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Abstract—This paper introduces DISPERSE, a distributed
scalable architecture for delivery of content and services that pro-
vides resilience against node failure through location-independent
storage and replication of content. Current content delivery
networks (CDNs) have, at least to some degree, a centralized
structure thus susceptible to a single point of failure. DISPERSE
addresses this limitation by implementing a fully de-centralized
structure. DISPERSE is a two-layer architecture: the first layer
(front-end layer) exposes services (e.g., Web, SFTP) to clients;
the second layer (back-end layer) provides reliable distributed
storage of content and application state. Content in DISPERSE’s
back-end layer is stored and exchanged as Named Data Network
(NDN) content packets. This allows DISPERSE to implement
fine-grained, location-independent, fully decentralized content
replication mechanisms.

We validate the performance of DISPERSE under two node
failure scenarios. In the first scenario, content can be stored in
any DISPERSE node, and all nodes are equally likely to fail. In
this scenario, we use non-linear optimization techniques to de-
termine the optimal number of content copies under availability
and latency constraints. In the second scenario, different nodes
fail with different probabilities, and content is stored in nodes
according to its value, node failure probability, and resource avail-
ability. This scenario is addressed as an instance of the minimum
cost flow problem. Our results show that DISPERSE reduces the
failure of content retrieval by five orders of magnitude compared
to common CDN implementations, without significantly increas-
ing content retrieval delay. Further, numerical results show that
DISPERSE improves content availability by a factor of 1.3×-2.3×
when deploying the minimum cost flow algorithm.

Index Terms—DISPERSE, Named Data Networking (NDN),
Content Delivery Networks (CDN)

I. INTRODUCTION

Content replication is the primary technique used to provide

resilience against node failures. Content delivery networks

(CDNs) [1]-[3] are one of the most popular ways of hosting

and replicating content. A CDN consists of an “origin server”

that hosts content uploaded in the network, and many “CDN

servers” that host copies of content available at the origin server.

When a client requests content, the CDN redirects the request

to the geographically nearest CDN server. If the CDN server is

unavailable, the client re-issues the same request to the origin

server [4]-[6]. Although CDNs have now evolved to be effective

at delivering content with high reliability and low latency, they

suffer a fundamental limitation: if the origin server fails (e.g.,
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due to natural hazards [7] or national censorships [8]), the

performance of the entire CDN is greatly reduced, making the

origin server a single point of failure.

In this paper, we introduce DISPERSE, a two-layer content

distribution architecture (see Figure 1), which is functionally

equivalent to CDNs. However, in contrast with CDNs, DIS-

PERSE has no single point of failure. DISPERSE leverages

Name Data Network (NDN) [9] to provide resilience to

common node failure scenarios through scalable, efficient,

and transparent replication of content and services across

geographically distributed endpoints. Each DISPERSE layer is

composed of a multitude of geographically-distributed hosts.

By design, nodes in each layer are functionally equivalent,

i.e., they can in principle serve the same requests. The front-

end layer provides lightweight implementations of common

services (e.g., Web, databases, SFTP). Each host in this layer

stores no content, and is intended to maintain only transient

states (i.e., states only corresponding to each transaction). As a

result, front-end nodes act similarly to proxy servers in order to

provide standard interfaces that clients use to access DISPERSE.

This allows any node in the front-end layer to seamlessly take

over the workload of another failed front-end layer node. The

back-end layer implements reliable, scalable and low-latency

distributed storage. This layer leverages Named Data Network

(NDN) [9] for data representation, and for communication

between back-end layer nodes, and between front-end and

back-end layer nodes.

Contributions. The key contributions in this paper are: (1) the

design of DISPERSE, a distributed and scalable architecture

for content replication resilient to node failures; and (2) a

detailed analysis that demonstrates the benefits of DISPERSE

in comparison with CDNs under two scenarios, which we refer

to as randomized and targeted node failure. While the proposed

architecture can be used for content storage as well as content

distribution, the focus of this work in on content distribution.

Specifically, we evaluate the performance and resilience to node

failure of DISPERSE in the context of content distribution.

By design, DISPERSE mitigates node failure by replicating

both data (in the back-end layer) and services (in the front-end

layer). However, replication incurs a cost. In this paper, we

analyze the tradeoff between replication cost and corresponding

increases in availability. We first consider a random node failure

scenario, and devise a non-linear unconstrained optimization-

based method to determine the optimal amount of replicas of

content in DISPERSE, and extend it to include constraints on

latency for content retrieval. Our results indicate that, while
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to the consumer(s) who requested it. Because interest packets

do not indicate which host is expected to serve the content,

routers can forward them to the either the appropriate content

producer, or to a nearby cache when available. To determine

how to forward interest packets, routers include a name-based

Forwarding Information Base (FIB), populated using routing

algorithms similar to those used with IP.

Because content packets returned to users might be hosted by

any server or router on the network, trust on the content cannot

be established based on the communication channel between

the client and the device serving a particular content packet.

Instead, in NDN each content packet is signed individually. This

enables consumers to determine whether the content returned

by the network is legitimate.

While NDN is efficient at distributing content, it requires

specialized software to access it. DISPERSE addresses this

issue by making NDN messaging and routing transparent to

clients, which interact exclusively with front-end layer nodes.

III. DISPERSE DESIGN

DISPERSE consists of two layers: the front-end layer, which

is composed of a number of hosts, which are in charge of

receiving, translating, dispatching, and responding to requests

from clients (i.e., producers and consumers); and the back-

end layer which stores and replicates data objects, and serves

requests received from the front-end layer.

Clients locate front-end layer nodes via DNS queries. As

a result, ISPs can direct clients to the closest front-end layer

nodes. Each DNS query is expected to return multiple front-end

layer nodes. This enables clients to seamlessly switch from a

failed to a working front-end layer node. Similarly, front-end

layer nodes locate back-end layer nodes using their DNS name,

thus achieving the same robust characteristics in the presence

of back-end layer node failure.

Front-end Layer. The front-end layer nodes implement inter-

faces for application-layer protocols. For instance, a front-end

layer node can implement an HTTP interface by listening

on port 80, and converting GET-s and POST-s request to the

corresponding back-end layer requests. Although in principle,

different front-end layer nodes can implement different pro-

tocols, without loss of generality in the rest of the paper we

assume that all nodes implement the same protocol.

Front-end layer nodes are analogous to NDN routers.

To perform their functions, all front-end layer nodes

implement the following two data structures: the

Forwarding Information Base (FIB), and the Pending

Requests Table, or PRT (similar to NDN’s PIT). The FIB

stores entries for each piece of content as several tuples

〈namespace, (node1, cost1), . . . , (noden, costn)〉, where

nodei indicates the IP address or DNS name of a node in the

back-end layer which stores content with name starting with

namespace, and costi is a cost metric for requesting data to

that node (e.g., round-trip time).

Upon receiving a request, a front-end layer host performs

an FIB lookup using the name of the content being sent or

received. The lookup returns a list of back-end layer nodes,

each of which is suitable for addressing the request. If a front-

end layer node forwards a request to a back-end layer node,

and does not receive any response, the front-end layer node

considers that the back-end layer node is unavailable, and

updates the FIB accordingly. Periodically, the front-end layer

node sends probe messages to a subset of the back-end layer

nodes that store the content in to refresh costi in the FIB. This

mechanism ensures that DISPERSE is able to deliver content

with low delay even when a large number of back-end layer

nodes has failed. The PRT keeps track of requests that have

been forwarded to back-end layer node layers, and for which

the corresponding content has not been returned yet. Once a

back-end layer node returns a content packet, the front-end

layer node performs a PRT look up to determine how the data

should be converted to the appropriate protocol, and which

host(s) requested the data. Upon correct match (or when they

time out), entries are removed from the PRT.

Back-end Layer. The back-end is composed of nodes identified

by a DNS name or IP address. A node can be a single host,

or a collection of hosts (e.g., a data center). Nodes advertise

their capabilities (e.g., bandwidth, available storage space), as

well as their topology information and geographical location,

to front-end layer nodes. When a back-end layer node receives

new content, it sends a namespace advertisement message

to front-end layer nodes, in order to update their FIB. The

message contains one or more namespaces, common to the

data objects received.

Content in DISPERSE is replicated as content packets.

Here, content objects can either mean different parts of

content of a file or different files or different individual

requests or different class of traffic requests as the network

deems appropriate to implement. In general, large pieces of

content (e.g., video files) are split into smaller content packets,

which can be independently replicated and requested. This

allows the replication algorithms to work at a fine granularity

level, thus maximizing resource utilization and minimizing

fragmentation. State explosion is prevented by grouping large

sets of content packets into common namespaces. Due to the

absence of a central authority in charge of managing replication,

unavailability of a subset of nodes does not prevent DISPERSE

from making new copies of existing content. Strategies for

replicating content are discussed in the following section.

IV. RANDOMIZED NODE FAILURES

We first consider the case in which failures of back-end

nodes are independent and identically distributed, i.e., nodes

fail independent of each other, and probability of node failure is

identical for all the nodes. We refer to this model as randomized

node failure model.

Let U be the rate of upload (bandwidth) of content, and let D
be the rate of download. (The notations used in the analysis in

this section and their corresponding descriptions are provided

in Table I.) In this paper, we assume that D ≫ U , as this is

a good representation of the behavior of popular applications

such as the World Wide Web and YouTube [23].

We indicate the number of back-end layer nodes in the

network with m, and the number of copies of each content

packet with c. Because each back-end layer node stores only

one copy of each content packet (storing multiple copies in the
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TABLE I
NOTATION USED IN THIS PAPER.

Notation Description Notation Decription

m Number of back-end layer nodes mf Number of failed back-end layer nodes

U Rate at which content is uploaded D Rate at which content is retrieved

c Number of copies c∗ Optimal number of copies

λ Over provisioning factor A Failed bandwidth in DISPERSE

Pcontent Probability of content retrieval Pdisperse Probability of content retrieval
from DISPERSE back-end nodes in DISPERSE

Pavailable Fraction of the bandwidth available α Cost of storing unit content
to retrieve a content packet in any DISPERSE back-end layer node

Z(c) Content retrieval delay from the DISPERSE back-end ũ(c) Benefit of storing c copies of
layer nodes to the DISPERSE front-end layer nodes content in DISPERSE back-end layer nodes

Dnet Available network bandwidth, defined ρ Cost of storing unit content in DISPERSE per unit

as Dnet = min(D, λD −A) of available bandwidth, defined as ρ , α
Dnet

same node provides no additional resilience to node failures),

we have c ≤ m.

It is common for service providers to allocate more band-

width to their servers than what is expected under average traffic

conditions to account for flash crowds [24]. This also follows

from the theory of large deviations of effective bandwidths,

where the capacity of a network is larger than the expected

traffic [25]. We therefore indicate the total bandwidth with λD,

where λ > 1 is the over-provisioning factor.

Let A be amount of bandwidth that has become unavailable

due to node failure. The remaining bandwidth in DISPERSE

for retrieving content is λD−A, and the portion of bandwidth

available to retrieve a content packet is:

Pavailable =

{

λ− A
D if A > D(λ− 1)

1 otherwise.
(1)

The number of failed back-end layer nodes, mf , can then be

obtained as mf =
⌈

A
λD ·m

⌉

. Content can be retrieved from

DISPERSE if any one of the m−mf nodes that has not failed

holds the required content packet. Thus, when all nodes fail

with the same probability, independent of other nodes, the

probability that content can be retrieved from any back-end

layer node, Pcontent can be written as:

Pcontent(c) =

{

1−
(mf

c )
(mc )

if c ≤ mf

1 otherwise.
(2)

Therefore, the probability of retrieving content from DISPERSE

is:

Pdisperse = Pavailable · Pcontent(c). (3)

Although increasing the number of content copies increases

availability (see (2) and (3)), additional replication also leads to

increased storage and bandwidth costs. In the rest of this section,

we formally characterize the selection of the optimal number of

copies (indicated henceforth as c∗) as an optimization problem.

We first determine the amount of “utility” the network derives

from each additional copy.

Let Dnet = min(D, λD − A). The utility, i.e., the net

capacity available to the network to satisfy content requests

from consumers is ũ(c) = Dnet · Pcontent(c).

A. Without Delay Constraints

Because Pcontent is a monotonically increasing function of c,

we have that ũ(c) is also a monotonically increasing function of

c. Therefore, without further constraints, DISPERSE network

perceives maximum utility when infinite copies of the content

are made. However, the network incurs a cost for making and

storing each copy. This cost includes the storage, bandwidth,

computation, and any other consideration involved in making

new copies. We indicate this cost with α, and assume a linear

cost model. (Other convex models for cost are also possible,

and we leave their treatment as future work.) As a result, the

total cost incurred for making c copies of each content is αc.
The network incurs additional fixed cost, cfixed, that captures

other network issues like infrastructure, setting up the front-

end and back-end nodes, the links between the nodes in the

network, etc. Therefore, the net utility function, unet(c), can

be written as:

unet(c) = ũ(c)− αc = Dnet · Pcontent(c)− αc− cfixed. (4)

Since the fixed cost, cfixed does not depend on the decision

variable, c, it can be omitted from the optimization formulation.

The resulting net utility perceived by the network, ũnet(c), is

then given by:

ũnet(c) = ũ(c)− αc = Dnet · Pcontent(c)− αc. (5)

The network must then determine the value of c∗ that max-

imizes ũnet(c) in (5), i.e., which is optimal for the network.

In (2) and (5), the optimization is with respect to c, which is an

integer. Thus, maximization of ũnet(c) is an integer program,

which is NP hard [26].

To make this problem tractable, we assume that m ≫ c
as motivated, for example, in [4]. Examples of systems that

satisfy this assumption include replica maintenance systems

[27], which had about 500 nodes and 3 replicas of content

and the Copysets system developed by Cidon et al. [28] which

makes 3 replicas of content in a network of 5000 nodes. A

more recent article [29] also justifies this assumption. Further,

we consider mf ≫ c, i.e., the number of failed back-end

layer nodes is significantly larger than the number of copies

of content in the system. If mf ≪ c, it corresponds to the

case when the probability of node failure is very small. In this

case, all copies available at any back-end node are accessible

irrespective of the number of copies of content made by the
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network. Further, if c < mf (with c ≈ mf ), then the network

can always make additional mf−c copies to ensure that content

is available. Content replication implementations in [27] and

[28] showed cases when the number of failed nodes is about

60 % of the total number of nodes (which was about 300 in

[27] and 3000 in [28]), while the number of replicas were 3.

Essentially, the network must determine the optimal c∗ only

when mf ≫ c so that the solution to making optimal amount

of replicas of content is scalable. The integer constraint on c
is first relaxed using the following theorem.

Theorem 1: Using Stirling’s approximation (i.e., for any

large integer K, we have K! ≈
(

K
e

)K
[30]), ũnet(c) can be

written as:

ũnet(c) = Dnet

(

1− pc−1
f

)

− αc. (6)

Proof: Expanding (2) in terms of the factorials of the

arguments,

Pcontent = 1−
mf !

(mf − c+ 1)!

(m− c+ 1)!

m!
. (7)

Rewriting (7) using Stirling’s approximation when m ≫ c and

mf ≫ c,

Pcontent = 1−
mc−1

f

(

1− c−1
mf

)mf−c+1

mc−1
(

1− c−1
m

)m−c+1 . (8)

Because
mf

m
= pf , and because for m ≫ c and mf ≫ c we

can apply limk→∞

(

1− x
k

)k
= e−x [30] we obtain:

Pcontent = 1− pc−1
f . (9)

This is used in (5) to obtain the objective function in (6).

Intuitively, (6) implies that in the randomized node failure

scenario, when m ≫ c and mf ≫ c, the number of failed

nodes is binomially distributed and hence, users fail to retrieve

content when all the back-end layer nodes that have a copy of

the content fail. The following theorem shows the uniqueness

of c∗.

Theorem 2: There is a unique value of c∗ that maximizes

ũnet(c) in (6).

Proof: From (6),

∂ũnet

∂c
= −Dnet · p

c−1
f ln pf − α, (10)

and:

∂2ũnet

∂c2
= −Dnet · p

c−1
f (ln pf )

2
. (11)

From the above, ∂2ũnet

∂c2
< 0 indicating that ũnet(c) is a concave

function. Therefore, every local minimum obtained by solving

the first order necessary condition:

∂ũnet

∂c

∣

∣

∣

∣

c=c∗
= −Dnet · p

c∗−1
f ln pf − α = 0,

i.e., pc
∗−1

f = −
α

Dnet · ln pf
, (12)

is also a global minimum [31]. Moreover, the function, ũnet(c)
is a continuously differentiable function [30] of c. Therefore,

the solution obtained from the first order necessary condition

in (12), is unique [31].

From (12), the unique optimal value of c∗ is obtained as:

c∗ =



1 +
ln

(

− α
Dnet·ln pf

)

ln pf





+

, (13)

where [y]+ = max(0, y) for any real number y. In order to

make an integer optimal number of copies, we take the ceiling

of the optimal solution in (13). The following observations can

be made from (13) about c∗:

Observation 1) ∂c∗

∂α
= 1

α ln pf
< 0, since pf < 1 (and hence,

ln pf < 0), when Dnet and pf are fixed, i.e., c∗ decreases as

α increases, i.e., DISPERSE must maintain fewer copies. This

is intuitively true because the network makes fewer copies as

the cost of making a copy increases.

Observation 2) ∂c∗

∂Dnet

= − 1
Dnet·ln pf

> 0. In other words, c∗

increases as Dnet increases. Intuitively, this indicates that more

copies of the content can be made when more net bandwidth

(i.e., more resource) is available.

Next, we determine the range for α such that DISPERSE

performs a meaningful number of copies. In particular, we are

interested in determining the upper limit αmax on the cost of

making a copy, beyond which DISPERSE has no incentive

in making any copy of the content. The following theorem

addresses this problem.

Theorem 3: Let αmax , −Dnet · pf ln pf . Then, ∀ α >
αmax, no copies of content are made.

Proof: Since pf < 1 and hence, ln pf < 0, αmax > 0.

When α = αmax, c∗ = 0, from (13). Since c∗ decreases when

α increases (from Observation 1) mentioned above), we have

that ∀ α > αmax, c∗ = 0.

Conversely, we would like to identify a lower limit αmin to

the cost of replicating content that the network must incur, such

that α ≤ αmin makes the optimal number of copies degenerate.

The next theorem addresses this problem.

Theorem 4: ∃ αmin > 0 such that the optimization solution

in (13) is valid only for α > αmin.

Proof: The optimization of c∗ requires that m ≫ c and

mf ≫ c. Therefore, ∃ cmax so that mf is comparable to c,
∀ c > cmax. Let the value of α that yields c = cmax from

(13) be αmin. As shown earlier, as α decreases, c∗ increases,

i.e., c∗ > cmax if α < αmin, thus rendering the optimization

solution degenerate.

B. Adding Delay Constraints

In this subsection, we establish how additional constraints

on the content retrieval delay incurred by DISPERSE affect

the optimal number of content copies. To this end, we consider

the delay from a front-end layer node to the ith back-end

layer node to be Xi, 1 ≤ i ≤ c (we only consider back-end

layer nodes that store the required content). The optimization

problem associated with the value of c∗ is therefore subject

to the constraints that the average delay, henceforth indicated

as Z(c), is below a specified threshold τ . Z(c) is given by

Z(c) = minci=1 Xi, since the front-end layer node retrieves
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content from the first back-end layer node with content that

responds, and Z(c) by Z(c) = E[Z(c)].
Since delay represents an additional constraint for the

problem of finding the optimal number of copies, the network

might have to make additional copies in order to satisfy all

constraints. Theorem 5 confirms this intuition. Before we

present Theorem 5, we introduce the following two lemmas.

Lemma 1: Consider a sequence of real numbers

y1, y2, . . . , yk. Let ỹ(k) = minki=1 yi. Then ỹ is a non-

increasing function of k.

Proof: Let ỹ(k) = minki=1 yi. Then ỹ(k+1) = mink+1
i=1 yi=

min(ỹ(k), yk+1). Either ỹ(k+1) = ỹ(k) (if ỹ(k) ≤ yk+1) or

ỹ(k+1) = yk+1 (if ỹ(k) > yk+1). Therefore, in both cases

ỹ(k+1) ≤ ỹ(k). Hence, ỹ is a non-increasing function of k.

Lemma 2: Z(c) is a non-increasing function of c.
Proof: If c is an integer, the proof follows from Lemma 1.

For real values of c, Z(c) = Z(⌈c⌉) Therefore, if c1 > c2,

⌈c1⌉ ≥ ⌈c2⌉ and hence, Z(c1) ≤ Z(c2), from Lemma 1 and

hence, Z(c1) = E [Z(c1)] ≤ Z(c2) = E [Z(c2)].
Let ĉ be the optimal number of copies made by the network

under delay constraints. Then ĉ is the solution to the following

optimization problem:

ĉ = argmax
c

ũnet(c), (14)

where ũnet(c) is define by (5), and subject to the constraint

Z(c) ≤ τ . The following theorem not only verifies the intuition

that the network has to make additional copies of the content

in order to satisfy the delay constraints, but also provides the

quantitative value of the number of copies.

Theorem 5: The value ĉ that maximizes ũnet(c), defined by

(5) subject to the delay constraint Z(c) ≤ τ , is:

ĉ = max(c∗, c̃), (15)

where c̃ is the value of c that satisfies Z(c̃) = τ .

Proof: Let c̃ ≤ c∗. Then by Lemma 2, Z(c∗) ≤ Z(c̃) = τ ,

thus satisfying constraint Z(c) ≤ τ . Since c∗ maximizes the

objective function ũnet(c) from (12),

ĉ = c∗, when c̃ ≤ c∗. (16)

Let c̃ > c∗. Then, from Lemma 2, Z(c∗) > τ , violating

constraint Z(c) ≤ τ . Then ĉ = argmaxc≥c̃ ũnet(c).

From (10),
∂ũnet(c)

∂c
> 0 (i.e., ũnet(c) is an increasing

function of c) for c < c∗ and
∂ũnet(c)

∂c
< 0 (i.e., ũnet(c) is

a decreasing function of c) for c > c∗. Therefore, the value of

c that maximizes ũnet(c) for c ≥ c̃ > c∗ is

ĉ = c̃, when c∗ < c̃. (17)

Theorem 5 follows by combining (16) and (17).

Theorem 5 implies that the number of copies must increase

as the delay constraint becomes more stringent (i.e., as τ
decreases). However, from (6), c ≫ c∗ implies that ũnet(c)
decreases. Therefore we next determine whether a stringent

delay constraint can make the optimal number large to the

point that the results is negative net utility for the network.

This is an important issue, because under these conditions the

network should not make copies of the content. The following

theorem addresses this issue.

Theorem 6: ∃ τmin > 0 such that if τ < τmin, then the

optimal strategy for the network is not make any new copies.

Proof: Let ũnet(c
∗) < 0. The highest net utility experi-

enced by the network is negative, i.e., the cost incurred by

the network in making additional copies outweighs the utility

perceived by the network. As a result, the network has no

incentive in making additional copies, even when there is no

delay constraint, i.e., when τ → ∞. Therefore, here τmin is a

positive real number.

Let ũnet(c
∗) > 0. From (10),

∂ũnet(c)
∂c

< 0 (i.e., ũnet(c) is a

decreasing function of c) for c > c∗. Let czero be the value of

c so that ũnet(czero) = 0. Let τmin = Z(czero). Therefore, for

τ = τmin, c∗ = czero and hence, when τ < τmin, c∗ > czero,

by Theorem 5. Then ũnet(c
∗) < 0. On the other hand, c = 0

implies ũnet = 0. Therefore, the network is better off not

making any copies of the content.

C. Numerical Evaluation of the Optimal Number of Copies

In this subsection, we compute the optimal number of content

copies in DISPERSE, based on the analysis presented above.

Fig. 2 shows the optimal number of copies made as a function

of ρ , α
Dnet

, i.e., ρ is the ratio of the cost per unit of available

bandwidth. We consider three different orders of magnitude

of ρ: (1) ρ ∼ 10−6, in Fig. 2(a); (2) ρ ∼ 10−4, in Fig. 2(b);

and (3) ρ ∼ 10−3, in Fig. 2(c). Figs. 2(a)-2(c) are generated

using m = 3000 back-end layer nodes. The optimal number

of copies is between 5 and 15, while the number of failed

nodes is mf = 300, 600, 900, 1200, when pf = 0.1, 0.2, 0.3,

0.4, respectively, justifying the assumption, c ≪ mf , used in

(6). Figs. 2(a)−2(c) also indicate that the optimal number of

copies is mainly affected by the probability of node failure,

and just marginally by ρ. For instance, for ρ = 5 · 10−6, c∗ is

15, 12, 10, and 7 for pf = 0.1, 0.2, 0.3, and 0.4, respectively.

When ρ = 5 ·10−4, c∗ is 10, 9, 7 and 5, for pf = 0.1, 0.2, 0.3,

and 0.4, respectively. Finally for ρ = 5 · 10−3, c∗ is 7, 6, 4,

and 3, for pf = 0.1, 0.2, 0.3, and 0.4, respectively. Essentially

for three orders of magnitude of decrease in ρ, the number

of copies increases by a 2× factor. Thus, the optimal number

of copies is far more sensitive to pf than to ρ, justifying the

need for an architecture resilient to node failures as proposed

in this work.

D. Comparison with CDN

In order to compare the performance of DISPERSE with

that of CDN, we measure two parameters: (i) the percentage of

requests for which the network was unable to deliver the content

and (ii) the delay in retrieving content evaluated as the average

number of nodes the network must query in order to retrieve the

content. The percentage of failed content retrieval requests in

DISPERSE is evaluated as (1−Pdisperse) ·100, where Pdisperse

is obtained from (3). To determine the percentage of failed

requests in CDNs, we proceed as follows. We evaluate the

optimal number of copies, c∗ for DISPERSE (from (13)). Since

each copy of the content is hosted in a different server, we

consider c∗ number of CDN servers and assume the probability

of node failure, pf , to be identical both for CDN as well as
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Fig. 2. Optimal number of copies made in the DISPERSE back-end layer nodes, for the randomized node failure model, for m = 3000 nodes. The ratio
between cost and bandwidth, ρ, is varied to different orders of magnitude. Results show that the optimal number of copies is sensitive to node failure probability,
pf , and less sensitive to ρ, as change in two orders of magnitude in ρ change the optimal number of copies by 2–5. The optimal number of copies c∗ ∼ 5–15,
while the number of failed nodes is mf = 300, 600, 900, and 1200, for pf = 0.1, 0.2, 0.3, and 0.4, respectively, justifying the assumption that c ≪ mf .

for DISPERSE (this is done so that we ensure we compare

networks with identical properties).

There are currently several large deployments of CDNs,

which differ in several architectural and design choices (see,

e.g., [32]). In order to present the effectiveness of the proposed

architecture, we choose to compare with Akamai [4], [5], [6],

which is one of the most popular CDNs [33]. With Akamai’s

implementation, first the network attempts to retrieve content

from a CDN server and if that attempt fails, then it attempts to

retrieve it from the origin server and if that attempt also fails,

then it is considered as a failure in retrieving content. The

network does not attempt to retrieve content from other CDN

servers by the very nature of the design of CDNs and instead

directly chooses to retrieve content from the origin server [3],

[34]-[36].

Thus, the network fails to receive content if it fails to retrieve

content from a CDN server (given by the
(

c∗

1

)

1
c∗
pf term in

(18)) and it fails to retrieve it from the origin server (given by

the porigin term in (18)). Typically, the origin server is backed

up against failures better than CDN servers by techniques like

IP Anycast [37], [38]. Therefore, we take porigin to be on order

of magnitude less than the probability of failure of a CDN

server, pf . The probability of failure to retrieve content in

CDN, PCDN, is then given by:

PCDN =

(

c∗

1

)

·
1

c∗
pf · porigin = pfporigin. (18)

Fig. 3(a) shows the comparison of the percentage of content that

the network fails to recover in CDN (taking porigin =
pf

10 ) and

in DISPERSE, which shows that the DISPERSE architecture

results in a reduction by about 5 orders of magnitude, providing

improved resilience to node failures.

We then proceed to study the tradeoff that DISPERSE has to

bear in order to provide the advantage of improved resilience.

For DISPERSE, the average number of back-end nodes that

must be queried in order to retrieve content is:

Ndisperse =
c∗
∑

k=1

k(1− pf )p
k−1
f + c∗pc

∗

f

=
1− (c∗ + 1)pc

∗

f + c ∗ pc
∗+1

f

1− pf
. (19)

For CDNs, the number of queried nodes is 1 if the CDN server

hosting content does not fail and 2 if the CDN server hosting

content fails (irrespective of what happens to the origin server).

Therefore, the average number of nodes queried in CDN,

N cdn = 1− pf + 2pf (1− pf ) + 2p2f = 1 + pf . (20)

Fig. 3(b) depicts the average delay (in terms of average number

of nodes queried by the network to retrieve content) for different

node failure scenarios. As observed from the figure, the delay

is lower for CDN than that for DISPERSE. This is because,

in CDNs query a maximum of two nodes (the CDN server

and the origin server). However, DISPERSE queries as many

nodes until it reaches a back-end node that hosts the content

and has not failed.

However, Fig. 3(b) indicates that for low values of node

failures (up to 50−60 % node failires), DISPERSE queries only

one additional node to retrieve content, compared to CDNs.

For larger values of node failures (around 90%) the delay in

DISPERSE increases by one order of magnitude compared to

CDN. However, from Fig. 3(a), at this network condition, CDN

fails to recover content with a significantly high probability

while DISPERSE recovers content almost surely. Therefore

DISPERSE provides high resilience to node failures compared

to CDN without significantly increasing the delay in retrieving

content.

The discussions in this subsection are based on a randomized

node failure model where all nodes have same failure rate

and same cost of replicating different content and all content

have equal priority. The next section discusses optimal content

replication in a setting where nodes have different failure rates

and contents have different priorities.
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Fig. 5. Performance of DISPERSE for targeted node failures when content objects of all priorities are equally likely. The legends, s = 1, s = 2 and s = 4
represent the values of the s−parameter for the Zipf distribution of the node failures.

from content object 3 to the new node it is assigned to. The

cost for the negative flow is also negated in order to ensure the

same value of the cost-flow product. The next two theorems

identify the maximum number of reassignments.

Theorem 8: Let f be a current cost flow in the network

and let f∗ be the optimal cost flow. Then, f∗ − f can be

decomposed into a set of at most |E| negative cost cycles,

where |E| is the number of edges in the network.

Proof: Consider any feasible flow f , and the optimal flow

f∗. The optimal flow vector is obtained from the feasible flow

vector by saturating unsaturated edges. Also, to satisfy flow

conservation constraints, it is essential to find a negative cost

directed cycle and modify the flow by the same amount on

all edges on the cycle. Hence f∗ can be obtained from f by

a sequence of identifying negative cost directed cycles and

saturating at least one edge in each cycle. The flow f∗−f can

be seen as a feasible flow in the residual graphs, which can

also be decomposed into a sequence of negative cost directed

cycles saturating at least one edge at a time. Since there are

|E| edges, the flow f∗ − f can be decomposed into at most

|E| negative cost directed cycles.

Theorem 9: There are at most ⌊ |E|
2 ⌋ re-assignments.

Proof: Let the number of negative cost directed cycles

be Ω. It is noted that for the problem under consideration, a

negative cost directed cycle can be of length 4 to 6. For a

cycle of length, γ, γ/2 edges in the cycle correspond to a

re-assignment. Therefore, C number of cycles can result in

⌊C
2 ⌋ re-assignments, which, from Theorem 8, is ⌊ |E|

2 ⌋.

From the algorithms specified in Chapter 9 in [39], the

complexity of the minimum cost flow problem for a system with

k conent objects and m nodes is O
(

(k +m)3 log(k +m)
)

.

A. Numerical Evaluation of the Optimal Number of Copies

In order to evaluate the performance of the minimum cost flow

approach, we perform simulations on Ubuntu Linux platform.

We generate a network of m = 3000 nodes and k = 100
content packets. We generate failure probabilities of nodes

according to a Zipf distribution [43], wherein for m nodes, node

i fails with probability, p
(i)
f = 1−

1

is

ζ(s) , where ζ(s) =
∑m

j=1
1
js

is the Riemann’s Zeta function [30]. We then generate the

priorities of content packets according to a discrete uniform

distribution picked from the set, {1, 2, · · · , 10}, thus resulting

in about 10 content packets of each priority type. The cost,

αij , 1 ≤ i ≤ m, 1 ≤ j ≤ k is generated as follows. Let

rj be the priority index of content object, j, which is an

integer defined so that a larger index represents a content

object with higher priority. Then, αij is uniformly distributed

in
[

0, 10−6
(

1− p
(i)
f

)

rj

]

. Thus, content objects with higher

priority incur higher average costs. This not only ensures that

content packets with higher priority incur higher average costs

than those with low priority when stored in the same node node,

but also ensures that the same content packet incurs higher

cost when stored in a node which is less likely to fail than

when stored in one that is more likely to fail. The resources

are distributed in linear proportion to the costs, to ensure that

higher cost is incurred when content is stored in nodes with

higher resource availability.

We then run 100,000 simulation experiments, in which we

first generated failure events of node i as a Bernoulli process

with probability p
(i)
f , according to the Zipf distribution. We

stored content packets in different nodes according to our

minimum cost flow optimization framework. We then generate

failures among nodes that store the content, and performed

re-assignments. If a certain content packet failed to be re-

assigned, then we considered it a failure of content retrieval.

We then measured the average probability of content retrieval

as the fraction of experiments in which content packets were

successfully reassigned. For this comparison, we also conducted

the same simulations by assigning the same priority type to

all content packets, and the same cost and failure probabilities

to all nodes.

Fig. 5 shows the performance of the minimum cost flow

algorithm for the targeted node failure scenarios in comparison

with the randomized node failure scenarios. We conducted

simulations for s = 1, 2, and 4 for the Zipf distribution of

node failure. We compared the content retrieval probabilities

for all content types (Fig. 5(a)), content with the highest priority

(Fig. 5(b)) and content with the lowest priority (Fig. 5(c)). As

shown in Fig. 5(a), at 30% node failure scenario, the minimum

cost flow approach results in a content retrieval probability of

0.3 for the homogenous network and 0.39, 0.54 and 0.69 for

s = 1, 2, and 4, respectively, leading to an improvement of
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1.3× to 2.3×. When s increases, the probability of retrieving

content decreases. This is because, as s increases, some nodes

are less likely to fail, and therefore all content packets compete

to be stored in the same node, However, limited resource

availability forces content to be stored in nodes that are more

likely to fail, thus decreasing the the probability of content

retrieval. All these scenarios perform better than the randomized

node failure case, because we store content in a failure-aware

manner.

We then proceed to study the impact of the minimum cost

flow approach on the highest and lowest priority content packets.

For highest priority content object (Fig. 5(b)), as s increases the

probability of content retrieval increases. This is because high

priority content is stored in nodes that are less likely to fail, and

therefore more likely to be retrieved. However, the difference

between benefit and cost is not monotonic with respect to

s. Fig. 5(b), shows that up to a node failure probability of

25–30%, s = 4 leads to better performance than s = 2.

However, when node failure is above 30%, s = 2 leads to

better performance. This is because while the network attempts

to store highest priority content in nodes with the lowest node

failure probabilities, resource constraints associated with high

failure rates result in high priority content stored in nodes with

higher failure probabilities.

The increase in the content retrieval probability results in a

trade-off or penalty in the form of increase in loss of content

for low priority content types, as observed from Fig. 5(c). As

expected, larger values of s result in worse performance of

content retrieval for low priority content type, because this

content is stored in nodes with higher probabilities of failure.

We finally proceed to study the impact of other distributions

of priorities for content objects, in addition to the uniform

distribution studied this far. Specifically, we consider two cases:

(1) There are more low priority content objects than high

priority content objects. To achieve this, we generate content

object with priority, rj ∈ {1, 2, · · · , 10}, with probability,
11−rj

1+2+3+···+10 =
11−rj
55 . Since we consider lower index, rj

to indicate lower priority, this generates high priority packets

with lower probability. (2) Then we generate higher priority

content objects with higher probability. To achieve this, we

generate content objects with priority rj ∈ {1, 2, · · · , 10} with

probability,
rj
55 . Since higher value of rj represents a higher

priority, this method generates high priority content objects

with higher probability.

Fig. 6 shows the performance of DISPERSE with targeted

node failures when the amount of low priority content is larger

(Fig. 6(a)) and when amount of high priority content is larger

(6(b)). As observed from Fig. 6(a), when low priority content

is more likely, DISPERSE with a node failure probability

according to a Zipf distribution with s = 1 still out-performs

the content replication strategy adopted for the network with

randomized node failures. Specifically, when 40% nodes fail,

the content replication strategy discussed in Section IV (i.e.,

assuming randomized node failures) yields a content retrieval

probability of 0.52, whereas, for the targeted node failure

scenario with s = 1, the content retrieval probability is about

0.78, which is an improvement of 50% (or a factor of 1.5×).

However, when more nodes fail for s = 2 and s = 4. When

content with different priority are placed in different nodes

(according to their failure probabilities and costs), high priority

content can still be recovered successfully but low priority

content is lost. Since there is more low priority content over

all, the content retrieval probability decreases and is lesser

compared to assigning content without consideration to the

different node failure probabilities and content priorities.

The nature of the flow maximization algorithm discussed

in this section, enhances availability of high priority content.

Therefore, when there is more high priority content, it results on

a larger content retrieval probability, over all (as observed from

Fig. 6(b)). For an average node failure rate of 40%, the con-

tent replication mechanism using the non-linear optimization

problem discussed in Section IV (i.e., assuming randomized

node failures) results in a content retrieval probability of about

33%, where as, this increases to about 83% when deploying

the flow maximization algorithm discussed in this section. This

is an increase by a factor of 2.5×.

VI. CONCLUSION

We introduced DISPERSE, a novel distributed architecture

for content replication that provides resilience against node

failures. DISPERSE reduces the failure of content retrieval

by five orders of magnitude compared to CDNs, without

significantly increasing content retrieval delay. Our analysis

shows that the optimal number of content replicas is more

sensitive to node failures than to resource availability and

cost of storage. We consider this a strong justification for

DISPERSE. When content was hosted in nodes according to

their priorities, resources availability, and susceptibility of the

node to failure, content availability further increases by a factor

of 1.3× to 2.3×. Specifically, the content availability for high

priority content was increased, with a trade-off of reduced

availability of low priority content.

Our future research directions include addressing issues of

cache replacement and cache consistency. These problems

have been addressed in various contexts, including in NDN

(see, e.g., [44], [45]), on which DISPERSE is based. Although

these techniques are directly applicable to DISPERSE, further

investigation can be done to optimize these approaches for

node failure scenarios.

REFERENCES

[1] A. K. Pathan and R. Buyya, “A taxonomy and survey of content
delivery networks,” Grid Computing and Distributed Systems Laboratory,

University of Melbourne, Technical Report, p. 4, 2007.

[2] G. Pallis and A. Vakali, “Insight and perspectives for content delivery
networks,” Commun. of the ACM, vol. 49, no. 1, pp. 101–106, 2006.

[3] A. Vakali and G. Pallis, “Content delivery networks: Status and trends,”
IEEE Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.

[4] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: A
platform for high-performance Internet applications,” ACM SIGOPS

Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[5] (2017, May) Akamai for responsive web design. [Online]. Available:
https://www.akamai.com/us/en/multimedia/documents/infographic/akamai-
for-responsive-web-design-infographic.pdf

[6] Akamai, “CDN architecture.” [Online]. Available:
https://www.akamai.com/us/en/resources/cdn-architecture.jsp

[7] Y. Kitamura, Y. Lee, R. Sakiyama, and K. Okamura, “Experience with
restoration of asia pacific network failures from taiwan earthquake,”
IEICE Trans. on Commun., vol. 90, no. 11, pp. 3095–3103, 2007.



11

10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average percentage of failed nodes (%)

A
v
e

ra
g

e
 p

ro
b

a
b

ili
ty

 o
f 

c
o

n
te

n
t 

re
tr

ie
v
a

l

 

 

Randomized Node Failure

Targeted Node Failure s=1

Targeted Node Failure s=2

Targeted Node Failure s=4

(a) More low priority content

10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average percentage of failed nodes (%)

A
v
e

ra
g

e
 p

ro
b

a
b

ili
ty

 o
f 

c
o

n
te

n
t 

re
tr

ie
v
a

l

 

 

Randomized Node Failure

Targeted Node Failure s=1

Targeted Node Failure s=2

Targeted Node Failure s=4

(b) More higher priority content

Fig. 6. Content retrieval probability in DISPERSE with targeted node failures. Content objects with different priorities occur according to a non-uniform
distribution. The legends, s = 1, s = 2 and s = 4 represent the values of the s−parameter for the Zipf distribution of the node failures.

[8] (2014, Jan) Ea login servers experience ddos
attack, origin offline (update) 101. [Online].
Available: https://www.polygon.com/2014/1/2/5268652/origin-servers-
experience-ddos-attack

[9] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al., “Named data
networking (NDN) project,” Relatório Técnico NDN-0001, Xerox Palo
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