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Abstract
In the variational problems involving non-convex integral functionals, finding the bin-
odal, the boundary of validity of the quasiconvexity of the energy density, is of central
importance.We develop a systematic methodology for identifying a part of the binodal
corresponding to simple laminates by showing that in this case the supporting null-
Lagrangians, establishing polyconvexity, can be constructed explicitly. We present a
nontrivial example from nonlinear elasticity where this approach allows one to obtain
the entire quasiconvex envelope.

Keywords Quasiconvexity · Polyconvexity · Rank-one convexity · Jump set · Elastic
stability · Binodal
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1 Introduction

We consider the general problem of identifying strong local minimizers of an integral
functional

E[ y] =
∫

�

L(x, y(x),∇ y(x))dx, (1.1)
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where � ⊂ R
n and y : � → R

m satisfies prescribed boundary conditions; the term
“strong” refers to local minima of E[ y] in L∞ topology. Such vectorial variational
problems are encountered, for instance, in nonlinear elasticity (Truesdell 1952).

When the integrand L(x, y, F) is not rank-one convex in the F variable, as, for
instance, in models of elastic phase transitions (Ericksen 1975; Ball and James 1987)
and composite materials (Lurie 1963; Kohn and Strang 1982), Euler–Lagrange equa-
tions1 may have a large set of solutions, most of which are unstable in L∞ topology.
The main distinguishing characteristic of strong local minimizers y(x) is the quasi-
convexity of the integrand as a function of F at F = ∇ y(x), x ∈ � (Morrey 1952;
Meyers 1965). We recall that a function W (F) is quasiconvex at F ∈ R

m×n , if

−
∫
D
W (F + ∇φ(x))dx ≥ W (F) (1.2)

for any2 domain D ⊂ R
n and any φ ∈ C∞

0 (D;Rm), where −
∫
denotes the average.

Definition 1.1 The set of points F, where quasiconvexity fails, will be called the QC
binodal region B for the function W (F) (Grabovsky and Truskinovsky 2013). The
boundary ofB will be called the QC binodal.

The QC binodal is one of the main tools in distinguishing local minima from saddle
points in vectorial variational problems. For example, in the context of the study of
stability of two-phase elastic solids in Eremeev et al. (2007) it would immediately rule
out spherically-symmetric configurations in an annulus with more than one interface.
For vectorial variational problems, identifying the QC binodal presents difficulties that
are not present in the scalar (min(m, n) = 1) case. Not only vectorial quasiconvexity
lacks transparent geometric interpretation (Kristensen 1999) enjoyed by the analogous
convexity condition for scalar variational problems, there seem to be no systematic
methods for its verification (Schröder and Neff 2010). The goal of this paper is to
show that a part of the QC binodal is nonetheless accessible, providing at least some
information about the relaxed energy. In the worst case scenario, this part is empty,
and in the best it comprises the entire QC binodal.

This work is motivated by the question of stability of interfaces across which the
deformation gradient is discontinuous. Such interfaces are observed in minimizers of
non-quasiconvex functionals (1.1). For instance, inmulti-well problems fromelasticity
theory such interfaces represents phase/domain boundaries. For minimizers of (1.1),
when they exist, the deformation gradients at the two sides of these interfaces lay on the
subset of the “jump set” (Grabovsky and Truskinovsky 2011, 2014) that belongs to the
QCbinodal. The jump set is a co-dimension 1 variety in the phase space of deformation
gradients F defined by the equations relating the values of the deformation gradient
at the two sides of its jump discontinuity. The conventionally used system of relations
on a jump discontinuity was recently found to be incomplete: An additional condition
was necessary for interface stability (Grabovsky and Truskinovsky 2011).

1 In nonlinear elasticity, the integrand cannot be regular for physical reasons and minimizers cannot be
ascertained to satisfy Euler–Lagrange equations in general.
2 If (1.2) holds for one D, then it will also hold for all others.
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In scalar variational problems minimizers with discontinuous gradients are inter-
preted as having “corners,” whose shape and location are restricted by theWeierstrass–
Erdmann (WE) corner conditions (Erdmann 1877). These necessary conditions can
be used to prove (Giaquinta and Hildebrandt 1996) that jump discontinuities are for-
bidden, if an extremal lies in the interior of the region of convexity. This statement
becomes apparent if we recall the geometric meaning of the scalar WE conditions
(Gelfand and Fomin 1963): The values of the derivative of the minimizer on either
side of the corner determine the pair of points where the tangent plane touches the
graph of the Lagrangian. If this plane is supporting, i.e., lies below the graph of the
Lagrangian, then the derivatives ofminimizers at the cornersmust be on theC (convex)
binodal.

The need of generalizing the Weierstrass–Erdmann corner conditions for the vec-
torial setting was understood in the studies of elastic phase transitions (Eshelby 1970;
James 1981; Gurtin 1983; Šilhavý 1997). For instance, shifting the focus from the
global behavior of minimizers to values of its gradient at points of jump discontinuity
permitted modeling of the laminar microstructures observed in shape memory alloys
(Ball and James 1987, 1992). The study of geometry in phase space of the generalized
WE conditions was initiated in Freidin and Chiskis (1994a, b), and the question of sta-
bility of the surfaces of gradient jump discontinuity received much attention (Grinfeld
1980a, b; Šilhavý 2005; Kucher and Osmolovskii 2001; Osmolovskii 2004).

It was first thought that in the vectorial case the analog of the necessaryWE condi-
tions can be formulated in terms of rank-one convexity, whose geometric interpretation
reduces to double-tangencyof rank-one lines.However, even if such a line is supporting
(lies below the graph of the Lagrangian), it no longer guarantees that the deformation
gradients at the surface of jump discontinuity are on the QC binodal. In this paper, we
propose a new generalization of theWE conditions that retains its sufficiency property
from the scalar case. Specifically, we generalize the double-tangency ( Maxwell) con-
struction by delegating the role of affine functions, bounding the energy from below,
to the quasi-affine functions. In this construction, the role of the convex envelope, built
in the scalar case by supporting affine null-Lagrangians, is played by the polyconvex
(PC) envelope defined in terms of supporting quasi-affine null-Lagrangians.

Polyconvexity, is a well-known sufficient condition for quasiconvexity (Dacorogna
2008). However, since polyconvex envelopes in vectorial problems are often strictly
lower than the relaxed energy density, at the first glance they seem to be useless
for identifying any points of the QC binodal. In this paper, we show that the gen-
eralized WE conditions emerge from the analysis of double-tangency of supporting
null-Lagrangians, thereby guaranteeing that the relevant points must lie on the QC
binodal, where it also coincides with PC and RC (rank-one) binodal. This leads to a
constructive method of identifying points on the QC binodal where “polyconvexity
(PC) meets rank-one convexity (RC).” A related approach that uses only quadratic
null-Lagrangians, and known as the translation method, has been very effective in the
study of composite media (Tartar 1979, 1985; Lurie et al. 1980b, 1982).

At the technical level, we essentially pursuewhatCarathéodory has called the “royal
road” to Calculus of Variations (Young 1969), which is based on the idea of support-
ing null-Lagrangians. In the context of the variational problem (1.2), it translates to
verifying polyconvexity (Dacorogna 2008). This approach is well known. However,
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its effectiveness is often limited, since the resulting algebraic problem is usually too
technically demanding to be practical. Moreover, establishing polyconvexity does not
deliver the QC binodal directly. The situation, however, changes when points on a
polyconvex binodal (boundary of validity of polyconvexity) can be shown to belong
to a rank-one binodal because such points would have to belong to the QC binodal as
well.

In this paper, we show that there is a special regime in which points on the polycon-
vex binodal must necessarily be a part of the jump set (Grabovsky and Truskinovsky
2011, 2014). This regime is characterized geometrically by double-tangency of sup-
porting null-Lagrangians, which evokes the “common tangent” interpretation of the
Weierstrass–Erdmann (WE) corner conditions. As we have already mentioned, while
the latter naturally furnish the convexification ofW (F) via affine functions, their vec-
torial analogs, defining the jump set, do not automatically ensure polyconvexification
of W by quasi-affine functions. The implied geometrical analogy is not direct since
the space of null-Lagrangians is

(m+n
n

)
-dimensional and the boundary of validity of

polyconvexity should be characterized by graphs of supporting quasi-affine functions
touching the graph of W (F) in

(m+n
n

) − mn + 1 points. This number is equal to 2 if
and only if min(m, n) = 1, explaining the importance of double-tangency in scalar
variational problems. As we show, the role of the double-tangency condition in the
general vectorial context, or equivalently, of the generalized WE conditions, is more
subtle and is related to a nontrivial interplay between poly- and rank-one convexity.

Indeed, in Carathéodory’s approach the method of supporting null-Lagrangians,
delivering sufficient conditions for a strong local minimum, is applicable whenever
(a strengthened version of) necessary conditions holds. This connection breaks down
for vectorial problems, since polyconvexity (sufficient condition) is not equivalent
to quasiconvexity (necessary condition). In this paper, we identify a subset of the
QC binodal where polyconvexity would necessarily collapse on rank-one convexity
restoring the efficacy of Carathéodory’s approach. While this subset may or may not
exist in particular problems, our method allows one to search for such subsets for
general functionsW (F). As an illustration, we present a vectorial example where our
method delivers the entire quasiconvexification of W (F).

In general, the application of the method (in the context of two- and three-
dimensional elasticity) may require analysis ofminima of a function of a small number
of variables, which may be somewhat technically involved, if one aims to obtain
explicit analytic results. We therefore have chosen an example, where the answer is
available by other means and the calculations will not obscure the theoretical thrust
of the paper. Full-scale application of the proposed method to the analysis of non-
quasiconvex Hadamard materials will be done in our forthcoming work.

The paper is organized as follows. In Sect. 2, we discuss the twomain ingredients of
our approach: the idea of a supporting null-Lagrangian and the concept of a jump set.
In Sect. 3, we study the PC binodal and identify conditions when it (partially) overlaps
with the jump set. In Sect. 4, we show how to reconstruct the quasiconvex envelope
for points of quasiconvexity on the jump set. In Sect. 5, we present an analytically
transparent and yet nontrivial example, where our method is particularly effective
delivering the whole relaxed energy.We close the discussion with some conclusions in
Sect. 6. Our “Appendix A” contains proofs of two technical Lemmas. In “Appendix B,”
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we show that if the goal is to locate the limits of validity of rank-one convexity (RC
binodal instead of QC binodal), the proposed approach is even more effective. The
reason is that, in contrast to QC binodal, RC binodal is insensitive to modifications of
W (F) outside the binodal region. Finally, in “Appendix C” we provide an alternative
path to finding the relaxed energy in our example.

2 Preliminaries

In this section, we recall the two key elements of our approach: the supporting null-
Lagrangians and the jump set.

2.1 Supporting Null-Lagrangians

We recall that a function N (F) is called a null-Lagrangian if
∫
D N (∇ y)dx depends

only on the values of y(x) on ∂D. A null-Lagrangian must be a linear combination
of minors of F (Ericksen 1962; Edelen 1962). We say that N (F) is a supporting
null-Lagrangian at F0 ∈ R

m×n if

(A) N (F0) = W (F0)
(B) N (F) ≤ W (F) for all F ∈ R

m×n .

If such a null-Lagrangian exists, then for every domain D ⊂ R
n and every φ ∈

C∞
0 (D;Rm)

−
∫
D
W (F0 + ∇φ)dx ≥ −

∫
D
N (F0 + ∇φ)dx = N (F0) = W (F0).

Hence, W (F) is quasiconvex at F0. This simple observation is a starting point of
the classical approach of Carathéodory’s known as the “royal road” in Calculus of
Variations (Young 1969). If W (F) has a supporting null-Lagrangian at F0, we will
say that W (F) is polyconvex at F0. The calculation above shows that polyconvexity
at F0 implies quasiconvexity. The converse is false, unless min(m, n) = 1.

Definition 2.1 The set of points F, where W (F) is not polyconvex, is called the PC
binodal region. The boundary of this region is called the PC binodal.

We remark that the method of supporting null-Lagrangians was applied in the theory
of composites under the name of translation method (see Milton 2002 and references
therein). The double-tangency trickwe are exploiting belowwas also noted there and is
responsible for the optimality of translation bounds in particular regimes (Grabovsky
1996; Chenchiah and Bhattacharya 2008).

Let us examine the implications of existence of a supporting null-Lagrangian at a
fixed F0 ∈ R

m×n . LetM(F) denote a list of all minors of F of degree at least 2. Their
ordering can be arbitrary, but fixed once chosen. We search for constants H0, T0,M0,
such that

W (F) ≥ N (F) = H0 + 〈T0, F〉 + 〈M0,M(F)〉, (2.1)
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for every F ∈ R
m×n , with equality reached at F = F0. Here, 〈·, ·〉 denotes the

Frobenius inner product of matrices or dot product of vectors. We have written null-
Lagrangians of degree 0 and 1 explicitly in (2.1) because their coefficients can be
eliminated due to properties (A) and (B). Indeed, condition (A) implies

H0 = W (F0) − 〈T0, F0〉 − 〈M0,M(F0)〉.

It also follows from (A) and (B) that F0 is a global minimizer of the nonnegative
smooth function W (F) − N (F). Therefore,

T0 = WF(F0) − MF(F0)TM0,

where the subscript F denotes the array of partial derivatives with respect to com-
ponents of F and MF(F0)TM0 is a m × n matrix whose (i j)th component is
Mα

Fi j
(F0)Mα

0 , assuming summation over the repeated index α.
The remaining task is to find constants M0 from the condition

�(F;M0) = W̃ (F0, F) − 〈M0, M̃(F0, F)〉 ≥ 0, (2.2)

where

W̃ (F, G) = W (G) − W (F) − 〈WF(F), G − F〉,
M̃(F, G) = M(G) − M(F) − MF(F)(G − F).

In other words, we need to find a list of constants M0, such that F = F0 is a
point of global minimum of �(F;M0). A necessary condition for (2.2) to hold is the
requirement that F = F0 is a point of localminimum of�(F;M0). By construction,
�F(F0;M0) = 0, and therefore it is necessary that

�FF(F0;M0) ≥ 0 (2.3)

in the sense of quadratic forms.

2.2 The Jump Set

One of the consequences of quasiconvexity at a point (1.2) is rank-one convexity at a
point:

W̃ (F0, F0 + a ⊗ n) ≥ 0 (2.4)

for every a ∈ R
m and n ∈ R

n (without loss of generality, we can take n to be a unit
vector). Following (Grabovsky and Truskinovsky 2016), we can describe the jump set
as the boundary of validity of (2.4). Let us briefly recall the argument.

Condition (2.4) can be restated as the property that

w(a, n) = W̃ (F0, F0 + a ⊗ n)
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has a minimal value 0 (achieved at a ⊗ n = 0). At the boundary of validity of (2.4),
the function w(a, n) will also be minimized at (a0, n0) �= 0, which leads to equations

⎧⎪⎨
⎪⎩

w(a0, n0) = 0,

∇aw(a0, n0) = 0,

∇nw(a0, n0) = 0.

(2.5)

If we eliminate variables a0 and n0 from these equations, we obtain a scalar constraint
on F0, describing the surface J ⊂ R

m×n , which we call the jump set. This name comes
from a different way in which the jump set equations arise.

Indeed, in Grabovsky and Truskinovsky (2011) we identified constraints on the
traces F± of ∇ y(x) at a surface of the jump discontinuity of ∇ y(x), provided y(x) is
a strong local minimizer of an integral functional E[ y]. In that context, we can identify
F− with F0 and F+ with F0 + a0 ⊗ n0. Noting that equations of the jump set, found
in Grabovsky and Truskinovsky (2011), are invariant with respect to the interchange
of F+ and F−, we can rewrite them in a “canonical” (symmetric) form3

rank[[F]] = 1, (2.6)

[[WF]][[F]]T = 0, (2.7)

[[WF]]T[[F]] = 0, (2.8)

[[W ]] − 〈W±
F , [[F]]〉 = 0. (2.9)

where we use the notation [[A]] = A+ − A−. In the context of nonlinear elasticity
equation (2.6) is the kinematic compatibility condition, arising due to the continuity
of the deformation y(x) across, say, a martensitic phase boundary. Equation (2.7)
expresses traction continuity across such interface. Equation (2.9) is known as the
Maxwell condition of phase equilibrium (Eshelby 1970).

It is straightforward to show that (2.7)–(2.9) is equivalent to (2.5). Moreover, one
can also easily recognize that (2.7)–(2.9) is a vectorial generalization of the well-
known Weierstrass–Erdmann corner conditions (Erdmann 1877; Gelfand and Fomin
1963). The fact that the first Weierstrass–Erdmann condition generalizes not to (2.7),
but to a pair of equations (2.7), (2.8) is rather remarkable. The variational meaning of
(2.8) was elucidated in Grabovsky and Truskinovsky (2011) where it was shown that
it is related to a roughening instability of an interface.

For our purposes, we will only need the fact that that all points F± ∈ J belong to
the boundary of validity of rank-one convexity (2.4). Then, if W (F) is quasiconvex
at F±, these points also lie on the QC binodal. The main idea of our approach is that
quasiconvexity at such points F± can be proved by establishing a more transparent
property: the polyconvexity.

3 The canonical formof the jump set equations not only highlights the symmetry betweenphases F+ ↔ F−,
but also emphasizes the symmetry between the strain and the stress.
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3 PC Binodal

We now return to the inequality (2.2) that guarantees polyconvexity at F0 and examine
the boundary of its validity. As we cross such boundary, two things may happen.
Either F = F0 ceases to be a point of local minimum, which could be detected by the
quadratic form in (2.3) becoming degenerate, or it may stop being a global minimum
before it stops being a local minimum.

We focus on the latter possibility, since, by analogy with the convex envelope, it
should be the primary mode of polyconvexity failure for non-polyconvex energies. Let
us consider the case where on the PC binodal there appears a single additional global
minimizer F∗ �= F0 of �(F;M0). Then, we must have

�(F∗;M0) = 0, �F(F∗;M0) = 0, (3.1)

Let us assume, in addition to (3.1), that

�FF(F0;M0) > 0, �FF(F∗;M0) > 0, (3.2)

which is sufficient to ensure that F0 and F∗ are local minima of �(F;M0). We also
assume that �(F;M0) > 0 for every F /∈ {F0, F∗}, guaranteeing that F0 and F∗
are the only global minimizers of �(F;M0).

Now, for the sake of the foregoing argument we assume that W (F) has very rapid
growth at infinity, sayW (F)/|F|min(m,n) → ∞, when |F| → ∞. We will then derive
a set of equations to be satisfied by the unknowns F0, F∗ andM0. We emphasize that
our method consists of choosing these parameters according to the derived constraints
for all smooth functionsW (F), regardless of their growth at infinity, since the success
or failure of the method consists entirely in the outcome of establishing inequality
(2.2) for the chosen values of the parameters.

Assuming sufficiently fast growth of W (F) at infinity, we can conclude that
�(F;M0) → ∞, when |F| → ∞ uniformly inM0 on compact sets.

Lemma 3.1 Suppose that W (F) is of class C3 and

lim|F|→∞
W (F)

|F|min(m,n)
= +∞

Suppose that for a particular choice of parameters F0, F∗ and M0, we have

(i) �(F∗,M0) = 0
(ii) �(F,M0) > 0, ∀F /∈ {F∗, F0}
(iii) �FF(F0,M0) > 0 and �FF(F∗,M0) > 0 in the sense of quadratic forms.

Suppose further that

�M0
(F∗;M0) �= 0.
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Then, there exists δ > 0, so that for all F̂0 ∈ B(F0, δ) there exist constants M̂0
for which �̂(F;M̂0) ≥ 0 for all F ∈ R

m×n, where �̂ is defined in (2.2) with F0,
replaced by F̂0.

The proof of this lemma is given in “Appendix A.” However, it is easy to explain
why it should be true. Indeed, if �M0

(F∗;M0) �= 0, then we can always choose

constants M̂0, sufficiently close to M0 for which �(F∗;M̂0) > 0. By continuity,
�̂(F;M̂0) > 0 for all F̂0 sufficiently close to F0 and all F sufficiently close to
F∗, as well as for all F away from F0 and F∗. By continuity of second derivatives,
�̂(F;M̂0) would still have a local minimum at F = F̂0, showing that F0 is in the
interior of the region of polyconvexity of W (F). Hence, Lemma 3.1 implies that for
F0 to lie on the PC binodal we must require that

M̃(F0, F∗) = �M0
(F∗;M0) = 0. (3.3)

It remains to observe that Eq. (3.3) is equivalent to

rank(F∗ − F0) = 1. (3.4)

Indeed, if M(F) is a 2 × 2 minor of F, then it is quadratic and homogeneous and
therefore

M̃(F0, F∗) = M(F∗ − F0) = 0,

which implies (3.4). Conversely, (3.4) implies (3.3). Indeed, the “Weierstrass operator”
U �→ Ũ annihilates all affine functions of F. But every minor of F is quasi-affine,
i.e., affine along rank-one directions. Therefore, M̃(F0, F∗) = 0, provided (3.4)
holds. This argument explains why similar observation could be made in the study of
energy-minimizing composites (Grabovsky 1996; Chenchiah and Bhattacharya 2008;
Antimonov et al. 2016), where the choice of W (F) was particular (minimum of two
linearly elastic wells).

The rank-one relation (3.4) suggests a link with the jump set. For this reason, we
change notations

F− = F0, F+ = F∗, P± = WF(F±), (3.5)

so that (3.4) coincides with (2.6). We will now show that Eq. (3.1) implies (2.7)–(2.9).
The first equation in (3.1) becomes

W̃ (F−, F+) = [[W ]] − 〈P−, [[F]]〉 = 0, (3.6)

since M̃(F0, F∗) = 0. Given that N (F) is a null-Lagrangian, N (F + [[F]]) must
also be null-Lagrangian. Hence, Eq. (3.6) must also hold if we switch the plus and the
minus subscripts in F. In other words, (3.6) must have a symmetric counterpart

W̃ (F+, F−) = −[[W ]] + 〈P+, [[F]]〉 = 0. (3.7)
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This establishes (2.9).
The second equation in (3.1) can be written as

[[P]] = [[MT
F]]M0. (3.8)

We will now show that Eq. (3.8) implies both (2.7) and (2.8). Indeed, (3.8) is a linear
system for constants M0. By the Fredholm alternative, Eq. (3.8) is solvable if and
only if

〈[[P]], K 〉 = 0, ∀K : [[MF]]K = 0. (3.9)

Suppose that N (F) is an arbitrary null-Lagrangian. Then,

N (F + u ⊗ v) = N (F) + 〈NF(F), u ⊗ v〉, (3.10)

for all u and v. Differentiating (3.10) with respect to u and v, we obtain

〈(NF(F + u ⊗ v) − NF(F)), u̇ ⊗ v + u ⊗ v̇〉 = 0,

where u̇ ∈ R
m and v̇ ∈ R

n can be arbitrary. It is evident now that all K of the form
K = b ⊗ n + a ⊗ m, b ∈ R

m , m ∈ R
n , where [[F]] = a ⊗ n satisfy [[MF]]K = 0.

Hence, according to (3.9), solvability of (3.8) implies

{
[[P]]n = 0,

[[P]]Ta = 0.
(3.11)

The first equation in (3.11) is equivalent to (2.7), while the second, to (2.8).
In particularly important casesm = n = 2 or 3, we can describe the set of solutions

of (3.8) explicitly. When m = n = 2,

�(F;m0) = W̃ (F0, F) − m0 det(F − F0). (3.12)

where

m0 = 〈[[P]], cof[[F]]〉
|[[F]]|2 . (3.13)

In addition, inequalities (3.2) become

〈WFF(F±)ξ , ξ 〉 − 2m0 det ξ > 0 (3.14)

for all 2 × 2 matrices ξ . The points F± where at least one of them fails the non-strict
version of (3.14) must lie in the interior of the binodal region. Inequalities (3.14)
are equivalent to the Legendre–Hadamard conditions for two-phase configurations
(Grabovsky and Truskinovsky 2016).

If m = n = 3

�(F;b0,m0,m0) = W̃ (F0, F) − 〈cof(F − F0), M0〉 − m0 det(F − F0), (3.15)
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where

M0 = (∇cof[[F]])[[P]]
|[[F]]|2 + a ⊗ m0 + b0 ⊗ n, (3.16)

where [[F]] = F∗ − F0 = a ⊗ n, while b0 ∈ R
3, m0 ∈ R

3 and m0 ∈ R are free
parameters. Inequalities (3.2) become

{
〈WFF(F−)ξ , ξ 〉 − 2〈cofξ , M0〉 > 0,

〈WFF(F+)ξ , ξ 〉 − 2〈cofξ , M0 + m0[[F]]〉 > 0
(3.17)

and provide restrictions on the possible values of the free parameters, which need to
be determined from the condition

min
F

�(F;b0,m0,m0) = 0. (3.18)

If (3.18) is impossible to satisfy, then polyconvexity at F0 fails.

4 Relaxed Energy

There is an additional “bonus” for proving quasiconvexity of W (F) at F± ∈ J in
the form of the explicit formula for QW (F)—the quasiconvex envelope of W (F)

(Dacorogna 1982) as described by the theorem below (Grabovsky and Truskinovsky
2014).

Theorem 4.1 Suppose F± is the corresponding pair of points on the jump set and
W (F) is quasiconvex at F+ (or F−). Then, W (F) is quasiconvex at F− (or F+) and
for any λ ∈ [0, 1]

QW (λF+ + (1 − λ)F−) = λW (F+) + (1 − λ)W (F−). (4.1)

Of course, under the assumptions of Theorem 4.1 equality QW (F0) = RW (F0) holds
at all F0 = λF+ + (1 − λ)F−.

We can also use the right-hand side of (4.1) to define a function W (F) for all
pairs F±, without verifying quasiconvexity. W (F) can be called simple laminate-
relaxation ofW (F). Its QC (and RC) binodal contains points on the binodal ofW (F),
not described by Theorem 4.1. Hence, applying our method to W can reveal other
common parts of the QC and RC binodals, corresponding to higher-order laminate-
relaxations ofW (F). However, onewould have to confront increasinglymore complex
algebraic problems.

One drawback of the method is that establishing (2.2) may depend on W (F) out-
side of the binodal region. However, if we change our goal from proving W (F0) =
QW (F0) to proving W (F0) = RW (F0), where RW is the rank-one convex envelope
of W (F), then the method can be applied to a modified energy density Ŵ (F), which
is set to +∞ in regions where we already know that RW (F) = W (F). Theorem B.2
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in “Appendix B” shows that such modifications do not affect the rank-one convex
envelope, and therefore, if the method is successful for Ŵ (F) at F0, then

RW (F0) = RŴ (F0) = QŴ (F0) = Ŵ (F0) = W (F0),

even if the method fails for the original energy density. The modification trick does
not work for the quasiconvex envelopes because of the inherent “non-locality” of the
quasiconvexity condition (Kristensen 1999, 2000). An effective numerical algorithm
to compute the rank-one convexification ofW (F)was recently developed in Oberman
and Ruan (2017). Both the new and the older algorithm (Dolzmann 1999) implement
a similar iterative procedure numerically.

5 Example

To illustrate the effectiveness of the proposed method, consider a simple example of
“geometrically linearized” Hadamard material (Hadamard 1903; John 1966). Starting
withW (F) = h(det F)+μ|F|2, we can use the “geometric” approximation det F ≈
1 + Tr (F − I), which is valid in the limit F → I ; however, the formal asymptotic
expansion with respect to a small parameter would also induce physical linearization
and would trivialize the problem. For rigorous linearization of multi-well energies,
see (Schmidt 2008; Agostiniani et al. 2015; Alicandro et al. 2017). To avoid this, we
view the Hadamard material only as a motivation and study below the ad hoc energy

W (F) = f (θ) + μ|ε|2 + μ′|�|2, μ > 0, μ + μ′ > 0, (5.1)

where

θ = Tr ε, ε = 1

2
(F + FT), � = 1

2
(F − FT). (5.2)

To ensure the existence of a QC binodal, we assume that the function f (θ) has a
double-well shape, illustrated in Fig. 1a.

Remark 5.1 Usually, geometrically linear but physically nonlinear theory of elasticity
deals with the energies of form W (F) = Ŵ (ε); see for instance (Khachaturyan
1983; Budiansky et al. 1983; Kaganova and Roytburd 1988; Abeyaratne and Guo-
Hua 1989a, b). In the case of Hadamard material, the term μ|F|2 is already quadratic
and applying geometric linearization only to the nonlinear term, we obtain the model
(5.1) with μ′ = μ. In the absence of rigorous derivation of such model we have no
compelling reason to set μ′ = 0. Therefore, we study (5.1) in the entire range of
parameters μ, μ′ which obviously includes sub-cases μ′ = 0 and μ′ = μ.

The first step of the method is to characterize the jump set by solving (2.6)–(2.9).
Given that [[F]] = a ⊗ n and

WF(F) = f ′(Tr ε)I + 2με + 2μ′�,
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Fig. 1 a Double-well nonlinearity in a geometrically linear Hadamard material; b common tangent to the
graph of 	(θ)

we obtain

[[WF]] = [[ f ′]]I + μ(a ⊗ n + n ⊗ a) + μ′(a ⊗ n − n ⊗ a). (5.3)

Equations (2.7) and (2.8) take the form

{
([[ f ′]] + (μ − μ′)〈a, n〉)n + (μ + μ′)a = 0

([[ f ′]] + (μ − μ′)〈a, n〉)a + |a|2(μ + μ′)n = 0.

Since μ + μ′ > 0, we can conclude that a = αn for some α �= 0. Therefore,
α = −[[ f ′]]/2μ.

Now, taking the trace of [[F]] = αn ⊗ n we obtain that α = [[θ ]]. Equations
(2.6)–(2.8) can be summarized as follows

⎧⎪⎨
⎪⎩

[[ f ′ + 2μθ ]] = 0,

[[F]] = [[θ ]]n ⊗ n,

[[WF]] = −2μ[[θ ]](I − n ⊗ n).

(5.4)

In order to simplify the Maxwell relation (2.9), we take the average4 of the two
equations in (2.9) to obtain

[[W ]] − 〈{{ W F }}, [[F]]〉 = 0,

where {{ A }} = 1

2
(A+ + A−). The advantage for writing the Maxwell condition in

this way is that it annihilates all polynomial contributions of up to degree 2 in F.

4 Since the two equations in (2.9) are equivalent, we can use only one or only the other or an arbitrary
linear combination of the two.
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Therefore, we obtain
[[ f ]] − {{ f ′ }}[[θ ]] = 0. (5.5)

Note that neitherμ norμ′ enters this equation, since they are contained in the quadratic
term of the energy. We can use the degree 2 polynomial annihilation property again
in order to see the geometric meaning of the first equation in (5.4) coupled with (5.5).
Defining

	(θ) = f (θ) + μθ2, (5.6)

we can now rewrite the entire jump set system in the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[[	′]] = 0,

[[	]] − {{ 	′ }}[[θ ]] = 0,

[[F]] = [[θ ]]n ⊗ n,

[[WF]] = −2μ[[θ ]](I − n ⊗ n).

(5.7)

The first two equations in (5.7) are scalar, and they imply that θ− = θ1 and θ+ = θ2,
where θ1 and θ2 are the two points of common tangency to the graph of 	(θ), shown
in Fig. 1b. The conclusion is that the jump set J for the energy (5.1) is the union of
two disjoint hyperplanes

J− = {F ∈ M : Tr F = θ1}, J+ = {F ∈ M : Tr F = θ2}.

We recall (Grabovsky and Truskinovsky 2011) that the region

B0 = {F ∈ M : θ1 < Tr F < θ2}

bounded by jump set always fails the Weierstrass positivity condition (2.4).
We are now in a position to establish polyconvexity for the entire jump set J in

two space dimensions. Formulas (3.13) and (5.7) give m0 = −2μ, and hence (3.12)
becomes

�±(F) = f̃ (θ±, γ ) + μ|ε|2 + 2μ′ω2 + 2μ(det ε + ω2),

where

F = F± + ε + ω

[
0 −1
1 0

]
, γ = Tr F.

By assumption, μ+μ′ > 0, and therefore �±(F) is minimized when ω = 0. We also
have (for any symmetric matrix ε)

|ε|2 + 2 det ε = (Tr ε)2 = (γ − θ±)2.

Hence,

min
F

�±(F) = min
γ

	̃(θ±, γ ) = 0,
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and the common tangent to the graph of 	(θ) at θ± is a supporting line, as shown in
Fig. 1b. The polyconvexity of the jump set in now established.

Consider next the three-dimensional case. Formulas (3.16) and (5.7) give

M0 = −2μ(I3 − n ⊗ n) + n ⊗ m0 + b0 ⊗ n, (5.8)

and hence (3.15) becomes

�±(F;b0,m0,m0) = f̃ (θ±, γ ) + μ|ε|2 + μ′|�|2
−〈M0, cof(F − F±)〉 − m0 det(F − F±).

From this form, it is immediately clear that we must choose m0 = 0, since det F has
cubic growth at infinity, even if we fix γ = Tr F. This will make minF �± = −∞, if
m0 �= 0. Using the orthogonal decomposition

F − F± = D + η

3
I3 + �, D = ε − 1

3
(Tr ε)I3, η = γ − θ±,

we can conclude that �±(F;b0,m0) is quadratic in D and �. We can therefore
minimize�± in D and� (constraining free parametersb0 andm0 so that theminimum
value is not −∞).

It will be convenient to parametrize 3×3 antisymmetricmatrices by vectorsω ∈ R
3,

so that �u = ω × u and in what follows we will use for this mapping the notation
� = �(ω). Then,

�±(H;b0,m0) = f̃ (θ±, γ ) + μ|ε|2 + 2μ′|ω|2 − 〈M0, cofε + ω ⊗ ω + �(εω)〉.

Now, we see that using formula (5.8) for M0 is less convenient than separating its
symmetric and antisymmetric parts:

M0 = −2μ(I3 − n ⊗ n) + n � u + �(n × k), n � u = 1

2
(n ⊗ u + u ⊗ n).

It is evident that we can set k = 0 because (setting γ = θ±) the nonnegativity of the
quadratic forms μ|D|2 + 〈M0, cofD〉 and 2μ′|ω|2 + 〈M0ω,ω〉 is already necessary.
The nonnegativity of the latter form is equivalent to

〈u, n〉 ≤ 2μ′. (5.9)

Hence, we obtain

�±(F;u) = f̃ (θ±, γ ) + μ|ε|2 + 2μ〈I3 − n � v, cofε〉, v = u

2μ
+ n,

where the constraint (5.9) becomes

〈v, n〉 ≤ μ + μ′

μ
. (5.10)
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Fig. 2 a The graph of f qc(θ) for the example; b relaxed energy QW (F) restricted to diagonal 2 × 2
matrices F in the (F11, F22)-plane

If we decompose ε = D + (η/3)I3, we can use the relations

|ε|2 = |D|2 + η2

3
, cofε = cofD − η

3
D + η2

9
I3.

Observing that for symmetric trace-free 3 × 3 matrices Tr cofD = −|D|2/2, we can
write

�±(H;u) = f̃ (θ±, γ ) + μη2 − 2μ

〈
n � v, cofD − η

3
D + η2

9
I3

〉
.

Since

f̃ (θ±, γ ) + μη2 = 	̃(θ±, γ ) ≥ 0,

we see that setting v = 0 [which satisfies (5.10)] completes the proof of polyconvexity
at F±.

As we have already mentioned, polyconvexity and a fortiori quasiconvexity at F±
implies a simple formula (4.1) for the quasiconvex envelope of W . In the case of the
energy density (5.1), we obtain

QW (F) = f qc(Tr F) + μ|ε|2 + μ′|�|2, (5.11)

where

f qc(θ) =
{
f (θ), F /∈ B0,

{{ f ′ }}(θ − {{ θ }}) + {{ f }} + μ(θ − θ1)(θ2 − θ), F ∈ B0,
(5.12)

where {{ f }}, {{ θ }} are constants, independent of θ .

123



Journal of Nonlinear Science (2019) 29:229–253 245

In conclusion, we note that we can write the energy (5.1) as

W (F) = g(θ) + μ|dev(ε)|2 + μ′|�|2,

where g(θ) = f (θ) + θ2/n, where n = 2 or 3 is the space dimension. In this form,
the convexification of W (F) is obviously

CW (F) = Cg(θ) + μ|dev(ε)|2 + μ′|�|2,

where Cg(θ) is the convexification of g(θ). By contrast [see (C.4)]

QW (F) = gqc(θ) + μ|dev(ε)|2 + μ′|�|2,

where

gqc(θ) = C	(θ) − n − 1

n
θ2.

Hence, gqc(θ) is quadratic in θ on [θ1, θ2], see a double-tangent downward-facing
parabola in Fig. 2a. By contrast, convexification of W (F) would be represented by a
double-tangent straight line on the graph of g(θ). Behind this purely vectorial effect is
the fact that we had to replace affine functions by quasi-affine functions in (2.1). The
supporting quasi-affine function used in our method is necessarily quadratic because
of the quadratic rate of growth of the energy at infinity in all directions perpendicular
to multiples of the identity. The same structure of QW (F) is obtained in the case of
piece-wise quadratic double-well energy in Kohn (1991) and for the same reason.

The graphs of the entire energies W (F) and QW (F), restricted to diagonal matri-
ces, are shown in Fig. 2b.

Remark 5.2 For our geometrically linear example (5.1), the quasiconvexification of
W (F) can be also computed directly; see “Appendix C.” However, in the nontrivial
case of a geometrically nonlinear Hadamard material with double-well dependence on
the determinant, the shortcut discussed in “Appendix C”won’t work, while the general
method developed in this paper is still applicable. A preliminary study suggests that
our approach allows one to fully characterize the function QW (F) for such materials
when the parameter μ is sufficiently large.

6 Conclusions

The proposed approach is based on a simple observation that the part of the PC binodal,
characterized by double-tangency of supporting null-Lagrangians, must necessarily
belong to the jump set, and therefore to the QC binodal. While the jump set and PC
binodal are known to provide bounds from the inside and from the outside for the QC
binodal, the general nature of bound collapse was not noticed before.

The main advantage of the proposed approach is that it is fully algebraic and there-
fore constructive. The first step of the method is to compute the jump set J by solving
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algebraic equations (2.6)–(2.9). Then, for each point F0 ∈ J the point of second tan-
gency F∗ is uniquely determined. Next, one needs to verify algebraic conditions (2.2),
where the constants M0 satisfy (3.8). In the special case m = n = 2, the method
delivers explicit values forM0, while when m = n = 3 the method determines 4 out
of 10 constants M0; see (3.15), (3.16). For large values of m and n, the number of
constants inM0 is vastly larger than mn, and hence the practical value of the method
rapidly diminishes with growth of the dimensions.

Nevertheless, in the important case of nonlinear elasticity with m = n ≤ 3 the
method can be very effective.We illustrated the workings of themethod on a nontrivial
model example, where it produced optimal answers, in the sense that the whole quasi-
convex envelope could be reconstructed analytically. The generality of the algorithm
allows the method to be applied systematically to problems for which finding directly
the quasiconvexification of the energy is currently beyond reach.
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A Proof of Lemma 3.1

Lemma A.1 Suppose f (x,m) is a smooth (C2 is enough) function on R
d × B(0, 1),

where B(0, 1) is a unit ball in R
N . We assume that f (x,m) > 1 for all |x | > R and

allm ∈ B(0, 1) for some uniform constant R. Suppose that there exists x0 �= 0, such
that x = 0 and x = x0 are the only global minimizers of f (x, 0). Specifically,

(i) f (0, 0) = f (x0, 0) = 0,
(ii) fxx (0, 0) > 0 and fxx (x0, 0) > 0 in the sense of quadratic forms
(iii) f (0,m) = 0, fx (0,m) = 0,m ∈ B(0, 1),

Suppose that fm(x0, 0) �= 0. Then, for any δ ∈ (0, 1) there exists m ∈ B(0, δ) so
that f (x,m) > 0 for all x �= 0.

Proof Let us first examinewhat happens in the neighborhoods of 0 and x0. Near x = 0,
we have

f (x,m) = f (0,m) + 〈 fx (0,m), x〉 + 1

2
〈 fxx (0,m)x, x〉 + o(|x |2)

= 1

2
〈 fxx (0,m)x, x〉 + o(|x |2).

By continuity of second derivatives, there exist δ0 > 0 and c0 > 0, so that f (x,m) ≥
c0|x |2 for all |x | < δ0, |m| < δ0. In the neighborhood of x0, we have

f (x,m) = f (x, 0) + 〈 fm(x, 0),m〉 + O(|m|2)
= f (x, 0) + 〈 fm(x0, 0),m〉 + O(|x − x0||m|) + O(|m|2).
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By assumption, there exists δ0 > 0 and c0 > 0 (we are using the same notation
each time instead of δ1, c1, . . ., ultimately choosing the smallest δ j and c j ), such that
f (x, 0) ≥ c0|x − x0|2 for all |x − x0| < δ0. Thus, there exists C > 0, so that

f (x,m) ≥ c0|x − x0|2 + 〈 fm(x0, 0),m〉 − C(|x − x0||m| + |m|2),

for all |m| < δ0 and |x − x0| < δ0. Using the inequality

2|x − x0||m| ≤ k|x − x0|2 + |m|2
k

with k = c0/(2C) we conclude that

f (x,m) ≥ c0
2

|x − x0|2 + 〈 fm(x0, 0),m〉 − C |m|2,

If fm(x0, 0) �= 0, then we can choose a unit vector u0 ∈ R
N , such that

〈 fm(x0, 0), u0〉 > 0. Therefore, there exists δ0 > 0, so that for all |x − x0| < δ0 and
all δ ∈ (0, δ0)

f (x, δu0) ≥ c0
8

|x − x0|2 + δ

2
〈 fm(x0, 0), u0〉

This shows that f (x, δu0) > 0 for all δ ∈ (0, δ0) and all |x − x0| < δ0.
By our assumption f (x, 0) > γ0 > 0 for all x outside of B(0, δ0) ∪ B(x0, δ0). By

smoothness, there is a constant C > 0, so that

| f (x, δu0) − f (x, 0)| < Cδ

for all |x | < R, and therefore, f (x,m) > γ0/2 > 0 for all |m| < δ and all x outside
of B(0, δ0) ∪ B(x0, δ0), if we choose δ < γ0/(2C). The lemma is proved now. ��

This lemma shows that if �(F,M0) attains its minimum value 0 at exactly two
points F0 and F∗ and �M0

(F∗,M0) �= 0, then it is possible to modify M0, so
that �(F,M0) attains its minimum value 0 only at F0. We now show that if F0 is
the unique minimizer of �(F,M0), satisfying (2.3), then this will also be true for
all other F0 that are sufficiently close to the original F0, where the constantsM0 are
kept fixed. Hence, we now regard � as a function of F and F0, keeping M0 fixed.
The conclusion of Lemma 3.1 follows from the lemma below.

Lemma A.2 Suppose that f ∈ C2(Rd × B(0, 1)) satisfies

(i) f (x, 0) > 0 for all x �= 0
(ii) fxx (0, 0) > 0
(iii) f (a, a) = 0 and fx (a, a) = 0 for all a ∈ B(0, 1)
(iv) f (x, a) > 1 for all |x − a| > R and all a ∈ B(0, 1).

Then, there exists δ > 0, so that f (x, a) > 0 for all x �= a and |a| < δ.
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Proof By implicit function theorem, there exists δ1 > 0, such that the equation
fx (x, a) = 0 has a unique solution x = a on a neighborhood of 0, provided |a| < δ1.
By continuity, fxx (a, a) > 0 when |a| < δ1. Hence, x = a is also a point of local min-
imum of x �→ f (x, a), while f (a, a) = 0. Hence, f (x, a) > 0, whenever |x | < δ1,
|a| < δ1 and x �= a. By assumption

min|x |≥δ1
f (x, 0) = γ > 0.

Hence, by condition (iv), there exists 0 < δ < δ1, so that

min|x |≥δ1
f (x, a) = min

δ1≤|x |≤R+1
f (x, a) >

γ

2
> 0,

provided |a| < δ. But then for any |a| < δ, we have f (x, a) > 0, whenever |x | < δ1
and x �= a, and f (x, a) > 0, when |x | ≥ δ1. The lemma is now proved. ��

B The Robustness of Rank-One Convex Envelopes

In this section, we will show that the rank-one convex envelope is insensitive (robust)
to certain “safe” modifications of the energy density. Specifically, let W (1),W (2) :
R
m×n → R be of class C1 and satisfy the mild growth conditions required to ensure

that RW (1) and RW (2) are of class C1 via a theorem of Ball et al. (2000). Let

B j = {F : RW ( j)(F) < W ( j)(F)}, j = 1, 2

be their rank-one convexbinodal regions. The intuition is that since rank-one convexity,
just as convexity, can be locally defined, the binodal region ofW (F) can be regarded as
a set of all points lacking rank-one convexity, while its complement consists of “rank-
one convex points.” According to that image, any modification of W (F) outside of
rank-one binodal that does not destroy rank-one convexity should not affect neither
the binodal region, nor the rank-one convex envelope inside the binodal region. In
order to formulate our intuition as a theorem, we need to make precise what we mean
by rank-one convexity at a point for C1 functions.

Definition B.1 We say that a C1 function W (F) satisfies the Legendre–Hadamard
(LH) condition at a point F0 if there exists δ > 0 so that

W (F0 + tu ⊗ v) ≥ W (F0) + t〈WF(F0), u ⊗ v〉

for all |t | < δ and all unit vectors u and v.

It is easy to see that ifW (F) is of classC2, then the abovedefinition implies the classical
LH condition at a point 〈WFF(F0)(u ⊗ v), u ⊗ v〉 ≥ 0. The converse implication is
also true on open subsets. We will use the fact that a C1 function W (F) is rank-one
convex if and only if it satisfies the LH condition at every F. This statement is referred
to as “locality” of rank-one convexity.
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Theorem B.2 Suppose W (1), W (2), RW (1) and RW (2) are of class C1. Assume that

(a) W (1)(F) = W (2)(F) for all F ∈ B1
(b) W (2)(F) satisfies the LH condition for all F /∈ B1.

Then

(i) B2 = B1 = B
(ii) RW (1)(F) = RW (2)(F) for all F ∈ B.

Proof The idea is to show that RW (1)(F) ≤ RW (2)(F) and RW (2)(F) ≤ RW (1)(F)

for every F ∈ B1. For this reason, we define

Ŵ (1)(F) =
{
W (1)(F), F /∈ B1,

RW (2)(F), F ∈ B1,
, Ŵ (2)(F) =

{
W (2)(F), F /∈ B1,

RW (1)(F), F ∈ B1,
.

Let us examine Ŵ (2). We note that for all F ∈ ∂B1, we have

W (2)(F) = W (1)(F) = RW (1)(F), W (2)
F (F) = W (1)

F (F) = RW (1)
F (F).

Thus, Ŵ (2) is of class C1 and satisfies the LH condition at all F. We conclude that
Ŵ (2) is rank-one convex. Also, Ŵ (2)(F) = W (2)(F) for all F /∈ B1 and Ŵ (2)(F) =
RW (1)(F) ≤ W (1)(F) = W (2)(F), for all F ∈ B1. Hence, Ŵ (2) is a rank-one convex
function, such that Ŵ (2) ≤ W (2). Therefore,

Ŵ (2)(F) ≤ RW (2)(F), ∀F. (B.1)

In particular, for all F /∈ B1

W (2)(F) = Ŵ (2)(F) ≤ RW (2)(F) ≤ W (2)(F).

We conclude that RW (2)(F) = W (2)(F) for all F /∈ B1 and hence, B2 ⊂ B1. It
follows that

Ŵ (1)(F) =
{
W (1)(F), F /∈ B2,

RW (2)(F), F ∈ B2.

Indeed, for every F ∈ B1\B2 the left-hand side has the value RW (2)(F) = W (2)(F) =
W (1)(F), agreeing with the right-hand side. But then we can repeat the same argument
where the roles of W (1) and W (2) are interchanged, proving that B1 ⊂ B2 and, hence
B1 = B2 = B, and

Ŵ (1) ≤ RW (1)(F), ∀F. (B.2)

But then for F ∈ B inequality (B.1) says RW (1)(F) ≤ RW (2)(F), while inequality
(B.2) says RW (2)(F) ≤ RW (1)(F), proving the theorem. ��
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C Direct Calculation of the Quasiconvex Envelope of (5.1)

The quasiconvexification of W (F) in the example (5.1) is actually easier to compute
using formula

QW (F) = inf
φ∈C∞

0 (D;Rm)
−
∫
D
W (F + ∇φ)dx, (C.1)

due to Dacorogna (1982), if one can guess that for any matrix F we have

|ε|2 = θ2 + |�|2 − 2J2(F), (C.2)

where θ , ε and � are defined in (5.2) and

J2(F) = 1

2
((Tr F)2 − Tr (F2))

is a null-Lagrangian. Decomposition (C.2) amounts to a direct guess of the support-
ing null-Lagrangian in our method. Applying the decomposition (C.2) and recalling
definition (5.6) of 	, we obtain

−
∫
D
W (F + ∇φ)dx = −

∫
D

{
	(θ + ∇ · φ) + (μ′ + μ)|� + ∇φ − (∇φ)T|2

}
dx

−2μJ2(F)

Using the Jensen’s inequality (recalling that μ + μ′ > 0), we obtain

−
∫
D
W (F + ∇φ)dx ≥ C	(θ) + (μ′ + μ)|�|2 − 2μJ2(F), (C.3)

where C	(θ) is the convex hull of 	(θ), which agrees with 	(θ), when θ /∈ (θ1, θ2)

and agrees with the common tangent in Fig. 1b, when θ ∈ (θ1, θ2). Thus, if θ =
Tr F /∈ (θ1, θ2) the right-hand side of (C.3) is exactly W (F). If θ ∈ (θ1, θ2), then
we need to look for φ that achieves equality in (C.3). Such φ must necessarily satisfy
∇φ − (∇φ)T = 0. Hence, φ = ∇ψ . In addition, ∇ · φ must take values θ1 − θ and
θ2 − θ . These constraints can all be met for D—a unit ball inRn and ψ(x) = ψ(|x|):

ψ(r) =
{

θ2−θ
2n

(
r2 + 2

(n−2)rn−2

)
, 1 < r < r∗,

θ1−θ
2n r2 + c, r∗ ≤ r ≤ 0,

where c is chosen to ensure that ψ(r) is continuous, and r∗ is chosen to ensure that
ψ ′(r) is on continuous 0 ≤ r ≤ 1. It is easy to check that ∇ψ vanishes when r = 1
and that ∇ · ψ ∈ {θ1 − θ, θ2 − θ}. This implies that φ = ∇ψ attains equality in (C.3),
thereby proving that the right-hand side of (C.3) is QW (F) for all F.

Using formula (C.2), we can rewrite the right-hand side of (C.3) as follows

QW (F) = C	(θ) − μθ2 + μ|ε|2 + μ′|�|2. (C.4)
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It remains to observe that when θ /∈ (θ1, θ2), we have

C	(θ) − μθ2 = 	(θ) − μθ2 = f (θ).

When θ ∈ (θ1, θ2), then C	(θ) is affine and hence C	(θ) − μθ2 must agree with
f qc(θ), given by (5.12), since f qc(θ) + μθ2 is affine on (θ1, θ2), agrees with 	(θ)

outside (θ1, θ2) and is of classC1, so that the graph of the affine function f qc(θ)+μθ2

must be tangent to the graph of 	(θ) at θ1 and θ2. Such an affine function is unique
and agrees with C	(θ) on (θ1, θ2).

We note that the direct calculation of the quasiconvex envelope is based on sub-
tracting the right null-Lagrangian −2μJ2(F) from W (F). This gives us immediate
formulas for the translation constants m0, b0 and m0. Formulas (3.13) and (3.16)
show that our method can recover these values without having to guess the right
null-Lagrangian in (2.1).
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