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A Canonical Task

Resource Allocation
Sharing resources amongst competing jobs
Subject to resource constraints

So that

Maximally utilize resources

Minimize latency (completion time) incurred by jobs

Using Implementable policy for allocating resources

It is self evident that they are everywhere
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A Canonical Task

Performance Metric
Resource utilization: Capacity

Latency: Queue-size

Implementation: Computation, System constraints

Depends upon

System load
System size

Structure of resource sharing constraints
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ldeal Performance

Consider an M/M/1 Queue

A |<j H

A
System load: P = —

Capacity: p < 1

Queue-size: E[Q] = ?’Op and P(Q > t) =~ exp(—(1 — p)t)

First-come-first-serve (work conserving) policy



Ideal Performance: Beyond Simple Example

Jackson (1957)/Basket-Chandy-Munz-Palacois (1975)/Kelly Network (1976)

“product-form” queueing networks
Q:f m ;

Network of Queues Independent M/M/1 Queues

Policies (LCFS / PS) achieving these are simple

Total queue-size scales linearly with network size - best one can hope for



Stochastic Processing Networks

Harrison (2000): A parsimonious model
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Stochastic Processing Networks

Harrison (2000): A parsimonious model
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But, complicated



Stochastic Processing Networks

Policies

Maximum Weight (MW)(back-pressure) of Tassiulas-Ephremides (1992)

An Example: QnN_1
woa— I/
N—1 unit rate
server
)\N —
N

Constraint: can serve only one queue at a time

MW: always serve the longest queue



Stochastic Processing Networks

Policies

Proportional Fair (PF) of Kelly-Maullo-Tan (1997)

An Example: Qn_1
wa— I/
N—1 unit rate
server
)\N —
QN

Constraint: service rate bounded by 1, can split in any manner

PF: every non-empty queue is served with positive rate,
longer queue with higher rate
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Stochastic Processing Networks

Performance analytic methods

Markov Chains and
Stochastic Stability

Capacity via positive recurrence of Markov chain

Foster and Lyapunov criterion cf. Meyn-Tweedie (1990s)

E Stability of
1 Queueing Networks

Fluid model cf. Dai (1995), Bramson (2008)
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Jim Dai
J. Michael Harrison

4 Springer




Stochastic Processing Networks

Performance analytic methods

Markov Chains and
Stochastic Stability

Capacity via positive recurrence of Markov chain

Foster and Lyapunov criterion cf. Meyn-Tweedie (1990s)

Fluid model cf. Dai (1995), Bramson (2008)

Processing Networks

_I_ Da i_ H 3 rriso n (2OXX) Fluid models and Stability

Jim Dai

J. Michael Harrison

Implication:

Optimal capacity is achieved by
MW (back-pressure) by Tassiulas-Ephremides (1992), Stolyar (2004)

PF by Bonald-Massoulie(2001), de Vecianna-Lee-Konstantopoulos(2001)
Ye (2003)
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Brownian

Performance analytic methods leeE

Queue-size scaling via diffusion or heavy traffic approximation
cf. Harrison (1985, 2013)

State-space collapse + Invariance Principle

cf. Bramson (1998), Williams (1998)
State-space collapse 4+ Lyapunov function cf. Maguluri-Srikant (2016)




Stochastic Processing Networks

Brownian

Performance analytic methods R

Queue-size scaling via diffusion or heavy traffic approximation
cf. Harrison (1985, 2013)

State-space collapse + Invariance Principle

cf. Bramson (1998), Williams (1998)
State-space collapse 4+ Lyapunov function cf. Maguluri-Srikant (2016)

Implication:

MW (restricted optimality in various forms)
cf. Stolyar (2004), Shah-Wischik (2006), Maguluri-Srikant (2016)

PF leads to asymptotic “product-form” (for specific networks)
cf. Kang-Kelly-Lee-Williams (2006), Ye-Yao (2012)



Stochastic Processing Networks

Policy design methods

Randomization cf. Tassiulas (1998), Giaccone-Prabhakar-Shah (2002)

Primal-dual cf. Kelly-Maullo-Tan (1997), Low (1998), Srikant (2000)

Distributed Implementation cf. Modiano-Shah-Zussman (2005)

Message-passing cf. Shah (2006)

Control for Wireless and
Processing Networks

The Mathematics of
Internet Congestion

Libin Jiang
nnnnnnnnnnn




Stochastic Processing Networks

Policy design methods

Randomization cf. Tassiulas (1998), Giaccone-Prabhakar-Shah (2002)

Primal-dual cf. Kelly-Maullo-Tan (1997), Low (1998), Srikant (2000)

Distributed Implementation cf. Modiano-Shah-Zussman (2005)

Scheduling and Cﬂngestii)n
Control for Wireless and
Processing Networks

Message-passing cf. Shah (2006)

The Mathematics of
Internet Congestion

Libin Jiang Control

quququququququququ

Implication:

MW has capacity achieving low-complexity implementation

PF has iterative, distributed low-complexity implementation



Stochastic Processing Networks: Baseline Performance

An Interesting Goal: design resource allocation policy so that

network of queues becomes equivalent to “product-form”

called baseline performance cf. Harrison-Mandayam-Shah-Yang (2014)
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Stochastic Processing Networks: Baseline Performance

An Interesting Goal: design resource allocation policy so that

network of queues becomes equivalent to “product-form”

called baseline performance cf. Harrison-Mandayam-Shah-Yang (2014)
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Questions:
is it feasible? done with low complexity? is it a good thing to do?
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This Tutonal

We will describe method to achieve this interesting goal

For two different objectives

Maximal capacity, minimal queue-size scaling

leads to notion of baseline performance

Maximal capacity, fully distributed implementation

We will discuss

Challenges in achieving maximal capacity, minimal queue-size and fully
distributed implementation simultaneously

Relation of baseline performance to extension complexity

Some open directions



Outline

Remainder of the tutorial

Baseline performance

Switched network, Single Hop

Switched flow network, Multi Hop

Distributed implementation

Wireless network

Discussion



Switched Networks:
Single-hop

D. Shah, N. Walton and Y. Zhong, "Optimal queue-size scaling in switched networks",
The Annals of Applied Probability, 2014
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Switched Networks

Input |

AV4

Input 2

Valid
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Output | Output 2

Each integral time instance

each input can send at most one packet
each output can receive at most one packet



Switched Networks

The set of feasible rates

convex combination of possible schedules

In a 2-port switch, A\ = [)\z'j] is feasible iff

A1l A2 < o 1 0 _I_ﬁ 0 1
Ao1 Asa| T 0 1 10

s.t. a+6<1, «, 6>0.

Load of \ : the smallest possible v + 6satisfying above



Switched Networks

The set of feasible rates

convex combination of possible schedules

In a 2-port switch, A\ = [)\ij] is feasible iff

A1+ A2 < 1 A1 + Ao <1

A1+ A2 <1 A2 + Ao <1

Load of \ : maximum of the left-hand-side of the above four terms



Switched Networks

>
l
B

Scheduling constraints

each time choose schedule 00 € S

S C Zgo is a finite monotone set

if o € and U'Ezgo, o' <o then ¢’ €S



Switched Networks

Capacity region
convex hull of S

can be represented as

AeRY,: AN <b, A e RISY, beRY,
given a feasible A, it's load is defined as

p(A) =min{p < 1: A\ < pb}



An Open Question

Consider input-queued switch with n inputs / outputs

there exists a policy such that

achieves maximal capacity
computationally efficient (poly-time)

average queue-sizes

E{E;QJ} = —T;()\)

where c is a universal constant

Informally around since 2000, formally noted down in Shah-Tsitsiklis-Zhong (2010)



Switched Networks

We describe policy so that switched network becomes

equivalent to “product-form™ queueing network

Four step approach

Identify “relaxed” network with feasible actions being convex hull of S

ldentify multi-class “product-form" (ala Kelly) network

Design policy for "relaxed" network which makes it equivalent to
this multi-class “product-form" network

Design emulation policy for switched network that emulates
behavior of any policy in "relaxed" network

(a good analogy = rounding or relaxation in combinatorial optimization)



Relaxed Switched Networks

i1 + pie <1 p11 +per <1

Input |

Input | Output | \
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to1 + oo <1 1o + piog <1

Output o

Output |  Output 2

Flow-level network

(bandwidth sharing)

Switched network



Multi-class “Product-form” Network

unit size jobs

" ‘ M o SR
R . Y

Flow-level network Multi-class Multi-hop Network

(bandwidth sharing) (processor sharing nodes)



Policy for Relaxed Switched Network

Store and Forward Policy by Massoulie, Bonald-Proutiere (2003)

Each flow is allocated rate
as a function of total number of flows queued
the function corresponds to ratio of two normalization constants
with and without one less flow of the specific type

the normalization constant arises from stationary distribution of

associated Multi-class “product-form” network

Such choice makes sure that under stationary distribution

total jobs in flow network = total jobs in multi-class network

Insensitivity established by Zachary (2008)



Policy for Relaxed Switched Network

Store and Forward Policy by Massoulie, Bonald-Proutiere (2003)

unit size jobs

number of nodes
in multi-class net.

Average number of jobs in the system in steady-state ~
1—p



Emulating Relaxed Switched Networks
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Emulating Relaxed Switched Networks
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Emulating Relaxed Switched Networks

/ \ Time 3, etc
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Lemma. Total difference in g-size
Is at most n3.
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Emulating Relaxed Switched Networks

In summary:

total avg g-size of total avg g-size of

switched net. switched net.

VAN

M
l1—p

Recall: Capacity region, the convex hull of feasible schedules S

AeRY;: AN<b, AcRISY, beRY



Emulating Relaxed Switched Networks

In summary:

total avg g-size of total avg g-size of

switched net. switched net.

AN

num of faces of
Recall: Capacity region, the convex hull of feasible schedules S

capacity region

ANeRY;: AN<b, Ae RISV, beR%/

That is, baseline performance is achieved cf. Harrison-Mandyam-Shah-Yang (2014



What Happened to The Open Question

Consider input-queued switch with N inputs / outputs

there exists a policy such that

achieves maximal capacity
computationally efficient (poly-time)

average queue-sizes

S0 <er

where c is a universal constant

baseline performance + emulation

t[;Qw} §21_TIL0()\) - nS




Switched Flow Networks:
Multiple-hop

D. Shah and Q. Xie, "Centralized congestion control and scheduling in a data-center”,
Preprint.



Switched Flow Networks

Flows are a collection of packets

Flows get rates assigned per which packets are injected in the network

Packets hop through network where each node decides service policy

packet / job scheduling

. '

rate allocation

Excellent model for data center networks cf. Perry-Balakrishnan-Shah (2014, 16)
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Switched Flow Networks

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Packet scheduling

|deally, need to use LCFS or Processor Sharing
But, nodes process packets in integral time-steps
Need emulation, like before

But, now it needs to hold over a multi-hop network



Switched Flow Networks

| ast-Come-First-Serve Emulation

Operate continuous time network per LCFS
Schedule packets in discrete-time network

using LCFS policy at integral time steps

but with respect to the arrival time of continuous network

Lemma (informally). The departure time of each packet from a queue
in discrete time is within fixed constant of departure time from the
corresponding ideal continuous time network as long as network has
acyclic routing (allows for variable length packets).

That is, delay of both networks are within constant (independent of

network size, load, etc. )



Switched Flow Networks

In summary:

total avg g-size of number of hops

= 0,

switched flow net. 1—p

That is, we achieve baseline performance



Wireless Networks:
Distributed Implementation

D. Shah and J. Shin, "Randomized scheduling algorithm for queueing networks",
The Annals of Applied Probability, 2012.



Wireless Networks

Medium Access

Constraint

No two neighbors can transmit at the same time

Each node does not have knowledge of its neighbors



Medium Access As A Game
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Medium Access As A Game

Rules

When asked
you may respond (raise hand) in < 100ms

Winner

if s/he is unique responder

Reward

bar of chocolate

Goal

Someone must win each time, and evenly across



Medium Access As A Game

Rules

When asked
you may respond (raise hand) in < 100ms

human reaction time to a stimulus  Q

Vv

Q Al sShopping (&) Images ([ News [*] Videos { More Settings  Tools

About 33,100,000 results (0.62 seconds)

REACTION 1S INCOMING Ball
| The average reaction time for humans is 0.25 seconds .
to a visual stimulus, 0.17 for an audio stimulus, and : ' "
0.15 seconds for a touch stimulus.

Goal

Reaction Time - Backyard Brains
https://backyardbrains.com/experiments/reactiontime

@ Aboutthisresult M Feedback



Medium Access

Network G = (V, E)

V = {1, ..., n} being n nodes (wireless transmitters)

E edges capturing interference structure

Feasible transmission
o =|o;] €{0,1}"
o; +0; < 1, (Z,]) cl

Distributed implementation

each node i need to decide o; € {0,1}

so that most simultaneous transmissions can happen



Medium Access

Independent sets of G
I(G) ={0€{0,1}" 10, +0; <1, (i,j) € E}

Capacity region

A = Convex Hull of Z(G)

— ZO‘JU) g > 0, Zaaél}

Efficient Medium Access

Positive recurrent as long as arrival rate A\ € A°



An ldeal Policy

MW policy
Queue size ) = Q]
Choose schedule 0™ € Z(G)
where o~ & arg maxz (Tzf(Q@)
o .
1
for choice of function f : R — R such that
f(0)=0, f'(x) >0, Vz >0
for example

flz) ==, f(z)=log(z+1), f(z)=loglog(z +e)

cf. Andrews et al (2000), Stolyar (2004), Shah-Wischik (2006)



Distributed Implementation
How to find MW schedule in a distributed manner?

Answer: emulation!

Identify a reversible Markov chain on Z(G)

Per stationary distribution

5| D 0if(@Q0)| = Yot F(Q)

Find a distributed way to simulate the Markov chain

And, argue that changing queue-size does not cause an issue



Reversible Markov Chain

Markov chain on Z(G)

Given state 0 & I(G)

Choose any i amongst n nodes uniformly at random
if 0, = 1

. . 1
then set it to 0 with prob. 7

1

else if 0 =0, V (Z,j) c b

then set it to 1 with prob. 1

else

do nothing



Reversible Markov Chain

Markov chain on Z(G)

Stationary distribution: for o & I(G)
P(o) o exp (Z o; log WZ)

From Gibb's maximal principle (or variational characterization
P P

4, zl Wz} > ( 7,1 Wz) —
{;0’ 0og = WIEHIE)(J}C(;)Z’}/ 0g T

1

If queue-sizes were fixed, this would suffice to establish positive recurrence

as long as A € A°

cf. Rajagopalan-Shah-Shin (2009)



Changing Queue-size Does not Matter

Roughly speaking (for W = (Q))

Change in stationary distribution per unit time

Ar = f(Q)

Reduction to stationary distribution due to step of MC

1 1
A ~ >
Ap, ) mixing time  f(Q)"

For large enough Q, we need

Ar < Ad(p, ) = Q) <K Q)"



Changing Queue-size Does not Matter

For large enough Q, we need

Ar < Ad(p,m) = f(Q) K

flQ)m

for f(x) =
ffla)=1>27"=1/f(x)"




Distributed Medium Access

In summary:

each node, say i, attempts transmission at each time t w.p. D; (t)

setting P; (t)

If transmission of node i was successful at time t-1, then

pi(t) =1 :
log(Q;(t) + 1)

If transmission of node i was failure at time t-1, then
D; (t) — O

if no attempt of transmission by node i

D; (t) — (), interfering neighbor attempted
pi(t) = 0.5, otherwise



Baseline Performance

and Discussion

J. M. Harrison, C. Mandayam, D. Shah, Y. Yang, "Resource sharing networks: Overview and an
open problem". Stochastic Systems. 2014.



Where Are We?

Switched networks emulation of multi-class “product-form”

Achieves maximal capacity

Average queue-size achieves baseline performance

scales with number of facets of capacity polytope

Switched network emulation of reversible MC on space of schedules

Achieves maximal capacity

Distributed, computationally efficient implementation

What about getting all three: capacity, queue-size and implementation?

And, how good is baseline performance?



Where Are We?

What about getting all three: capacity, queue-size and implementation?

Unlikely by Shah-Tse-Tsitsiklis (2010)

There exist examples of switched networks s.t. not possible to have policy

Polynomial time computation per schedule

Polynomial size queues

Achieves at least a constant fraction of the capacity

subject to standard computational hypothesis

Where does baseline performance fit in?



Baseline performance

Baseline performance through emulation of Store-and-Forward

Maximal capacity
Linear queue-size in number of facets of capacity polytope

Computation cost is not understood
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Baseline performance through emulation of Store-and-Forward

Maximal capacity
Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

There exists example of switched networks such that (cf. Xie-Shah 2019)

Num. of facets of capacity polytope is super-polynomially in num. of ques.

Follows from a reduction to facet complexity cf. Goos-Jain-Watson (2016)



Baseline performance

Baseline performance through emulation of Store-and-Forward

Maximal capacity
Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

There exists example of switched networks such that (cf. Xie-Shah 2019)

Num. of facets of capacity polytope is super-polynomially in num. of ques.

Follows from a reduction to facet complexity cf. Goos-Jain-Watson (2016)

Moreover, Baseline performance does not mean optimal performance

e.g. under MW, queue-size always scales as O(n2/(1 —p))



Baseline performance

Baseline performance through emulation of Store-and-Forward

Maximal capacity
Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

Computation cost of SFA

Asymptotically (in large queues) equivalent to Proportional Fair
cf. Massoulie (2008)

Proportional Fair is concave maximization over convex set
Poly number of oracle membership calls to convex set required

Oracle member may require poly computation in # of facets



So, Where Are We, In General?

Store-n-Forward _ \fa CetS(S) |
_ Maximal
Emulation 1—p
Gibb Pol
| S Maximal SuperPo y(n)l . fully distributed
Emulation DoubleExp(;—;
,n2
Maximum Weight Maximal 7 poly (|facets(S)|)
—p

| = conjecture



So, Where Are We, For Input-Queued Switch?

Store-n- 1
oren _ . pP=1- 0(—2) Shah-Walton-
Forward Maximal = E[3Qu] e " hon (2014)
Emulation N any A -
1
MaX|-mum Maximal  E[X@0] <o p (- +) -I\/Iagulurl
Weight b uniform A = [p) Srikant (2016)
(1R zezroo(G) Xy,
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AlphaGoZero inspired Policy cf. Shah-Xie-Xu (2019)

Ava. Oueue Size vs Load
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That’s all, folks!

Thank you.



