the second innings, Australia were chasing 254 for victory in their maximum allocation

of 50 overs. However, given the tournament context, Australia would have to successfully chase

the target in 29 overs to have a shot at qualifying for the semi-finals. In their attempt to reach the

target as quickly as possible, Australia played aggressively and lost wickets at a higher rate than

normal. They couldn’t qualify for the semi-finals but also fell short of the target altogether, and

were bowled out for 233. At the 30th over mark, Australia’s scorecard read 192 runs scored. Purely

based on runs scored, that is a high score and an algorithm which takes only runs in to account,

e.g. the vanilla RSC algorithm, would likely forecast that Australia would overhaul their target

of 254 very comfortably. Indeed, the RSC algorithm forecasts that Australia would have reached

their target in the 39th over. However, by that 30th over mark Australia had lost 8 wickets. This
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additional context provided by wickets lost is not captured by the RSC algorithm but is crucial in

understanding the state of the game. In cricketing terms 192-8 in 30 overs would not be considered

an advantageous position when chasing a target of 254. It is more likely for a team to get bowled

out, i.e., lost all 10 of their wickets, before reaching their target. We use the mRSC algorithm to

study the effect of effects. Using cross-validation, we find that the best ratio of objective function

weights between runs and wickets is 1:4. Using this ratio of weights, the mRSC algorithm forecasts

that Australia would be all out, i.e., lose all 10 wickets, and make 225 runs. This is very close to the

actual final score of 233 all out. In cricketing terms, that is a far better forecast than that provided

by the RSC algorithm which made little cricketing sense.

We now consider the game played between England and New Zealand in Southhamption on

June 14, 2015. Batting first, England were looking good to reach a score in excess of 350 by the

41th over when they had only lost 5 wickets but already scored 283 runs. However, from being a

position of ascendency, their fortunes suddenly dipped and they ended up losing all five remaining

wickets within the next four overs to get bowled out for 302. While it is hard to imagine any

algorithm forecasting the sudden collapse, we use the 43rd over as a benchmark to compare the two

algorithms. At that stage, England had progressed to 291 runs but lost 7 wickets. In cricketing terms,

that is no longer a situation where one of would expect the team to cross 350 like it appeared only

two overs back. The RSC algorithm does not grasp the change in the state of the game purely based

on runs scored. It projects that England would still go on to make 359 runs. The mRSC algorithm,

using a runs: wickets weights ratio of 1:2, forecasts a final score of 315 all-out. Once again, we

notice that the mRSC algorithm is able to capture the effect of wickets, which is crucial in the game

of cricket, to produce more accurate and believable forecasts.

5.3.8 Capturing cricketing sense: case studies. We use examples from actual games to highlight

important features of our forecast algorithm.

India vs Australia, World Cup Quarter Final 2011. We use the ICC World Cup 2011 Quar-

ter Final game between India and Australia. Batting first, Australia made 260 runs for the loss of 6

wickets in their allocated 50 overs. At the 25 over mark, Australia had made 116 runs for the loss of

only two wickets. Australia’s captain and best batsman, Ricky Ponting, was batting and looked set

to lead Australia to a final score in excess of 275-280. However, India were able to claw their way

back by taking two quick wickets between overs 30-35 and slowed Australia’s progress. Eventually,

that slowdown cost Australia a vital few runs and they ended with a good final score of 260–but it

could have been better. Figure 5 shows the actual innings and trajectory forecasts produced by our

algorithm for interventions at the 25, 40 and 45 over marks. Notice that Figure 5a shows that our

algorithm forecasted Australia would make more runs than they eventually ended up with. This is

what one would expect to happen–we forecast based on the current state of the innings and not

using future information. Note that the forecast trajectories at the 40 and 45 over interventions

match exceptionally well with reality now that the algorithm has observed India’s fightback. This

is an important feature of the algorithm and it happens because the pre-intervention fit changes

for each of the three points of intervention. The events from overs 30-35 play a significant role in

estimating a different synthetic control, β̂ , for the interventions at over 40 and 45 compared to the

intervention at over 25 (when those events were yet to happen).

Another feature worthy of highlighting is that the algorithm is able to project the rise in the rate

of scoring towards the end of an innings–this is a well-known feature of cricket innings and any

data-driven algorithm should naturally be able to bring this to light. Finally, note the smoothness

of the forecasts (in blue) compared to observations (in red). This is a key feature of our algorithm,
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which “de-noises” the data matrix to retain only the top few singular values to estimate the mean

future trajectory. We refer the reader to Appendix B.1 for two other case studies.

(a) (b) (c)

Fig. 5. India vs Aus (WC 2011). First Innings (Australia batting). Interventions at the 25, 40 and 45 over marks.
Actual and Forecast trajectories with the 95% uncertainty interval.

6 CONCLUSION
Summary. In this work, we focus on the problem of estimating the (robust) synthetic control

and using it to forecast the future metric measurement evolution for a unit of interest under the

assumption that a potential intervention has no statistical effect. Synthetic control (SC) [2–4], robust

synthetic control (RSC) [7], and its variants perform poorly when the training (pre-intervention)

data is too little or too sparse. We introduce the multi-dimensional robust synthetic control (mRSC)

algorithm, which overcomes this limitation and generalizes the RSC algorithm. This generalization

allows us to present a natural and principled way to include multiple (related) metrics to assist with

better inference. The latent variable model lies at the heart of the mRSC model and is a natural

extension of the factor model, which is commonly assumed in the SC literature. Our algorithm

exploits the proposed low-rank tensor structure to “de-noise” and then estimate the (linear) synthetic

control via weighted least squares. This produces a consistent estimator where the MSE decays to

0 at faster rate than the RSC algorithm; specifically, a factor of K and

√
K faster for the training

(pre-intervention) and testing (post-intervention) periods, respectively.

Through extensive experimentation using synthetically generated datasets and real-world data

(in the context of retail), we confirm the theoretical properties of the mRSC algorithm. Finally, we

consider the problem of forecasting scores in the game of cricket to illustrate the modeling prowess

and predictive precision of the mRSC algorithm.

Forecasting vis-á-vis Synthetic Control.While observational studies and randomized control

trials are all concerned with estimating the unobserved counterfactuals for a unit of interest that

experiences an intervention, how does one determine the performance of a counterfactual estimation

method without access to the ground-truth? Although it is possible to use the pre-intervention

data to cross-validate the performance of any estimation method, such a methodology ignores the

period of interest: the post-intervention period. An alternate and more effective approach is to

study the performance of an estimation method on units that do not experience the intervention,

i.e., the placebo units. If the method is able to accurately estimate the observed post-intervention

evolution of the placebo unit(s), it would be reasonable to assume that it would perform well in

estimating the unobserved counterfactuals for the unit of interest. Therefore, in this work, we focus

on evaluating the estimates of many such placebo units to establish the efficacy of our proposed

method. Additionally, given that there is a temporal ordering of the data with clearly defined pre-

and post- intervention period(s), our post-intervention estimation problem is akin to a forecasting
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problem; for units which do not experience any intervention, our goal is to accurately estimate the

future and our estimates are evaluated against the observed data. This post-intervention period

forecast accuracy becomes our primary metric of comparison and evaluation.

Given the discussion above, the method presented in this work serves a dual purpose: (a) it can

be used as a method to estimate the (synthetic) control for a unit of interest that experiences an

intervention; (b) as long as the temporal or sequential dimension is relative and not absolute, it can

be used as a method to forecast the future evolution of any unit of interest. More precisely, this is

only possible when the donor units have observations for both the past (pre-intervention period)

and the future (post-intervention period), e.g., in the game of cricket, the donor pool comprises of a

large set of already completed innings. Therefore, the mRSC method presented in this work is not

a general time series forecasting algorithm: it requires the future to be known for the donor units,

which can then assist in estimating the (counter)factual for the unit of interest. For more details

on the contrast between related work on time series forecasting and the synthetic control based

algorithm presented in this work, we refer the reader to Section 1.2.
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A PROOFS
A.1 Proof of Proposition 2.1
Proof. We will construct a low-rank tensor T by partitioning the latent row and tube spaces of

M. Through this process, we will demonstrate that each frontal slice of T is a low-rank matrix,

and only a subset of the K frontal slices of T are distinct. Together, these observations establish the

low-property of T . Finally, we will complete the proof by showing thatM is entry-wise arbitrarily

close to T .

Partitioning the latent space to construct T . Fix some δ1,δ3 > 0. Since the latent row pa-

rameters θi come from a compact space [0, 1]d1 , we can construct a finite covering (partition)

P (δ1) ⊂ [0, 1]d1 such that for any θi ∈ [0, 1]d1 , there exists a θi′ ∈ P (δ1) satisfying ∥θi − θi′ ∥2 ≤ δ1.
By the same argument, we can construct a partitioning P (δ3) ⊂ [0, 1]d3 such that ∥ωk − ωk ′ ∥2 ≤ δ3
for any ωk ∈ [0, 1]d3 and some ωk ′ ∈ P (δ3). By the Lipschitz property of f and the compactness of

the latent space, it follows that |P (δ1)| ≤ C1 · δ
−d1
1

, where C1 is a constant that depends only on the

space [0, 1]d1 , ambient dimension d1, and Lipschitz constant L. Similarly, |P (δ3)| ≤ C3 · δ
−d3
3

, where

C3 is a constant that depends only on [0, 1]d3 , d3, and L.

For each θi , let p1(θi ) denote the unique element in P (δ1) that is closest to θi . At the same time,

we define p3(ωk ) as corresponding element in P (δ3) that is closest to ωk . We now construct our

tensor T = [Ti jk ] by defining its (i, j,k)-th entry as

Ti jk = f (p1(θi ), ρ j ,p3(ωk ))

for all i ∈ [N ], j ∈ [T ], and k ∈ [K].

Establishing the low-rank property of T . Let us fix a frontal slice k ∈ [K]. Consider any two
rows of T·, ·,k , say i and i

′
. If p1(θi ) = p1(θi′), then rows i and i ′ of T·, ·,k are identical. Hence, there at

most |P (δ1)| distinct rows in T·, ·,k , i.e., rank(T·, ·,k ) ≤ |P (δ1)|. In words, each frontal slice of T is a

low-rank matrix with its rank bounded above by |P (δ1)|.

Now, consider any two frontal slices k and k ′
of T . If p3(ωk ) = p3(ωk ′), then for all i ∈ [N ] and

j ∈ [T ], we have

Ti jk = f (p1(θi ), ρ j ,p3(ωk )) = f (p1(θi ), ρ j ,p3(ωk ′)) = Ti jk ′ .

In words, the k-th frontal slice of T is equivalent to the k ′
-th frontal slice of T . Hence, T has at

most |P (δ3)| distinct frontal slices.

To recap, we have established that all of the frontal slices T·, ·,k of T are low-rank matrices, and

only a subset of the frontal slices of T are distinct. Therefore, it follows that the rank of T (i.e., the

smallest integer r such that T can be expressed as a sum of rank one tensors), is bounded by the

product of the maximum matrix rank of any slice T·, ·,k of T with the number of distinct slices in

T . More specifically, if we let δ = δ1 = δ3, then

rank(T ) ≤ |P (δ1)| · |P (δ3)| ≤ C · δ−(d1+d3),

where C is a constant that depends on the latent spaces [0, 1]d1 and [0, 1]d3 , the dimensions d1 and
d3, and the Lipschitz constant L. We highlight that the bound on the tensor rank does not depend

on the dimensions of T .
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M is well approximated by T . Here, we bound the maximum difference of any entry in

M = [Mi jk ] from T = [Ti jk ]. Using the Lipschitz property of f , for any (i, j,k) ∈ [N ] × [T ] × [K],
we obtain ��Mi jk −Ti jk

��
=

��f (θi , ρ j ,ωk ) − f (p1(θi ), ρ j ,p3(ωk ))
��

≤ L ·
(
∥θi − p1(θi )∥2 + ∥ωk − p3(ωk )∥2

)
≤ L · (δ1 + δ3).

This establishes thatM is entry-wise arbitrarily close to T . Setting δ = δ1 = δ3 completes the proof.

□

A.2 Proof of Proposition 4.1
Proof. Recall the definition ofU from (3). By Property 2.1, we have that dim(span{U1, ·, . . . ,UN , ·}) =

r , where Ui, · denotes the i-th row of U . Since we are choosing the treatment unit uniformly at

random amongst the N possible indices (due to the re-indexing of indices as per some random

permutation), the probability of thatU1, · is not a linear combination of the other rows is r/N . In

light of this observation, we define A = {U1, · =
∑N

z=2 β
∗
zUz, ·} as the event where the first row of

U is a linear combination of the other rows inU . Then, using the arguments above, we have that

P{A} = 1 − r
N .

Now, suppose the event A occurs. Then for all j ∈ [T ] and k ∈ [K],

M1jk =

r∑
i=1

U1i ·Vji ·Wki

=

r∑
i=1

(
N∑
z=2

β∗z ·Uzi

)
·Vji ·Wki

=

N∑
z=2

β∗z ·

( r∑
i=1

Uzi ·Vji ·Wki

)
=

N∑
z=2

β∗z ·Mzjk .

This completes the proof. □

A.3 Proof of Theorem 4.1
Proof. The proof follows from an immediate application of Theorem 3 of [6]. □

A.4 Proof of Theorem 4.2
Proof. The proof follows from an immediate application of Theorem 5 of [6]. □

B CRICKET EXPERIMENTS CONTINUED
B.1 Capturing Cricketing Sense: Case Studies
As a continuation of the case-study described in Section 5.3.8, we provide two more examples. First,

we consider the same game as that presented in Section 5.3.8: India vs Australia, 2011. However,

we now look at the second inning. Here, India was able to chase the target down and win the game

with relative ease.

Figure 6 shows the forecasts at the intervention points of 35, 40, and 45 overs for India’s innings.

The forecast trajectories are exceptionally close to reality and showcase the predictive ability of the
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algorithm. Once again notice the rise in score rate towards the late stages of the innings, similar to

the first innings. We note that the flatlining of the actual score in the innings (red line) is simply

due to the fact that India had won the game in the 48th over and no more runs were added.

Fig. 6. India vs Aus (WC 2011). Second Innings (India batting). Interventions at the 35, 40 and 45 over marks.
Actual and Forecast trajectories with the 95% uncertainty interval.

Zimbabwe vs Australia, Feb 4 2001. Zimbabwe and Australia played a LOI game in Perth in

2001. Australia, world champions then, were considered too strong for Zimbabwe and batting first

made a well-above par 302 runs for the loss of only four wickets. The target was considered out of

Zimbabwe’s reach. Zimbabwe started poorly and had made only 91 for the loss of their top three

batsmen by the 19th over. However, Stuart Carlisle and Grant Flower combined for a remarkable

partnership to take Zimbabwe very close to the finish line. Eventually, Australia got both batsmen

out just in the nick of time and ended up winning the game by just one run. We show the forecast

trajectories at the 35, 40 and 45 over marks–all during the Carlisli-Flower partnership. The forecasts

track reality quite well. A key feature to highlight here is the smoothness of the forecasts (in blue)

compared to reality (in red). This is a key feature of our algorithm which “de-noises” the data

matrix to retain only the top few singular values. The resulting smoothness is the mean effect we

are trying to estimate and it is no surprise that the forecast trajectories bring this feature to light.

Fig. 7. Zimbabwe vs Aus (2001). Second Innings (Zimbabwe batting). Interventions at the 35 over, 40 over
and 45 over mark.

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 37. Publication date: June 2019.


	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Works
	1.3 Organization

	2 Problem Setup
	2.1 Model description
	2.2 Structural assumptions on mean tensor
	2.3 Structural assumptions on noise
	2.4 Missing data
	2.5 Problem statement

	3 Algorithm
	3.1 Setup
	3.2 Robust multi-metric algorithm.
	3.3 Diagnostic: rank preservation

	4 Main Results
	5 Experiments
	5.1 Idealized synthetic-data experiment
	5.2 Forecasting in retail
	5.3 Forecasting scores in cricket

	6 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Proposition 2.1
	A.2 Proof of Proposition 4.1
	A.3 Proof of Theorem 4.1
	A.4 Proof of Theorem 4.2

	B Cricket Experiments Continued
	B.1 Capturing Cricketing Sense: Case Studies


