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ABSTRACT Sea otter populations in Southeast Alaska, USA, have increased dramatically from just over 400 
translocated animals in the late 1960s to >8,000 by 2003. The recovery of sea otters to ecosystems from which 
they had been absent has affected coastal food webs, including commercially important fisheries, and thus 
information  on expected  growth  and equilibrium abundances can  help inform resource management. We 

compile available survey data for Southeast Alaska and fit a Bayesian state‐space model to estimate past trends 
and current abundance. Our model improves upon previous analyses by partitioning and quantifying sources 
of estimation error, accounting for over‐dispersion of aerial count data, and providing realistic measurements 
of uncertainty around point estimates of abundance at multiple spatial scales. We also provide estimates of 
carrying capacity (K) for Southeast Alaska, at regional and sub‐regional scales, and analyze growth rates, 
current population status and expected future trends. At the regional scale, the population increased from 
13,221 otters in 2003 to 25,584 otters in 2011. The average annual growth rate in southern Southeast Alaska 
(7.8%) was higher than northern Southeast Alaska (2.7%); however, growth varied at the sub‐regional scale 
and there was a negative relationship between growth rates and the number of years sea otters were present in 
an area. Local populations vary in terms of current densities and expected future growth; the mean estimated 
density at K was 4.2 ± 1.58 sea otters/km2 of habitat (i.e., the sub‐tidal benthos between 0 m and 40 m depth) 
and current densities correspond on average to 50% of projected equilibrium values (range = 1–97%) with the 
earliest‐colonized sub‐regions tending to be closer to K. Assuming a similar range of equilibrium densities for 
currently un‐occupied habitats, the projected value of K for all of Southeast Alaska is 74,650 sea otters. Future 
analyses can improve upon the precision of K estimates by employing more frequent surveys at index sites and 
incorporating environmental covariates into the process model to generate more accurate, location‐specific 
estimates of equilibrium density. © 2019 The Authors. The Journal of Wildlife Management Published by 
Wiley Periodicals, Inc. 
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Large carnivore species have historically been threatened by 
human activities (Ripple et al. 2014); however, after decades of 
concerted management efforts aimed at protecting and restoring 
endangered carnivore populations, some species are recovering 
(Roman et al. 2015). As depleted carnivore populations have 
recovered, it has become evident that they can have 
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disproportionately large effects on the ecosystems they return to. 
For example, recovering wolf (Canis lupus) populations in 
western North America indirectly affect riparian vegetation 
regimes via their influence on elk (Cervus elaphus) abundance 
and habitat use (Beschta and Ripple 2009), and recovered 
alligator  (Alligator  mississippiensis)  populations  in southeastern 

North America exert top‐down regulation of salt‐marsh food 
webs (Nifong and Silliman 2013). To properly understand the 
scope and magnitude of ecological effects of recovering carnivore 
populations, it is important to obtain accurate and precise 
information on their abundance and distribution. Moreover, 
managers often wish to anticipate population trends and predict 
carnivore densities at equilibrium (i.e., environmental carrying 
capacity [K]). Estimates of equilibrium abundances are 
especially important when they influence management actions 
(e.g., populations may no longer require legal protection as they 
approach K), and when they are used to predict future effects on 
natural resources or conflicts over commercially valuable species 
that the recovering carnivore may consume. 

Sea otters (Enhydra lutris) are apex carnivores in nearshore 
marine ecosystems of the North Pacific that declined to near‐ 
extinction during the fur trade but have gradually recovered 
since the mid‐1900s (Kenyon 1969, Bodkin 2015). Recovery 
over much of their historical range in North America resulted 
from successful management actions, such as translocations of 
sea otters in the 1960s and 1970s (Burris and McKnight 1973). 
In Southeast Alaska, USA, sea otter populations increased from 
fewer than 500 animals translocated from Amchitka Island and 
Prince William Sound in the late 1960s (Jameson et al. 1982) to 
an estimated >8,000 animals by 2003 (Esslinger and Bodkin 

2009). The recovery of sea otters to ecosystems and locales from 
which they had been absent for almost a century has had 
profound effects on food web structure and dynamics in rocky 

and soft‐sediment areas (Kvitek et al. 1992, Estes et al. 2004). 
Some of these changes are considered beneficial, such as 
increased productivity in kelp (e.g., Macrocystis pyrifera, 
Nereocystis leutkeana, Alaria fistulosa; Duggins et al. 1989), the 
associated restoration of ecosystem function (Estes et al. 2010, 
Estes 2015), and restoration of subsistence uses of sea otters by 
indigenous communities (Salomon et al. 2015). The recovery of 
sea otters, however, also leads to conflict with humans over 
particular marine resources, most notably large marine 
invertebrates (Wild and Ames 1974, Garshelis and Garshelis 
1984, Carswell et al. 2015). In Southeast Alaska, sea otter 

recovery has resulted in conflicts with several commercial shell‐ 
fisheries (Larson et al. 2013, Hoyt 2015). Reliable information 
on current sea otter distribution and abundance and projections 
of future population dynamics and range spread, will help 
resource managers anticipate potential conflicts and tailor 
management strategies to benefit sea otters and human 
communities in Southeast Alaska. 

Monitoring population abundance and trends of widely 
distributed carnivores often poses logistical and funding 
hurdles; in the case of sea otters in Southeast Alaska, the 
vast area and limited access (Fig. 1) have created substantial 
challenges to population assessment. A number of different 

methods have been employed at different times and over 

different areas, including skiff‐ and aerial‐based  surveys 
(Esslinger and Bodkin 2009). A standardized aerial survey 
method allows for bias‐corrected estimates of abundance 

 

 

 

Figure 1. Southeast Alaska, USA, showing existing or potential sea otter habitat as‐of 2012, defined as the nearshore zone <100 m in depth. Habitat is 
divided into currently un‐occupied areas (dark gray shaded areas) and occupied areas (colored polygons), with the latter divided into smaller sub‐regions for 
the purpose of analysis and labeled with sub‐region identifiers. Also shown are the 7 sea otter translocation sites (green circles). 



Tinker et al. • Sea Otter Trends in Southeast Alaska 1075  

(Bodkin and Udevitz 1999); however, because of the 
associated cost and time commitments, large‐scale surveys 
using this method are conducted infrequently. The disparate 
methods, piecemeal spatial coverage, and infrequent timing 
of past surveys has hampered assessment of population 
abundance and dynamics over all of Southeast Alaska 
(Esslinger and Bodkin 2009), though analyses of abundance 
and trends have been completed for some smaller areas such 
as Glacier Bay (Fig. 1; Esslinger et al. 2015, Williams et al. 
2017). Moreover, because the population is apparently still 

recovering and expanding its range, with large areas of un‐ 
occupied  habitat  remaining  (Fig.  1),  no quantitative 
estimates of carrying capacity have been made, leaving 
uncertainty about how long the population will keep 
growing and what densities will look like at equilibrium. 
Obtaining a full picture of past sea otter trends, and 

potential growth into the future, demands a flexible 
analytical approach that can make use of multiple data 
types and sparse or incomplete time series. 

In recent years, state‐space models have been employed as 
powerful tools in the analysis of population abundance  and 
trends (Berliner 1996, Royle and Dorazio 2008). These 
models have a number of distinct advantages over 
traditional analyses of survey data (Cressie et al. 2009). By 
explicitly separating the state process (the fixed and random 

effects that cause variation in population abundance) from 
the observation process (the functional relationship between 
true abundance and survey data), they allow for partitioning 
of variance into process error and observer error compo- 
nents, and provide clearer insights into trends and ecological 

mechanisms (Berliner 1996). State‐space models are  well 
suited to analysis using Bayesian methods, which can easily 
incorporate multiple data types with different error 
structures (often collected at different temporal or spatial 
scales), enable the use of prior information to improve 
parameter estimates, and allow random effects in both state 
and observer processes to be treated as hierarchical 
stochastic variables (Congdon 2010). Previous researchers 

have used Bayesian state‐space models to analyze line 
transect survey data and make probabilistic inferences about 
abundance, trends, and population parameters (Gerrodette 
et al. 2011, Moore and Barlow 2011). We used Bayesian 
methods to analyze and integrate the various survey data 
sets available, including a previously unreported dataset 
collected in 2010–2012, for sea otters in Southeast Alaska. 
Our goals were to provide a comprehensive picture of 
population trends and abundance estimates at different 
spatial scales and to estimate equilibrium densities of sea 
otter populations in Southeast Alaska, and how they vary 
over space, as a tool to help resource managers anticipate 
ecological effects of sea otters and plan future monitoring 
activities. 

STUDY AREA 

Southeast Alaska is defined as the region of Alaska east of 
144°W longitude, consisting of the large group of islands 
called the Alexander Archipelago and a narrow strip of 
mainland separated from the remainder of North America 

by the vast Coastal Mountain Range (Fig. 1). The region is 
roughly 900 km long, averages 230 km in width, and 
encompasses approximately 25,000 km of shoreline. The 
coastal landscape of Southeast Alaska is characterized by 
rugged topography, varying in elevation from sea level to 
5,489 m, and the coastline consists of a complex shoreline of 
inlets, bays, glacial fjords, and over 2,000 islands. The 
terrestrial landscape is dominated by temperate rainforest, 
some of which has been altered by commercial timber 
harvest, intermixed with mountainous terrain, wetlands, and 

various fine‐scale disturbances (e.g., wind‐throw). Domi- 
nant flora and fauna are typical of Pacific northwest 
temperate rain forests (O’Clair et al. 1997). Most of the 
land is managed by the United States Forest Service as the 
Tongass National Forest (~80%) and the National Park 
Service as Glacier Bay National Park and Preserve (~12%). 
Southeast Alaska has a cool, wet maritime climate with 75– 
500 cm of precipitation distributed evenly through the year. 

The Southeast Alaska stock of sea otters is one of 3 
recognized sea otter stocks in Alaska and is bounded by 
Cape Yakataga in the north and the Dixon Entrance in the 
south (Fig. 1). Unlike the Southwest Alaska stock, the 

Southeast Alaska stock is not listed under the United States 
Endangered Species Act (ESA), though it is protected 

under the United States Marine Mammal Protection Act 
(MMPA; U.S. Fish and Wildlife Service [USFWS] 2014). 
The United States Geological Survey (USGS) and USFWS 
conducted standardized aerial surveys of sea otters in 
Southeast Alaska in 2002–2003 and 2010–2011, respec- 
tively (Bodkin and Udevitz 1999, Esslinger and Bodkin 
2009, USFWS, unpublished data). The northern half of the 
region (northern Southeast Alaska), from Icy Point to Cape 
Ommaney, was surveyed in 2002 and 2011, and the 
southern half of the region (southern Southeast Alaska), 
from Kake to Dixon Entrance, was surveyed in 2003 and 
2010. Surveys of Glacier Bay National Park (in northern 
Southeast Alaska) were conducted using similar methods 
(but using randomized replicate surveys) between 1999 and 
2012 (Esslinger et al. 2015) and replicate aerial surveys of 
Yakutat Bay also were completed in 1995 and 2005 (Doroff 
and Gorbics 1997, Gill and Burn 2007). 

Sea otters inhabit coastal waters, with their offshore range 
limited by bottom depth and their capability to dive for food 
(Estes and Riedman 1990, Bodkin et al. 2004). For the 
purpose of standardized surveys, otter habitat typically is 

divided into high‐density and low‐density strata based on 
the likelihood of an animal occurring in that strata given the 
bathymetry (Bodkin and Udevitz 1999). The high‐density 
stratum extends over water <40 m in depth or up to 400 m 
from shore where water depth exceeds 40 m, and also 
includes embayments with narrow entrances (Bodkin and 

Udevitz 1999). The low‐density stratum is bounded by the 
offshore boundary of the high‐density stratum out to the 

100‐m‐depth contour or 2 km from shore, whichever is 
greater. 

To facilitate the incorporation of demographic structure 
within our analyses, we further divided sea otter habitat into 
24 sub‐regions, contiguous spatial polygons that encompass 
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the coastal areas of Southeast Alaska occupied by sea otters 
at the time of the most recent survey (Fig. 1), though aerial 
survey data are available for only 21 of these. We defined 

sub‐regions in such a way as to be large enough so that 
intrinsic demographic processes (births and deaths) would 
have far greater influence on trends than movement between 
sub‐regions over limited time frames (the period between 
adjacent surveys), but small enough so that otters within a 
sub‐region can be viewed as a mixed population experien- 
cing similar environmental and density‐dependent condi- 
tions. The average area of high‐density habitat within 
delineated sub‐regions was 461 km2 (SD = 283), approxi- 
mately 100 times the area of a typical sea otter annual home 
range (Tarjan and Tinker 2016), though males moving 
between frontal zones and established female areas may 
routinely travel ≥100 km between areas (Garshelis and 

Garshelis 1984). We defined boundaries between sub‐ 
regions arbitrarily, although we used natural geographic 
boundaries wherever possible to minimize the potential 
influence of immigration and emigration. 

 

METHODS 

Survey Methods 

Skiff‐based surveys and aerial surveys have been used to 
estimate abundance and distribution of sea otters in Southeast 
Alaska (Esslinger and Bodkin 2009), although only the aerial 
survey methods analyzed for this paper provide data necessary 
to estimate abundance with corrections for imperfect detection 
and associated uncertainty. Skiff surveys were the primary 
method of population monitoring in Southeast Alaska prior to 
1995 (Pitcher 1989), when numbers and occupied habitats 
were small. Skiff surveys consist of paired observers (observer 
and skiff operator, observer and recorder) in a small skiff (5–7 
m long) moving parallel to the shoreline and counting all 
observed animals in high‐density habitat (nearshore or in water 
depths <40 m). Offshore transects also are conducted when 
groups are sighted farther from shore or when habitat features 
indicate a likelihood of offshore animals. These skiff surveys 
were an attempt to provide a census of the population in 
occupied habitats but did not account for availability and 
sightability biases (Pitcher 1989). From 1993 to 1998, aerial 
surveys were flown to document the distribution and relative 
abundance of sea otters in portions of northern Southeast 
Alaska (Esslinger and Bodkin 2009). Beginning in 1999, a 
new aerial survey method (Bodkin and Udevitz 1999) was 
adopted to estimate sea otter abundance. This method 
consisted of strip transects flown at regularly spaced intervals 
generally perpendicular to the main coastline axis (spaced so as 

to sample a pre‐determined proportion of available habitat), 
and with intensive search units (ISUs) flown periodically to 
determine numbers of otters not detected during transects and 
thus used to estimate a correction factor (Fig. S1, available 
online in Supporting Information). 

Strip transect surveys (Caughley 1977) are a widely used 
method for estimating animal abundance, tracking popula- 
tion changes, and documenting habitat use. They are a 
special case of strip or line transect surveys, in which the 

distance from the animal to the observer is not recorded 
(Fewster et al. 2005) and one assumes that all individuals 

present along a strip transect of a pre‐determined width are 
detected with a constant probability of detection. Any 
individuals detected at a distance farther than the strip 
transect width are excluded from the sighting probability 
model. Bodkin and Udevitz (1999) conducted a study to 
determine the ideal altitude and corresponding strip transect 
width (400 m) during aerial surveys for sea otters and a 
method for conducting ISUs to measure survey‐specific 
detection probability. Selected systematically with the goal 
of conducting a pre‐determined number of ISUs, an ISU is 
initiated after a group of ≥1 otters is detected on transect. 
The ISU is positioned tangentially and perpendicular to the 
direction of the aircraft (Fig. S1) and consists of 5 

concentric circles flown within the 400‐m strip transect. 
To avoid affecting sea otters in other ISUs, ≥60 seconds of 
flight time must pass after finishing one ISU before another 
ISU can be initiated. The observer records all otters (both 
adults and pups) sighted during the ISU: these include 
otters observed on transect and otters not detected (e.g., 
because they had been diving during the initial transect). 
The analysis assumes all otters are detected by the time the 
ISU is terminated, and the detection probability of sea 
otters by observers during these ISUs has been estimated at 
≥0.96 (Bodkin and Udevitz 1999). The probability of 
detection on survey transects (p) is then calculated as the 
ratio of the number of otters counted on transects (within 
the bounds of ISUs) to the number of otters counted during 
ISUs, after first subtracting initiating groups from both 
tallies to avoid the bias that would result from including 
otters that are already known to have been detected (Bodkin 
and Udevitz 1999). Large groups (>20 individuals) are 
circled repeatedly until a photograph and a consistent count 
is obtained (complete counts), and thus these large groups 
are excluded from the estimate of detection probability and 
from detection probability correction in the final abundance 
estimate (i.e., detection is assumed to be 1.0 for large 
groups). All surveys were conducted under permits issued by 
the USFWS, as required by the United States Marine 
Mammal Protection Act (MMPA). Most aerial surveys 
were conducted under MMPA permit number MA067925 
issued to USGS; the remainder (2005, 2010, 2011) were 
conducted under MMPA permit number MA041309 
issued to USFWS. 

Harvest Data 
The United States Marine Mammal Protection Act 
prohibits direct harvest of sea otters and other marine 
mammals; however, exemptions are provided to coastal 
Alaska Native people provided that the harvest is done for 
the purposes of subsistence, or for creating and selling 
authentic native handicrafts and clothing, and that the 
harvest is not done in a wasteful manner (https://www.fws. 

gov/alaska/fisheries/mmm/hunting_seaotter.htm,  accessed 
30 Jan 2018; Marine Mammal Protection Act 16 U.S.C. 
1361–1423 and the implementing regulations 50 C.F.R 
Part 18). Since 1988, the USFWS has recorded the 

https://www.fws.gov/alaska/fisheries/mmm/hunting_seaotter.htm
https://www.fws.gov/alaska/fisheries/mmm/hunting_seaotter.htm
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subsistence harvest of sea otters in Southeast Alaska as part 
of their marking, tagging, and reporting program (MTRP). 
When a sea otter is harvested, the hunter is required to 
report that harvest to a designated USFWS tagger, who 
records location and time of the harvest, age, and sex of the 
animal. These data are entered into the MTRP database. 
We extracted data on the reported numbers of animals 

harvested annually by sub‐region because we suspected that 
accounting for harvest mortality could improve estimates of 
carrying capacity (see below). 

 

Spatially Structured State Space Model 
Our objective was to estimate the abundance of sea otters (N) 
across years (t) within designated sub‐regions (i), using a process 
model that incorporates density‐dependent population dynamics 
(in which carrying capacity is assumed to occur at the scale of 
sub‐regions),  range  expansion  and  dispersal  between sub‐ 
regions,  harvest  mortality,  and environmental  stochasticity. As 
part of model fitting, we derived local and regional estimates of 

harvest mortality (Bodkin and Ballachey 2010), and stochastic 
variation in annual mortality caused by factors such as 
infectious disease (Goldstein et al. 2011). Our process model 
incorporates all these features. 

The variable of primary interest is Ni,t, the estimated 
abundance of otters in sub‐region i at time t. At time t = 1 
(which corresponds to 1975 in our model), sea otters had spread 
from the 7 translocation sites (Fig. 1) to become established in 
the 9 surrounding sub‐regions (Fig. S2, available online in 
Supporting Information). We therefore initialize Ni,1 using the 
earliest reliable post‐translocation estimates for these sub‐regions 
(Schneider 1975), and to allow for uncertainty we use a gamma 
prior for Ni,1 with mean of Ninit,i (the 1975 point estimates; 
Table S1, available online in Supporting Information) and 
variance corresponding to a coefficient of variation of 0.2. We 
set Ni,1 to zero for all remaining sub‐regions. For years t = 2 to t 
= T (where T corresponds to 2012), we calculated population 
dynamics using the recursive equation: 

K and characterized spatial variation in the density at K. The Ni,t = Ni,t−1 (λi,t − v⋅ψi,t ) + ∑ Dj,i,t − ∑ Di,j,t , (1) 
process model is explicitly related to a data model, consisting of j j 
the observed survey counts (C) and harvest records (H) for each 

sub‐region at various points in time. To relate the process model 

to the data model, we built on previous analyses of aerial survey 
data (Esslinger and Bodkin 2009) in terms of our assumptions 
about corrections  for otter detection  probability  and  survey 
effort, and sources of uncertainty in each. The Bayesian 
approach allowed us to formally incorporate and estimate the 
variance associated with over‐dispersed sea otter count data 
(reflecting non‐random, clumped distribution of groups), 
accommodate missing or incomplete data (e.g., the absence of 
ISU data for the 2011 survey), make use of the replicated 
surveys available for some years and sub‐regions to estimate 
observer‐specific  variation  in detection  probabilities among 

where λi,t represents the finite annual growth rate (reflecting 
both density dependence and stochasticity), the term ν·ψi,t 
adjusts for the effect of annual harvest mortality (Liz and 
Hilker 2014), and the summation terms ΣDj,i,t and ΣDi,j,t 
adjust for dispersal of animals into sub‐region i (immigra- 
tion) and out of sub‐region i (emigration). 

The finite annual growth rate λi,t combines discrete 
logistic population growth with environmental stochasticity. 
Specifically, the log‐transformed growth rate in sub‐region i 
at year t is assumed to be drawn from a random normal 
distribution: 

log (λ  )~Normal (x̄  = r (1 − N /K ), SD = σ ), 
surveys, and characterize spatial variation in sea otter trends 
and equilibrium densities at varying scales. 

i,t  max i,t−1 i e 

(2) 

Process model.—To describe sea otter population dynamics in 
Southeast Alaska, we built on previous studies showing that 
sea otter populations across the North Pacific demonstrate a 
consistent pattern of density‐dependent growth (Estes 1990, 
Estes et al. 1996). Specifically, for populations not experien- 
cing strong density‐independent mortality such as predation or 
oil spill effects (Estes et al. 1998; Monson et al. 2000a, 2011; 
Bodkin et al. 2012), a simple logistic model describes sea otter 
population dynamics at local scales (Lafferty and Tinker 2014, 
Bodkin 2015, Tinker 2015). Populations increase predictably 
at a rate near the theoretical rmax (0.25) at low densities or in 
recently colonized habitats, but growth rate slows as density 
increases and populations approach K (Estes 1990). The 
density at which populations reach equilibrium (K′, in units of 
otters/km2 of habitat) varies depending on local  habitat 
characteristics and prey productivity (Laidre et al. 2001, 
2002; Burn et al. 2003; Gregr et al. 2008). In addition to 

where rmax is the maximum intrinsic rate of growth, Ki is the 
estimated carrying capacity for sub‐region i, and the stan- 
dard error term σe (representing environmental stochasti- 
city) is itself a fitted parameter (Table 1). We fixed rmax at a 
value of 0.25, based on previous studies demonstrating that 
rmax is essentially invariant across sea otter populations and 
has consistently been estimated as approximately 0.25 in 

both empirical studies and life‐history theoretical models 
(Jameson et al. 1982, Estes 1990, Monson et al. 2000b, 
Gerber et al. 2004, Lafferty and Tinker 2014). We use a 
hierarchical approach for estimating Ki: specifically, we as- 
sume there is a median equilibrium density, K ′, which we 
treat as a hyper‐parameter drawn from a uniform distribu- 
tion. Log‐transformed equilibrium densities for  sub‐regions 
are drawn from a normal distribution with mean equal to 
log (K ′): 

density‐dependent variation in growth, trends in abundance 
are affected by dispersal between areas, influences of non‐ 

log(K ′i )~Normal (x̄ = log(K̂ ′),  SD = σK ), (3) 

density‐dependent mortality factors such as predation (Estes 
et al. 1998), fishing entanglement (Hatfield et al. 2011), or 

where the standard error term σk is a fitted hyper‐parameter 

(Table 1). We convert K′i from density units (otters/km2) to the 
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Table 1. Summary of Bayesian state‐space model used to estimate population dynamics for sea otters in Southeast Alaska, USA. Equations are organized 
according to the hierarchical structure of the model: a data model (consisting of observed data sets), a process model (describing dynamics of the population 
and estimation of key population parameters), a set of equations relating the data model to the process model, and the prior model (probability distributions 
representing our prior knowledge of the model parameters). 

Model component Description 
 

Data model 

Ci,t,d ,g=sm,s ~Negative Binomial (x̄  = Ni,t,d ,g=sm⋅Fi,t,d ,s⋅ps , δsm) Survey counts (C) for sub‐region i, time t, strata d, and survey s, in small groups. 
Dispersion parameter (δ) determines degree of over‐dispersion in counts. 

Mean expected value depends on true population abundance (N), fraction of 
area surveyed (F), and detection probability (p). 

Ci,t,d ,g=lg,s ~Negative Binomial (x¯ = Ni,t,d ,g=sm⋅Fi,t,d ,s, δlg ) Survey counts for sub‐region I, time t, strata d, and survey s, in large groups 
(assumed to be complete counts) 

Cisu,s ~Binomial (probability = ps , n = Us) Survey counts on transects within intensive survey unit (ISU) boundaries during 
survey s (for comparison with corresponding ISU counts, Us) 

Qi,t ~Negative Binomial (x̄  = Ni,t, 

Hi,t ~Poisson (x¯ = Ni,t−1⋅ψi,t ) 

Process model 

δq) Survey counts in skiff surveys (Q), assumed to be complete counts 

Reported harvest numbers (H) for sub‐region i at time t. Mean expected value 
depends on true abundance and annual harvest rate (ψ) 

Ni,t = Ni,t−1 (λi,t − ν⋅ψi,t ) + ∑j Dj,i,t − ∑j Di,j,t 

 
 

log (λi,t)~Normal (x¯ = rmax (1 − Ni,t−1/Ki), SD = σe) 

logit (ψi,t )~Normal (x̄  = 2⋅logit (ψi,t−1) − logit (ψi,t−2), SD = σψ) 

Population abundance dynamics for sub‐region i at year t, including intrinsic 
demographic processes (λ, the finite annual growth rate), harvest mortality (ψ 

adjusted by compensatory mortality parameter, ν), immigration and 
emigration (D) 

Finite annual growth rate (λ), incorporating density dependence and 
environmental stochasticity 

Temporal variation in annual harvest rate, as estimated using conditional 
autoregressive (CAR) methods 

log (Ki ‵)~Normal (x̄  = log (K̂  ‵), SD = σK ), Ki = Ki ′⋅AH ,i Density at K and abundance at K for sub‐region i 

Equations relating data model to process model 

logit (p ) = β0 + β1⋅log (Es + 0.5) + β2⋅(log (Es + 0.5))2 + εo + εs|o 
Survey‐specific detection probability for small groups, calculated as a logit 

function of observed otter encounter rate during survey (Es) 

εo ~Normal (x̄  = 0,   SD = σo) Variation in detection probability, random effect of observer o 

εs|o ~Normal (x̄  = 0,  SD = σs) 

Ni,t,d =H ,g=sm = Ni,t⋅αi,t⋅θi,t,d =H 

Ni,t,d =H ,g=lg = Ni,t⋅αi,t⋅(1 − θi,t,d =H ) 

Ni,t,d =L,g=sm = (Ni,t − (Ni,t⋅αi,t ))⋅θi,t,d =L 

Ni,t,d =L,g=lg = (Ni,t − (Ni,t⋅αi,t ))⋅(1 − θi,t,d =L) 

logit (αi,t)~Normal (x̄  = logit (ᾱ  ),  SD = σα) 
logit (θi,t,d )~Normal (x̄  = logit (θ̄  ),  SD = σ 

Variation in detection probability, random effect of survey s for observer o 

Number of animals in small groups in high‐density strata, in sub‐region i at 
time t 

Number of animals in large groups in high‐density strata, in sub‐region i at 
time t 

Number of animals in small groups in low‐density strata, sub‐region i at time t 

Number of animals in large groups in low‐density strata, sub‐region i at time t 

Proportion of otters in high‐density strata (α), in sub‐region i at time t 
Proportion of otters in small groups (θ) in strata d, in sub‐region i at time t 

Prior model 
d θ) 

Ni,1~Gamma (x̄   = Ninit,i,   CV = 0.5) Initial abundance in sub‐region i at time t = 1 for 9 sub‐regions proximal to 
translocation sites: mean corresponds to 1975 abundance estimate from 
Schneider (1975; refer to Table S1). For all other sub‐regions, Ni,t = 0. 

Di,j,t ~Gamma (x¯ = 10⁎, CV = 0.5) Number of animals emigrating (D) to region j from sub‐region i at time t as part 
of a colonization event. Prior mean arbitrarily set to 10, except for 
colonization of Glacier Bay from sub‐region N02, where prior mean was set 
to 500 based on previous reports 

logit (ψi,1)~Uniform (min = −10, max = 0) Logit of harvest rate in year 1 (1975) 

K̂  ′~Uniform (min = 0.01, max = 15) Median equilibrium density at K (hyper‐parameter for K′i) 

βx ~Cauchy (location=0, scale=2.5) Parameter for logit function estimating ps 

logit (ᾱ  )~Cauchy (location = 0, scale = 2.5) Logit of mean proportion of animals in high‐density strata 

logit (θ̄  ~Cauchy (location = 0, scale = 2.5) Logit of mean proportion of animals in small groups, for strata d 

σK ~Half Cauchy (location = 0, scale = 2.5) Variance in density at K among sub‐regions 

σe ~Half Cauchy (location = 0, scale = 2.5) Variance in annual rate of increase (environmental stochasticity) 

σψ ~Half Cauchy (location = 0, scale = 2.5) 

σα ~Half Cauchy (location = 0, scale = 2.5) 

σθ ~Half Cauchy (location = 0, scale = 2.5) 

Variance in harvest rate across years 

Variance in proportion of otters in high‐density strata 

Variance in proportion of otters in small groups 

σo ~Half Cauchy (location = 0, scale = 2.5) Variance in otter detection probability among observers 

σs ~Half Cauchy (location = 0, scale = 2.5) Variance in otter detection probability among surveys, within observers 

δsm ~Half Cauchy (location = 0, scale = 2.5) Dispersion parameter, counts of otters in small groups 

δlg ~Half Cauchy (location = 0, scale = 2.5) Dispersion parameter, counts of otters in large groups 

δq ~Half Cauchy (location = 0, scale = 2.5) Dispersion parameter, counts of otters in skiff surveys 

d ) 
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d 

absolute number of otters expected at equilibrium (Ki) by taking 
the product of K′i and AH,i (the area of high‐density strata in 
sub‐region i). We restrict consideration to high‐density strata for 
this calculation because 98% of all foraging by female sea otters 
in Southeast Alaska occurs at depths <40 m (Bodkin et al. 
2004) and thus the area of high‐density strata is the primary 
determinant of carrying capacity (i.e., although males do forage 
more at depths >40 m, their survival and reproductive success is 
not limiting to population growth). 

To account for the density‐independent effects of harvest 
mortality, we define ψi,t as the annual per capita harvest rate for 
sub‐region i at year t. Anecdotal evidence suggests that harvest 
mortality varies substantially over time and space in Southeast 
Alaska, so we use a conditional auto‐regressive approach (Carlin 
and Banerjee 2003) to estimate variation in ψ because this non‐ 
parametric method is flexible and readily incorporated into 
Bayesian analyses. In year 1 of the time series for each sub‐ 
region, we assume that the logit of ψi,1 is drawn from a uniform 
distribution (Table 1). The logit of ψi,2 is drawn from a normal 
distribution with mean of logit(ψi,1) and standard error of σΨ 

(itself a fitted parameter drawn with vague prior), and for t > 2 
we estimate ψi,i as: 

logit (ψi,t )~Normal (x¯ = 2⋅logit (ψi,t−1) 

population j to recipient population i at time t, the inferred 
year of colonization. We treated the value of Dj,i,t as an 
unknown parameter to be fit, with a weakly informed 
gamma prior; we arbitrarily assigned a mean of 10 and large 
coefficient of variation of 0.5. In the case of the colonization 
of Glacier Bay, previous reports suggest that colonization 
occurred when an unusually large number of animals 
immigrated from nearby Icy Straits (Esslinger et al. 2015), 
so in this case we assigned a gamma prior with mean of 500 
and coefficient of variation of 0.5. For each colonization 
event, we enforced equality of Dj,i,t (immigration to the 
recipient population) and Di,j,t (emigration from the source 

population), such that solving equation (1) for all sub‐ 
regions resulted in  a net  balance  of immigration and 
emigration. With the exception of colonization events, we 
set Dj,i,t and Di,j,t to zero; this was not because we expected 

no dispersal between established sub‐regions but rather 
because the limited movements that do occur largely cancel 
each other out, and in any case are indistinguishable (based 
on survey data) from the environmental stochasticity that 

affects growth from year to year within each sub‐region 
(eq. 2). 

Data model.—Consistent with earlier analyses of aerial survey 
data (Bodkin and Udevitz 1999), our data model assumes that 
Ni,t is partitioned in 2 separate ways: animals are  distributed 

− logit (ψi,t−2), SD = σψ). (4) between high‐density strata (d = H) and low‐density strata (d = 
L) and animals are distributed between small groups (g = sm, 

Equation (4) results in a temporally smoothed estimate of 

time‐specific harvest rate for each sub‐region, with the degree of 
smoothing influenced by the data (see next section). To model 
the effects of harvest mortality on population growth (eq. 1), we 
first multiply ψi,i by parameter v to adjust for the compensatory 
nature of harvest mortality (i.e., some fraction of harvested 
animals would have died of other causes had they not been 
harvested). We conservatively set v = 0.8, corresponding to a 

typical survival rate for sub‐adults and non‐territorial males 
(Monson et al. 2000b), which comprised a large proportion of 
harvested animals (USFWS 2014). 

Although intrinsic demographic processes are expected to 
be the primary determinants of population growth within a 
given sub‐region, our model must account for some 
dispersal between sub‐regions, specifically the colonization 
events that occur when an un‐occupied subregion is 

defined as <20 animals) and large groups (g = lg, defined as ≥20 
animals). Animals in small groups are assumed to be counted 

incompletely (i.e., a correction for un‐detected animals is 
required),  whereas  large groups are assumed  to be counted 
completely and thus no correction for missed animals is needed. 
We define parameter α as the proportion of animals occurring 

in high‐density strata and parameter θ as the proportion of 

animals occurring in small groups. Logit‐transformed values of 
 

 

the global means of both parameters (α and θ ) are drawn from 
Cauchy distributions with vague priors (Table 1), and θ is 
estimated separately for high and low strata. The logit‐ 
transformed values of α and θ for sub‐region i at time t are 
treated as hierarchical parameters, normally distributed around 
the global mean values: 

logit (αi,t)~Normal  (x̄  = logit (ᾱ  ), SD = σα) (5) 

colonized by a neighboring occupied sub‐region. The 
precise timing of these colonization events was difficult to 
determine based solely on survey data because of the 

logit (θi,t,d )~Normal (x̄  = logit (θ̄  ), SD = σθ). (6) 

infrequency of surveys; however, we were able to determine 
the timing of these events more precisely from annual 

harvest records. Specifically, for a sub‐region that was un‐ 
occupied at the time of one survey and occupied at the next 
survey, we inferred the year of colonization as the year prior 
to the first records in the harvest database for that sub‐ 

The standard error terms σα and σθ in equations (5) and 

(6) are themselves fitted hyper‐parameters. We use these 
estimated parameters to calculate the number of animals in 
high and low strata, and in small and large groups, for sub‐ 
region i at time t: 

region. For each colonization event, we assigned the source 
population as the nearest neighboring occupied sub‐region 
(in most cases this assignment was unambiguous given the 
spatial distribution of survey observations). We define Dj,i,t 
as the number of dispersing otters moving from source 

Ni,t,d =H ,g=sm = Ni,t⋅αi,t⋅θi,t,d =H , 

Ni,t,d =H ,g=lg = Ni,t⋅αi,t⋅(1 − θi,t,d =H ), 

Ni,t,d =L,g=sm = (Ni,t − (Ni,t⋅αi,t ))⋅(θi,t,d =L 

(7) 

(8) 

), (9) 
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Ni,t,d =L,g=lg = (Ni,t − (Ni,t⋅αi,t ))⋅(1 − θi,t,d =L). (10) subscript o from the left side of equation (13) for simplicity, 
because each survey has only 1 observer, and we re‐scale 
encounter rate by adding 0.5 in recognition of the fact that 

The 4 compartments of the population described by 
equations (7)–(10) must sum to Ni,t, and are probabilisti- 
cally related to observed variables C, the number of otters in 
each compartment counted on transects during aerial survey 
s. We note that the survey count data are described by 
negative binomial distributions, as the clumped distribution 

of otters leads to over‐dispersion of counts relative to a 
Poisson distribution. In the case of animals observed in 

the average value of log(E + 0.5) across all surveys was ap- 
proximately zero and thus the overall average value for ps is 
simply the inverse logit of β0. The 2 random effects in 
equation (13) account for variation in sighting probability 
among observers (εo) and variation among surveys flown by 
an observer (εs|o), and we drew both from normal distribu- 
tions 

small groups, the expected value of C is the product of the 
true abundance (N), the fraction of habitat surveyed (F), 

εo ~Normal (x¯ = 0, SD = σo), 

ε ~Normal (x¯ = 0, SD = σ ). 

(14) 

(15) 

and the survey‐specific detection probabilities (ps) 

Ci,t,d ,g=sm,s ~Negative Binomial (x̄  = Ni,t,d ,g=sm⋅Fi,t,d ,s 

s|o s 

 

 

The standard error terms σo and σs in equations (14) and 

⋅ps , δsm), (11) (15) are fitted parameters. Because we had replicate surveys 
for some sub‐regions and years (Table 2), it was possible to 

where the fitted parameter δsm represents the dispersion 
parameter of the negative binomial distribution, which de- 
termines the variance. In the case of animals observed in 
large groups, ps is assumed to equal 1 and thus the expected 
value of C is the product of the true abundance (N) and the 
fraction of habitat surveyed (F): 

Ci,t,d ,g=lg,s ~Negative Binomial (x¯ = Ni,t,d ,g=sm 

disentangle among‐observer variance from  within‐observer 
variance in detection. Partitioning error this way allowed us 
to obtain appropriate estimates of ps (and associated 
uncertainty) for surveys in which an observer did not 
conduct ISUs; εs|o in such cases is simply drawn from the 
posterior predictive distribution for that parameter. Finally, 
we treated the observed number of otters counted on 
transects within ISU boundaries on a given survey (Cisu,s) as 

⋅Fi,t,d ,s, δlg ). (12) 
a random variable drawn from a binomial distribution 

Cisu,s ~Binomial (probability = ps , n = Us), 

 
(16) 

A separate dispersion parameter is fit for large groups (δlg) 

because previous analyses suggested that the distribution of 
large groups was particularly clumped. 

We measured the fraction of habitat surveyed in a given 
region, year, strata, and survey replicate (Fi,t,d,s) by dividing 
the total area encompassed within transects (assuming  a 

400‐m observation band) by the total area of available 
habitat as determined using a geographic information 
system (GIS). We excluded from analyses any otters 
observed outside the survey transect strip. We assumed 

the survey‐specific detection probability (ps) differed among 
observers (o), and also as a function of the relative density of 

where Us is the total number of otters counted during ISUs 
on survey s. We excluded initiating groups from both Cisu,s 
and Us. 

We fit count data from skiff‐based surveys (Pitcher 1989) 
in an analogous way to aerial survey data, except that there 
was no correction for un‐detected otters (and thus no ISU 
counts) because we assumed data represented  complete 
counts of all available animals. As with aerial survey data, we 
treated skiff counts (Qi,t) as a random variable drawn from a 
negative binomial distribution with a fitted dispersion 
parameter δq 

sea otters on a survey based on anecdotal information from 
previous analyses suggesting that sighting probability 
decreases when otters are encountered very infrequently, 

Qi,t ~Negative Binomial (x̄  = Ni,t, δq). (17) 

or when they are so abundant that some groups are missed 
while others are being counted. To allow for a potential 

non‐linear effect of density on sightability, we calculated the 
mean otter encounter rate for each survey (Es, in units of 
otters observed/km of transect), and incorporated it within a 
quadratic equation to estimate ps 

logit (ps ) = β0 + β1⋅log (Es + 0.5) + β2 

In addition to aerial and skiff‐based survey data, we used 
harvest records as an observed data source for model fitting. 
We treated the reported number of harvested otters in sub‐ 
region i at year t (Hi,t) as a random variable drawn from a 
Poisson distribution with mean equal to the product of the 
previous year’s abundance (Ni,t−1) and estimated harvest 
rate, ψi,t 

⋅(log(Es + 0.5))2 + εo + εs|o, (13) 
Hi,t ~Poisson (x̄  = Ni,t−1⋅ψi,t ). (18) 

where the fitted β parameters determine the effect of en- 
counter rate on detection probability. Note that we omit 

To summarize, the observed data variables (C, Cisu, U, Q, H) 

allow us to estimate posterior distributions for model parameters 
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Table 2. Summary of effort (total length of transects and proportion of habitat area covered), number of replicate surveys, uncorrected counts in intensive 
survey unit (ISU) areas and corresponding ISU counts, for all aerial surveys of sea otters conducted in Southeast Alaska between 1995 and 2012. Data are 
shown for 4 regions within Southeast Alaska: Glacier Bay, Yakutat, northern Southeast Alaska excluding Glacier Bay (N SEAK) and southern Southeast 
Alaska (S SEAK). 

High‐density strata Low‐density strata 

 
Survey region 

 
Year 

 
Replicates 

Transect 
length (km) 

Habitat 
area (km2) 

Proportion 
surveyed 

 Transect 
length (km) 

Habitat 
area (km2) 

Proportion 
surveyed 

Transect counts 
in ISU areas 

ISU 
counts 

Glacier Bay 1999 5 225.40 309.73 0.29  106.95 239.72 0.18 17 36 
Glacier Bay 2000 4 227.21 309.73 0.29  110.52 239.72 0.18 51 98 
Glacier Bay 2001 5 223.46 309.73 0.29  100.92 239.72 0.17 60 88 
Glacier Bay 2002 5 219.85 309.73 0.28  110.18 239.72 0.18 56 83 
Glacier Bay 2003 5 166.33 309.73 0.21  86.34 239.72 0.14 96 140 
Glacier Bay 2004 4 151.97 309.73 0.20  77.13 239.72 0.13 143 210 
Glacier Bay 2006 4 135.32 309.73 0.17  70.04 239.72 0.12 163 241 
Glacier Bay 2012 3 163.00 390.23 0.17  129.98 329.57 0.16 83 207 
N SEAK 2002 1 1,779.52 2,593.96 0.27  350.81 2,095.13 0.06 49 57 
N SEAK 2011 1 1,251.10 2,605.15 0.19  274.61 2,342.36 0.04   

S SEAK 2003 1 2,233.69 4,459.60 0.20  431.58 2,404.41 0.08 86 149 
S SEAK 2010 1 2,146.25 4,487.63 0.19  180.35 2,454.58 0.03 69 205 
Yakutat 1995 4 248.49 321.15 0.31  34.73 277.84 0.05 39 88 

Yakutat 2005 4 176.54 260.20 0.27  41.66 523.70 0.04 48 153 

 
 

(N, K, D, α, θ, β, δ, σ) using standard Markov chain Monte 
Carlo (MCMC) methods. We used vague prior distributions 
for all parameters (weakly informed based on biological 
feasibility but having no information specific to the analysis; 
Table 1), including Cauchy priors for logit‐transformed 
parameters and half‐Cauchy priors for variance and dispersion 
parameters (Gelman 2006, Gelman et al. 2008). We usedR (R 
Foundation for Statistical Computing, Vienna, Austria) and 
JAGS software (Plummer 2003) to code and fit the model, 

saving 20,000 samples after a burn‐in of 5,000 samples. We 
report all statistics as the mean and 95% credible interval (CI) of 
the posterior distributions. We evaluated model convergence by 
graphical examination of trace plots from 20 independent 

chains, and by ensuring that Gelman‐Rubin  convergence 
diagnostic (psrf) was ≤1.1 for all fitted model parameters. We 
also conducted posterior predictive checking (PPC) to evaluate 
model goodness of fit, using the summed deviance (sum of 
squared Pearson residuals of survey counts vs. expected 
abundance) as a test statistic for comparison between observed 
and new data generated from the same distributions (Gelman 
et al. 2000). We examined scatter plots of the posterior 
distribution of summed deviance scores for new versus observed 

data (in the case of well‐fitting models, points in such a plot 
should be distributed around a line with slope 1) and we 
computed the associated Bayesian‐P value (the proportion of 
new observations  more extreme  than existing  observations; 
Gelman 2005, Ghosh et al. 2007), which should fall within the 
range 0.3–0.7 for a well‐fit model. 

Model derived estimates.—For sub‐regions having ≥2 aerial 
surveys, we estimated mean annual growth rates over each 
inter‐survey interval. Assuming that 1 survey is conducted at 
t = yr1 and a second survey is conducted at t = yr2, we drew 
from posterior samples of Ni,t=yr1 and Ni,t=yr2 to calculate a 
posterior distribution for mean annual growth as 

We evaluated support for the hypothesis that growth rates of 
established populations will decrease over time as carrying 
capacity is approached (i.e., when mean growth rate = 0); 

specifically, we fit a linear model to log(λi,yr1→yr 2) versus the 
number of years since colonization (as measured midway 
between yr1 and yr2), iteratively fitting the linear model to 
posterior samples to calculate the 95% CI for the slope and 
intercept. We considered a negative slope as supportive of the 
expected hypothesis and estimated the average time from 
colonization to carrying capacity as the point at which the fitted 
model = 0. 

In addition to sub‐regional abundance estimates, we also 
derived estimates of abundance for larger geographic areas (i.e., 
northern Southeast Alaska, southern Southeast Alaska, all of 
Southeast Alaska) by summing across posterior distributions for 
the relevant Ni. We report means and 95% CI for these derived 
abundance estimates and calculated associated growth rates as 
described in equation (19). 

Finally, we computed an estimated value of K for all of 
Southeast Alaska, summed across both occupied and un‐ 
occupied habitats. This calculation requires an assumption 
about the relative quality (and thus eventual equilibrium 
densities) of currently un‐occupied habitats; given that there 
is little information available on important habitat features 
for sea otters in Southeast Alaska, and that equilibrium 
densities vary widely among outer coastal and inside 
habitats (Coletti et al. 2016), we made the simplifying 
assumption that eventual equilibrium densities would be 

similar in currently un‐occupied areas. Under this assump- 
tion, the total projected K is obtained by multiplying the 
average density of occupied areas at K by the total area of 
high‐density habitat for all of Southeast Alaska. To obtain a 
representative and robust estimate of average density at K 
(K ′), we restricted consideration to those sub‐regions that 
had been occupied for ≥30 years (n = 12), reasoning that 

      1  
 λ =  N /N . (19) these would provide the most reliable estimates of long‐term 
i,yr1→yr 2 (  i,t=yr 2 i,t=yr1) yr 2−yr1

 
K. We averaged across posterior samples of K′i for these 
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long‐occupied sub‐regions to obtain a posterior distribution 

of K ′, then multiplied posterior samples of K ′ by total area 
to obtain a mean and 95% CI for regional K. 

 

RESULTS 

Between 1995 and 2012, >20,000 km of transects were 
flown as part of 14 aerial surveys in Southeast Alaska 

(Table 2). On average, 24% of high‐density strata and 

11% of the low‐density strata were surveyed. Over all 
surveys, 934 useable ISUs (i.e., ISUs containing more 
than just the initiating group) were flown with 1,755 sea 
otters counted within ISUs, as compared to 961 counted 
in the initial strip count of the same areas. The Bayesian 
state‐space model fit to these data converged well, with 
well‐mixed chains providing robust posterior estimates 
for all model parameters. The maximum psrf statistic for 
any fitted parameter was 1.11 (for σe), and all other psrf 
statistics were <1.05 (Table S2, available online in 
Supporting Information). The posterior predictive check 
indicated a good fit of the model to the data (Fig. S3, 
available online in Supporting Information) with an 
associated Bayesian P value of 0.61. 

Almost all sea otters were located within high‐density 
strata (a = 0.95, CI = 0.92–0.97), and most otters occurred 
either singly or in small groups (<20 animals) both in the 
high‐density strata (θd=H = 0.65, CI = 0.51–0.79) and low‐ 
density strata (θd=L = 0.90, CI = 0.81–0.97; Table S2). 
Survey‐specific detection probability (ps) varied by observer, 
with among‐observer variance in logit‐transformed ps (σo = 
0.67 ± 0.30) approximately 60% greater than variance 
among surveys conducted by the same observer (σs = 0.42 
± 0.09); ps also varied as a function of sea otter density, with 

an increasing but asymptotic functional relationship be- 
tween encounter rate and sighting probability (Fig. 2). 

Spatiotemporal Variation in Abundance, Trends, and 
Carrying Capacity 
Model results indicated that the sea otter population of 
Southeast Alaska increased from 13,221 otters in 2003 (CI = 
9,990–16,828) to 25,584 otters in 2011 (CI = 18,739–33,163). 
This represents a regional annual growth rate of approximately 
8.6% over an 8‐year period. Based on the most recent surveys 
(Table 3), southern Southeast Alaska supports a greater  number 
of sea otters (13,178) than northern Southeast Alaska (11,635); 
however, over half the sea otters in northern Southeast Alaska 

(7,955)  occur in a single sub‐region, Glacier Bay. Because 
Glacier Bay was anomalous from the rest of northern Southeast 
Alaska in terms of its rapid population growth and high 
densities, and its non‐harvest management status as a national 
park, we henceforth report statistics for this sub‐region 
separately and report statistics for northern Southeast Alaska 
without Glacier Bay. The density of sea otters in Glacier Bay as 
of 2012 (9.0 otters/km2) is 3 times the most recent estimated 
average for southern Southeast Alaska (2.9 otters/km2); how- 
ever, the average density for the rest of northern Southeast 
Alaska (1.1 otters/km2) is considerably lower than that of 
southern Southeast Alaska (Fig. 3; Table S1). 

Trends in abundance were not constant across Southeast 
Alaska, but rather varied at a sub‐regional scale (Table 3). 
Population growth in Glacier Bay was higher than the rest 
of the northern half of the region, with 20.6% annual 
growth rate between 2002 and 2012, whereas Yakutat 
exhibited only a third that rate (7.6%). The average annual 
growth rate in southern Southeast Alaska (7.8%) was almost 
3 times higher than northern Southeast Alaska (2.7%), 

 

 

Figure 2. Estimated detection probability function, describing the probability that a group of sea otters is detected by observers during an aerial survey as a 
function of the mean encounter rate (the frequency with which sea otters are counted along transects, in units of otters/km) in Southeast Alaska, USA, 1995– 

2012. The solid line shows the mean estimated function, and the grey‐shaded bars show the 95% credible interval for the fitted function. 
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Table 3. Summary of abundance estimates and population growth rate estimates for sea otters in Southeast Alaska, USA, between 1995 and 2012. Statistics 
shown include mean (x )̄, standard deviation (SD), and 95% credible intervals (CI95‐low and CI95‐high). Estimates are shown for the years of the 2 most recent 
sets of surveys for all Southeast Alaska (SEAK) and 4 regions within Southeast Alaska: Glacier Bay, Yakutat, northern Southeast Alaska excluding Glacier 
Bay (N SEAK) and southern Southeast Alaska (S SEAK). In the case of all SEAK, model estimates correspond to 2003 and 2011, the mid‐points of survey 
years for contained sub‐regions. For the second set of surveys in each area, we also provide the number of years between subsequent surveys and the estimated 
mean annual growth rates (and 95% CI). 

 

 Abundance    Growth rate  

Geographic area Year x¯ SD CI95‐low CI95‐high Years between surveys x̄  (%) CI95‐low (%) CI95‐high (%) 

All SEAK 2003 13,221 1,842 9,990 16,828     

 2011 25,584 3,828 18,739 33,163 8 8.59 5.39 12.10 
Yakutat 1995 445 126 225 690     

 2005 919 274 483 1,474 10 7.55 1.00 15.26 
Glacier Bay 2002 1,209 187 892 1,598     

 2012 7,955 1,973 4,788 12,154 10 20.56 14.64 26.91 
N SEAK 2002 2,888 621 1,820 4,078     

 2011 3,680 883 2,226 5,482 9 2.69 −0.93 7.50 
S SEAK 2003 7,814 1,417 5,371 10,667     

 2010 13,178 2,355 8,977 17,769 7 7.78 3.32 12.34 

 
 

although there was considerable variation in the growth rate 
among sub‐regions in the north and the south (Table S3, 
available online in Supporting Information). In general, the 
highest growth rates occurred in more recently occupied 
sub‐regions, whereas long‐occupied sub‐regions (those 
adjacent to translocation sites) exhibited low growth rates. 
There was a significant negative relationship between 
annual growth rate and the number of years occupied, 
with the average growth rate approaching 0 after 35 years of 
occupation (Fig. 4). 

State‐space  model  results  suggested a  smooth growth 
curve at the scale of Southeast Alaska (Fig. 5A); however, 

trends at this regional scale represent the sum of more 
variable growth trajectories at the sub‐regional scale (Fig. 
5B–C and E–H). The geographic distribution of sea otters 
in Southeast Alaska has increased considerably since 1975 
(Fig. S2); thus, a combination of range expansion and 

density‐dependent population growth both contribute to 
variation in trends. Areas with established populations often 
exhibited short‐term declines when otters emigrated (Fig. 
5E,G), whereas the neighboring areas colonized by  these 
emigration events experienced rapid exponential growth 
following colonization (Fig. 5F,H). Growth rates also 

tended to slow in long‐established sub‐regions as these 

 
 

 

Figure 3. Southeast Alaska, USA, illustrating spatial variation in current sea otter densities (color‐varying nearshore habitat zone; local density estimates are 
based on most recent survey) and status with respect to carrying capacity (K) as pie charts. The proportion of each pie chart shaded orange indicates the ratio 
of current density (2010–2012) to estimated K for different sub‐regions. 
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Figure 4. The functional relationship between the number of years that an area or sub‐region of Southeast Alaska, USA, has been occupied by sea otters and 
the log‐transformed annual growth rate of the local population (1995–2012). The mean fitted linear function is plotted as a solid line, and the grey‐shaded 
bars show the 95% credible interval for the fitted function. Error bars around points indicate 95% credible intervals around each estimated growth rate. The 
function suggests that the average growth rate approaches zero (equilibrium abundance) after 35 years of occupation. 

 

areas approached local carrying capacity (Fig. 5B,C,E,G). 
Another  factor  that  may  play  a  role  in  the growth 

trajectories of some sub‐regions is harvest mortality. 
Estimated mean harvest rates varied considerably over space 
and time (Table S4, available online in Supporting 
Information), and for some sub‐regions periods of slow or 
negative growth (Fig. 5B,C) appear to coincide with periods 
of higher than average harvest rates (Fig. 5D). A weaker 
signal of slower growth coinciding with elevated harvest was 
also evident at the regional scale (Fig. 5A). 

Estimates of carrying capacity converged well for all sub‐ 
regions (Table S1), although we obtained the most precise 
estimates for those sub‐regions occupied for the longest 
(>30 yr). The average density at equilibrium for these 
long‐occupied sub‐regions (K ′) was 4.2 otters/km2 (±1.58, 
CI = 2.06–7.66). As with abundance estimates, however, 
there was considerable variation in K’ among sub‐regions 
(Fig. 6), ranging from 0.7 to 16.6 otters/km2 (Table S1). 
Estimated equilibrium densities were generally higher in 
southern Southeast Alaska (x = 8.3) than in northern 
Southeast Alaska (x = 3.6, or 4.9 if Glacier Bay is included). 
For  the  most  recent  surveys  (2010–2012),  densities 
corresponded (on average) to 50% of projected carrying 
capacity, although this fraction varied among sub‐regions 
from 1% to 97%, with the earliest‐colonized sub‐regions 
tending to be closer to K (Table S1). The projected estimate 
of carrying capacity for all of Southeast Alaska was 74,650 
sea otters (CI = 36,778–136,506). 

DISCUSSION 

The sea otter population in Southeast Alaska has grown 
extensively since the translocation of just over 400 sea otters 

to 6 locations in the late 1960s. Our results suggest that the 
population now exceeds 25,000 sea otters and could 
eventually grow to 3 times that number, if the current 

patterns of range expansion and density‐dependent  growth 
continue. The geographic distribution of the population also 
has increased greatly, now encompassing over 9,000 km2 of 
habitat (Fig. 1). Spatiotemporal trends in abundance and 
distribution are explained by intrinsic demographic pro- 
cesses (as described by a logistic growth model) and by 
range expansion, which occurs as sea otters disperse from 

occupied  habitats  to  neighboring  un‐occupied habitats 
(Lafferty and Tinker 2014, Williams et al. 2017). In some 
cases, dispersal events involved large numbers of animals, 
leading to a noticeable drop in numbers from the source 
population combined with a very rapid increase in the 
recipient population that often exceeds theoretical rmax. 
Such a colonization event occurred in the late 1990s in 
Glacier Bay (Esslinger et al. 2015), fueled by immigration 

from the neighboring Icy Strait habitat (sub‐region N02; 
Fig. 5E–F). 

Our results show that sub‐regional growth rates are often 
high in the first years following colonization but then decrease 
over time as the population approaches K of the local habitat. 
Our model incorporated density‐dependent processes at the 
sub‐regional scale, which is increasingly recognized to be the 
scale at which sea otter populations are regulated (Bodkin 
2015, Tinker 2015, Tinker et al. 2017). Thus, even as some 
long‐occupied sub‐regions approach carrying capacity, more 
recently colonized sub‐regions near the range periphery 
continue  to  grow  rapidly  (Figs.  3  and  4).  Aside from 
differences in growth explained by duration of occupation, 
we also found a large range of equilibrium densities, from <1 
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Figure 5. Estimated trends in abundance and harvest mortality for sea otters in Southeast Alaska, USA (1975–2012). Panels on left illustrate abundance 
trends for all of Southeast Alaska (A) and for sub‐regions N05 (B) and S01 (C). The estimated harvest rate averaged across sub‐sections (ψt) is shown in 
panel (D), with vertical dashed lines indicating periods of higher than average harvest rates and their potential effects on trends in panels (A)–(C). Panels on 
right illustrate trends for representative sub‐regions from northern and southern Southeast Alaska, with vertical lines linking colonization events for source‐ 

recipient pairs: sub‐region N02 (E) colonized sub‐region GBY (F) and sub‐region S05 (G) colonized sub‐region S06 (H). In each panel the solid trend line 
shows the mean estimated value and the grey‐shaded bars show the 95% credible intervals. 



1086 The Journal of Wildlife Management • 83(5)  

 

 
 

  
 

  
   

 
 

 
Figure 6. Boxplot showing posterior distributions for average estimated density of sea otters at carrying capacity (K) over all Southeast Alaska, USA (red 
bar) and estimated density at K for 12 sub‐regions (blue bars), based on analysis of survey data from 1975 to 2012. Box depth indicates inter‐quartile range, 
upper limit of error bars represents the third quartile plus 1.5 times the inter‐quartile range, lower limit of error bars represents the first quartile minus 1.5 
times the inter‐quartile range. 

 

to >15 otters/km2. The most precise and reliable estimates of 
K are those for the longest‐established sub‐regions (Fig. 6), for 
which the mean estimated density at K (4.2 otters/km2) is 
similar to equivalent estimates of K for California, USA, and 
British Columbia, Canada (Laidre et al. 2001, Gregr et al. 
2008). Generally, equilibrium densities appear to be higher in 
the southern half of the region (Fig. 3), although both low and 
high values of K occur in northern Southeast Alaska and 
southern Southeast Alaska. The density of Glacier Bay is 
unusually high, possibly reflecting high productivity of bivalve 

populations fueled by glacial run‐off and high  tidal flux 
(Esslinger et al. 2015), but at this time, the geospatial data 
needed to examine environmental factors that explain variation 
in K are not available. Previous studies of other populations 
have reported that differences in habitat complexity and 
invertebrate productivity explain differences in K (Laidre et al. 
2001, 2002; Gregr et al. 2008; Tinker et al. 2017) and we 
would expect similar ecological influences in Southeast Alaska. 
Future studies should use environmental and habitat data for 
Southeast Alaska as they become available, to develop more 
refined, predictive models of carrying capacity. 

In addition to density‐dependent population regulation, 
density‐independent factors can play significant roles in 
driving sea otter population trends. Density‐independent 
factors can include environmental stressors (e.g., red tides or 
other harmful algal bloom events; Kvitek and Bretz 2004, 
Lefebvre et al. 2016), certain infectious disease outbreaks 

(Johnson et al. 2009, Goldstein et al. 2011), inter‐specific 
interactions (e.g., predation mortality from killer whales 
[Orcinus orca] or white sharks [Carcharodon carcharias]; Estes 
et al. 1998, Tinker et al. 2016), and anthropogenic factors, 
including oil spills (Monson et al. 2000a, 2011; Bodkin 

et al. 2012) and direct human harvest. Our results suggest 
that human harvest may be affecting trends in some sub‐ 

regions of Southeast Alaska, particularly long‐established 
areas where mean annual harvest rates exceed 10% of 
population size (with some years as high as 20%; Table S4). 
The consistency of timing between peaks in harvest and 
measurable decreases in population trends in the same areas 
(Fig. 5) are strongly suggestive of harvest impacts on local 
populations and warrant further investigation. 

Our hierarchical model allows for appropriate partitioning 
of error, unbiased estimation of abundance even in cases 
with missing data (e.g., when ISUs were not conducted), 
improved insights into the survey process (e.g., sources of 
variation in detection probability; Fig. 2), and appropriate 
statistical treatment of over‐dispersed large groups. Wil- 
liams et al. (2017) used another approach, a 2‐dimensional 
diffusion approximation, to analyze spatiotemporal dy- 
namics of sea otters at fine spatial scales within Glacier 
Bay. A diffusion‐based approach has some advantages, 
including more accurate  characterization  of  population 
distribution as a continuous variable, and allowing for 
habitat‐based covariates of movement and demographic 
parameters. At present, however, a high‐resolution diffusion 
model similar to that used by Williams et al. (2017)  is 
computationally intractable at the scale of Southeast Alaska 
and also limited by availability of fine‐scale GIS data on 
bathymetry and habitat for areas outside of Glacier Bay. 
Future region‐wide analyses might incorporate aspects of a 
diffusion model, most likely at a courser resolution, and also 
incorporate effects of habitat characteristics, weather vari- 

ables, and other co‐covariates into the detection function. 
Another improvement would be the explicit incorporation 
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of group size into the process model: specifically, group‐size 
in sea otters is largely predictable as a function of density, 
habitat characteristics, and demographic composition of the 
local population, with larger groups often occurring in male‐ 

dominated areas and smaller groups in female‐dominated 
areas (Jameson 1989, Lafferty and Tinker 2014). These 
functional relationships predicting group size could be 
formally incorporated into model design to improve 
precision of estimates. 

The fitting of Bayesian models to survey time series to 
estimate density‐dependent growth parameters (especially 
K) has been conducted with a variety of other taxa (Millar 
and Meyer 2000, Chaloupka and Balazs 2007, Wang 2007, 
Iijima et al. 2013), though not previously with sea otters. A 
notable difference is our estimation of K is based on a 
relatively small number of standardized survey estimates, a 
fact that was possible because the survey design provided 
survey‐specific estimates of detection probability and 
observer error (via the ISU data), the auxiliary data on 
harvest mortality allowed us to estimate density‐indepen- 
dent mortality and narrow down the time of population 
establishment at the sub‐regional scale, and the intrinsic 
growth parameter for sea otters (rmax) is highly consistent 
across all populations, allowing us in effect to solve the 
growth rate function (eq. 2) for a single unknown parameter 
(K). However, this method resulted in wide credible 

intervals for K, especially for those sub‐regions with shorter 
occupation histories and thus lower densities relative to K. 
More precise estimates of K will be possible with more 
extensive time series of abundance estimates (Wang 2007), 
and models can be further improved by using habitat 
characteristics and environmental variables as covariates 
(Laidre et al. 2001). 

MANAGEMENT IMPLICATIONS 

Our model results show considerable variation in trends and 
equilibrium densities of sea otters throughout Southeast 
Alaska, highlighting the fact that the effective scale at which 
sea otter populations are regulated is much smaller than the 
regional scale at which they are managed. Because the 
factors that influence trends occur at the scale of tens of 

kilometers, rather than hundreds of kilometers, effective 
management strategies are likely to benefit from explicitly 
incorporating this fine‐scale population structure. For 
example, calculation of fisheries effects and harvest quotas 
will be more accurate and precise if monitored and managed 

at the sub‐regional scale. Failure to recognize fine‐scale 
demographic structure could lead to erroneous assumptions 
about potential risk factors and ineffective strategies for 
mitigating sea otter–fishery interactions. 

The current approach to monitoring sea otter populations in 
Southeast Alaska, using aerial abundance surveys with ISU‐ 
based corrections for detectability, is at present the best 
approach for obtaining a comprehensive, unbiased estimate of 
regional abundance. Regional abundance estimates are 
required for management purposes, including estimation of 
sea otter impacts on fisheries, assessment of sustainable harvest 
levels of sea otters, and for stock assessment requirements 

under the MMPA. Our analytical approach allows the 
resulting  data  to be used  to estimate  trends and derive 

estimates of K at regional and sub‐regional scales. The region‐ 
wide aerial surveys, however, are expensive and logistically 
difficult, and thus are completed infrequently, so that the 

resulting time series is sparse and not well‐suited to detailed 

trend analyses. Conducting smaller‐scale but more frequent 
surveys of multiple index sites, spread out geographically and 
stratified according to habitat features such as bathymetry and 

benthic substrate, could be a more cost‐effective means of 
acquiring the data needed to estimate trends and K at sub‐ 
regional scales. Index surveys could include analysis of high‐ 

definition photographic images from un‐manned aerial 
systems (Williams et al. 2017). Paired with GIS layers of 
habitat characteristics and environmental parameters, such 
data could be used to derive a mechanistic understanding of 
variation in K for sea otters in Southeast Alaska. 
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