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Abstract— A framework for autonomous waypoint plan-
ning, trajectory generation through waypoints, and trajectory
tracking for multi-rotor unmanned aerial vehicles (UAVs) is
proposed in this work. Safe and effective operations of these
UAVs is a problem that demands obstacle avoidance strategies
and advanced trajectory planning and control schemes for
stability and energy efficiency. To address this problem, a
two-level optimization strategy is used for trajectory genera-
tion, then the trajectory is tracked in a stable manner. The
framework given here consists of the following components:
(a) a deep reinforcement learning (DRL)-based algorithm for
optimal waypoint planning while minimizing control energy
and avoiding obstacles in a given environment; (b) an optimal,
smooth trajectory generation algorithm through waypoints, that
minimizes a combinaton of velocity, acceleration, jerk and snap;
and (c) a stable tracking control law that determines a control
thrust force for an UAV to track the generated trajectory.

I. INTRODUCTION

Autonomous waypoint planning, trajectory generation and
tracking for a certain class of underactuated maneuver-
ing vehicles, namely multi-rotor UAVs, is considered here.
Obstacle-free trajectory planning is particularly important
in beyond visual line-of-sight (BVLOS) operations, and
applications that require unmanned vehicles to move in
cluttered environments [1]. Such applications include indoor
operations [2], package delivery in urban and suburban
areas, monitoring of civilian infrastructures like bridges and
highways, autonomous landing on moving platforms and
tracking wildlife in forested areas.

This paper investigates the problem of planning waypoints
and generating a time trajectory for the position of an un-
deractuated vehicle that has four independent control inputs
for the six degrees of freedom of translational and rotational
motion in three dimensional Euclidean space. The control
inputs actuate the three degrees of rotational motion and
one degree of translational motion in a vehicle body-fixed
coordinate frame. The translational motion is controlled by
a single thrust along a body-fixed direction vector, while this
body-fixed thrust vector can be controlled by controlling the
attitude (orientation) of the vehicle. This actuation model
covers a wide range of unmanned vehicles like fixed-wing
and quadcopter UAVs, unmanned underwater vehicles and
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Fig. 1: Overall structure of proposed framework

spacecraft. The position trajectory is generated by utilizing
a two-level optimization strategy.

Goal of the higher level is to use deep learning technique
to generate waypoints with minimal thrust cost. Deep learn-
ing was developed as a machine learning approach to learn
patterns from data, which simulates the activity of the human
brain [3]. Its excellent capabilities of learning representations
from dynamics of a real environment makes it extremely
suitable for many autonomous robotic tasks, especially tasks
dealing with complex input-output mappings. Deep neural
networks (DNN) were used in [4], [5] to achieve adaptability
and robustness to guarantee stable flight. However, they are
likely to generate sub-optimal solutions without considering
the future effect of the chosen action. Reinforcement learning
(RL) provides a mathematical framework for deriving strate-
gies that map situations (i.e. states) into actions with the goal
of maximizing an accumulative reward [6]. In RL, the aim of
the agent (i.e. learner) is to maximize the cumulative reward
by taking the proper action at each time step according to the
current state of the environment, while considering the trade-
off between exploration and exploitation. Originally devel-
oped by DeepMind Technologies, deep RL (DRL) provides a
promising data-driven, adaptive technique in handling large
space of transitions for complex control systems [7].

On the lower level, the generated waypoints are used to
construct an optimal trajectory that passes through them, in a
discrete time setting. Figure 1 shows the overall structure of
the proposed framework. After the trajectory is generated, it
is tracked by a nonlinear stable algorithm. Prior research on
trajectory tracking control with this actuation model includes
[8], [9], [10]. Past research on trajectory generation can be
classified into three types. One type decouples time and
geometry, constructs a geometric trajectory and then parame-
terizes it in time, e.g., [11], [12], [13]. Utilizing Bezier curves
to create trajectories also fall into this first type [14]. Another
type utilizes differential flatness of dynamics to generate a
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trajectory [15]. The last type uses a high level trajectory
generator in conjunction with a motion primitive generator
to choose an optimized trajectory among different motion
primitives [16]. Trajectory planning can also be considered
a smoothing problem; however, this problem is ill-posed [17]
and in addition, needs all the waypoints to be able to create
a trajectory, whereas in real life applications, all waypoints
might not be available a priori. The actuation of these
vehicles dictates that the position trajectory be generated
through control of the attitude of the vehicle, such that the
desired thrust vector direction for the position control is
achieved. Trajectory planning schemes for quadrotor UAVs,
which satisfy this actuation model, have been treated in the
past, for example, in [8], [18]. For large and rapid maneuvers
that go beyond hovering or level flight, this can be done using
an asymptotically stable or finite-time stable attitude control
scheme with a large domain of convergence, as in [19].

Section II details the structure of our proposed model,
learning process and different ways to select training data
for learning and waypoints generation. Section III provides
details about dynamics model and our proposed trajectory
generation scheme through waypoints. Section IV describes
the tracking control of the proposed position trajectory and
section V presents numerical simulation results. Finally, the
research findings of this paper and possible future work are
summarized in section VI.

II. WAYPOINT PLANNING

A. Problem Formulation

The goal is to select waypoints avoiding obstacles in a
known 3D environment, while minimizing the control energy
over the entire trip. The UAV takes off from an initial posi-
tion and reaches a preassigned target position by following
planned waypoints, without colliding with obstacles. The en-
tire 3D environment is discretized into N×N×N grids. Each
grid p(x, y, z) is mapped to a real value R by a function M(),
which describes the entire grid environment. W denotes the
set of k planned waypoints, W = {w0, w1, ..., wi, ..., wk−1}
and wk−1 is the destination. f(wi, wj) denotes the average
control thrust for the UAV to follow the trajectory between
waypoints wi and wj . G(wi, wj) denotes the set of grids
that the generated trajectory between wi and wj will pass
through. The total thrust cost along the entire trajectory is
denoted as F. The optimal waypoints planning problem can
be formulated as follows:
Problem 1 (Optimal obstacle avoidance waypoints planning).

Minimize: F = Σk−2
i=0 f(wi, wi+1) (1)

subject to
1) reaching the target position from current position,

M(w0) = 1,M(wk−1) = 10, (2)

2) reaching the target position without colliding with
obstacles,

M(p) 6= −10, p ∈ G(wi, wi+1), 0 ≤ i ≤ k − 2, (3)

Fig. 2: Overall network structure of DQN

Here p is a grid in the discretized environment, wi is a
vector corresponding to the grid center position (x, y, z) in
discretized environment block, and f(wi, wj) and G(wi, wj)
are determined by the trajectory generation in section III.

B. Deep Q-Network Structure

Incorporated within deep neural network, deep reinforce-
ment learning (DRL) provides a breakthrough in solving
problems that are data-driven and have large spaces of pos-
sibilities. The proposed waypoints planning framework uses
the combination of deep neural network and a model-free
RL strategy, namely, Q-learning. Our work aims at planning
a set of waypoints that avoid obstacles in a (partially) known
environment while minimizing control energy over the entire
trip. A deep Q-network (DQN) is adopted for waypoints
planning, which uses an offline-built deep neural network
(DNN) to derive the correlation between state and action.
The DQN approximates the optimal selection of actions
in time based on the instantaneous configuration of the
environment. With awareness of this configuration and the
feedback reward at every time step, the UAV modifies the
selection of the next waypoint. As learning proceeds, the
UAV discovers its own dynamics and learns how to cope
with the external environment by deriving the correlation
between each state-action pair (state, action) and its value
function Q(state, action). At each decision epoch ti of an
execution sequence, the agent performs inference using DNN
to estimate the Q(statei, actioni) and then selects the action
either by random choice or by choosing the one that has
the highest estimated Q(statei, actioni). At decision epoch
ti+1, the agent stores the newly estimated Q-value calculated
based on the total reward R(statei, actioni) observed in
decision epoch ti. After learning, the model learns the
optimal strategy which the agent uses to map the current
state to the action that promises highest feedback reward. A
deep convolutional network is applied as shown in Figure 2
and the sizes of each layer are also indicated. Details of the
waypoints planning process can be found in [20].

III. TRAJECTORY GENERATION THROUGH WAYPOINTS

A. Continuous Time Dynamics

The rigid body model considered in this paper has four
control inputs for the six degrees of freedom. These are
the three control inputs that generate a torque for the three
degrees of freedom of rotational motion, and one thrust along
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a body-fixed thrust vector; this model is identical to that used
in [19]. This model can be applied to several unmanned
vehicles, and the particular case of a quadrotor UAV is
considered in section V for numerical results.

In this work, b ∈ R3 is the rigid body’s position vector
expressed in an inertial coordinate frame and R ∈ SO(3)
is the rigid body’s attitude (orientation) expressed as the
rotation matrix from body-fixed frame to inertial frame.
Without loss of generality, it is assumed that the thrust vector
is along the third body-fixed coordinate frame axis. The
translational dynamics equation of motion is:

mv̇ = mge3 − fr3, (4)

where v ∈ R3 is the translational velocity in inertial frame, g
is the acceleration due to gravity, e3 = [0, 0, 1]T , fr3 ∈ R3

is the control force vector of magnitude f acting on the body,
and r3 is the unit vector along the third axis of the body-
fixed coordinate frame, expressed in the inertial frame. Note
that r3 is also the third column of the rotation matrix R.
Equation (4) can be rewritten as:

v̇ = ge3 −
1

m
fr3. (5)

The kinematics for the translational motion expressed in
inertial coordinate frame is:

ḃ = v, v̇ = a, ȧ = z, (6)

where a is acceleration and z is the derivative of acceleration
(jerk). Equations (5) and (6) can be considered as the
system equations. By defining input u = fr3, state space
representation of the system can be obtained as follows:

ẋ = Ax+Bu+
[

03×1 ge3 03×1 03×1

]T
, y = Cx,

(7)

where

x =


b3×1

v3×1

a3×1

z3×1

 ∈ R12, u ∈ R3, B =


03
03
03
I3

 ∈ R12×3,

A =


03 I3 03 03
03 03 − 1

mI3 03
03 03 03 I3
03 03 03 03

 ∈ R12×12,

C =
[
I3×3 03×3 03×3 03×3

]
∈ R3×12,

where I3 is the 3× 3 identity matrix.
Remark 1. The above treatment leads to minimization of
snap, 4th derivative of position, which results in a smoother
path compared to methods minimizing jerk or acceleration.

A trajectory is then to be generated for this system to
pass through a given set of k waypoints in position, where
k ≥ 1. The set of waypoints consisting of positions in
R3 with respect to an inertial frame, are generated by
the method described in previous section. Discretization
facilitates numerical simulation of the system and possible
onboard implementation. Therefore, in the next section, the
dynamics given by the state space equation (7) is discretized.

B. Discretization of Dynamics

Consider a fixed step size in time, h, and a fixed time
interval [0, T ] over which the trajectory is to be generated
in discrete time. Without loss of generality, the initial time
is assumed to be 0. Time is discretized as tn = nh with
T = mkh, so that mk is a positive integer that corresponds
to the final time at which the generated trajectory reaches the
final given destination waypoint. Let the discrete-time state
variable be given by xn = x(nh), where n ∈ N and N =
{0, 1, . . . ,mk}. Denote the discrete time instants at which
the trajectory passes through the given position waypoints by
mi, i = {1, . . . , k}, with {m1, . . . ,mk} ⊂ N . A discrete-
time version of equation (7) is obtained as:

xn+1 = Adxn +Bdun +
[

03×1 ge3 03×1 03×1

]T
,

yn = Cdxn, (8)

where: Ad = eAh, Bd =

∫ h

0

eAσBdσ, Cd = C.

Note that A4, and consequently higher powers of A, are zero.
Therefore, Ad and Bd can be obtained in exact form. This
leads to the exact discretization (equation (8)) of the contin-
uous time system (equation (7)). The system in equation (8)
is treated as an optimal control system in the next section to
generate a trajectory through waypoints.

C. Problem Formulation

The problem of trajectory generation amounts to con-
structing a feasible discrete-time desired trajectory through
the set of k waypoints. The waypoints are gener-
ated by DRL algorithm proposed in the previous sec-
tion. Let the set of k waypoints be given by tuples
(ywm1

,m1), (ywm2
,m2), · · · (ywmk

,mk), where the time in-
stants corresponding to these waypoints are denoted by the
subscript mi ∈ N , with i = 1, · · · k. We construct a discrete
optimal control problem such that the output yn passes
through the waypoints found in section II at specified time
instants, i.e. ymi

= ywmi
, for i = 1, · · · k. Let the initial state

be given by x(0) = xinit. The boundary condition at the end
point is determined by the last waypoint, ywmk

. The optimal
control problem can be formulated as follows:

Problem 2 (Discrete-time Optimal Trajectory Generation).

Minimize J d =h

mk∑
i=0

1

2
(xT
i Qxi + uT

i Rui)

+
1

2

k∑
j=1

(
Cdxmj

− ywmj

)T
S
(
Cdxmj

− ywmj

)
,

subject to
1) satisfying the dynamical model,

xi+1 = Adxi +Bdui, (9)

2) and the boundary conditions given by,

x0 = xinitial, Cdxmk
= ywmk

. (10)
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Here Q ∈ R12×12 > 0, R ∈ R3×3 > 0 and S ∈ R3×3 > 0
are square, symmetric matrices.

Here, high values of the position, velocity, acceleration,
jerk and snap are penalized. Additionally, at the time in-
stances corresponding to waypoints, the error between actual
position and the desired position waypoint is penalized.

D. Optimal Control Algorithm to Generate Trajectory

The problem 2 can be approached from the principles of
optimal control. An augmented performance index can be
defined as

J da = J d +

mk−1∑
i=0

λT
i+1(Adxi +Bdui − xi+1), (11)

where λi ∈ IR12 is a vector of co-states. The discrete
Hamiltonian can be defined as,

Hdi = λT
i+1

(
Adxi +Bdui

)
+

1

2
(xi)

TQxi +
1

2
uT
i Rui.

Then the augmented index in terms of Hamiltonian is

J da =

mk−1∑
i=0

(hHdi − hλT
i+1xi+1)

+
1

2

k∑
j=1

(
Cdxmj

− ywmj

)T
S
(
Cdxmj

− ywmj

)
. (12)

By setting the first variation of J da to zero, the necessary
conditions for optimality are obtained as following:

∂Hdi
∂ui

= 0 for all i,

∂Hdi
∂xi

− λi = 0,
∂Hdi
∂λi+1

− xi+1 = 0, for i 6= mj ,

∂Hdmj

∂xmj

+
1

h
CT
d S(Cdxmj − ywmj

) = λmj , for j = 1, ..., k − 1

1

h
CT
d S(Cdxmk

− ywmk
) = λmk

for i = mk.

The aforementioned necessary conditions for the discrete
time optimal control problem 2 lead to:

ui = −R−1BT
d λi+1, xi+1 = Adxi +Bdui. (13)

Let the optimal control be of the form ui = Kixi+ξi where
ξi is the part of the control meant to enforce the waypoint
constraints, then the co-state can be expressed as λi = Pixi+
ηi. Thus, the optimal control input can be rewritten as,

ui = −[R+ (Bd)
TPi+1Bd]

−1(Bd)
T(Pi+1Adxi + ηi+1).

By substituting the expressions for λi and ui from above
into the co-states equation, one obtains:

Pixi + ηi = AT
d

(
Pi+1(Adxi −Mi(Pi+1Adxi + ηi+1))

)
+AT

d ηi+1 +Qxi, (14)

where Mi = Bd[R+ (Bd)
TPi+1Bd]

−1(Bd)
T. (15)

The above equation is true for arbitrary xi, so

Pi = (Ad)
TPi+1Ad +Q− (Ad)

TPi+1MiPi+1Ad, (16)

which is true for i 6= mj and has to be solved backwards in
time. The rest of equation (14) gives the expression for ηi:

ηi = (Ad)
T{I − Pi+1Mi}ηi+1, (17)

which is true for i 6= mj and also has to be solved backwards
in time. At intermediate waypoints (i = mj and i 6= mk),
the co-states are given by:

Pmj
= (Ad)

TPmj+1Ad +Q+
1

h
CT
d SCd

− (Ad)
TPmj+1MmjPmj+1Ad, (18)

ηmj
= (Ad)

T{I − Pmj+1Mmj
}ηmj+1 −

1

h
(Cd)TS ywmj

.

Finally, for the last waypoint (final destination) we have:

Pmk
=

1

h
CT
d SCd, ηmk

= − 1

h
CT
d Sy

w
mk
. (19)

Using (19) the final value of the co-state vector is written as

λmk
=

1

h
CT
d S(Cdxmk

− ywmk
). (20)

Remark 2. Let Ki = [R+ (Bd)
TPi+1Bd]

−1(Bd)
T, then the

optimal control can be written as ui = −Ki

(
(Pi+1Adxi +

ηi+1)
)
. After applying the optimal control, the dynamics of

the discrete system given in (8) becomes,

xi+1 =
(
Ad −BdKiPi+1Ad

)
xi −BdKiηi+1. (21)

Remark 3. The thrust force is calculated according to:

fi = m‖ai − ge3‖. (22)

The development presented above gives all the necessary
equations for trajectory generation through waypoints. The
generated trajectory is considered as a desired trajectory, to
be tracked as given in the next section.

IV. TRACKING OF THE GENERATED TRAJECTORY

Tracking is used to complete the integrated waypoint
planning and trajectory generation framework. Also, by con-
sidering the thrust associated with tracking of the proposed
trajectory and a cubic spline trajectory, we show that the
proposed trajectory results in a better thrust profile for a
UAV. In this section, the dynamics of the multi-rotor UAV
and its control scheme are briefly described to show how the
control system tracks the generated trajectory.

The total dynamics involved here consists of the transla-
tional dynamics from (5) and (6), and the rotational dynamics
of the UAV. Both of them are described in details in [21]. For
the attitude control, the attitude R of the UAV is controlled
with finite-time stability, which is more robust to disturbance
than asymptotic stability or exponential stability.

In this work, the asymptotically stable translational motion
control in [21] is applied. Desired velocity in inertial frame
is denoted vd. Then translational errors are constructed:

˙̃
b = ṽ = v − vd, m ˙̃v = mge3 − fRe3 −mv̇d (23)
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To design the translational motion control system with
asymptotic stability, a Lyapunov candidate is chosen as

Vtr(b̃, ṽ) =
1

2
mṽT ṽ +

1

2
b̃TP b̃ (24)

Design the translational control law as follows:

f = eT3RT (mge3 + P b̃+ Lv ṽ −mv̇d) (25)

Here, P, Lv ∈ R3×3 are positive definite control gain
matrices. Asymptotic stability of the translational control can
be determined by taking time derivative of the Lyapunov
candidate (24), substituting (23) and (25):

V̇tr = vTm ˙̃v +
˙̃
bTP b̃ = ṽT (m ˙̃v + P b̃)

= ṽT (mge3 − fRe3 −mv̇d + P b̃)
= −ṽTLv ṽ < 0

(26)

As we have finite-time stable attitude tracking control, this
ensures r3 = Re3 converges to the desired thrust direction
in finite time. Therefore, the feedback control law (25)
for translational motion control of the multi-rotor UAV is
asymptotically stable. With the control scheme described in
this section, the method to track the generated trajectory is
simulated in the following section.

V. NUMERICAL SIMULATION

To investigate the robustness and effectiveness of the
proposed algorithm and tracking control scheme from section
II to IV, three results are shown in this section. (a) A
sequence of waypoints is generated through DRL-based
waypoints generation algorithm described in section II in
a simulated indoor environment. (b) With the waypoints
generated in (a), two trajectories are generated with two
different algorithms. (c) Two numerical experiments for
trajectory tracking are shown here. Using the UAV tracking
control scheme alongside its dynamics model described in
the last section, both the trajectories generated in (b) are
tracked. The computational results in (a), (b) and (c) are all
shown for comparison and evaluation.

A. Simulated environment and DRL-based waypoints

The indoor environment considered is bounded and in-
cludes obstacles. The start waypoint, is located in front of
the entrance door. The third wapoint is just above the center
of the smaller desk. Last waypoint, or destination, is at the
center of the larger desk’s surface. With the DRL-based
algorithm proposed in section II, the generated waypoints are
shown in Fig. 3, in which the pillar and desks are considered
as obstacles and hence, successfully avoided.

B. Trajectory generation

With the waypoints generated by the DRL-based algo-
rithm, two trajectories are generated such that they go
through the waypoints. One is the proposed trajectory in
section III and the other is a cubic spline trajectory, generated
by ’spline’ function in MATLAB. Both trajectories are shown
in Fig. 3. and each will be considered as a desired trajectory
to be tracked in the next part.

Fig. 3: Generated waypoints, optimal trajectory and cubic
spline trajectory in different views

C. Discrete dynamics and control of UAV

To carry out the numerical simulation, the dynamics and
control of the UAV is discretized in time. This discrete model
is obtained as a Lie group variational integrator (LGVI) using
discrete Lagrange d’Alembert principle [22]. Note that the
time step is h = tk+1 − tk, ν is the translational velocity
of the UAV in its body frame, so v = Rν. The discrete
equations of motions are listed as follows:

bk+1 = hRkνk + bk, (27)

mνk+1 = mFTk νk + hmgRTk+1e3 − hfke3, (28)

where Fk ≈ exp(hΩ×
k ) ∈ SO(3) guarantees that Rk evolves

on SO(3). The Ωk here denotes angular velocity of the UAV.
Details for cross map:(·)× : R3 → SO(3) are in [22].

D. Results of the trajectory tracking control

Fig. 4: Comparison between proposed optimal trajectory and
trajectory tracked by UAV.
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Fig. 5: Comparison between cubic spline trajectory and
trajectory tracked by UAV.

Fig. 6: Comparison of thrust magnitude profile between cubic
spline and proposed optimal trajectory.

Figure 4 shows tracking of the proposed trajectory and
Fig. 5 shows tracking of the cubic spline trajectory. It
is observed the tracking control scheme can track both
trajectories well. However, for the thrust magnitude profile,
the proposed optimal trajectory shows an advantage in Fig. 6.
Its maximum thrust magnitude is smaller than the maximum
thrust required to track the cubic spline. Therefore, tracking
of the proposed trajectory has a better transient behaviour,
and overall requires less control effort than tracking of the
cubic spline trajectory.

VI. CONCLUSION AND FUTURE WORK

A framework for optimal waypoint planning, trajectory
generation, and trajectory tracking in discrete time, is pro-
posed. The framework utilizes a two-level optimization strat-
egy for trajectory generation that can be used to construct
optimal, smooth and obstacle-free trajectories through clut-
tered environments. Numerical simulation results illustrate
how the integrated waypoint planning, trajectory generation
and tracking scheme work together to generate and track a
smooth trajectory in a modeled environment. In the future,
experimental verification of the framework on a quadrotor
UAV will be carried out in an indoor laboratory environment.
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