Approximately Reversible Stochastic Processing Networks

Devavrat Shah

Massachusetts Institute of Technology

Acknowledgements:

Jinwoo Shin KAIST

Qiaomin Xie Cornell

Yuan Zhong U Chicago

Resource Allocation

Sharing resources amongst competing jobs

Resource Allocation

Sharing resources amongst competing jobs

Subject to resource constraints

Resource Allocation

Sharing resources amongst competing jobs

Subject to resource constraints

So that

Resource Allocation

Sharing resources amongst competing jobs

Subject to resource constraints

So that

Maximally utilize resources

Resource Allocation

Sharing resources amongst competing jobs

Subject to resource constraints

So that

Maximally utilize resources

Minimize latency (completion time) incurred by jobs

Resource Allocation

Sharing resources amongst competing jobs

Subject to resource constraints

So that

Maximally utilize resources

Minimize latency (completion time) incurred by jobs

Using Implementable policy for allocating resources

Resource Allocation

Sharing resources amongst competing jobs

Subject to resource constraints

So that

Maximally utilize resources

Minimize latency (completion time) incurred by jobs

Using Implementable policy for allocating resources

It is self evident that they are everywhere

Performance Metric

Resource utilization: Capacity

Latency: Queue-size

Implementation: Computation, System constraints

Performance Metric

Resource utilization: Capacity

Latency: Queue-size

Implementation: Computation, System constraints

Depends upon

System load

System size

Structure of resource sharing constraints

Consider an M/M/1 Queue

Consider an M/M/1 Queue

Consider an M/M/1 Queue

System load:
$$\rho = \frac{\lambda}{\mu}$$

Consider an M/M/1 Queue

System load:
$$\rho = \frac{\lambda}{\mu}$$

Capacity: $\rho < 1$

Consider an M/M/1 Queue

System load:
$$\rho = \frac{\lambda}{\mu}$$

Capacity: $\rho < 1$

Queue-size: $\mathbb{E}[Q] = \frac{\rho}{1-\rho}$ and $\mathbb{P}(Q>t) \approx \exp(-(1-\rho)t)$

Consider an M/M/1 Queue

System load:
$$\rho = \frac{\lambda}{\mu}$$

Capacity: $\rho < 1$

Queue-size:
$$\mathbb{E}[Q] = \frac{\rho}{1-\rho}$$
 and $\mathbb{P}(Q>t) \approx \exp(-(1-\rho)t)$

First-come-first-serve (work conserving) policy

Ideal Performance: Beyond Simple Example

Jackson (1957)/Basket-Chandy-Munz-Palacois (1975)/Kelly Network (1976) "product-form" queueing networks

Network of Queues

Independent M/M/1 Queues

Policies (LCFS / PS) achieving these are simple

Total queue-size scales linearly with network size - best one can hope for

Harrison (2000): A parsimonious model

Harrison (2000): A parsimonious model

But, complicated

Policies

Maximum Weight (MW)(back-pressure) of Tassiulas-Ephremides (1992)

Constraint: can serve only one queue at a time

MW: always serve the longest queue

Policies

Proportional Fair (PF) of Kelly-Maullo-Tan (1997)

Constraint: service rate bounded by 1, can split in any manner

PF: every non-empty queue is served with positive rate, longer queue with higher rate

Performance analytic methods

Capacity via positive recurrence of Markov chain

Foster and Lyapunov criterion cf. Meyn-Tweedie (1990s)

Fluid model cf. Dai (1995), Bramson (2008)

+ Dai-Harrison (20XX)

Performance analytic methods

Capacity via positive recurrence of Markov chain

Foster and Lyapunov criterion cf. Meyn-Tweedie (1990s)

Fluid model cf. Dai (1995), Bramson (2008)

+ Dai-Harrison (20XX)

Implication:

Optimal capacity is achieved by

MW (back-pressure) by Tassiulas-Ephremides (1992), Stolyar (2004)

PF by Bonald-Massoulie(2001), de Vecianna-Lee-Konstantopoulos(2001) Ye (2003)

Performance analytic methods

Queue-size scaling via diffusion or heavy traffic approximation cf. Harrison (1985, 2013)

State-space collapse + Invariance Principle

cf. Bramson (1998), Williams (1998)

State-space collapse + Lyapunov function cf. Maguluri-Srikant (2016)

Performance analytic methods

Queue-size scaling via diffusion or heavy traffic approximation cf. Harrison (1985, 2013)

State-space collapse + Invariance Principle

cf. Bramson (1998), Williams (1998)

State-space collapse + Lyapunov function cf. Maguluri-Srikant (2016)

Implication:

MW (restricted optimality in various forms)

cf. Stolyar (2004), Shah-Wischik (2006), Maguluri-Srikant (2016)

PF leads to asymptotic "product-form" (for specific networks)

cf. Kang-Kelly-Lee-Williams (2006), Ye-Yao (2012)

Policy design methods

Randomization cf. Tassiulas (1998), Giaccone-Prabhakar-Shah (2002)

Primal-dual cf. Kelly-Maullo-Tan (1997), Low (1998), Srikant (2000)

Distributed Implementation cf. Modiano-Shah-Zussman (2005)

Message-passing cf. Shah (2006)

Policy design methods

Randomization cf. Tassiulas (1998), Giaccone-Prabhakar-Shah (2002)

Primal-dual cf. Kelly-Maullo-Tan (1997), Low (1998), Srikant (2000)

Distributed Implementation cf. Modiano-Shah-Zussman (2005)

Message-passing cf. Shah (2006)

Implication:

MW has capacity achieving low-complexity implementation

PF has iterative, distributed low-complexity implementation

Stochastic Processing Networks: Baseline Performance

An *Interesting* Goal: design resource allocation policy so that network of queues becomes equivalent to "product-form" called baseline performance cf. Harrison-Mandayam-Shah-Yang (2014)

Stochastic Processing Networks: Baseline Performance

An Interesting Goal: design resource allocation policy so that network of queues becomes equivalent to "product-form" called baseline performance cf. Harrison-Mandayam-Shah-Yang (2014)

Questions:

is it feasible? done with low complexity? is it a good thing to do?

This Tutorial

This Tutorial

We will describe method to achieve this interesting goal

For two different objectives

Maximal capacity, minimal queue-size scaling leads to notion of *baseline* performance

Maximal capacity, fully distributed implementation

This Tutorial

We will describe method to achieve this interesting goal

For two different objectives

Maximal capacity, minimal queue-size scaling

leads to notion of baseline performance

Maximal capacity, fully distributed implementation

We will discuss

Challenges in achieving maximal capacity, minimal queue-size and fully distributed implementation simultaneously

Relation of baseline performance to extension complexity

Some open directions

Outline

Remainder of the tutorial

Baseline performance

Switched network, Single Hop

Switched flow network, Multi Hop

Distributed implementation

Wireless network

Discussion

Switched Networks: Single-hop

D. Shah, N. Walton and Y. Zhong, "Optimal queue-size scaling in switched networks", The Annals of Applied Probability, 2014

A useful example: input-queued switch

A useful example: input-queued switch

Unit sized packets arrive as per independent Poisson processes

A useful example: input-queued switch

Unit sized packets arrive as per independent Poisson processes

The set of feasible rates

convex combination of possible schedules

In a 2-port switch, $\lambda = [\lambda_{ij}]$ is feasible iff

$$\begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} \le \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

s.t.
$$\alpha + \beta \leq 1$$
, α , $\beta \geq 0$.

Load of λ : the smallest possible $\alpha+\beta$ satisfying above

The set of feasible rates

convex combination of possible schedules

In a 2-port switch, $\lambda = [\lambda_{ij}]$ is feasible iff

$$\lambda_{11} + \lambda_{12} \le 1$$
 $\lambda_{21} + \lambda_{22} \le 1$

$$\lambda_{11} + \lambda_{21} \le 1$$
 $\lambda_{12} + \lambda_{22} \le 1$

Load of λ : maximum of the left-hand-side of the above four terms

Scheduling constraints

each time choose schedule $\sigma \in \mathbb{S}$

 $\mathbb{S} \subset \mathbb{Z}_{\geq 0}^N$ is a finite *monotone* set

if $\sigma \in \mathbb{S}$ and $\sigma' \in \mathbb{Z}_{>0}^N, \ \sigma' \leq \sigma$ then $\sigma' \in \mathbb{S}$

Capacity region

convex hull of $\mathbb S$

can be represented as

$$\lambda \in \mathbb{R}^{N}_{\geq 0}: A\lambda \leq b, A \in \mathbb{R}^{M \times N}_{\geq 0}, b \in \mathbb{R}^{M}_{> 0}$$

given a feasible λ , it's load is defined as

$$\rho(\lambda) = \min\{\rho \le 1 : A\lambda \le \rho b\}$$

An Open Question

Consider input-queued switch with *n* inputs / outputs

there exists a policy such that

achieves maximal capacity

computationally efficient (poly-time)

average queue-sizes

$$\mathbb{E}\Big[\sum_{i,j} Q_{ij}\Big] \le c \frac{n}{1 - \rho(\lambda)}$$

where c is a universal constant

Informally around since 2000, formally noted down in Shah-Tsitsiklis-Zhong (2010)

We describe policy so that switched network becomes equivalent to "product-form" queueing network

Four step approach

Identify "relaxed" network with feasible actions being convex hull of $\mathbb S$

Identify multi-class "product-form" (ala Kelly) network

Design policy for "relaxed" network which makes it equivalent to this multi-class 'product-form" network

Design emulation policy for switched network that emulates behavior of any policy in "relaxed" network

(a good analogy = rounding or relaxation in combinatorial optimization)

Relaxed Switched Networks

Switched network

Flow-level network (bandwidth sharing)

Multi-class "Product-form" Network

Flow-level network (bandwidth sharing)

Multi-class Multi-hop Network (processor sharing nodes)

Policy for Relaxed Switched Network

Store and Forward Policy by Massoulie, Bonald-Proutiere (2003)

Each flow is allocated rate

as a function of total number of flows queued

the function corresponds to ratio of two normalization constants

with and without one less flow of the specific type

the normalization constant arises from stationary distribution of associated Multi-class "product-form" network

Such choice makes sure that under stationary distribution total jobs in flow network = total jobs in multi-class network

Insensitivity established by Zachary (2008)

Policy for Relaxed Switched Network

Store and Forward Policy by Massoulie, Bonald-Proutiere (2003)

Average number of jobs in the system in steady-state $\,\sim\,$

number of nodes in multi-class net.

$$1-\rho$$

Time 3, etc

Lag

$$\Rightarrow \operatorname{pick} \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

Time 3, etc

Lag

$$\Rightarrow \mathsf{pick} \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Lemma. Total difference in q-size is at most n^3 .

In summary:

total avg q-size of switched net.
$$\leq \frac{\text{total avg q-size of switched net.}}{\text{switched net.}} + C(\mathbb{S})$$

$$= \frac{M}{1-\rho} + C(\mathbb{S})$$

Recall: Capacity region, the convex hull of feasible schedules $\mathbb S$

$$\lambda \in \mathbb{R}^{N}_{\geq 0}: A\lambda \leq b, A \in \mathbb{R}^{M \times N}_{\geq 0}, b \in \mathbb{R}^{M}_{> 0}$$

In summary:

total avg q-size of switched net.

$$\leq \qquad \qquad \text{total avg q-size of} \\ \text{switched net.} \qquad + \qquad C(\mathbb{S})$$

$$= \frac{M}{1-\rho} + C(\mathbb{S})$$

Recall: Capacity region, the convex hull of feasible schedules $\mathbb S$

num of faces of capacity region

$$\lambda \in \mathbb{R}^{N}_{\geq 0}: A\lambda \leq b, A \in \mathbb{R}^{M \times N}_{\geq 0}, b \in \mathbb{R}^{M}_{> 0}$$

That is, baseline performance is achieved cf. Harrison-Mandyam-Shah-Yang (2014)

What Happened to The Open Question

Consider input-queued switch with N inputs / outputs

there exists a policy such that

achieves maximal capacity

computationally efficient (poly-time)

average queue-sizes

$$\mathbb{E}\Big[\sum_{i,j} Q_{ij}\Big] \le c \frac{n}{1 - \rho(\lambda)}$$

where c is a universal constant

baseline performance + emulation

$$\mathbb{E}\left[\sum_{i,j} Q_{ij}\right] \le 2\frac{n}{1-\rho(\lambda)} + n^3$$

Switched Flow Networks: Multiple-hop

D. Shah and Q. Xie, "Centralized congestion control and scheduling in a data-center", *Preprint*.

Flows are a collection of packets

Flows get rates assigned per which packets are injected in the network Packets hop through network where each node decides service policy

Excellent model for data center networks cf. Perry-Balakrishnan-Shah (2014, 16)

Rate allocation

Rate allocation

Store-and-forward

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Packet scheduling

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Packet scheduling

Ideally, need to use LCFS or Processor Sharing

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Packet scheduling

Ideally, need to use LCFS or Processor Sharing

But, nodes process packets in integral time-steps

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Packet scheduling

Ideally, need to use LCFS or Processor Sharing

But, nodes process packets in integral time-steps

Need emulation, like before

Rate allocation

Store-and-forward

Packet injection in the network per Poisson process

Packet scheduling

Ideally, need to use LCFS or Processor Sharing

But, nodes process packets in integral time-steps

Need emulation, like before

But, now it needs to hold over a multi-hop network

Last-Come-First-Serve Emulation

Operate continuous time network per LCFS

Schedule packets in discrete-time network

using LCFS policy at integral time steps

but with respect to the arrival time of continuous network

Lemma (informally). The departure time of each packet from a queue in discrete time is within fixed constant of departure time from the corresponding ideal continuous time network as long as network has acyclic routing (allows for variable length packets).

That is, delay of both networks are within constant (independent of network size, load, etc.)

In summary:

total avg q-size of switched flow net.
$$= O\left(\frac{\text{number of hops}}{1-\rho}\right)$$

That is, we achieve baseline performance

Wireless Networks:
Distributed Implementation

D. Shah and J. Shin, "Randomized scheduling algorithm for queueing networks", The Annals of Applied Probability, 2012.

Wireless Networks

Medium Access

Constraint

No two neighbors can transmit at the same time Each node does not have knowledge of its neighbors

Rules

Rules

When asked

Rules

When asked

you may respond (raise hand) in $< 100 \mathrm{ms}$

Rules

When asked

you may respond (raise hand) in < 100ms

Winner

Rules

```
When asked \label{eq:weights} \mbox{you may respond (raise hand) in $< 100 ms$}
```

Winner

if s/he is unique responder

Rules

```
When asked
```

```
you may respond (raise hand) in < 100ms
```

Winner

if s/he is unique responder

Reward

Rules

```
When asked
```

```
you may respond (raise hand) in < 100ms
```

Winner

if s/he is unique responder

Reward

bar of chocolate

Rules

```
When asked \label{eq:weights} \mbox{you may respond (raise hand) in $< 100 ms$}
```

Winner if s/he is unique responder

Reward bar of chocolate

Goal

Rules

```
When asked
```

```
you may respond (raise hand) in < 100ms
```

Winner

if s/he is unique responder

Reward

bar of chocolate

Goal

Someone must win each time, and evenly across

Rules

When asked

you may respond (raise hand) in < 100ms

Medium Access

Network G = (V, E)

 $V = \{1, ..., n\}$ being n nodes (wireless transmitters)

E edges capturing interference structure

Feasible transmission

$$\sigma = [\sigma_i] \in \{0, 1\}^n$$

$$\sigma_i + \sigma_j \le 1, \ (i, j) \in E$$

Distributed implementation

each node i need to decide $\sigma_i \in \{0,1\}$ so that most simultaneous transmissions can happen

Medium Access

Independent sets of G

$$\mathcal{I}(G) = \{ \sigma \in \{0, 1\}^n : \sigma_i + \sigma_j \le 1, \ (i, j) \in E \}$$

Capacity region

$$\Lambda = \text{Convex Hull of } \mathcal{I}(G)$$

$$= \left\{ \sum_{\sigma} \alpha_{\sigma} \sigma, \ \alpha_{\sigma} \geq 0, \ \sum_{\sigma} \alpha_{\sigma} \leq 1 \right\}$$

Efficient Medium Access

Positive recurrent as long as arrival rate $\lambda \in \Lambda^o$

An Ideal Policy

MW policy

Queue size
$$Q = [Q_i]$$

Choose schedule $\sigma^{\star} \in \mathcal{I}(G)$

where
$$\sigma^{\star} \in \arg\max_{\sigma} \sum_{i} \sigma_{i} f(Q_{i})$$

for choice of function $f:\mathbb{R} o \mathbb{R}$ such that

$$f(0) = 0, \ f'(x) > 0, \ \forall x \ge 0$$

for example

$$f(x) = x$$
, $f(x) = \log(x+1)$, $f(x) = \log\log(x+e)$

cf. Andrews et al (2000), Stolyar (2004), Shah-Wischik (2006)

Distributed Implementation

How to find MW schedule in a distributed manner?

Answer: emulation!

Identify a reversible Markov chain on $\mathcal{I}(G)$

Per stationary distribution

$$\mathbb{E}\left[\sum_{i} \sigma_{i} f(Q_{i})\right] \approx \sum_{i} \sigma_{i}^{\star} f(Q_{i})$$

Find a distributed way to simulate the Markov chain

And, argue that changing queue-size does not cause an issue

Reversible Markov Chain

Markov chain on $\mathcal{I}(G)$

Given state $\sigma \in \mathcal{I}(G)$

Choose any i amongst n nodes uniformly at random

if
$$\sigma_i=1$$
 then set it to 0 with prob. $\frac{1}{W_i}$ else if $\sigma_j=0, \ \forall \ (i,j)\in E$ then set it to 1 with prob. 1 else

do nothing

Markov chain on $\mathcal{I}(G)$

Stationary distribution: for $\sigma \in \mathcal{I}(G)$

$$\mathbb{P}(\sigma) \propto \exp\left(\sum_{i} \sigma_{i} \log W_{i}\right)$$

From Gibb's maximal principle (or variational characterization)

$$\mathbb{E}\left[\sum_{i} \sigma_{i} \log W_{i}\right] \geq \left(\max_{\gamma \in \mathcal{I}(G)} \sum_{i} \gamma_{i} \log W_{i}\right) - n$$

If queue-sizes were fixed, this would suffice to establish positive recurrence as long as $\lambda \in \Lambda^o$

cf. Rajagopalan-Shah-Shin (2009)

Changing Queue-size Does not Matter

Roughly speaking (for W = f(Q))

Change in stationary distribution per unit time

$$\Delta \pi \approx f'(Q)$$

Reduction to stationary distribution due to step of MC

$$\Delta d(\mu,\pi) pprox rac{1}{ ext{mixing time}} pprox rac{1}{f(Q)^n}$$

For large enough Q, we need

$$\Delta \pi \ll \Delta d(\mu, \pi) \Rightarrow f'(Q) \ll \frac{1}{f(Q)^n}$$

Changing Queue-size Does not Matter

For large enough Q, we need

$$\Delta \pi \ll \Delta d(\mu, \pi) \Rightarrow f'(Q) \ll \frac{1}{f(Q)^n}$$

For
$$f(x)=x$$

$$f'(x)=1\gg x^{-n}=1/f(x)^n$$

For
$$f(x) = \log(x+1)$$

$$f'(x) = \frac{1}{x+1} \ll \log^{-n}(x+1) = 1/f(x)^n$$

Distributed Medium Access

In summary:

each node, say i, attempts transmission at each time t w.p. $p_i(t)$ setting $p_i(t)$

if transmission of node i was successful at time t-1, then

$$p_i(t) = 1 - \frac{1}{\log(Q_i(t) + 1)}$$

if transmission of node i was failure at time t-1, then

$$p_i(t) = 0$$

if no attempt of transmission by node i

 $p_i(t) = 0$, interfering neighbor attempted

$$p_i(t) = 0.5$$
, otherwise

Baseline Performance and **Discussion**

J. M. Harrison, C. Mandayam, D. Shah, Y. Yang, "Resource sharing networks: Overview and an open problem". Stochastic Systems. 2014.

Where Are We?

Switched networks emulation of multi-class "product-form"

Achieves maximal capacity

Average queue-size achieves *baseline* performance scales with number of facets of capacity polytope

Switched network emulation of reversible MC on space of schedules

Achieves maximal capacity

Distributed, computationally efficient implementation

What about getting all three: capacity, queue-size and implementation? And, how good is *baseline* performance?

Where Are We?

What about getting all three: capacity, queue-size and implementation?

Unlikely by Shah-Tse-Tsitsiklis (2010)

There exist examples of switched networks s.t. not possible to have policy

Polynomial time computation per schedule

Polynomial size queues

Achieves at least a constant fraction of the capacity

subject to standard computational hypothesis

Where does baseline performance fit in?

Baseline performance through emulation of Store-and-Forward

Maximal capacity

Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

Baseline performance through emulation of Store-and-Forward

Maximal capacity

Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

There exists example of switched networks such that (cf. Xie-Shah 2019)

Num. of facets of capacity polytope is super-polynomially in num. of ques.

Follows from a reduction to facet complexity cf. Goos-Jain-Watson (2016)

Baseline performance through emulation of Store-and-Forward

Maximal capacity

Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

There exists example of switched networks such that (cf. Xie-Shah 2019)

Num. of facets of capacity polytope is super-polynomially in num. of ques.

Follows from a reduction to facet complexity cf. Goos-Jain-Watson (2016)

Moreover, Baseline performance does not mean optimal performance e.g. under MW, queue-size always scales as $O(n^2/(1-\rho))$

Baseline performance through emulation of Store-and-Forward

Maximal capacity

Linear queue-size in number of facets of capacity polytope

Computation cost is not understood

Computation cost of SFA

Asymptotically (in large queues) equivalent to Proportional Fair cf. Massoulie (2008)

Proportional Fair is concave maximization over convex set

Poly number of oracle membership calls to convex set required

Oracle member may require poly computation in # of facets

So, Where Are We, In General?

Policy	Capacity	Queue-size	Complexity/ Implementation
Store-n-Forward Emulation	Maximal	$\frac{ facets(\mathbb{S}) }{1-\rho}$	$poly \big(facets(\mathbb{S}) \big)$
Gibbs Emulation	Maximal	SuperPoly(n) x DoubleExp $\left(\frac{1}{1-\rho}\right)$	fully distributed
Maximum Weight	Maximal	$\frac{n^2}{1-\rho}$	$poly \big(facets(\mathbb{S}) \big)$
IDEAL	Maximal	$\frac{ facets(\mathbb{S}) }{1-\rho}$	poly(n)
IDEAL	Maximal	$\frac{n}{1-\rho}$	$poly \big(facets(\mathbb{S}) \big)$

So, Where Are We, For Input-Queued Switch?

Policy	Capacity	Queue-size	Condition	Reference
Store-n- Forward Emulation	Maximal	$\mathbb{E}\Big[\sum_{i,j} Q_{ij}\Big] \le c \frac{n}{1 - \rho(\lambda)}$	$ ho \geq 1 - O\Bigl(rac{1}{n^2}\Bigr)$ any λ	Shah-Walton- Zhong (2014)
Maximum Weight	Maximal	$\mathbb{E}\Big[\sum_{i,j} Q_{ij}\Big] \le c \frac{n}{1 - \rho(\lambda)}$	$ ho \geq 1 - O(rac{1}{n^{4+}})$ uniform $\lambda = [ho]$	Maguluri- Srikant (2016)
Clever Batching	Maximal	$\mathbb{E}\Big[\sum_{ij} Q_{ij}\Big] \le \widetilde{O}\Big(\frac{n}{(1-\rho)^{4/3}}\Big)$	$1 - O\left(\frac{1}{n}\right) \ge \rho \ge 1 - O\left(\frac{1}{n^2}\right)$ uniform $\lambda = [\rho]$	Xu-Zhong (2019)
IDEAL	Maximal	$\mathbb{E}\Big[\sum_{i,j} Q_{ij}\Big] \le c \frac{n}{1 - \rho(\lambda)}$	$ ho < 1$ any λ	?

Reinforcement Learning and Resource Allocation

AlphaGoZero inspired Policy cf. Shah-Xie-Xu (2019)

Reinforcement Learning and Resource Allocation

AlphaGoZero inspired Policy cf. Shah-Xie-Xu (2019)

Reinforcement Learning and Resource Allocation

AlphaGoZero inspired Policy cf. Shah-Xie-Xu (2019)

That's all, folks!

Thank you.