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augmenting polyharmonic spline (PHS) RBFs with polynomials to generate RBF-finite
difference (RBF-FD) formulas. These polynomial basis elements are obtained using the
recently-developed least orthogonal interpolation technique (LOI) on each RBF-FD stencil
to obtain local restrictions of polynomials in R3 to stencils on M. The resulting RBF-LOI

'&ﬁrﬁ;is function method uses Cartesian coordinates, does not require any intrinsic coordinate systems or

High-order method projections of points onto tangent planes, and our tests illustrate robustness to stagnation

Manifolds errors. We show that our method produces high orders of convergence for PDEs on the
sphere and torus, and present some applications to reaction-diffusion PDEs motivated by
biology.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Radial Basis Functions (RBFs) are a popular tool for scattered data interpolation and approximation. Much like polynomial
approximation methods, RBFs can be used to generate numerical methods for the solution of partial differential equations
(PDEs). However, unlike polynomial-based collocation methods, RBF collocation methods are very easily applied to solving
PDEs on irregular domains using scattered node layouts [5,9,41]. RBF-based methods also generalize naturally to the solution
of PDEs on manifolds M c R? using only the Euclidean distance measure in the embedding space and Cartesian coordinates.
This ability has been leveraged to obtain four important classes of methods for solving PDEs on manifolds: global RBF
methods [17,18,24,29], RBF-Finite Difference (RBF-FD) methods [16,20,30,38], RBF-Partition of Unity (RBF-PU) methods [1],
and implicit/Hermite RBF-FD methods [25]. We will focus on RBF-FD methods for M c R3 for the remainder of this article.

Historically, the primary drawback of RBF methods has been ill-conditioning in the RBF interpolation matrix [11,39].
This ill-conditioning manifests in algorithmic implementations as a stagnation in errors and resulting convergence rates as
the number of nodes is increased. In Euclidean domains, this is easily remedied by a change of basis when using Gaus-
sian RBFs [12,19,21,22], or enforcing reproduction of moderate to high-degree polynomials when using polyharmonic spline
(PHS) RBFs [3,4,14,15]. Unfortunately, none of these methods to offset ill-conditioning appear to apply straightforwardly
when the nodes lie on a submanifold M c RY. Such manifolds appear to require specialized approaches. For instance, Reeger
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Notation used throughout this article

b Point in RY

X Collection of N points {x1, ..., &y} in RY

n Local stencil size

Py The collection of the n nearest neighbors in X of x, € X

ij The index in X of the jth point in the set Py, with Iﬁ‘ =k

g* x-component of the surface gradient

Pk Width of x,-centered stencil Py

$ Overlap parameter

m Polyharmonic spline degree

Ry Subset of Py dictated by overlap parameter §

Vp Least orthogonal interpolant polynomial subspace associated to point set P
M Number of polynomial augmentation terms used in RBF-FD procedure
h’; Ordered orthonormal basis elements for Vp,

T LOI tolerance parameter

Gy RBF-FD weights for the operator G* on stencil k

and Fornberg [31-33] are able to overcome these issues on manifolds by using a triangle mesh, projecting the RBF-FD sten-
cil nodes to the tangent plane, and computing the RBF-FD weights there. However, this is a different philosophy from that
of using Cartesian coordinates and embedding space distances employed by previous RBF-FD methods on manifolds. We
will not pursue this tangent plane approach further in this article. This choice of working purely on the node set introduces
a specific stability issue, which is dealt with in Section 4.2. Yet another way to overcome ill-conditioning with RBF approx-
imations is to view the RBF interpolant as a complex-valued function, and use contour integration [23] or vector-valued
rational approximations [42] in the complex plane to avoid pole singularities. While these alternative techniques may be
more applicable to manifolds than the change-of-basis techniques, we leave such an exploration for future work.

In recent work, however, it was shown that augmenting PHS RBFs with spherical harmonics ameliorated the ill-
conditioning issue for interpolation on the sphere S? [37]. Recalling that spherical harmonics are merely (orthonormal)
restrictions of polynomials in R> to S?, this opens up an alternative approach to overcoming ill-conditioning on manifolds:
for an RBF-FD stencil on any manifold M c R3, compute the (possibly orthonormal) restriction of a polynomial in R3 to
that stencil, and use this polynomial in conjunction with PHS RBFs to enforce polynomial reproduction on that stencil.
This is the approach we employ in this article. Of course, this raises the question of how to generate such a restriction.
To generate these polynomial subspaces, we turn to Least Orthogonal Interpolation (LOI). LOI is a procedure for generating
a minimum-degree polynomial subspace that achieves unisolvency of the interpolation problem associated to a point set
in RY; the point set may have arbitrary finite size and arbitrary geometric configuration [28]. The LOI procedure requires
as input a finite point set and a probability measure on R?, and outputs a polynomial subspace whose dimension equals
the cardinality of the input point set. In addition, LOI also outputs an orthonormal basis for that polynomial subspace. We
note that the LOI procedure is itself a generalization of de Boor and Ron’s least interpolation [7]. Interestingly, RBFs with
shape parameters have long been known to recover this least interpolant in a limiting case [34], further highlighting the
connection between LOI and RBF methods.

We have observed in testing that using LOI polynomial approximations alone in collocation methods for PDEs on scat-
tered nodes produces unstable or unsuitable results. However, this basis has advantageous use in enforcing polynomial
reproduction in a PHS-based RBF-FD method, which is the approach we take in this paper. The resulting method, which
we call RBF-LOJ, retains the strengths of traditional RBF-FD methods on manifolds (Cartesian coordinates and embedding
space distance calculations), while overcoming their weaknesses (ill-conditioning and stagnation errors) without the use
of higher-precision arithmetic as in [25,38]. The LOI procedure does increase the cost of the RBF-FD method, as does the
growth in stencil sizes required to support RBFs augmented with polynomials. The cost increases in assembling differenti-
ation matrices corresponding to these larger stencils can be largely ameliorated by using the overlapped RBF-FD method,
a generalization of the RBF-FD method where each local RBF interpolant is used to compute more than one set of RBF-FD
weights, thereby drastically decreasing the total number of stencils for a given node set [35]. For this reason, we employ
the overlapped RBF-FD method for this article. We will explore the impact of using overlapped RBF-FD on solution time
in Section 5.3. We also remark that while the RBF-LOI procedure appears to be stable on a wide variety of manifolds of
different genus, its use on more complicated point-cloud surfaces is a subject of future research.

The remainder of this paper is organized as follows. In the next section, we present the first application of the overlapped
RBF-FD method on manifolds. Section 3 contains a brief description of the LOI procedure for selecting the polynomial
subspaces required by the overlapped RBF-FD method. In Section 4, we discuss the stability of the RBF-LOI procedure,
and present our approaches to stabilizing our technique. We then validate our methods on the forced heat equation in
Section 5 by measuring errors and convergence rates on the sphere and torus. In Section 6, we present applications of our
method to solving nonlinear reaction-diffusion equations on more complicated manifolds; more specifically, we solve the
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Cahn-Hilliard, Fitzhugh-Nagumo, and Turing equations on some interesting manifolds. We conclude with a summary of our
results and a discussion of future work in Section 7.

2. Overlapped RBF-FD on surfaces
2.1. Description

We first describe the overlapped RBF-FD method, recently developed by the first author [35], and its extension to in-
terpolation on M C R3. Let X = {xk},’:’:l be a global set of nodes on the manifold M. Define the stencil P, to be the set
of nodes containing nodes X7« and its n — 1 nearest neighbors {I",...,I,’;}; here, {I",...,I,’f} are indices that map into

the global node set X. We defer discussion of the number of stencils to the end of this section. For the remainder of this
discussion, we will focus without loss of generality on the stencil Pi. Assume further that we wish to approximate the
surface gradient V), defined in Cartesian coordinates as:

Vi = (I —nn")V =[6%¢¥,6*1", (1)

where n is the outward normal, and V is the R> gradient. We will first discuss approximating the surface gradient, then
use this approximation to approximate the surface Laplacian (Laplace-Beltrami operator),

Anp = Vi - Vi,
= Am =G"G*+GYGY + G*G~. (2)
Before proceeding, we define the stencil width p1 as
p1= max |xX; —xz, (3)
j=1,...n 1 J
where | -|| is the Euclidean norm in R3. Given an overlap parameter § € (0, 1], we can now define the stencil retention distance
r1 to be
rn=(1-25)p1. (4)

The parameters p; and & define a ball By of radius r; centered at the node lel. Let p; denote the number of nodes in P
that lie in B1. Now, let Ry be the set of global indices of the p; nodes in the subset B1 C Py:

Ri={R}.R}.....R}}. 1<pi=n. (5)

In general, R; is some subset of a permutation of the global node indices associated to P1. The overlapped RBF-FD method
involves computing RBF-FD weights for all the nodes whose indices are in R1, and repeating this process for each stencil Py.
Focusing on the G* component of Vyy, the overlapped RBF-FD weights for all points x € B; with indices in R1 are computed
using the following augmented local RBF interpolant on Py:

n M
s16.9) =D (&)X =21 I" + YA (D ), (6)

j=1 i=1
where all superscripts “1” refer to the stencil index, and [|x — x,1|™ is the polyharmonic spline (PHS) RBF of degree m (m
)

is odd). A standard RBF-FD procedure would take hi1 (x) as the M monomials corresponding to a carefully chosen d-variate
polynomial. The key to our technique is the selection of these polynomial basis functions using the least orthogonal inter-
polation (LOI) technique [28]. We will defer discussion on the selection of these basis functions to Section 3, and for now
consider the hi1 functions as arbitrary polynomial functions.

The n overlapped RBF-FD weights (g")}(y) are written explicitly as functions of the evaluation point y; in other words,
each evaluation point y in the stencil has a set of n weights associated with it. Our ultimate goal is to compute the weights
L for the Laplace-Beltrami operator at all points with indices in the set Ry. To avoid differentiating normals, we will
accomplish this using iterated interpolation [24,25,38]. This is done in two steps: first compute overlapped RBF-FD weights
for the operators G*, G¥, and G* at all stencil points x;1 (every point in Py); then, combine those RBF-FD weights in such

a way that we only compute the weights for all nodes with indices in the set R1. We will now show how these weights are
computed for the operator G*. We impose the following two (sets of) conditions on the interpolant (6):

sigxp) = (Flx—2g )| . i=lo.ng=1..n (7a)

_xl_ll

> (&9 @hl ) = (G @)

j=1

, k=1,...,n,i=1,..., M. (7b)

X=Xr1
Ik
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The first set of conditions enforces that s; (x, y) interpolate the derivatives of the PHS RBF at all the points in P;. The second
set of conditions enforces polynomial reproduction/exactness on the overlapped RBF-FD weights. If a degree-¢ polynomial
space is employed for h'(x), then M = (K;d); for stability, we also require that M < L%J [14,15,35]. The interpolant (6) and

the two conditions (7a)-(7b) can be collected into the following block linear system:

A1 Hi|[G* Ba,
][] E] ®

where
(AOU=H&3—&qWﬁ i,j=1,...,n, (9a)
(H1)ij = hj@xp), i=1,...,n, j=1,.... M, (9b)
Bay= Gl =g " Lij=1...m (90)
J X=XI}
(BHl)ij=g"h}(x)’ , i=1,... M, j=1,....n, (9d)
X=X11
J
O,'j:O, i,j:],...,M. (96)

GY is the n x n local matrix of overlapped RBF-FD weights for the operator G, with each column containing the RBF-FD
weights for a point ¥ € Py. The linear system (8) has a unique solution if the nodes in P; are distinct [11,39]. More
interestingly, (8) clearly shows that the n x M matrix of polynomial coefficients A is a set of Lagrange multipliers that
enforces the polynomial reproduction constraint (7b). The above procedure can be repeated with the operators ¥ and G*
to obtain the local differentiation matrices GJ and G%. Next, define the truncated matrix G% as:

((f’l‘)ijz(G’{)ij,izl,...,n,j:l,...,pl, (10)

ie., the n x p; submatrix of G} corresponding to the nodes in the ball B;. Similarly define the truncated matrices G{ and
G%. Finally, we use iterated interpolation to obtain the differentiation matrix L for the Laplace-Beltrami operator Ay as:

~\T ~\NT ~\T

Li=(65) (@) +(c}) () +(¢F) (6. (11)
This construction using truncated matrices ensures that the p; x n matrix L1 only contains RBF-FD weights for the nodes in
P1 whose indices are in the set Rq. By construction, the rows of L1 populate the rows of a global differentiation matrix L,
while the columns of G:’]‘ and its counterparts populate the rows of the global differentiation matrices G*, GY, and G?. If the
weights for the Laplace-Beltrami operator are not required, it is straightforward to directly compute the truncated matrices

G, GJ, and GJ by modifying (7a)~(7b).
To avoid computing multiple sets of RBF-FD weights for a node x;, we also require that weights computed for some node
X, never be recomputed by some other stencil Pj,i # k. The entire procedure above must be performed for each stencil;
this can be computationally onerous if the number of stencils is comparable to the total number of points N. Denote the
total number of stencils by Ns. For a quasi-uniform node set, Ns = %, where p = max ((1 —8)dn, 1), and d is the dimension
(in the above discussion, d = 3). If § =1, this gives us N5 = N, recovering the standard RBF-FD method. However, if § < 1,
then N5 << N, giving a significant speedup over the standard RBF-FD method. For a detailed complexity analysis, see [35].

2.2. Parameter selection
In this section, we describe parameter selection for our method. Given a linear operator £ of order # and an RBF-FD

differentiation rule (x;, w j)’} we have the following error estimate for RBF-FD based formulas that reproduce a polynomial
of degree ¢ [10]:

=1’

1Lf@®) =Y wif &)l <Cm,xh" "7, (12)
j=1

where h is the fill distance of the node set, and m is the degree of the RBF PHS used. While a derivation of such a formula
for RBF-FD on manifolds is pending, we nevertheless use this formula to guide our parameter selection. If we require an
RBF-FD method with order of accuracy &, we set

L=E4+6—-1. (13)
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It is important to note that in the context of the LOI procedure (Section 3), the input value of ¢ is merely a “requested”
polynomial degree. In practice, the LOI procedure may output a polynomial of degree slightly lower than ¢. Thus, while the
number of polynomial basis functions is related to the input degree £ as M = (‘ng), the LOI procedure (and its accompa-
nying stabilization techniques) may in practice result in a smaller M than requested. Regardless, since this only affects the
polynomial reproduction, we select the stencil size as

d

The degree m of the PHS RBF can either be fixed [3,15,31-33], or increased with respect to £ [6,37]. In Euclidean domains,
it appears beneficial to fix m [3,14,15,35]. On the other hand, the traditional scaling law m = 2¢ + 1, appears to give the
greatest accuracy and stability on manifolds [37]. We have found that m = 2¢+1 was the most stable choice for all manifolds
considered in this article.

Finally, we must also choose the overlap parameter § € (0, 1]. In practice, we have observed that setting § < 0.2 typically
completely decouples the stencils, resulting in ill-posed subproblems when solving PDEs. However, using 0.2 < § < 1 appears
to be perfectly stable, and § can be chosen to be smaller for larger values of n [35]. Given these constraints, we use the
following heuristic:

d
n:2M+1:2<£Jr )+1. (14)

0.7 ife<4
6=4705 if4<£<6
03 ife>6

We find that these values of § result in stable differentiation matrices, while also facilitating the rapid assembly of these
matrices.

3. Least Orthogonal Interpolation

The polynomially-augmented RBF-FD procedure described above requires specification of the polynomial functions por-
tion of the algorithm, i.e., specification of the functions h’;(x), j=1,..., M. We define this polynomial basis in this section;
for simplicity we omit all notational dependence on the stencil index k in this section.

As mentioned in Section 1, the LOI procedure outputs a polynomial subspace for a given finite input point set. In addition,
the procedure also outputs a basis h;j(x) for the polynomial subspace whose elements are orthonormal in a weighted L?

space on RY, where the weight is given by the differential of a user-prescribed probability measure. This is the basis we
will use to compute augmented RBF-FD weights in (8). We start our discussion by assuming that the probability measure is
given and fixed (denoted w below), and describe towards the end of this section our choice for this measure.

3.1. Notation

With d € N, a point x € R? has Cartesian components
Xx= {x(l),...,x(d)} )

We use standard multi-index notation: given a multi-index o € Ng, we have

d d @
o
a:(a(l),...,a(d)> e Ng, |a|:Za(q) x"‘:l_[(x(q)) .
q=1

q=1
We use V,_; to denote the space of polynomials of degree n — 1 or less in R%:

n—1+d>

Vaq =span{x°‘ | aeNd, |a|§n—l], dimVn_1=< d

Let 1 be a probability measure on RY, and let LfL(Rd) be the space of real-valued square-integrable functions with respect

to the measure x on R?. We assume that p has finite polynomial moments of all orders and is not degenerate with respect
to polynomials, i.e.,

0</x2"‘du(x)<oo, o eNg (15)
Rd

Formally, we require only finite moments up to a finite order for the procedure we discuss, and degeneracy is neither a
mathematical nor a computational issue. However, the stronger assumptions above are sufficiently general for our presen-
tation, and codifying the allowable relaxation of the above requirements involves unnecessary technical discussions.
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Under the above conditions, there is a sequence of polynomials ¢y, @ € Ng, with deg ¢y = ||, satisfying

/¢a(x)¢,s(X)d/L(X)=8a,,s, Vnzspan{rba | @ e N, |t Sn}.
Rd

Note that ;4 may have compact support, in which case all integrals can be reduced to ones over this compact set. For each
n, the space V), is a finite-dimensional Hilbert space.
Assuming polynomials are complete in L2, any f € LIZL has the Fourier-like expansion

F@= Faba®=Y > fapa® =) fi®. fo= / f@)pe @)dpu(x),
aeNd j=0lal=j j=0 Rd

where we have defined f; € V; in terms of the coefficients ?a. We define the operation (-), as follows:

fr=fi®, r=min{jeNo | f;#0}.
Note that this operation depends on wu.
3.2. The Least Orthogonal Interpolant
Let P = {x1,...,x;} C RY be a point set of size n € N. With u fixed, the least orthogonal interpolation procedure provides

a polynomial subspace of dimension n associated to P.
The Riesz representor of the point-evaluation map v — 3x; (V) = v(x)) in the finite-dimensional space V,_1 has the form

ViR = Y X)), (16)
lal<n—1
With vj, j=1,...,n, defined above in terms of the nodes in P, we can define the following space of polynomials:
Vp:=span{v, | vespan{vy,...,va}}. (17)

The main result from [28] is that the space Vp has dimension n and the interpolation problem on P in the space Vp
is unisolvent. Therefore, we can always identify a unique polynomial in Vp given data on P; this polynomial is the least
orthogonal interpolant, and Vp is the least orthogonal interpolant (polynomial) space associated to P. Because Vp has di-
mension n, there is an Li—orthonormal basis, hq(-),...,hy(:), for Vp. This basis can be computationally generated using
linear algebra, and these are the basis elements that we use in the RBF-FD procedure (8) and (9). This algorithmic construc-
tion depends on detecting rank-deficiency of certain submatrices of a Vandermonde-like matrix. Like all numerical linear
algebraic methods to detect rank, this in turn depends on user specification of a tunable tolerance parameter denoted 7.
This tolerance parameter is related to numerical unisolvency of the interpolation problem, and we discuss it in more detail
in section 4.1.

The LOI definition above is abstract but, given a point set P and data on P, the computation of the interpolant (and the
basis h;) involves only standard tools from numerical linear algebra, namely LU and QR factorizations [28]. In particular,
the computational complexity of the procedure is comparable to that for a standard interpolation problem of size n.

3.3. Differentiation of the interpolant

Condition (9d) in the formation of local RBF-FD weights shows that we must have the ability to differentiate the poly-
nomial basis h;. The least orthogonal interpolant associated to the points set P of size n has the form

pw=Y chmeve [ hheoduw =

j=1 Rd

The orthonormal basis h; is output from the LOI procedure. (The coefficients ¢; may also be easily generated if data on

P is given.) The basis elements are polynomials, each of degree degh;, and have an expansion in terms of the original
orthonormal basis ¢g:

hj@= Y djada®,
|a|=degh;

for some constants d;, that are output from the LOI procedure. (Note above that we only need take « satisfying || =
deghj, not || < degh;j.) For the purposes of solving PDEs, we are particularly interested in differentiating the interpolant
p(x), say with respect to coordinate £. This is given by
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op _X":C T gy
ax© ! 1% 9x®

Jj=1 |a|=degh;

Therefore in order to compute derivatives, we need only the ability to construct the interpolant and to differentiate the
original basis ¢. The Cartesian derivatives of the basis ¢, can then be combined appropriately to give the surface gradient
VM P -

3.4. The measure |4

The LOI procedure is a well-defined map from a point configuration to the sought basis h; (and its derivatives). However,
we have yet to make a specification for the probability measure j. In principle any measure satisfying (15) will suffice, but
in our quest for stable methods, it seems more prudent to choose 1 so that the input orthonormal basis ¢4 is well-behaved.

For simplicity, we choose w to be the tensor-product Chebyshev measure over the smallest bounding box for the nodal
set P. With this, we can generate the basis ¢, as

$a(®) = ﬁ Taor (x9).
j=1

where {Tg gio are the univariate orthonormal Chebyshev polynomials. In this way, the basis ¢, along with its partial
derivatives are easily computed.

In order to apply all of the above to the RBF problem, for each stencil (nodal set) P, we compute LOI basis functions h’;
for use on that stencil, using the prescription of w above.

4. Eigenvalue stability

Eigenvalue stability is essential for stable time integration of PDEs. In this context, a discrete version of a diffusive (ellip-
tic) differential operator can be regarded as “stable” if its spectrum contains no eigenvalue with positive real parts. In [38],
this stability was achieved by performing a nonlinear optimization for the shape parameter on each stencil, constrained so
that the RBF interpolation matrices on each stencil should have approximately the same condition number. In [25], this
stability was achieved by encouraging diagonal dominance in RBF-HFD differentiation matrices using a stencil selection
algorithm.

In contrast, stability in the RBF-LOI procedure is primarily achieved by picking a single tolerance parameter t that is
globally defined over the whole mesh. We also utilize an additional empirical s tabilization procedure based on avoiding
“axis alignment”, that is alignment of a stencil configuration with the global Cartesian coordinate system. This last correction
is a pathology of our Cartesian representation of points on a manifold, and is needed only on stencils for which one or more
points geometrically aligns with a Cartesian axis. We have observed that this stabilization is needed on very few stencils in
all our tests.

We will now describe both techniques for stabilization. Throughout this section we use the same notation as in Section 3:
P is a generic RBF-FD stencil containing the points %1, ..., ®,. The principles discussed here are applied for each local RBF-FD
stencil.

4.1. The LOI tolerance parameter

The tolerance parameter T that we use is embedded in the LOI construction procedure. This tolerance parameter is a
way of tuning selection of the polynomial degree so that the polynomial interpolation on P is numerically stable.

The mathematical LOI procedure described in Section 3 can be implemented as a sequence of Q R decompositions [28],
and the complexity of the entire procedure is asymptotically the same as a standard, square, interpolation problem of the
same size, i.e., 0(n?). Recall that, given a finite point set P, the LOI polynomial space Vp has dimension n = |P|, and the
elements {hj}n.:l are an orthonormal basis for Vp.

The algorid{nmic implementation of the LOI procedure builds the functions hq, ..., hy sequentially by identifying them
with points in P, i.e., hy,..., h; are built and are each identified with a sequence Yj := {x;,,...,%;,} C P, where iy,...,ix €
{1,...,n}. After hy, ..., hy have been built, then hy is identified and constructed with an associated point %;,,, € P\Y.
The identification and construction of hy, is based on the residual of a projection. Let k < n, and define r := deghy; we

must have that r <n — 1. We require truncations of the summation in (16):

Vir® =" ¢axpa®).  r=<n—1.

loe| <r

Now define l'[rl as the Li-orthogonal projector onto orthogonal complement of V;, and let I; denote the LOI interpolation
operator associated with Y; with the basis hq, ..., hg; i.e.,
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k
If@ =) cjhj), kfx)=f&), j=1,...,k

j=1

We then define the degree r “residual” as

R=  max _}Hnrl (Vir—Ievjs) (18)
I

je{l,...n)\{i1,...,

Now let 7 > 0 be a tolerance parameter. This tolerance parameter is a threshold for the allowable residual value R. If R > 1,
then we choose

5
Ly

‘Hrl (vir = Ivir)

Ifp1 = Argmaxje(1,... np\{i,...ix) e
"

and hy4q is chosen as a normalized version of l'[f-(v,'k%r — IgVi,, ). Otherwise, if R < 7, we set r <—r + 1, recompute R
from (18), and repeat the comparison of R to 7. When 7 =0, only a pathological prescription of w allows more than one
increment of r for each k.

The tolerance parameter T can now be understood in terms of R. The quantity R measures the ability of the point set P
to resolve (with respect to the measure 1) a certain subspace of polynomials of degree r. The comparison of R with 7 then
enforces a desired threshold of resolvability for subspaces included in the LOI procedure. When this threshold is not met, the
LOI interpolation operator will be (relatively) ill-conditioned on this subspace of polynomials. Therefore, instead of including
this subspace, we simply increment the degree (generate a new subspace) in hopes of achieving a more stable polynomial
approximation. This simple heuristic allows us, for a fixed t, to achieve stable RBF-LOI approximations for general test cases
without any optimization.

4.2. Axis misalignment

We empirically observe that some local stencils produce unstable results when the point set P has a very special con-
figuration in space. This instability is not directly caused by our procedures, but instead by our choice of the alignment of
a Cartesian coordinate system in d-dimensional space; it is plausible that this instability may not occur, say, for approxi-
mations on the tangent plane. We first describe the source of the instability, and then describe our simple computational
strategy to circumvent the issue. To keep notational jargon at a minimum in this section, with d =3 we use the notation
(XD, x? x3) = (x, y, 2).

The stencil P contains a spatial configuration of points, and the LOI procedure outputs a basis hy, ..., hy from these
points. The instability we observe stems from situations where a special arrangement of points P results entries of the
matrix defined in (9d) satisfying G*hj = 0. This “zero column” of the matrix By, causes numerical instabilities when the
corresponding global (sparse) differentiation matrix is used for the discretization of PDEs.

We give a brief account of why this “zero column” occurs: The functions h; are arranged in order of increasing polyno-
mial degree. E.g., in d = 3, hy is the constant polynomial, and hy, hs, and hy4 are all linear polynomials, except in pathological
arrangements of P or for pathological measures . For simplicity of discussion, we assume in this section that d =3 and
that hy, h3, and h4 are all linear polynomials.

Suppose that the outward pointing normal vector n at the stencil center equals (ny,ny,n3)”. This implies that the
x-component G* of the surface gradient operator in (1) is given by

gX

g¥ | = (I - nnT) \%

gZ

A linear polynomial, say hy, has the expansion
hy(X)=ax+By+yz+d,

where «, 8, y, and d are all constants. Then we can compute

g* a
gz’ hy = (I —nnT) ij

We can see then that one component of this vanishes when any row of (I —nnT) is orthogonal to (a, 8, ¥)T. While this
situation happens rarely, it is not difficult to construct situations when such a condition is triggered. Indeed, by constructing
a stencil arranged with a normal vector n = (1,0,0)7, then certain configurations of the stencil P cause (a,8,y)! =
(o, 0,0)T, which then results in G*h, = 0.

We observe in practice that stencils centered on points that are “axis aligned” with the Cartesian grid generate an
LOI basis that causes one surface gradient component for linear polynomials to vanish. Our simple fix to circumvent this
alignment issue for those stencils is as follows:
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1. Check if any column of the LOI R? gradient-component matrices on the stencil Py (other than the first) contains only
zeros. Mark the columns.

2. Eliminate the basis functions h’;(x) (and their derivatives) corresponding to these marked columns from the matrices
Hy and Bp,.

5. Results

We have completed a full description of the RBF-LOI procedure and in this section we test the convergence rates of this
method on the sphere and torus, where explicit expressions for surface differential operators are known. We then present
timing results for our methods as a function of error. In all cases, the relative errors are measured in the embedding space
and no quadrature is used. This may affect the constants involved, but should not affect the convergence rates.

5.1. Advection on the sphere S?
In this test, we solve the surface advection equation on the sphere; in conservative form, this is given by:

%—i-VM-(uc):O, (19)

at
where c(x, t) is some scalar field being advected on the surface M by the velocity field u(x, t). Of course, if V- u =0, this
equation can be simplified to % + u - Vire = 0. However, we opt to discretize (19) directly as this appears to produce lower
errors than the alternative approach. Unfortunately, the RBF-FD differentiation matrices corresponding to the components of
the surface divergence operator Vy typically contain spurious eigenvalues in their spectra, often with (small) positive real
parts. This can cause instabilities especially when an explicit time discretization is used. The remedy for this issue is to add
a small amount of artificial hyperviscosity for stabilization [16,20]. This transforms (19) to

% + Vi - (o) = y Ak, (20)
where y € R and k € N must be tuned. Typically, y is a small number that goes to zero as N — oo, and k is gently increased
as the order of the method is increased [16]. For simplicity, we compute the discrete surface hyperviscosity operator by
simply computing L¥, where L is the discrete surface Laplacian.

While formulas for y can be found in the literature for Euclidean domains in the context of PHS-based RBF-FD [3,14],
there are no such formulas for the PHS-based RBF-FD on the sphere (to the best of our knowledge). In this work, we use
the following formulas for y and k:

y = (=1)1 k2% (W)Z_Zk Amax|#llmax. (21)
k=lnn], (22)

where Amax is the real part of the eigenvalue with largest real part of the sparse differentiation matrices G*, G, and G~
||| max is shorthand for the maximum of the pointwise £; norms of the velocities evaluated on the node set. A derivation
of this formula is beyond the scope of this paper, but will be detailed in future work. For this article, we always have
lt|lmax = 1. Amax is estimated by Matlab calls to eigs(.,1,'LR’), with a very loose tolerance of 8e — 2; this estimation is
a preprocessing step for a given node set and stencil size. Our chosen test problem is the deformational flow test case
from [27]. The components of the velocity field (in spherical coordinates) are

10 T\ . 5 27t 27

u(pr, g2, t) = T cos <?> sin <¢>1 — T) sin 2¢2) + T cos (¢2) , (23)
10 Tty . 2t

v(p1, ¢, t) = T cos (T) sin <2¢1 - T) cos (¢2), (24)

where —m <¢1 <m, —m/2 < ¢ <m /2, and T =5. The flow field deforms the initial condition up to time ¢t = 2.5 and then
reverses to return the solution to its initial position at t =5, which serves as the final time for the simulation. A simple
change of basis is used to convert the velocity field into Cartesian coordinates. To test the convergence behavior of RBF-LOI
under refinement, we use a smooth initial condition in the form of two Gaussian bells, given by

c(x.0)=0.95 (e—SIIx—m 13 4 e=5la—p2 ||%) 7 (25)

where p; = («/5/2, 1/2, 0) and p; = <\/§/2, —1/2,0). Following [1], we use a time-step of At = 32 for this test. The

time-stepping is done using the classical fourth-order explicit Runge Kutta method (RK4). The node sets were standard
icosahedral nodes from the Spherepts package [40]. The results are shown in Fig. 1(left). Fig. 1 (left) shows that though
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Fig. 1. Convergence on the sphere for the surface advection equation (left) and torus for the forced surface diffusion equation (right). The figure shows
relative ¢, error as a function of +/N for different values of stencil n and polynomial degree £.

one expects a convergence rate of & = ¢, we appear to obtain slightly lower rates. The LOI tolerance parameter T was set
totr=1le—2for{=2, t=1e—3 for £=3, and T =1e — 4 for £ =4. In [16], a shape parameter was carefully tuned to
avoid stagnation errors, and the parameters ¥ and k were numerically computed so as to avoid instabilities. In contrast,
our approach only involves setting T and estimating Amax very crudely (which is done rapidly). No shape parameters or
tuning were required to obtain stability, and no extended precision arithmetic was required. The goal of this article is
simply demonstrate the feasibility of RBF-LOI for PDEs on surfaces, and we hence defer a deeper investigation of RBF-LOI
for advection on the sphere to future work. We note that while the stencil sizes in our work are larger than those used
in [16], the increase in computational cost is largely ameliorated by the use of the overlapped RBF-FD method.

5.2. Diffusion on a torus T

We consider the torus from [38] given by

2
’H‘:{X:(x,y,z)eR3 <1—,/x2+y2> +z2—%:o}. (26)

Our goal is to solve the forced diffusion equation given by

oc
— = AmC . 27
ac = Ame+Sf (27)

In all cases, we use the method of manufactured solutions, i.e., we prescribe a solution c(x,t) and calculate the forcing
term f(x,t) that makes the solution hold. We use the BDF4 time-stepping scheme [2] for advancing the solution in time.
This time-stepping scheme is fully implicit, and requires the solution of a sparse linear system every time-step. We set
the time-step to At =103 for this test, and use Matlab’s built-in sparse direct solver to solve the sparse linear systems
obtained from overlapped RBF-FD. The manufactured solution in this case is given by

23
ct,p, ) =e >t Z —81(1-C05(.—14))~9(1—cos(p—1)) 08)
k=1

where the intrinsic coordinates —m < ¢, A < w parameterize the torus T in the usual way [38]. The solution is C°°(T). The
LOI tolerance was fixed at T = 1073 for £ =4, 5, and decreased to T = 10~ for £ = 6. The results are shown in Fig. 1 (right).
We obtain a convergence rate of approximately £ + 1 on the torus. Once again, no extended-precision arithmetic was used;
all calculations are in double precision, with the cost of forming the larger differentiation matrices being almost completely
ameliorated by the large speedup obtained from overlapped RBF-FD. Similar results were obtained for forced diffusion on
the sphere as well (not shown).

5.3. Cost vs accuracy
To better understand the costs involved in both overlapped RBF-FD and its use within the RBF-LOI algorithm, we now

study computational cost (measured in wall-clock time) as a function of accuracy for different values of & (and therefore
n and £). Since the overlapped RBF-FD method is used only to speed up the assembly of the differentiation matrices, we
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Fig. 2. Cost versus accuracy on the torus for the forced surface diffusion equation. The figures show wall-clock time as a function of relative ¢, error for
different values of stencil n, polynomial degree ¢, and overlap parameter 8. § =1 corresponds to the standard RBF-FD method (dashed lines). The figures
compare costs for the assembly stage (left), sparse LU factorization stage (middle), and the actual back-solve stage (right). In all cases, the ¢, error is a
function of ~/N, which is increasing left to right.

present separate cost versus accuracy results for the assembly stage, the sparse LU factorization stage (preprocessing for
solving the linear system), and the actual solution of the PDE using back solves, all with and without the use of overlapped
RBF-FD. To ensure that the cost measured reflects matrix inversion rather than just matrix multiplies, we focus on the case
of diffusion on the torus, which requires a sparse linear solve every step. The results are shown in Fig. 2.

Fig. 2 (left) shows that the overlapped RBF-FD method results in significant cost savings at the assembly stage for
comparable accuracy; the method lags behind the standard RBF-FD method (8§ = 1) in accuracy only on the finest node
set for £ = 6. Fig. 2 (middle) shows that the LU factorization costs are all comparable across different values of §, with
the costs appearing to increase slowly with n and ¢. Finally, Fig. 2 (right) shows that the back solve costs are also mostly
comparable across all methods, with £ =4 being the exception; in this case, § =1 appears to be cheaper, possibly due to
slightly different matrix structure. It is important to note that if one sums up costs across the subfigures of Fig. 2 for § =1,
the assembly cost dominates all other costs. In contrast, for the overlapped RBF-FD method, the assembly cost is comparable
to the back-solve cost. This feature would be beneficial when solving a problem on a moving domain.

6. Applications

Having validated our the RBF-LOI method on standard test cases, we now turn our attention to some applications. Our
goal here is demonstrate that the RBF-LOI method is stable on different point cloud surfaces and PDEs that are more
complicated than the forced diffusion equation. To that end, we test on three manifolds of increasing genus:

1. The red blood cell (genus 0), a parametric surface with node sets and normals obtained using the techniques outlined
in [36];

2. Dupin’s cyclide (genus 1), an implicit surface with node sets and normals obtained using Meshlab [8]; and

3. The double torus (genus 2), another implicit surface with node sets and normals again obtained using Meshlab.

Unfortunately, unlike in [25,38], we were unable to find stable parameters for point cloud models of more complicated
manifolds such as frogs and bunnies. It is likely that such surfaces would require an adaptive tolerance selection for the
LOI procedure, which we leave for future work. The problem of advection on arbitrary surfaces also requires a very careful
derivation of hyperviscosity parameters y and k, which is likewise beyond the scope of this article. We instead focus on
biologically-motivated reaction-diffusion models involving nonlinear terms. We believe that these applications serve as a
convincing demonstration of the simplicity and effectiveness of the RBF-LOI method. In all cases, we use the following
parameters for RBF-LOI: ¢ =4, m = 2¢ + 1, tolerance of T = 1073, All simulations used the SBDF2 method for time-stepping,
with corresponding linear systems being solved by the built-in Matlab sparse direct solver.

6.1. Cahn-Hilliard on a red blood cell

Our first application is the simulation of the Cahn-Hilliard equation on an idealized red blood cell [24]. The Cahn-Hilliard
equation is a nonlinear PDE governing phase separation, and is given by

ac
= VAMC® — VAC — VY AdC, (29)
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Fig. 3. Solution of the Cahn-Hilliard equation on the red blood cell at time T =2 (left) and eigenvalues of the Laplacian (right). (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

where Afw is the surface bilaplacian. The solutions ¢ =1 and ¢ = —1 both constitute critical points of this reaction-diffusion
system, and any initial condition will be separated over time into these two phases. We simulate the above PDE on the red
blood cell to time t =2 using a random initial condition. To approximate the surface bilaplacian, we first form the discrete
surface Laplacian L, then simply compute the discrete surface bilaplacian B as B = L.L. This has the effect of increasing the
fill-in of B when compared to L, but our goal here is to simply demonstrate effectiveness. We use y =0.006 and v = 0.5,
and a time-step of At =10~%. This small step is primarily due to the stiff nonlinear term vApc> being stepped explicitly
in time. The results for N = 2553 nodes are shown in Fig. 3(a), and the spectrum of the discrete surface Laplacian is shown
in Fig. 3(b). Clearly, our solutions are exhibiting the correct qualitative behavior, and the spectrum of L contains no spurious
eigenvalues. To obtain the same behavior without LOI, careful tuning of the shape parameter on a stencil-by-stencil basis
was needed in [38], and a stencil selection algorithm was needed in [25].

6.2. Fitzhugh-Nagumo waves on Dupin’s cyclide

Following [24], we simulate the Fitzhugh-Nagumo reaction-diffusion system on Dupin’s cyclide. The reaction-diffusion
model is given by:

acy 1 c2 +0.02

— =81 AMC1+ ——=c1 (1 —c1) 1 — = ), 30
or = 01Ama+ oo 1)<1 075 ) (30)
ac

8_t2 =381ApMC2 + €1 —C2, (31)

where c¢; and c, are typically viewed as chemical concentrations or densities corresponding to a membrane potential and
a current, respectively. The above system is a simple model for the dynamics of excitable media, and is often viewed as a
simplification of the Hodgkin-Huxley model for the dynamics of neurons [13,26]. Our initial condition on Dupin’s cyclide
is given by ¢1 = % (1+tanh(5%+ y)) and c; = % (1 —tanh(102)), where x = (x, ¥, z). The node sets on the cyclide are the
same as those used in [24]; we use N = 11884 of these nodes. The results of the simulation with the SBDF2 method at time
t =100 are shown in Fig. 4(a), and the spectrum of the discrete Laplacian is shown in Fig. 4(b). As expected, the simulation
results in spiral waves that scroll over the manifold.

6.3. Turing spots on the double torus
Our final application involves solving another coupled reaction-diffusion system on the double torus
1
T2 ={x=(xy,2) € R | (*(1=x*) = y*)* +0.52° = o}, (32)

which a genus-2 surface obtained as the join of two genus-1 tori. On this surface, we simulate the Turing system given by

ac

8—; =81 AmcC1 +acy (1 - t1C§) +c(1—101), (33)
ac aT

3_t2 =d2AnC2 + BC2 <1 + 71C1€2> +c (Y1 +1202), (34)
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Fig. 4. Solution of the Fitzhugh-Nagumo equations on Dupin’s cyclide at time T =800 (left) and eigenvalues of the Laplacian (right).

Fig. 5. Solution of the Turing equations on the double torus at time T =800 (left) and eigenvalues of the Laplacian (right).

where we use the parameters §; = 0.0011, §; =0.0021, 71 =0.02, 1, =0.2, « =0.899, 8 =—0.91, and y; = —a. We use a
time-step of At =0.01 and simulate to a final time of t =800 on N = 12100 nodes. The results are shown in Fig. 5a, and
the spectrum of the discrete Laplacian L is shown in Fig. 5b. Fig. 5a shows that spot patterns have formed on the double
torus despite the relatively coarse spatial discretization.

7. Summary and future work

We have proposed and demonstrated numerical solutions to PDEs on manifolds via RBF-LOI: a polynomially-augmented
RBF-FD procedure. The major novel contribution of our work has been demonstration that a well-chosen polynomial basis
(here, the Least Orthogonal Interpolant) along with efficient stencil overlap techniques for RBF-FD approximation can yield
a stable, robust, efficient, and accurate PDE solver on manifolds. Our algorithm relies on specification of only two global
parameters: an overlap parameter (which affects cost of local discrete operator construction), and a LOI tolerance parameter
(which affects stability of polynomial approximations).

To tackle more general point clouds, we would like the LOI tolerance parameter to be automatically tunable on a per-
stencil basis. Ongoing work revolves around devising an automated approach for this parameter, and application of the
RBF-LOI to PDE solutions on more intricate manifolds. Future work would involve rigorously deriving a hyperviscosity for-
mulation for PDEs on arbitrary orientable manifolds to facilitate the solution of hyperbolic problems with RBF-LOI.

Acknowledgements

This research was sponsored in part by the Army Research Laboratory and was accomplished under Cooperative Agree-
ment Number W911NF-12-2-0023. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Labo-
ratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. VS was also partially supported by NSF grants DMS-1521748, CISE
AF-1714844, and DMS-1160432, and AN was also partially supported by NSF DMS-1720416 and AFOSR FA9550-15-1-0467.



V. Shankar et al. / Journal of Computational Physics 373 (2018) 722-735 735

References

[1] K.A. Aiton, A Radial Basis Function Partition of Unity Method for Transport on the Sphere, Master’s thesis, Boise State University, USA, 2014.
[2] U.M. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit-explicit methods for time-dependent PDEs, SIAM ]. Numer. Anal. 32 (1997) 797-823.
[3] G.A. Barnett, A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials, PhD thesis, University of Colorado Boulder, 2015.
[4] V. Bayona, N. Flyer, B. Fornberg, G.A. Barnett, On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic pdes, J. Comput.
Phys. 332 (Supplement) (2017) C:257-273.
[5] V. Bayona, M. Moscoso, M. Carretero, M. Kindelan, RBF-FD formulas and convergence properties, J. Comput. Phys. 229 (22) (2010) 8281-8295.
[6] J. Behrens, A. Iske, Grid-free adaptive semi-Lagrangian advection using radial basis functions, Comput. Math. Appl. 43 (3) (2002) 319-327.
[7] C.D. Boor, A. Ron, Computational aspects of polynomial interpolation in several variables, Math. Comput. 58 (198) (1992) 705-727.
[8] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, MeshLab: an open-source mesh processing tool, in: V. Scarano, R.D. Chiara,
U. Erra (Eds.), Eurographics Italian Chapter Conference. The Eurographics Association, 2008.
[9] O. Davydov, D.T. Oanh, Adaptive meshless centres and RBF stencils for Poisson equation, ]. Comput. Phys. 230 (2) (2011) 287-304.
[10] O. Davydov, R. Schaback, Optimal stencils in Sobolev spaces, 2017, submitted for publication.
[11] G.E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6, World Scientific Publishers, Singapore,
2007.
[12] G.E. Fasshauer, M.]. McCourt, Stable evaluation of Gaussian radial basis function interpolants, SIAM ]. Sci. Comput. 34 (2012) A737-A762.
[13] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (6) (1961) 445-466.
[14] N. Flyer, G.A. Barnett, LJ. Wicker, Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations, . Comput. Phys.
316 (2016) 39-62.
[15] N. Flyer, B. Fornberg, V. Bayona, G.A. Barnett, On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy, J. Comput. Phys. 321
(2016) 21-38.
[16] N. Flyer, E. Lehto, S. Blaise, G.B. Wright, A. St-Cyr, A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a
sphere, J. Comput. Phys. 231 (2012) 4078-4095.
[17] N. Flyer, G.B. Wright, Transport schemes on a sphere using radial basis functions, J. Comput. Phys. 226 (2007) 1059-1084.
[18] N. Flyer, G.B. Wright, A radial basis function method for the shallow water equations on a sphere, Proc. R. Soc. A 465 (2009) 1949-1976.
[19] B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput. 33 (2) (2011) 869-892.
[20] B. Fornberg, E. Lehto, Stabilization of RBF-generated finite difference methods for convective PDEs, ]J. Comput. Phys. 230 (2011) 2270-2285.
[21] B. Fornberg, E. Lehto, C. Powell, Stable calculation of Gaussian-based RBF-FD stencils, Comput. Math. Appl. 65 (2013) 627-637.
[22] B. Fornberg, C. Piret, A stable algorithm for flat radial basis functions on a sphere, SIAM ]. Sci. Comput. 30 (2007) 60-80.
[23] B. Fornberg, G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl. 48 (2004) 853-867.
[24] EJ. Fuselier, G.B. Wright, A high-order kernel method for diffusion and reaction-diffusion equations on surfaces, J. Sci. Comput. 56 (3) (2013) 535-565.
[25] E. Lehto, V. Shankar, G.B. Wright, A radial basis function (rbf) compact finite difference (fd) scheme for reaction-diffusion equations on surfaces, SIAM
J. Sci. Comput. 39 (5) (2017) A2129-A2151.
[26] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (10) (1962) 2061-2070.
[27] R.D. Nair, P.H. Lauritzen, A class of deformational flow test cases for linear transport problems on the sphere, J. Comput. Phys. 229 (23) (2010)
8868-8887.
[28] A. Narayan, D. Xiu, Stochastic collocation methods on unstructured grids in high dimensions via interpolation, SIAM ]. Sci. Comput. 34 (3) (2012)
A1729-A1752.
[29] C. Piret, The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces, J. Comput.
Phys. 231 (20) (2012) 4662-4675.
[30] C. Piret, J. Dunn, Fast rbf ogr for solving pdes on arbitrary surfaces, AIP Conf. Proc. 1776 (1) (2016).
[31] J.A. Reeger, B. Fornberg, Numerical quadrature over the surface of a sphere, Stud. Appl. Math. 137 (2) (2016) 174-188.
[32] J.A. Reeger, B. Fornberg, Numerical quadrature over smooth surfaces with boundaries, J. Comput. Phys. 355 (Supplement C) (2018) 176-190.
[33] J.A. Reeger, B. Fornberg, M.L. Watts, Numerical quadrature over smooth, closed surfaces, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 472 (2194) (2016).
[34] R. Schaback, Multivariate interpolation by polynomials and radial basis functions, Constr. Approx. 21 (3) (2005) 293-317.
[35] V. Shankar, The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD, ]. Comput. Phys. 342 (2017) 211-228.
[36] V. Shankar, R.M. Kirby, A.L. Fogelson, Robust node generation for meshfree discretizations on irregular domains and surfaces, SIAM ]. Sci. Comput.
(2018), in press.
[37] V. Shankar, G.B. Wright, Mesh-free semi-Lagrangian methods for transport on a sphere using radial basis functions, J. Comput. Phys. 366(C) (2018)
170-190.
[38] V. Shankar, G.B. Wright, RM. Kirby, A.L. Fogelson, A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion
equations on surfaces, J. Sci. Comput. 63 (3) (2014) 745-768.
[39] H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., vol. 17, Cambridge University Press, Cambridge, 2005.
[40] G.B. Wright, SpherePts, https://github.com/gradywright/spherepts/, 2018.
[41] G.B. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys. 212 (1) (2006)
99-123.
[42] G.B. Wright, B. Fornberg, Stable computations with flat radial basis functions using vector-valued rational approximations, J. Comput. Phys. 331 (2017)
137-156.


http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4169746F6E32303131s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4173636865723937s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4261726E657474504853s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C796572456C6C6970746963s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C796572456C6C6970746963s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4261796F6E6132303130s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib69736B6532303032s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib626F6F725F636F6D7075746174696F6E616C5F31393932s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4D6573686C6162s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4D6573686C6162s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib44617679646F7632303131s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4661737368617565723A32303037s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4661737368617565723A32303037s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib46614D433132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib6669747A6875676831393631s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C7965724E53s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C7965724E53s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C796572504853s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C796572504853s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C7965724C6568746F32303132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C7965724C6568746F32303132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C7965725772696768743A32303037s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466C7965725772696768743A32303039s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib464C46s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466F4C3131s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466F4C65506F3133s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466F726E6265726750697265743A32303037s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466F5772s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib467573656C6965725772696768743A32303133s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4C53575349534332303137s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4C53575349534332303137s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib6E6167756D6F31393632s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4E6169724C61757269747A656E32303130s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib4E6169724C61757269747A656E32303130s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib6E61726179616E5F73746F636861737469635F32303132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib6E61726179616E5F73746F636861737469635F32303132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib506972657432303132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib506972657432303132s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib506972657432303136s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib526565676572466F726E626572675175616431s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib526565676572466F726E626572675175616433s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib526565676572466F726E626572675175616432s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib536368616261636B32303035s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib5368616E6B61724A435032303137s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib53464B5349534332303137s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib53464B5349534332303137s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib53574A435032303138s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib53574A435032303138s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib5357464B4A534332303134s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib5357464B4A534332303134s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib57656E646C616E643A32303034s1
https://github.com/gradywright/spherepts/
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib577269676874323030363939s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib577269676874323030363939s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466F577232303136s1
http://refhub.elsevier.com/S0021-9991(18)30476-5/bib466F577232303136s1

	RBF-LOI: Augmenting Radial Basis Functions (RBFs) with Least Orthogonal Interpolation (LOI) for solving PDEs on surfaces
	1 Introduction
	2 Overlapped RBF-FD on surfaces
	2.1 Description
	2.2 Parameter selection

	3 Least Orthogonal Interpolation
	3.1 Notation
	3.2 The Least Orthogonal Interpolant
	3.3 Differentiation of the interpolant
	3.4 The measure μ

	4 Eigenvalue stability
	4.1 The LOI tolerance parameter
	4.2 Axis misalignment

	5 Results
	5.1 Advection on the sphere S2
	5.2 Diffusion on a torus T
	5.3 Cost vs accuracy

	6 Applications
	6.1 Cahn-Hilliard on a red blood cell
	6.2 Fitzhugh-Nagumo waves on Dupin's cyclide
	6.3 Turing spots on the double torus

	7 Summary and future work
	Acknowledgements
	References


