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Leveraging recent advances in technologies surrounding the Internet of Things, “smart” water systems are

poised to transform water resources management by enabling ubiquitous real-time sensing and control.

Recent applications have demonstrated the potential to improve flood forecasting, enhance rainwater

harvesting, and prevent combined sewer overflows. However, adoption of smart water systems has been

hindered by a limited number of proven case studies, along with a lack of guidance on how smart water

systems should be built. To this end, we review existing solutions, and introduce open storm—an open-

source, end-to-end platform for real-time monitoring and control of watersheds. Open storm includes (i) a

robust hardware stack for distributed sensing and control in harsh environments (ii) a cloud services plat-

form that enables system-level supervision and coordination of water assets, and (iii) a comprehensive,

web-based “how-to” guide, available on open-storm.org, that empowers newcomers to develop and de-

ploy their own smart water networks. We illustrate the capabilities of the open storm platform through two

ongoing deployments: (i) a high-resolution flash-flood monitoring network that detects and communicates

flood hazards at the level of individual roadways and (ii) a real-time stormwater control network that ac-

tively modulates discharges from stormwater facilities to improve water quality and reduce stream erosion.

Through these case studies, we demonstrate the real-world potential for smart water systems to enable

sustainable management of water resources.

1 Introduction
Advances in wireless communications and low-power sensing are
enabling a new generation of “smart cities,” which promise to im-
prove the performance of municipal services and reduce operat-
ing costs through real-time analytics and control.1 While some
applications of “smart” infrastructure have received a great deal
of attention—such as autonomous vehicles,2,3 energy grid man-
agement,3 and structural health monitoring3,4—integration of
these technologies into water systems has lagged behind. How-
ever, “smart” water systems offer new inroads for dealing with
many of our most pressing urban water challenges, including
flash flooding, aquatic ecosystem degradation, and runoff pollu-
tion. The goal of this paper is to provide an end-to-end blueprint
for the next generation of autonomous water systems, with a par-

ticular focus on managing urban stormwater. Towards this goal,
we introduce open storm, an open source framework that com-
bines sensing, real-time control, wireless communications, web
services and domain-specific models. We illustrate the potential
of open storm through two real-world case studies: 1) a 2200 km2

wireless flood forecasting network in Texas, and 2) an 11 km2

real-time stormwater control network in Michigan. Most impor-
tantly, to encourage broader adoption by the water resources
community, this paper is accompanied by extensive ESI† on
open-storm.org, including videos, photos, source code, hardware
schematics, assembly guides, and deployment instructions. These
materials make it possible for newcomers to implement their
own “smart” stormwater systems, without extensive experience in
programming or embedded systems design.

2 Background
2.1 Motivation

Effective management of water supply and water excess are
some of the largest engineering problems faced by cities
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Water impact

A new generation of autonomous technologies promises to transform the way we manage watersheds. Real-time analytics and control will reduce
stormwater pollution, protect aquatic ecosystems, and enable high-resolution flood forecasting. We present an end-to-end framework for building “smart”
watersheds, including an open-source hardware/software platform, and a community-driven “how-to” guide that will empower newcomers to implement
their own “smart” water systems.
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today,5 and in the wake of rapid urbanization, aging infra-
structure, and a changing climate, these challenges are
expected to intensify in the decades to come.6,7 Floods are
the leading cause of severe weather fatalities worldwide, ac-
counting for roughly 540 000 deaths between 1980 and 2009.8

Furthermore, large quantities of metals, nutrients, and other
pollutants are released during storm events, making their
way via streams and rivers into lakes and coastal zones.9,10

The need to manage pollutant loads in stormwater has per-
sistently been identified as one of our greatest environmental
challenges.11 To contend with these concerns, most commu-
nities maintain dedicated gray infrastructure (pipes, ponds,
basins, wetlands, etc.) to convey and treat water during storm
events. However, many of these systems are approaching the
end of their design life.12 At the same time, stormwater sys-
tems are being placed under greater stress due to larger ur-
ban populations, changes in land use, and the increasing fre-
quency of extreme weather events.5,7 In some communities,
stormwater and wastewater systems are combined, meaning
that they share the same pipes. For these systems, large
storms often lead to combined sewer overflows, which release
viruses, bacteria, nutrients, pharmaceuticals, and other pol-
lutants into estuaries downstream.13 When coupled with pop-
ulation stressors, it comes as little surprise that the current
state of stormwater infrastructure in the United States has
been given a near-failing grade by the American Society of
Civil Engineers.14

Engineers have traditionally responded to increasing de-
mands on stormwater systems by expanding and
constructing new gray infrastructure. However, the upsizing
of pipes and storage elements can prove expensive, time-
consuming, and may even result in deleterious long-term
side effects. Benefits from stormwater conveyance facilities
can be diminished if individual sites are not designed in a
global context. Even when best management practices are
followed, discharges from individual sites may combine to
induce downstream flows that are more intense than those
produced under unregulated conditions.15 Without system-
level coordination, gray infrastructure expansion may lead
to overdesigned solutions that adversely impact flooding,
increase stream erosion, and impair water quality.16 In re-
sponse to these concerns, green infrastructure (GI) has been
proposed as an alternative to traditional “steel and con-
crete” stormwater solutions. These systems use smaller, dis-
tributed assets—such as bioswales, green roofs and rain
gardens—to condition flows and improve water quality.
However, recent research has raised questions about the
scalability and maintenance requirements of green infra-
structure.17 Regardless of the choice between “gray” or
“green”, new construction is limited by cost, and often can-
not keep pace with evolving community needs. To preserve
watershed and ecological stability, there is an urgent need
to incorporate systems thinking into stormwater designs
and to engineer solutions that can optimize stormwater sys-
tem performance—not only for individual sites, but for en-
tire watersheds.

2.2 The promise of sensing and control

“Smart” water systems promise to improve the study and
management of water resources by extending monitoring and
control beyond centralized facilities and into watersheds as a
whole. With increased access to inexpensive sensors and
wireless communications, the feasibility of deploying and
maintaining large sensor networks across urban landscapes
is now within reach for many public utilities and research
groups. While many of the technologies have existed for
some time, it was not until the integration of wireless sensor
networks with web services (i.e. the Internet of Things) that
large networks consisting of hundreds or thousands of
heterogeneous devices could be managed reliably.18 This in
turn has enabled watersheds to be studied at spatial and tem-
poral scales that were previously unattainable. By densely
instrumenting urban watersheds, researchers can finally be-
gin to understand the complex and spatially variable feed-
backs that govern water flow and quality across the built en-
vironment. A system-level understanding of urban watershed
dynamics will provide decision makers with actionable in-
sights to alert the public, and improve stewardship of water
resources.

Beyond new insight gained through sensing, the ability to
dynamically regulate water levels across a watershed will re-
duce flooding, preserve riparian ecosystems, and allow for
distributed treatment of stormwater. While these functions
were previously achieved only through construction of static
gray infrastructure or centralized treatment facilities, the ad-
dition of remotely-controlled valves and pumps promises to
realize the same benefits while at the same time reducing
costs, expanding coverage, and allowing system performance
to scale flexibly with changing hydrologic conditions. Adding
valves to existing stormwater facilities, for instance, can ex-
tend hydraulic retention time, thereby promoting the capture
of sediment-bound pollutants.19,20 Modulation of flows
(hydrograph shaping) may reduce erosion at downstream lo-
cations by ensuring that discharges do not exceed critical
levels.19 More fundamentally, distributed control will enable
operators to coordinate outflows from stormwater sites (tens
to hundreds) across an entire city. Along with reducing
flooding, this will allow water managers to utilize the latent
treatment capacity of existing ponds and wetlands—effec-
tively allowing a watershed to function as a distributed waste-
water treatment plant.20

Such a vision for “smart” stormwater systems is no longer
limited by technology. Rather, adoption of smart water sys-
tems has been hindered by (i) a reliance on proprietary tech-
nologies, (ii) a lack of proven case studies, and (iii) an ab-
sence of end-to-end solutions that are specifically designed
and tested for water resources applications. To enable truly
holistic management and control, there is an urgent need to
combine modern technologies with domain knowledge from
water sciences—something which present solutions do not
address or make transparent. These solutions are reviewed
next, after which the open storm framework is introduced as
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an end-to-end blueprint for “smart” water systems manage-
ment. This open-source framework combines low-power wire-
less hardware with modern cloud computing services and
domain-specific applications to enable scalable, real-time
control of urban water systems.

3 Existing technologies
Real-time sensing and control of water infrastructure is not a
new idea. Supervisory control and data acquisition (SCADA)
systems have long been used to monitor and control critical
water infrastructure.21 In addition to traditional SCADA sys-
tems, there has been a recent explosion in the development
of wireless sensor networks (WSNs) for water resources man-
agement. While these technologies have made great strides
in enabling monitoring and control of water systems, a lack
of end-to-end solutions has inhibited system-scale manage-
ment of watersheds. In this section, we review existing tech-
nological solutions for water system monitoring and control,
and describe how open storm advances the state of the art by
providing the first open source, end-to-end solution for dis-
tributed water systems management.

3.1 SCADA systems

Most water utilities use SCADA systems to manage the con-
veyance, treatment and distribution of water.21 These systems
comprise collections of devices, communication protocols,
and software that enable remote monitoring and control of
water assets.21 Most commonly applied in water distribution
systems, SCADA systems typically monitor parameters that in-
dicate service quality—such as flows, pressures, and chemical
concentrations—and then use this information to control the
operation of pumps and valves in real-time.21 Control may be
manual or automatic, and in some cases may integrate opti-
mization algorithms, decision support systems and advanced
control logic.21 While legacy SCADA systems remain popular
among water utilities, they suffer from limitations in three
major areas: interoperability, scalability and security.

Perhaps the most critical limitation of legacy SCADA sys-
tems is the lack of interoperability between systems, reliance
on proprietary protocols, and non-extensible software.22 Tra-
ditional SCADA systems are often isolated and incapable of
intercommunication.22 Systems that manage water in one
municipality, for instance, may be incapable of communicat-
ing with those in another municipality, despite sharing the
same service area. Moreover, different SCADA systems within
the same jurisdiction may also be isolated, meaning that
management of stormwater systems may not in any way in-
form the operation of wastewater treatment facilities down-
stream. This lack of communication between water manage-
ment architectures makes it difficult to coordinate control
actions at the watershed scale. Proprietary SCADA systems
are also often unable to interface with modern software
layers, like Geographic Information Systems (GIS), network
analysis software, or hydrologic models.22 For this reason,
SCADA-based control often cannot take advantage of modern

domain-specific tools that would enable system-scale optimi-
zation of watershed resources.

The capacity of SCADA systems to implement watershed-
scale control is also limited by a lack of spatial coverage.
Due to their large power footprint and maintenance re-
quirements, traditional SCADA systems are typically limited
to centralized water assets with dedicated line power, such
as drinking water distribution systems and wastewater treat-
ment facilities.23 Sensors are usually deployed at a select
few locations within the network—like treatment plants,
pump stations and boundaries with other systems—and in
many cases plant and pump station discharges are not even
recorded.21 For decentralized applications, such as
stormwater networks or natural river systems, the cost and
power usage of traditional SCADA systems are prohibitive.
As such, these distributed resources often go unmonitored
and uncontrolled.

Recent studies have also raised concerns about the sec-
urity of SCADA systems, many of which were designed and
installed decades ago.24,25 Many legacy SCADA systems rely
on specialized protocols without built-in support for authen-
tication, such as MODBUS/TCP, EtherNet/IP and DNP317.24,25

The use of unsecured protocols means that it is possible for
unauthorized parties to execute commands remotely on a de-
vice in the SCADA network.24 To cope with this problem,
SCADA networks are often isolated from public networks,
such as the internet. However, remote attacks are still possi-
ble—particularly through the use of unsecured radio chan-
nels.25 Moreover, isolation from public networks limits the
use of modern web services such as cloud computing plat-
forms. Reliance on closed networks and proprietary inter-
faces may also lend a false sense of security to legacy SCADA
systems—a concept known as security through obscurity.24

For these reasons, SCADA systems have gained the reputation
of being relatively closed and only manageable by highly-
trained operators or specialized local consultants. While
SCADA systems remain the most popular platform for man-
aging urban water systems, new tools are needed to improve
security, expand coverage, and encourage integration with
modern software.

3.2 Wireless sensor networks

The past decade has witnessed a large reduction in the cost
and power consumption of wireless electronics; leveraging
these advances, wireless sensor networks (WSNs) have op-
ened up new frontiers in environmental monitoring, with ap-
plications ranging from biodiversity monitoring,26 forest fire
detection,27,28 precision agriculture,29 glacier research,30 and
structural health monitoring.4 Unlike SCADA systems, WSNs
are ideal for low-cost, low-power, and low-maintenance appli-
cations, making them well-suited for the monitoring of large
water systems like rivers and watersheds. WSNs have been
applied to great success in applications ranging from flood
monitoring to real-time stormwater control; however, current
implementations are generally experimental or proprietary,
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resulting in a lack of discoverability, limited interoperability,
and duplication of effort among projects.

Within the water sciences, flood monitoring represents a
particularly important application area for WSNs. While sev-
eral groups have worked to expand the capabilities of existing
legacy flood detection networks,31–33 only a small number of
groups have designed and deployed their own flood monitor-
ing WSNs. Hughes et al. (2008) describe a 15-node riverine
flood monitoring WSN in the United Kingdom, which inter-
faces with remote models, performs on-site computation,
and sends location-specific flood warnings to stake-
holders.34,35 Other riverine flood monitoring networks in-
clude a 3-node river monitoring network in Massachusetts, a
4-node network in Honduras,36 and—perhaps the largest uni-
fied flood monitoring network in the US—the Iowa Flood In-
formation System (IFIS), which draws on a network of over
200 cellular-enabled sensor nodes.37 While most existing
flood-monitoring networks focus on large-scale river basins,
flash-flooding has received considerably less attention in the
WSN community. Marin-Perez et al. (2012) construct a 9-node
WSN for flash flood monitoring in a 660 km2 semiarid water-
shed in Spain,38 while See et al. (2011) use a Zigbee-based
WSN to monitor gully-pot overflows in an urban sewer sys-
tem.39 While most deployments are still pilot-scale, these pro-
jects demonstrate the potential of WSNs for distributed flood
monitoring across a variety of scales and environments.

In addition to monitoring watershed hazards, a limited—
but promising—number of projects are illustrating the poten-
tial of WSNs for real-time control. Web-enabled sensor nodes
have been used to develop adaptive green infrastructure at a
select number of pilot sites—for instance, by using weather
forecasts to facilitate predictive rainwater harvesting and cap-
ture of sediment-bound pollutants.40 At larger scales, a com-
bined sewer network in South Bend, Indiana uses over 120
flow and depth sensors along with nine valves to actively
modulate flows into the city's combined sewer system.41 This
network optimizes the use of existing in-line storage and has
achieved a roughly five-fold reduction in combined sewer
overflows from 2006–2014 (ref. 41)—all without the construc-
tion of additional infrastructure. While distributed control of
storm and sewer systems shows promise, most existing
implementations are proprietary. A lack of transparency
makes these solutions inaccessible to decision makers and
the water resources community at large.

Although many research groups have realized the poten-
tial for real-time watershed monitoring, existing WSN deploy-
ments are generally small-scale and experimental in nature.
In order for these networks to be accepted as “critical infra-
structure” by the water resources community at large, consis-
tent standards for design, deployment and functionality are
needed. In designing their own WSNs, researchers tend to
look towards previous research projects.36 However, research
papers rarely include the detailed documentation needed to
implement an end-to-end sensor platform.36 As a result, re-
searchers are often forced to design and deploy their own
WSNs from scratch. To prevent duplication of effort and en-

sure best practices, a community-driven how-to guide is ur-
gently needed. Moreover, while proprietary control networks
have proven their effectiveness in improving the performance
of stormwater systems, an open source alternative is needed
to encourage transparency, interoperability, and extensibility.
Without open software, standards, and documentation, these
new technologies risk becoming like the SCADA systems of
old: isolated, proprietary, and incapable of
intercommunication.

4 The open storm platform
Open storm provides a transparent and unified framework for
sensing and control of urban watersheds. To our knowledge,
it is the only open-source, end-to-end platform that combines
real-time sensing, control and cloud services for the purpose
of water resources management. The project is designed to
foster engagement by lowering the technological barriers for
stakeholders, decision makers, and researchers. To this end,
the open storm framework is accompanied by a body of refer-
ence material that aims to make it easy for non-experts to de-
ploy their own sensors and controllers. This living document,
available at open-storm.org, provides tutorials, documenta-
tion, supported hardware, and case studies for end-to-end
sensor network management. In addition to documenting
core features, this guide details the (literal) nuts-and-bolts of
sensor network deployment, including information that is
typically not available in journal articles—such as mounting
hardware, assembly instructions and deployment techniques.

The open storm framework can broadly be divided into
three layers: hardware, cloud services, and applications
(Fig. 2). The hardware layer includes devices that are
deployed in the field—such as sensors for collecting raw
data, actuators for controlling water flows, microprocessors,
and wireless transmitters. The cloud services layer includes
processing utilities that receive, store and process data, and
interact with field-deployed devices through user-defined ap-
plications. Finally, the application layer defines how users, al-
gorithms, and real-time models interact with field-deployed
devices. This three-tier architecture allows for applications to
be developed at a high level, without the need for low-level
firmware programming. Together, these layers comprise a
scalable framework that can easily be adapted to the needs of
a wide variety of users and applications.

4.1 Hardware

4.1.1 The sensor node. At its core, the open storm hard-
ware layer (Fig. 1) is enabled by the sensor node—a custom
low-power embedded computer with wireless capabilities.
The sensor node collects measurements from attached sen-
sors, transmits and receives data from a remote server, and
executes control actions. A microcontroller (PSOC5-LP by Cy-
press Semiconductor) serves at the processing unit for the
board. This microcontroller is programmed with a simple op-
erating system that schedules the tasks to be executed, and
interfaces with a series of device drivers that control the
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behavior of attached sensors and actuators. The operating
system is designed to minimize power use and consists of a
single routine which (i) wakes the device from sleep mode,
(ii) downloads pending instructions from the cloud server,
(iii) takes sensor readings and triggers actuators, (iv) trans-
mits sensor data to the server, and (v) puts the device back
into sleep mode. The sensor node spends the majority of its
deployment in sleep mode, allowing it to conserve battery
power and remain in the field for an extended period of
time.

The sensor node uses wireless telemetry to transmit and
receive data from a remote server. While internet connectivity
can be achieved through a number of wireless protocols, open
storm nodes currently use a cellular communications proto-
col, which enables telemetry through 2G, 3G and 4G LTE cel-
lular networks. Cellular connectivity is implemented through
the use of a cellular module (by Telit), along with a small an-
tenna for broadcasting the wireless signal. Compared to
other protocols (such as satellite or wi-fi), cellular telemetry
is especially suitable for urban and suburban environments
due to (i) consistent coverage, (ii) relatively low cost, and (iii)
high data throughput. At the time of writing, IoT cellular data
plans can be purchased for under $5 per month per node (1–
10 MB), making it financially feasible for even small research
groups to maintain large-scale networks.

The sensor node is equipped with a power regulation
subsystem to provide power to the microcontroller and at-
tached devices. The power supply system consists of four
components: (i) a battery, (ii) a solar panel, (iii) a charge con-
troller, and (iv) a voltage converter. The voltage converter per-
mits the sensor node to be powered across a range of 3–40 V.
While most sensor nodes are powered by a 3.7 V lithium ion
battery, 12 V batteries can also be used for higher-voltage
sensors and actuators. The solar panel and solar charger are
used to recharge the battery, allowing the device to remain in
the field without routine maintenance. At the time of writing,
many field-deployed sensor nodes have reported data for over
a year without loss of power.

Detailed technical information regarding the sensor node
—including parts, schematics and programming instructions
—are available online at open-storm.org/node. Excluding the
cost of auxiliary sensors, the sensor node can currently be as-
sembled from off-the-shelf parts for a price of approximately
$350 per node.

4.1.2 Sensors and actuators. The open storm platform sup-
ports an extensive catalog of digital and analog environmen-
tal sensors. Typical sensors include (i) ultrasonic and
pressure-based water level sensors, (ii) soil moisture sensors,
(iii) tipping-bucket and optical rain gages, (iv) automated
grab samplers for assessing pollutant loads, and (v) in situ

Fig. 1 The open storm hardware layer. The left panel shows the complete sensor node along with a representative schematic of its placement in
an urban watershed. The right panel shows typical sensors and actuators used in open storm research projects.
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water quality sensors, including probes for dissolved oxygen,
pH, temperature, conductivity, dissolved solids, and oxida-
tion–reduction potential. While many sensors are known to
work “out of the box”, new sensors can be quickly integrated
by adding device drivers to the sensor node firmware. Sup-
port for nearly arbitrary sensors is provided by the micro-
controller's system-on-chip (SoC), which allows for analog
and digital peripherals—like analog-to-digital converters,
multiplexers, and logic gates—to be generated using pro-
grammable blocks in the device firmware. In addition to en-
vironmental sensors, the sensor node also includes internal
sensors that report device health statistics, including battery
voltage, cellular reception strength, and connection attempts.
These device health statistics help to diagnose network is-
sues, and can be used as inputs to remote trigger routines.
Sensors can be configured remotely using web services (see
cloud services section). This capability allows users to turn
sensors on or off, or to change the sampling frequency of a
sensor without reprogramming the device in the field.

The open storm platform also supports an array of actua-
tors that can be used to move mechanical devices in the
field. These devices are used to guide the behavior of water
systems in real-time, by controlling the flow of water in
ponds, channels and pipes. Butterfly valves are one common
type of actuating device, and are typically used to control
discharge from storage elements such as retention basins.
Valves can be opened, closed, or configured across any num-
ber of partially opened configurations to modulate flows. As
with onboard sensors, these devices are operated remotely
using commands sent from a server. Control signals can be
specified manually, or through automated control
algorithms.

Detailed technical information regarding supported sen-
sors and actuators, along with guides for integrating new de-
vices are provided online at open-storm.org/sensors.

4.2 Cloud services

While sensor nodes can function independently by storing
data and making decisions on a local level, integration with
cloud services enables system-scale supervision, configura-
tion, and control of field-deployed devices. Like a traditional
SCADA system, the cloud services layer facilitates telemetry
and storage of sensor data, provides visualization capabili-
ties, and enables remote control of devices—either through
manual input or through automated routines. However, un-
like a traditional SCADA system, the cloud services layer also
allows sensor nodes to communicate with a wide variety of
user-defined web applications—including advanced data visu-
alization tools, control algorithms, GIS software, external data
ingesters, alert systems, and real-time hydrologic models. By
combining real-time supervision and control with domain-
specific tools, this architecture enables flexible system-scale
control of water assets.

In brief, the cloud services layer performs the following
core functions: (1) stores and processes remotely-transmitted

data, (2) simplifies management and maintenance of field-
deployed sensor nodes, and (3) enables integration with a
suite of real-time models, control algorithms, and visualiza-
tions. These services are environment-agnostic, meaning that
they can be deployed on a local server or a virtual server in
the cloud. In practice, however, current open storm projects
are deployed on popular cloud services—such as Amazon
Elastic Compute Cloud (EC2)42 or Microsoft Azure43—to en-
sure that computational resources flexibly scale with de-
mand. In the following section, we describe the basic archi-
tecture, and present example applications that are included
with the open storm platform.

The cloud services layer follows a simple design pattern,
in which applications communicate with sensor nodes
through a central database. On the device side, sensor nodes
push sensor measurements to the database, and then query
the database to determine the latest desired control actions.
On the server side, applications query the latest sensor read-
ings from the database, feed these sensor readings into
user-defined applications, and then write commands to the
database to control the behavior of field hardware remotely.
This architecture allows field-deployed sensors to be man-
aged through a single endpoint, and also allows new appli-
cations to be developed without modifying critical device
firmware.

The database serves dual purposes as both a storage en-
gine for sensor data, and as a communication layer between
field-deployed sensors and web applications. The primary
purpose of the database is to store incoming measurements
from field-deployed sensors. Sensor nodes report measure-
ments directly to the database via a secure web connection—
using the same protocol that one might use to access web
pages in a browser (HTTPS). The database address (URL) is
specified in the sensor node firmware, allowing the user to
write data to an endpoint of their choosing. In addition to
storing sensor measurements, the database also enables bidi-
rectional communication between the node and cloud-based
applications by storing device configuration data, command
signals, and data from external sources. Server applications
communicate with the sensor node by writing commands to
the database. These commands are then downloaded by the
sensor node on each wakeup cycle. For example, a real-time
control application might adjust outflow from a storage basin
by writing a sequence of valve positions to the database. At
each sampling interval, the sensor node will query the latest
desired valve position and enact the appropriate control ac-
tion. This system enables bidirectional communication with
field-deployed sensor nodes without the need for complex
middleware.

For its database backend, the open storm project uses
InfluxDB, a time-series database that is optimized for high
availability and throughput of time-series data.44 Communi-
cations with the database backend are secured through the
use of basic authentication (i.e. a username and password),
as well as Transport Layer Security encryption (TLS/SSL). The
use of basic authentication prevents unauthorized parties
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from executing malicious commands on the network, while
the use of encryption prevents attackers from intercepting
sensitive data. Because applications communicate with the
sensor node through the database, this means that applica-
tions are secured automatically against attackers as well. Alto-
gether, this system comprises a data backend that is secure,
maintainable, and extensible.

4.3 Applications

The open storm platform features a powerful application layer
that enables users to process and analyze data, build user in-
terfaces, and control sensor nodes remotely. Applications are
implemented by creating a series of subscriptions on the cen-
tral database. These subscriptions perform one of three ac-
tions: (i) read from the database, (ii) write new entries to the
database, and (iii) trigger actions based on user-specified con-
ditions. While seemingly simple, this system allows for the
development of a wide range of applications. A data visualiza-
tion platform, for instance, is implemented by continuously
querying sensor streams from the database; similarly, auto-
mated control is implemented by writing a continuous
stream of commands. In the following section, we demon-
strate the potential of the open storm application platform by
presenting example applications, including a data visualiza-
tion portal, a push alert system, adaptive control, and real-
time integration with hydrologic models.

4.3.1 Network supervision and maintenance tools. Much
like a traditional SCADA system, the open storm platform pro-
vides a web-based graphical user interface for real-time visu-
alization and device configuration. Fig. 2 shows an example
dashboard, with time series of cellular connection strength
(top), radial gauges for monitoring battery voltage (center),
and real-time depth readings from two sensor nodes (bot-
tom). Time series visualizations are implemented using the
Grafana analytics platform,45 which allows users to develop

customized dashboards that suit their individual needs. To
facilitate remote configuration of sensor nodes, open storm
also includes a web portal that allows users to change device
parameters (such as sampling frequency), control actuator
behavior, and set event triggers using a web browser.

4.3.2 Automated alerts and adaptive control. In addition
to enabling manual supervision and control, open storm also
provides a rich interface for triggering automatic actions
based on user-specified conditions. Push alerts are one com-
mon type of trigger event. Alerts can be used to notify stake-
holders of hazardous field conditions, such as flooding, or to
recommend control strategies to operators in real time. Alerts
are also used to notify the user about the health of the net-
work—for instance, by sending push warnings when node
battery voltages drop below a threshold, or by emitting a criti-
cal alert when data throughput ceases. These system health
alerts allow network outages to be promptly diagnosed and
serviced. Alerts can be pushed to a variety of endpoints, in-
cluding email, text messages, or to social media platforms
such as Twitter and Slack.46,47 The wide variety of available
push notification formats means that the open storm plat-
form is suited to handling both (i) confidential alerts for sys-
tem operators, and (ii) public emergency broadcasts.

In addition to the alert system, subscriptions are also
used to implement adaptive sampling and automatic con-
trol. Adaptive sampling allows the sampling frequency of
the node to be changed remotely in response to weather
forecasts, data anomalies, or manual user input.48 This in
turn allows hydrologically interesting events—such as
storm events and dam releases—to be measured at an en-
hanced resolution. To manipulate sampling frequencies in
response to changing weather conditions, for instance,
weather forecasts are first downloaded into the open storm
database using an external data ingester. Next, the sub-
scription service parses the incoming data. If the service
detects a probability of rain, the sampling frequency of a

Fig. 2 The open storm stack. The hardware layer (left) comprises the sensor node along with auxiliary sensors and actuators. The cloud services
layer (center) includes the database backend, along with a series of publication and subscription services for controlling sensor node behavior and
interfacing with applications. The applications layer (right) allows for real-time supervision and control of field-deployed devices. The rightmost
panel shows an example dashboard, including sensor feeds and network status visualizations.
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node is increased. When no precipitation is anticipated,
the sampling frequency is decreased, allowing the node to
conserve battery power. The same principle is used to im-
plement automated control. The subscription service can
be configured as a simple set-point or PID controller, for
instance, by computing a control signal based on an input
data stream. This controller can in turn be used to opti-
mize outflow from a retention pond, by controlling the
position of an outlet valve. More sophisticated control
schemes can be implemented by attaching the subscrip-
tion service to an online model, which optimizes control
strategies over an entire stormwater network, achieving
system-level benefits. Examples include the MatSWMM
and pySWMM software packages,49,50 which are used to
simulate real-time control strategies for urban drainage
networks.

Detailed information regarding cloud services and applica-
tions can be found at open-storm.org/cloud. In addition to
the cloud services platform described here, the open storm
sensor node is also compatible with other cloud-based data
management services, such as the CHORDS (Cloud Hosted
Real-time Data Services for the Geosciences) portal.51

5 Case studies
To demonstrate the capabilities of the open storm platform,
we present two ongoing case studies. The first is a real-time
flash flood warning network for the Dallas–Fort Worth
metroplex in Texas. This deployment detects flash floods at
the level of individual roadways, allowing targeted alerts for
motorists and improved routing of emergency services during
storm events. The second case study is a “smart” stormwater
control network in the City of Ann Arbor, Michigan. This de-
ployment aims to improve water quality and mitigate
stormwater damage by adaptively timing releases from reten-
tion basins across an entire watershed.

5.1 Case study 1: flood monitoring

Located in “flash-flood alley”, the Dallas–Fort Worth
(DFW) metroplex has historically been one of the most
flood-prone areas in the United States.52 Chronic flooding
results in an average of 17 fatalities per year in the state
of Texas, with a majority of deaths arising from flash
floods.52 Despite recent efforts to improve stormwater
management,53 lack of fine-scale runoff measurements in-
hibits prediction and communication of flash flood risks.
To address this problem, we are using the open storm
platform to build a real-time flash flood monitoring net-
work. Drawing on the open storm real-time alert system,
this network aims to improve disaster response by com-
municating flood risks to emergency managers in real-
time, and by generating targeted alerts that will allow mo-
torists to safely navigate around inundated roadways.

To date, urban flash flooding remains a poorly-
understood phenomenon. There is currently no model that
is capable of generating reliable flash flood estimates in

urban areas.54 Modeling of urban flash floods is compli-
cated by an absence of natural flow paths and interaction
of runoff with man-made structures.54 However, lack of
data at appropriate spatial and temporal scales also pre-
sents a major challenge. For reliable modeling of flash
floods, Berne (2004) recommends using rainfall data at a
minimum spatial resolution of 500 meters,55 while a
recommended temporal resolution of 1–15 minutes for
rainfall is recommended by Smith (2007).56 Existing rain
gages and river stage monitors are often too sparsely dis-
tributed to meet these requirements. Within the DFW
metroplex, NWS maintains 12 quality-controlled gages,57

while USGS provides precipitation data at 30 sites.58 This
means that the current spatial resolution of validated rain
gages within the DFW metroplex is roughly 1 gage per
600 km2—too sparse for reliable prediction of flash floods.
Likewise, current river stage monitors for the DFW region
are largely deployed along mainstems of creeks and rivers
with contributing areas ranging from 20 km2 to 21 000
km2 (and a median contributing area of 220 km2). While
these gages provide excellent coverage of riverine flooding,
they offer limited potential for capturing flash floods.

To fill coverage gaps and enable real-time flash flood fore-
casting, we are building a wide-area flood monitoring net-
work that is specifically tailored to monitoring flash floods
over small-scale catchments (ranging from about 3 to 80 km2

in size). Our approach is to leverage a large array of inexpen-
sive depth sensors to capture runoff response at the scale of
individual roadways, creeks, and culverts. By using inexpen-
sive hardware, we are able to scale our network to a size that
would be infeasible with state-of-the-art stage monitoring sta-
tions (such as those used by NOAA or USGS). At the time of
writing, 40 sensor nodes have been allocated and built for
the DFW flood monitoring project, with over 15 nodes cur-
rently deployed and reporting. These 40 sensor nodes have
been built for a cost of $20 000 USD—less than the cost as a
single USGS gaging station.‡59

Fig. 3 presents an overview of the DFW flood monitor-
ing network. The left panel shows a map of the DFW
metroplex, with current and proposed sensor node loca-
tions. The bottom-right panel shows a detail of a typical
sensor node installation. Like most nodes in the network,
this node is mounted to a bridge deck with an ultrasonic
depth sensor pointed at the stream surface below. The
sensor node records the depth to the water surface at a
typical time interval of 3–15 minutes. The top-right plot
shows a time series of stream depth during two distinct
storm events for a sample of nodes on the network. From
this plot, it can be seen that the runoff response varies
widely between sensor locations, even in a relatively con-
centrated geographic area. During the second event, for
instance, node 2 (yellow) reports a large increase in dis-
charge, while node 9 (purple) reports no change in

‡ The installation cost for a USGS stage-discharge streamgaging station is
roughly $20 000, with an annual recurring cost of approximately $16000.
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discharge. Comparison of the hydrographs with NEXRAD60

radar data shows that the variability in stage is largely
explained by spatial variability in the rainfall fields.§ This
result confirms the need for increased spatial resolution
in stream stage measurements for flash flood monitoring.

The open storm platform enables detection and communica-
tion of flood risks on spatial and temporal scales appropriate for
real-time disaster response and control. Adaptive management
of traffic during extreme weather events represents one impor-
tant application of this technology. The Dallas–Fort Worth flood
monitoring network could improve disaster response by commu-
nicating flood risks to motorists in real-time, thereby allowing
them to safely navigate around flooded roadways. This is espe-
cially important given that in the US, roughly 74% of fatalities
from flooding are motor-vehicle related,8 and in Texas, as much
as 93% of flood-related deaths result from walking or driving
into floodwaters.52 Current alert systems are to a large extent in-
sensitive to spatial variability in flood response.35 However, the
open storm framework enables targeted alerts that can be inte-
grated into existing mobile navigation apps. In a future that may
be characterized by autonomous vehicles and vehicle-to-
infrastructure communication,61 this technology could one day
be used to adaptively route traffic during extreme weather
events.

5.2 Case study 2: controlling watersheds

As illustrated by the Dallas–Fort Worth flood-monitoring net-
work, real-time measurements can play a pivotal role in pro-

viding alerts to stakeholders and improving our understand-
ing of watershed dynamics. However, with the addition of
active control, it is possible to not only monitor adverse
events, but also to prevent them. The open storm platform is
capable of enacting control on a watershed scale using dis-
tributed valve controllers, adaptive control schemes, and
cloud-hosted hydrologic models. Instead of building bigger
stormwater systems, operators may use real-time control to
make better use of existing water infrastructure, mitigate
flooding, and decrease contaminant loads into sensitive
ecosystems.

The open storm framework is presently being used to con-
trol an urban watershed in the City of Ann Arbor, Michigan.
The Malletts Creek watershed—a 26.7 km2 tributary of the
Huron River—has traditionally served as a major focal point
in the city's strategy to combat flooding and reduce runoff-
driven water quality impairments.62 Given its proximity to
the Great Lakes, water resource managers have placed an em-
phasis on reducing nutrient loads from urban runoff. A ma-
jority of the discharge in Malletts creek originates from the
predominantly impervious upstream (southwestern) reach of
the watershed, while a significant, but smaller portion of the
discharge originates from the central reach of the watershed.
For this reason, local water resource managers have
constructed a number of flood-control basins in the up-
stream segments of the catchment. It is these basins that are
now modified to allow for real-time control of the watershed.

The watershed is modified for control at two locations by
retrofitting existing basin outlets with remotely-operated
valves (Fig. 4). The first control point is a stormwater reten-
tion pond in the southern part of the watershed (shown in

Fig. 3 Flood monitoring network in the Dallas–Fort Worth metroplex. The map (left) shows current and proposed sensor sites, while the detail
photos (bottom-right) show an example bridge-mounted depth sensor node. Time series (top-right) show the response in stream depth to a series
of storm events from August 5–6, 2016. From these stage hydrographs, it can be seen that the response varies widely even within a relatively small
geographic area.

§ See https://github.com/open-storm/docs.open-storm.org/wiki/Case-study:-
Flood-Monitoring-in-Dallas-Fort-Worth.
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red in Fig. 5). While originally designed as a flow-through
(detention) pond, the addition of two 30 cm diameter gate
valves allows for an additional 19 million liters of water to be
actively retained or released. The second control point is a
smaller retention pond, located in the central reach of the
watershed (shown in green in Fig. 5). This control site is
retrofitted with a rugged 30 cm diameter butterfly valve. The
position of each valve is controlled via an attached sensor
node, which relays commands from a remote server. Each
sensor node is equipped with a pair of ultrasonic sensors:
one to measure the water depth at the pond, and one to mea-
sure the depth of the outflow stream. The control sites oper-
ate entirely on 12 V battery power, along with a solar panel to
recharge the battery during daylight hours. This configura-
tion allows the controller to remain in the field permanently,
without the need for a dedicated external electricity source.¶

In addition to the two control sites, the Ann Arbor net-
work is also instrumented with more than twenty sensor
nodes that monitor system performance and characterize
real-time site conditions. Using a combination of ultrasonic
depth sensors, optical rain gages, and soil conductivity sen-
sors, these nodes report stream stage, soil moisture, soil tem-
perature, and precipitation accumulation approximately once

every 10 minutes (with an increased resolution of 2–3 mi-
nutes during storms). An additional set of nodes is deployed
to measure water quality—including dissolved oxygen, pH,
temperature, oxidation reduction potential, conductivity, tem-
perature—as well as an automated grab sampler for captur-
ing contaminants of interest (such as heavy metals and
microbes). These nodes are deployed at the inlet and outlet
of constructed wetlands to determine how real-time control
affects the removal of pollutants.

Measurements from the sensor network are validated
using an external United States Geological Survey flow mea-
surement station (USGS station 4174518), located at the wa-
tershed outlet. These federally-certified measurements are
available freely on the web, making them relatively easy to in-
gest into the open storm framework as an external data
source. Furthermore, localized weather forecasts are ingested
from public forecasting services (darksky.net) to provide
daily, hourly, and minute-level forecasts to inform the control
of each site in the network.63 These external data sources al-
low for near-instant validation of sensor data, and provide a
holistic “snapshot” of system states.

We confirm the effectiveness of the control network
through a simple experiment. In this experiment, stormwater
is retained at an upstream control site, then released gradu-
ally to maximize sedimentation and reduce erosion down-
stream. While it is known that the addition of control valves
affords many localized benefits—such as the ability to

¶ With two people, installation at each site takes approximately one day. This in-
cludes time dedicated to mounting valves, sensors, and remotely-testing the
equipment.

Fig. 4 The Ann Arbor stormwater control network with selected sites. The blue region of the map shows the boundary of the Malletts Creek
watershed, while node locations are indicated by gold markers. The outlet of the watershed (1) is monitored by a USGS gage, along with an
automated sampler (1, top-left) and a depth-sensing node (1, center-right). Active control is added through a butterfly valve (2), and dual gate
valves (4). The watershed is monitored by an array of depth sensors (6, 7 and 3, bottom-left), soil moisture sensors (5) and in situwater quality sen-
sors (3, bottom-right).
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increase retention and capture sediments64—the goal of this
experiment is to test the extent to which control of individual
sites can improve watershed-scale outcomes. The control ex-
periment takes place on a river reach that stretches across
three sites: a retention pond (upstream), a constructed wet-
land (center), and the watershed outlet. Fig. 5 (right) shows
the three test sites within the watershed, with the fractional
contributing area of each site indicated by color. In this sys-
tem, runoff flows from the retention pond (red) to the water-
shed outlet (blue) by way of an end-of-line constructed wet-
land (green) designed to treat water, capture sediments, and
limit downstream erosion. Erosion, in particular, has been
shown to be primary source of phosphorus in the water-
shed,48 thus emphasizing the need to reduce flashy flows.
While the wetland serves a valuable purpose in improving
water quality, it is sized for relatively small events. Specifi-
cally, the basin is designed to hold up to 57 million liters of
stormwater but experiences as much as 760 million liters
during a ten-year storm. Thus, it often overflows during
storms, meaning that treatment benefits are bypassed. To
maximize treatment capacity, a sensor node is placed into
the wetland to measure the local water level and determine
the optimal time to release from the retention pond
upstream.

At the outset of the experiment, water is held in the up-
stream retention pond following a storm on December 1,
2016. Residual discharge from the original storm event can
be observed as a falling hydrograph limb at the USGS gaging
station (blue) during the first 10 hours of the experiment
(Fig. 5). The sensor located at the wetland is used to deter-
mine the time at which it is safe to release upstream flows
without overflowing the wetland (Fig. 5). Water is initially re-
leased from the pond at 4:00 pm on December 2, as indicated
by a drop in the water level of the pond. Two hours later, the
water level in the wetland begins to rise due to the discharge

arriving from upstream. Finally, after another three hours,
the discharge wave reaches the outlet, where it is detected by
the USGS flow station. Over the course of the controlled re-
lease, the station registers roughly 19 million liters of cumu-
lative discharge.

The control experiment shows demonstrable improve-
ments in system performance compared to the uncontrolled
case. While the water quality benefits will be measured in the
coming year, a number of likely benefits can be posited. As
measured, over 19 million liters were removed from the
storm window and retained in the basin following the storm
event. The residence time of the water in the pond increased
by nearly 48 hours, increasing the potential for sedimenta-
tion.64 The removal of stormwater flows also resulted in at-
tenuation of the downstream hydrograph. The peak flows at
the watershed outlet were measured to be 0.28 m3 s−1 during
the storm, but would have been nearly 0.60 m3 s−1 had the
valves in the basin not been closed. Based on prior studies in
the watershed—which showed that flows in the stream corre-
late closely with suspended sediment concentrations—it can
be estimated that the flows from the basin were discharged
at roughly 60 mg L−1, rather than 110 mg L−1, thus nearly
halving the concentration of suspended solids and total
phosphorus in the flows originating from the controlled ba-
sin.48 Moreover, the controlled experiment enhanced the ef-
fective treatment capacity at the wetland downstream, which
would have overflowed during the storm, thus not treating
the flows from the upstream pond. As such, the simple addi-
tion of one upstream valve provided additive benefits across
a long chain of water assets, demonstrating firsthand how
system-level benefits can be achieved beyond the scale of in-
dividual sites. While the water quality impacts of active con-
trol deserve further assessment, this study opens the door for
adaptive stormwater control at the watershed scale. Rather
than optimizing the performance of isolated sites, the open

Fig. 5 Malletts Creek control experiment in Ann Arbor. The left panel shows time series of water depth from 12:00 pm on December 2 to 6:00
am on December 4, 2016. The right panel shows the location of the three sites in the watershed, with the partitioned contributing areas of each
location corresponding to the colors of the time series plots.
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storm platform can be used to determine the optimal control
strategy for an entire watershed, then enact it in real-time.

6 Conclusion
Open storm is an all-in-one, “batteries included” platform for
monitoring and managing urban water systems. Its emphasis
on extensive configurability, real-time response, and auto-
mated control make it an ideal choice for water system man-
agers and environmental researchers alike. While many open
hardware platforms exist, open storm is the first open-source,
end-to-end platform that combines sensing, control and
cloud computing in service of water resources management.
Aside from providing a technological blueprint, open storm
addresses the real-world requirements that can be expected
in water resources applications, such as field-robustness, low-
power operation and system-scale coordination. The open
storm project has shown proven results in extending the ca-
pabilities of existing stormwater systems: both by increasing
the spatiotemporal resolution of measurements, and by ac-
tively improving water quality through real-time control.
However, open storm is not just a platform—it's also a com-
munity of researchers, stakeholders and decision-makers
who are dedicated to realizing smarter water systems. To as-
sist in the dissemination and development of smart water
systems, we are creating a living document at open-storm.org
in order to share standards, reference materials, architec-
tures, use cases, evaluation metrics, and other helpful re-
sources. We invite users to participate in this project by shar-
ing their experiences with designing, deploying and
maintaining smart water systems.
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Abstract: “Smart” water systems are transforming the field of stormwater management by enabling
real-time monitoring and control of previously static infrastructure. While the localized benefits
of active control are well-established, the potential for system-scale control of watersheds is
poorly understood. This study shows how a real-world smart stormwater system can be leveraged
to shape streamflow within an urban watershed. Specifically, we coordinate releases from two
internet-controlled stormwater basins to achieve desired control objectives downstream—such as
maintaining the flow at a set-point, and generating interleaved waves. In the first part of the study,
we describe the construction of the control network using a low-cost, open-source hardware stack
and a cloud-based controller scheduling application. Next, we characterize the system’s control
capabilities by determining the travel times, decay times, and magnitudes of various waves released
from the upstream retention basins. With this characterization in hand, we use the system to generate
two desired responses at a critical downstream junction. First, we generate a set-point hydrograph,
in which flow is maintained at an approximately constant rate. Next, we generate a series of
overlapping and interleaved waves using timed releases from both retention basins. We discuss how
these control strategies can be used to stabilize flows, thereby mitigating streambed erosion and
reducing contaminant loads into downstream waterbodies.

Keywords: smart cities; smart water systems; wireless sensor networks; stormwater; real time control

1. Introduction

Burdened by aging infrastructure, growing populations and changing hydrologic conditions,
many municipalities struggle to adequately manage stormwater [1]. Flash flooding can occur when
stormwater infrastructure is unable to convey runoff away from developed areas [2]. At the same
time, pollutants from urban runoff—such as nutrients, heavy metals and microbes—can contaminate
downstream waterbodies, damaging aquatic habitats and resulting in toxic algal blooms [1]. Traditionally,
civil engineers have addressed these challenges by building larger storage and conveyance infrastructure
(e.g., basins and pipes). However, this approach suffers from a number of important disadvantages.
First, new construction is expensive, and is often unfeasible for chronically underfunded stormwater
departments [3]. Second, static designs are inflexible to future changes in weather, population growth,
and regulatory requirements [2]. Third, overdesigned conveyance systems can cause flooding, erosion
and damage to downstream property and ecosystems, which ultimately necessitates further remediation
and construction [1]. In the face of increasing urbanization and more frequent extreme weather
events [4,5], new strategies are needed to ensure effective management of stormwater.

In contrast to traditional steel-and-concrete solutions, real-time control has emerged as a novel
means to improve the performance of stormwater systems at minimal expense. Drawing on wireless
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communications, low-power microcontrollers, and modern advances in control theory, these systems
achieve performance benefits by reconfiguring water infrastructure in real time [1,6]. Real-time control
of stormwater basins, for instance, can improve water quality following a storm event by enhancing
removal of contaminants [1]. Similarly, active regulation of discharges through constructed wetlands can
improve water quality and rehabilitate aquatic habitats [6,7]. More broadly, by controlling flows over
a large network, operators can harness the latent treatment capacity of many distributed stormwater
assets, effectively turning urban watersheds into distributed wastewater treatment plants [1,6].

A small number of studies have evaluated the benefits of real-time stormwater control. Most of
these studies describe retrofits of isolated sites for rainwater capture and on-site pollutant treatment.
Middleton and Barrett (2008) show that equipping existing retention basins with real-time controllers
can reduce stormwater pollutant loads downstream by increasing the retention time of captured
stormwater [8]. Roman et al. (2017) describe an adaptively-controlled rainwater harvesting system
in New York City that captures 35–60% more rainwater than conventional systems [9]. Similarly,
Klenzendorf et al. (2015) describe a rainwater harvesting pilot project and a retention basin retrofitted
for real-time control in Austin, Texas [10]. The authors show that the controlled retention basin reduces
deposition of nitrogen and total suspended solids (TSS) into the downstream system. These studies
demonstrate that active control can significantly improve the performance of existing sites at a lower
cost than new construction. However, benefits are only examined at a local scale. This distinction is
important, given that localized practices do not necessarily achieve the best system-scale outcomes.
Indeed, some research indicates that when local best management practices are implemented without
accounting for global outcomes, they can produce adverse flow conditions at the watershed scale [11].

Currently, the benefits of coordinated stormwater control are poorly understood. Inspiration for
the benefits of system-level control can be taken from sewer operations. While most sewer systems
still only rely on local control logic, such as water level setpoints [12], recent work has demonstrated
how wider benefits can be achieved through the cooperative action of multiple controllers working
in tandem. The cities of Copenhagen and Barcelona, for instance, implement a combination of local
rule-based control, and some higher-level optimization that jointly coordinates actions between
groups of actuators [13]. Montestruque and Lemmon (2015) describe CSOnet, a sewer control network
consisting of 120 sensors and 12 actuators in the city of South Bend, Indiana [3]. This network uses
dynamic control algorithms to adaptively balance hydraulic loads throughout the sewer’s interceptor
lines, ultimately reducing combined sewer overflows (CSOs) by as much as 25%. While these systems
achieve impressive system-scale control of a large sewer networks, it is still unclear how lessons
learned from these proprietary sewer control approaches may translate to the broader control of urban
watersheds and separated stormwater systems.

In this study, we describe an approach for managing stormwater discharges across an urban
watershed using internet-connected valves and sensors. We show that by actively coordinating
releases from two parallel retention basins, we can produce desirable flow regimes at a target location
downstream, which would not be possible with passive infrastructure alone. This study takes place in
four phases. In the first phase, we describe the development of a real-time stormwater control system
in the city of Ann Arbor, Michigan. Building on an existing wireless sensing and control network
described in Bartos et al. (2018) [6], we demonstrate how static retention basins can be retrofitted with
internet-controlled valves, and present a new method for controlling these basins using a controller
scheduling application. In the second phase, we characterize the ability of the control network to
shape the downstream hydrograph by releasing impulses of different sizes from two retention basins
and determining the magnitude, travel time, and decay envelope of the resulting waves. In the third
phase, we use the data gathered from this exploratory analysis to determine the control input needed
to produce a flat hydrograph at the outlet of the watershed. We discuss how this control strategy can
be used to prevent erosion and reduce phosphorus loads into downstream waterbodies. Finally, in the
fourth phase, we show how control inputs can be timed to produce synchronized and de-synchronized
pulses at a downstream target location. In addition to demonstrating the precision of the control
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system, this experiment shows how interleaving pulses can be used to free up capacity in upstream
retention basins without inducing synchronized flashy flows downstream. We discuss how these simple
control “building blocks” can be used by system operators to achieve more sophisticated stormwater
management targets. Unlike most existing systems, our control network uses an open-source hardware
and software stack, making it freely available to municipalities that are interested in implementing
their own smart stormwater control systems. Thus, when combined with supplementary how-to
documentation on open-storm.org, this study provides the foundation for an “operator’s manual”
for real-time control of urban watersheds.

2. Study Area and Technologies

2.1. Study Area

This study focuses on a wireless control network in the Mallets creek watershed—an urbanized
creekshed located in the city of Ann Arbor, Michigan. This creekshed has been the focus of ongoing
efforts to reduce peak flows and improve water quality [14]. The creekshed has an area of about
26.7 km2 and contains streams that altogether exceed 16 km in length. These streams drain into
the Huron River and ultimately the Great Lakes. With high areas of development and over 33%
imperviousness, little natural land is available for infiltration and uptake, resulting in flashy flows
that erode stream banks and result in unstable habitats. These rapid flows drive stream erosion and
increased transport of sediments and nutrients out of the watershed [14]. While there are no lakes in
the creekshed, there are several natural and manmade stormwater basins that have been constructed
to help stabilize flows throughout the creekshed and mitigate the impacts of non-point source runoff.

To investigate the effects of real-time control on the creekshed, we deploy a control network that
measures and regulates flows from two large stormwater basins. The control network consists of four
sites centered around the main stem of the creek. Figure 1 shows the locations of each of these four
sites in the control network. Water first flows into a large retention basin with a storage capacity of
19 ML (site A), located at the most upstream point in the control network. From this retention basin,
water travels 1.4 km downstream to a constructed wetland (site C), designed to slow the flow of water
and remove contaminants. After passing through the wetland, water travels another 3 km until it is
joined by flows arriving from a smaller retention basin with a storage capacity of 7.5 ML (site B). The
combined flows exit the creek at the outlet of Mallet’s creek (site D), after which they enter the Huron
River. Internet-controlled valves are deployed at the two stormwater basins at sites A and B. These
valves are used in subsequent experiments to regulate flows at the outlet of the creek.

2.2. Technologies and Architecture

Flows throughout the creekshed are measured and controlled using a custom wireless sensing and
control network. This network is built using the open storm hardware and software stack, which has
been described and documented in Bartos et al. (2018) [6]. The hardware layer uses an ultra-low
power ARM Cortex-M3 microcontroller (Cypress PSoC), which implements the sensing and control
logic in its firmware. Internet connectivity is achieved using a CDMA cellular modem (Telit DE910),
which facilitates wireless bi-directional communication between the field device and a remote server.
The full unit is powered using a solar-rechargeable 3.7 V lithium-ion battery. To measure the hydrologic
response of the system, wireless sensor nodes are deployed along the main stem of the creek. Each sensor
node is equipped with an ultrasonic depth sensor (Maxbotix MB7384) to measure water levels (shown in
Figure 1, site C). At the time of writing, sensor nodes can be constructed using less than $500 USD of parts.

To control discharges throughout the creekshed, stormwater basins are retrofitted with one of
two valves: (i) a 0.3 m diameter butterfly valve (Dynaquip MA44) (Figure 1, site B) or (ii) a 0.3 m
gate valve (Valterra 6912) mated to a linear actuator (AEI 6112CH) (Figure 1, site A). Each control
valve is connected to a sensor node. The valves are actuated by the microcontroller and powered by
rechargeable 12 V sealed lead-acid batteries. Solar panels allow the control sites to operate without line
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power. Assuming that the valve can be attached to a basin’s outlet without structural modification,
each control site can be constructed using less than $3500 USD of parts at the time of writing.

Figure 1. Overview of the study area. The map (left) shows the location of relevant control and sensor
sites, additional sensor sites (light grey), flow paths between each site (dark grey), and the contributing
area of the watershed (light blue). Site images (right) show the two control sites (A & B) along with
two downstream sensor locations (C & D).

Remote control of valves and sensors is implemented using a polling scheme, in which
field-deployed nodes request commands from a remote server (Figure 2). To conserve power, nodes
spend most of their time in a deep sleep state, consuming only 1–10 µA of current. Upon waking up,
each node takes sensor readings and transmits the readings to a cloud-hosted time series database
(InfluxDB) via authenticated (and optionally encrypted) HTTP requests. Before going back to sleep,
the node polls a set of commands from a dedicated feed in the same database. The commands
may include, but are not limited to, changing the sampling frequency, triggering additional sensor
readings, or opening a valve. Operations can be cancelled and rescheduled either by the application
or by an operator. This is useful if, for example, the application detects that a control action was
not successfully executed and that pending operations need to be rescheduled. Most importantly,
the database supports modern web service standards and application programming interfaces (APIs),
which allow the control logic to be quickly implemented via simple web applications. These applications
can be written in any number of popular programming languages (Python, Matlab, etc.). This feature
improves flexibility, reduces reliance on low-level firmware updates, and allows for the seamless
integration of external data sources, such as public weather forecasts [6,15].

For the experiments described in this study, field devices in the creekshed are controlled using
a simple Python web application. This application can be executed in either automatic or manual mode.
In automatic mode, the application queries water level sensor feeds, rainfall forecasts, and external flow
measurements from a publicly-listed measurement station at the outlet of the creekshed (USGS 04174518
(https://waterdata.usgs.gov/usa/nwis/uv?04174518)). Based on these sensor readings, new commands
are then written to the database to open and close valves. In manual operation, a predefined set of
commands is written to the database, then subsequently executed by the field device. For this study,
the manual operation mode is used. The application toolchain is implemented on an Amazon Web
Services (AWS) medium-sized linux Elastic Compute Cloud (EC2) instance.

https://waterdata.usgs.gov/usa/nwis/uv?04174518
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Figure 2. Control system architecture. Field-deployed nodes use a polling system to download and
execute commands issued from a remote server. Control actions can be specified manually, or through
automated web applications and scripts.

3. Characterizing Control Actions

Before evaluating potential control strategies, we first characterize the ability of each control site to
shape downstream flows. Specifically, we quantify the travel time P and decay time D of various waves
as they move between the originating control site and the outlet of the watershed. The characterization
is accomplished by releasing pulses of different durations from each stormwater basin and then
observing the resulting waves that these pulses generate downstream. To limit confounding effects
caused by rainfall, these experiments are carried out during dry conditions (at least four days following
a storm). Figure 3 shows a 1-h release, 4-h release, and 48-h release from retention basin A (shown left to
right, respectively). The 48-h release empties the retention basin, meaning that this release characterizes
the maximum possible output from site A. The travel times for each wave from site A to site C are
approximately 3.5 h (time to start of rise) and 6–8 h (time to peak), with faster rise times for the larger
releases due to nonlinearities in the speed of wave propagation. The decay times for each release are
6 h, 18 h and 44 h, respectively. From this experiment, it can be seen that the maximum change in flow
that site A can generate at the outlet is roughly 0.17 m3/s. Similar experiments are used to characterize
site B. From these experiments, we estimate average travel times from site B to the outlet of 1.5 h
(time to start of rise) and 1.8 h (time to peak), with an average decay time of 3 h, and a maximum
change in flow of approximately 0.2 m3/s.

In addition to release duration, sites are also characterized with respect to the hydraulic head
(water level) of the originating retention basin. Figure 4 shows the result of releasing three 1-h pulses
from site B, without allowing the basin to refill between releases. While the same duration is used
for each release, the hydraulic head (stored volume) of the retention basin decreases with each pulse.
Thus, the resulting wave becomes smaller with each successive opening of the valve, even though the
same input signal is used. In spite of this difference, the travel times and decay times of the waves
remain consistent between each release. The magnitude of the resulting wave varies from roughly
0.2 m3/s to 0.13 m3/s, depending on the water level in the basin.

Although retention basin B is significantly smaller than retention basin A, it can produce
a comparable change in flow at the watershed outlet (approximately 0.2 m3/s). This effect can be
attributed to two main factors. First, site B is located closer to the outlet (3.0 km as opposed to 5.9 km
for site A), meaning that the wave is subject to less hydraulic dispersion. Second, the retention basin at
site B is elevated higher above the receiving stream, meaning that flows exit the control structure more
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rapidly than flows released from site A. Thus, compared to site A, site B produces short pulses with
a rapid onset and large peak. Despite its relatively smaller volume, control actions from site B must
thus be tailored to avoid generating flashy flows at the outlet.
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Figure 3. Characterization of control actions from site A. In the first two experiments, the valve at site
A is opened for 1-h and 4-h durations. For the third experiment, the valve is held open indefinitely.
The resulting waves travel through a constructed wetland (site C) before arriving at the outlet of the
watershed. Wave depth (black line) is measured at the wetland, while flow rate (red line) is measured
at the outlet.
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released. While the duration of each control pulse is the same (1 h), the magnitude of the flow at the
outlet decreases because the hydraulic head (pressure) in the basin is reduced with each release.

One crucial result of these experiments is that for the purposes of control, nonlinearities in
wave propagation can be safely ignored. Shallow-water waves exhibit a nonlinear relationship
between wave height and wave speed, meaning that larger waves propagate faster [16]. If these
nonlinearities were significant, then control strategies would need to account for changes in travel
time due to (i) variations in release durations; (ii) variations in basin head; and (iii) superposition
of waves originating from different locations. For the system examined in this study, the effect of
these nonlinearities is small. Namely, while nonlinearities in wave propagation affect the shape of the
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resulting hydrograph (skewing the peak toward the left), they do not significantly affect the bulk travel
time of an isolated wave. Specifically, the travel times for site A and site B remain consistent (3.5 h and
1.5 h, respectively) despite scheduling releases of different durations and magnitudes. This result
is consistent with findings from previous studies that use linear dynamics for stormwater system
control [17–19]. Thus, for the scale of our creekshed the travel time of a wave originating at an upstream
stormwater basin can be considered independent of both the amount of water released and the water
level of the originating basin. Moreover, superposition of two waves from two parallel sources does
not effect a noticeable change in bulk wave speed. This result suggests that for the purposes of control,
the channel network may be approximated as a linear system in which waves originating from each
retention basin can be superimposed in order to produce a desired output hydrograph downstream.

By characterizing the downstream response to various impulsive inputs, these initial experiments
yield a set of “building blocks” that are subsequently used to achieve more complex control objectives
at the watershed outlet. While the propagation of waves within a channel network is described by
nonlinear equations, we find that a linear system approximation adequately describes the dynamics
needed to generate control strategies. Thus, the characterization experiments described in this section
are conceptually analogous to quantifying the unit impulse response of a linear system. This framework
suggests that desired waveforms can be generated via simple linear combinations of known input
signals. With this conceptual model in hand, we carry out a number of control experiments to showcase
the utility of the stormwater control network. First, we show how pulse-width modulation of a valve
can be used to produce a flat hydrograph that meets but does not exceed a given flow threshold.
Next, we show how valve releases can be timed to generate synchronized and desynchronized waves
at the outlet. These experiments provide recipes for managing releases from upstream retention basins
while simultaneously fostering desirable flow conditions downstream.

4. Set-Point Hydrographs

Real-time control can be used to flatten downstream hydrographs, helping to reduce erosion
and maintain healthy aquatic ecosystems. In passive stormwater systems, hydrographs often exhibit
a distinct peak, preceded by a rapid rise and followed by a slower decay. While typically associated
with rain events, this phenomenon can also be observed when water is released from a retention
basin (see Figures 3 and 4). Peak flows that exceed downstream capacity will often lead to flooding.
Furthermore, urban streams can become unstable if a critical flow velocity or flow rate is reached [20].
Exceedance of these thresholds may lead to ecological damage and stream erosion, as well as the
mobilization of sediments. These sediments in turn may carry nutrients, metals and other pollutants
downstream, impairing water quality and promoting the growth of algal blooms [21]. This particular
impairment underpins the major challenge of “urban stream syndrome”, forcing many cities to spend
millions of dollars to reduce downstream flow rates [22,23]. While active control has been proposed as
a means to condition stormwater flows, the specific control strategies needed to achieve stable flow
conditions within an urban watershed are currently not well understood.

To address this challenge, a sequence of control actions is designed to yield a constant set-point
condition at the outlet of the watershed. Specifically, we aim to create a flat hydrograph, for which
the flow rate remains close to (but does not exceed) a specified value. While the set-point used in
this experiment is chosen arbitrarily, this threshold may be chosen to control for objectives related to
downstream flooding and water quality—for instance, ensuring that the critical flow threshold for
sediment transport is not surpassed. To achieve a constant set-point flow rate, we derive inspiration
from pulse-width modulation—a method used in electrical systems to generate analog signals from
discrete digital pulses. Isolated pulses of water are emitted from the control site, spaced apart such that
the arrival time of each wave overlaps with the receding limb of the prior wave. As the pulses travel
through the channel network, they disperse, causing the individual waves to overlap and combine.
The resulting superposition of partly-dispersed waves results in an approximately constant flow rate.
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As seen in the hydrograph response (Figure 5), the “flat hydrograph” objective is achieved by
modulating the valve position in successive 30-min pulses. The flows at the outlet remain approximately
flat, without significantly exceeding a setpoint of 0.04 m3/s. Of course, the shape is not perfectly
flat, given the large distance between the two sites and nonlinearities inherent in wave propagation.
However, these experimental results show that active modulation of a valve can produce highly
stable flow conditions downstream that would not be possible using passive infrastructure alone.
In a real-world scenario, this control strategy could be used to drain a watershed as fast as possible
without exceeding critical flood conditions downstream. Minimizing the change in flows downstream
also reduces the likelihood of stream erosion. From our prior studies in this creekshed that were not
affected by real-time control [24], it can be estimated that pollutant concentrations during this flat stage
were no greater than 127 mg/L for sediment and 0.209 mg/L for total phosphorus. For comparison,
keeping the valve open would have resulted in concentrations of at least 390 mg/L for sediment and
0.618 mg/L for total phosphorus. By modulating the valve position to achieve a relatively flat and
steady outflow, the control actions likely reduced the total mass of solids and phosphorus that would
otherwise contribute to ecological damage and harmful algal blooms. Future studies will confirm and
refine these estimates by measuring real-time water quality changes that result from control.
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Figure 5. Generating a set-point hydrograph. Small, evenly spaced pulses (30-min duration) are
released from the controlled basin. The pulses disperse as they travel through the 6 km-long stream,
leading to a relatively flat response at the outlet of the watershed.

5. Coordinated Releases between Multiple Control Sites

Motivated by the larger goal of watershed-scale control, a final experiment is devised to evaluate
the level of precision that can be achieved when coordinating releases from multiple sites. Namely,
we schedule releases from the two controlled basins in order to produce synchronized and interleaved
pulses at the outlet. Before running the experiment, we first determine the control signals needed to
generate the combined and interleaved waves, respectively, by assessing the travel time and decay
time of waves released from each retention basin. Figure 6 shows the hydrographs resulting from
1-h pulses released simultaneously from site A and site B. Based on the travel times of each wave,
it can be seen that in order to achieve a synchronized wave at the outlet, a 1-h release from site B
must be scheduled approximately six hours after a 1-h release from site A. Conversely, to achieve
an interleaved pattern at the outlet, the following pulse train can be used: (i) release a 1-h pulse from
site A; (ii) release a pulse from site B approximately 12 h later; (iii) release a pulse from site A after
waiting an additional four hours; and (iv) repeat the pattern starting at step (ii).

Once the input signals required to produce each desired shape are known, we schedule a series
of commands to be executed by each valve. The experiment is divided into two stages. During the
first stage, flows from the control sites are released such that the peaks of the hydrographs overlap.
In the second stage of the experiment, the flows are released off-phase, such that the flows arriving
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from one site begin exactly when the flows from the other site recede. Figure 7 shows the result of
this experiment, with the overlapping waves occurring from hours 6 to 15, and the interleaved waves
occurring from hours 15 to 44. As hypothesized earlier, the superposition of waves is approximately
linear. In other words, the maximum change in flow is approximately equal to the sum of the maximum
flow of each component wave. Moreover, the superposition of the two waves does not appear to
appreciably change the bulk travel time.
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Figure 6. Flows at outlet of watershed resulting from 1 h releases from each control site. Time to peak
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Figure 7. Superposition and interleaving of waves from retention basins A and B. Overlapping waves
(coincident peaks) are generated from hours 6 to 12. Interleaved waves (off-phase peaks) are generated
from hours 18 to 44.

This experiment shows that real-time control of stormwater systems can achieve precise control
over downstream flow conditions, and it also suggests a strategy for coordinating releases in order
to remove stormwater from retention basins while simultaneously achieving target flow conditions
downstream. Like the set-point experiment, an interleaving control pattern can be used to de-water
upstream retention basins without exceeding a particular flow threshold downstream. When waves
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generated by several upstream retention basins combine, they can generate large, flashy flows at
a downstream location. This in turn can contribute to erosion of the surrounding channel. For this reason,
it is desirable to avoid the collision of waves from two different upstream sources. By interleaving flows
from upstream retention basins, one can free up capacity in the system without generating adverse
flow conditions downstream. More broadly, the results of this experiment demonstrate the fine level of
flow control that can be achieved across urban watersheds using a low-cost sensor and control network.
While the underlying control logic only uses rudimentary time-of-travel metrics, it nonetheless produces
desirable flow regimes that would be difficult to achieve with passive infrastructure alone. As such, this
experiment builds a foundation for more complex control strategies by verifying that the watershed
responds consistently and predictably to individual control actions. This result suggests that future
studies may one day demonstrate more complex, possibly near-arbitrary, hydrograph shapes. Time of
travel may not be sufficient for such approaches, however, and more complex and analytical control
techniques should be considered.

6. Conclusions

This study shows how internet-connected stormwater control valves can be used to shape
streamflows within a large urban watershed. To our knowledge, this study is the first to document how
coordinated releases between multiple stormwater control sites can satisfy system-scale watershed
performance goals—such as maintaining downstream flow at a constant rate or preventing sediment
transport. Building on an existing wireless sensor network, we demonstrate how static stormwater
retention basins can be retrofitted with internet-controlled valves to enable active control at a low cost.
Characterizing the system in a series of exploratory experiments, we find that a linear approximation
is sufficient to describe the downstream response associated with a given input. Next, we use the
system to generate two flow conditions downstream: (i) a set-point hydrograph in which flow is
maintained at a roughly constant rate; and (ii) a series of overlapping and interleaved waves. We find
that pulse-width modulation of upstream valves generates a flat downstream response. Similarly,
interleaving of discharges provides an effective tool for emptying upstream retention basins without
inducing flashy flows downstream. In addition to demonstrating the precision of the control system,
these experiments suggest strategies for managing stormwater transfers across a watershed while
maintaining desired flow conditions. To make the smart stormwater system described in this paper
accessible to water managers worldwide, all hardware, software and documentation for this project
are made available at open-storm.org.
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Instead of costly construction, new technologies may 

make it possible to use existing water systems much 

more effectively.

In the era of self-driving cars, digital assistants, and other smart things, 
can the same level of autonomy and “intelligence” be embedded in water 
systems? Such technologies have the potential to dramatically reshape adap-
tation to some of the greatest water challenges, such as floods and droughts. 
Software-updatable water systems are well within reach, promising to enable 
highly cost-effective water infrastructure that dynamically redesigns itself in 
response to changing needs and uncertain inputs.

Background

Recent news coverage has concerned droughts in the American West, con-
taminated tap water in the Midwestern United States, and floods in Califor-
nia, New England, and the southeastern coastal states. In fact, flooding is the 
leading cause of extreme weather fatalities in the United States (Vörösmarty 
et al. 2010).

At the same time, dry regions struggle to find new and clean sources of 
water. By many estimates, the capture of stormwater in Los Angeles could 
offset 10 billion gallons per storm (Monte 2015), a large portion of the city’s 
annual water budget. Unfortunately, most of this water is washed into the 
Pacific Ocean within hours after a storm. Capturing it requires distributed 
storage and treatment, both of which are limited.
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The scarcity of water in the West and other parts of 
the United States is not helped by the age of the infra-
structure that conveys it. By many estimates, nearly 20 
percent of treated water is lost through old and leaky 
pipes, some of which were constructed at the turn of the 
last century (US EPA 2013).

Aside from water losses, leaks present significant rev-
enue and energy challenges—treatment and convey-
ance across water systems account for almost 2 percent 
of the US energy budget (US EPA 2017). Thus, the 
need to better track and address challenges to water sup-
plies and water distribution is imperative to maintain 
safe, leak-free, and energy-efficient water systems.

Status of US Stormwater Systems

Recent flash floods (e.g., Hunter 2016) are an all too 
common, dramatic example that aging infrastructure is 
struggling to keep up with changing and increasingly 
severe weather patterns. In addition, nutrients, metals, 
and many other pollutants are washed from urban surfac-
es when it rains, eventually ending up in streams, lakes, 
and oceans (Barco et al. 2008; Finkebine et al. 2000; 
Wang et al. 2001). And many parts of the country are 
dealing with chronically impaired coastlines due to algal 
blooms, which are driven, in part, by urban stormwater 
runoff (Carey et al. 2014; Doughton 2015; Wines 2014).

Infrastructure Challenges
To address flooding and water quality challenges,  cities 
build and maintain complex networks of distributed 
stormwater assets such as pipes, canals, and basins. This 
infrastructure reduces flooding by moving water away 
from roads and buildings during storms. It also includes 
natural elements, such as wetlands and raingardens, to 
capture sediments and dissolved pollutants before they 
can be discharged to downstream ecosystems.

In some communities, however, stormwater and 
wastewater are combined, sharing the same pipes. With 
these systems, large storms can lead to sewer overflows 
into natural waterways, introducing viruses, bacteria, 
nutrients, pharmaceuticals, and other pollutants.

Many US stormwater systems were designed at times 
of less stringent regulations and for populations differ-
ent from those they now serve. Most are approaching, or 
already exceed, their design life and face problems simi-
lar to those of America’s other ailing infrastructure. The 
American Society of Civil Engineers (ASCE) report 
card has given US stormwater infrastructure a near fail-
ing grade (ASCE 2017), and the problem is echoed in 

the National Academy of Engineering’s Grand Chal-
lenge to “restore and improve urban infrastructure” 
(NAE 2008).

Costly and Piecemeal Fixes
The distributed nature and massive size of most munici-
pal stormwater infrastructure makes it impossible to dig 
up and resize the entire system. Instead, problems are 
often fixed one by one through expensive construction 
projects that are difficult to change afterward. As such, 
most stormwater systems comprise an amalgam of dis-
tributed fixes that have been constructed over decades 
and rarely add up to an optimized whole.

One of the country’s largest stormwater and sewer 
tunnels was recently built in Chicago, and a few  other 
cities are following this billion-dollar trend (Evans 
2015). But these impressive, large construction projects 
are a luxury for most communities, many of which face 
challenges in simply maintaining their existing systems.

Even in small communities, stormwater systems can 
quickly add up to hundreds of linear miles of assets that 
must be maintained and repaired. In many US cities 
low or no fees are charged for stormwater services, in 
comparison to drinking water or sanitary sewer systems. 
With highly limited revenue streams, solutions that 
rely on new construction cannot keep pace with evolv-
ing community needs and uncertain weather. As cash-
strapped communities seek more resilient infrastructure 
solutions, novel alternatives must be explored.

Technologies for Smarter Water Systems

The role of information technology in managing water 
supplies and drinking water distribution systems has 
been made evident in a number of applications. These 
include sensors for the management of large hydro power 
and agricultural basins (Kerkez et al. 2012;  Rheinheimer 
et al. 2016), real-time pump optimization and leak 

Most stormwater systems  
are an amalgam of  

distributed fixes over 
decades that rarely add up 

to an optimized whole.
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localization systems (Stoianov et al. 2007; Whittle 
et al. 2010), drinking water contamination detection 
( Ostfeld and Salomons 2004; Storey et al. 2011), and 
even residential WiFi irrigation widgets.

A burgeoning smart water industry is beginning to fill 
the needs of modern water utilities and municipalities. 
The overall technology outlook for water supplies and 
drinking water systems is promising, notwithstanding 
much work that must still be done in the development 
of water quality sensors for important contaminants, 
such as lead, bacteria, and viruses.

Not all water sectors are embracing technology at the 
same pace. This is particularly true across storm water 
systems, an often overlooked and possibly the most 
poorly funded subset of urban water infrastructure (Kea 
et al. 2016). Instead of relying on costly construction, 
new technologies may make it possible to use existing 
systems much more effectively.

Industrial and academic efforts are under way to dem-
onstrate the benefits of real-time sensing, computation, 
and wireless connectivity for the management of urban 
watersheds. The driving hypothesis behind this work is 
that smart stormwater systems will vastly shrink the size 
of infrastructure required to manage runoff pollution 
and other impacts of changing weather. This approach 
will dynamically repurpose existing stormwater systems 
by adapting them on a storm-by-storm basis.

Researchers at the University of Michigan have been 
spearheading the development of open source technolo-
gies that enable watersheds to be retrofitted for sensing 
and real-time control (figure 1). These technologies 
and associated case studies are being shared through 
Open-Storm.org, an open source consortium of aca-
demic, industry, and municipal partners that seeks to 
provide a complete, “batteries included” template for 
the development of smart watersheds to combat flood-

FIGURE 1 Technologies for the sensing and control of watersheds. A full wireless network is composed of many individual sensor nodes 
(left column) dispersed throughout a watershed, typically at least one per square mile. Each sensor node contains a low-power micro-
processor, which collects measurements from a variety of connected sensors. The same unit can be used to control flows using gates, 
valves, or pumps (right column). A wireless radio, often a cellular module, allows sensor measurements or commands to be transmitted 
using cloud-hosted services in real time. Reprinted from Bartos et al. (2018) with permission from the Royal Society of Chemistry.

http://Open-Storm.org
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ing and improve urban water quality. The technologies 
include rapidly deployable wireless sensor nodes for the 
measurement of urban water flows, water quality, soils, 
and weather. These are complemented by cloud-hosted 
data services that allow measurements to be analyzed 
immediately, providing real-time information on the 
“health” of both the watershed and the infrastructure.

Commands can also be transmitted from the cloud to 
the watershed to change the configuration of infrastruc-
ture in real time. This is enabled by wirelessly controlled 
valves, gates, and pumps that can be quickly and eas-
ily attached to existing stormwater infrastructure, such 
as pipes, retention basins, or wetlands. Water levels at 
retro fitted sites can be safely controlled to release water 
based on sensor measurements or real-time weather 
forecasts. By dynamically controlling flows across sites, 
system-level storage can be adapted to the unique 
nature of any given storm. This allows infrastructure to 
be “redesigned” or updated in near real time without the 
need for new construction.

Even a single remotely controlled valve can pro-
vide major benefits. At a basin or pond, a valve can 
be used to control flooding and reduce stress on down-
stream systems—a simple control algorithm closes the 
valve during a storm and opens it before the next storm 
starts. Storing water locally during a storm  temporarily 
removes it from downstream areas that may other-
wise be prone to flooding. The captured water can be 
directly used for irrigation in adjacent neighborhoods 
or injected into underlying aquifers to replenish the 
ground water table. Some level of treatment can even be 
achieved at the controlled site by promoting the capture 
of  sediment-bound or dissolved pollutants through set-
tling or natural treatment. Many of these benefits can 
already be explored by cities and stormwater utilities 
through commercial real-time control solutions.

Perhaps the biggest benefit of real-time control is the 
ability to coordinate flows across entire infrastructure 
systems. For example, the upgraded large combined  sewer 
system in South Bend, Indiana, features over 100 sensors 
and 10 control points working in tandem to reduce sewer 
overflows over an area of some 40 square miles.

System-level control promises effective coordination 
of the many distributed parts of urban stormwater infra-
structure at the scale of entire watersheds.

Testbed Implementation

Smart stormwater control networks are being deployed 
across the Midwestern United States as testbeds for sys-

tem-level control. They were developed and deployed 
through the support of the Great Lakes Protection 
Fund, in partnership with the cities of Ann Arbor and 
Toledo, Washtenaw County, the Universities of Toledo 
and Michigan, and Michigan Aerospace.

The largest Open Storm testbed is in Ann Arbor 
(figure 2). The sensor network covers a 10 square mile 
urban watershed, in which some portions have a den-
sity of over 15 sensors per square mile. Multiple basins 
and wetlands have been retrofitted for control, some-
times in just one day by a group of university and high 
school students. Now in its second year of operation, 
the relatively inexpensive testbed has demonstrated the 
following:

• Measurements of soil moisture, water flows, rain, and 
water quality are transmitted in real time, analyzed, 
and made available to researchers and city engineers. 
This provides continuous performance insights that 
can be used to maintain or upgrade the existing infra-
structure.

• Some of the largest controlled basins can store nearly 
5 million gallons per storm, making it possible to con-
trol the majority of flows across the watershed.

• Real-time coordination of multiple valves has reduced 
flooding risk. Controlling how long water is held in 
basins after a storm has also reduced the output of sedi-
ments and nutrients from the watershed. 

All of these benefits were achieved without new con-
struction, but rather by using existing infrastructure 
more effectively.

Many scientific questions must now be addressed, but 
the testbed has proven to be effective and can serve as a 
blueprint for future smart watersheds. Researchers are also 
engaging with residents, city managers, and regu lators on 
the value of these technologies to the community.

By dynamically controlling 
flows across sites,  

system-level storage  
can be adapted on a  
storm-by-storm basis.
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Simulating for Safety

Public safety demands that control algorithms be exhaus-
tively validated and verified before control of water-
sheds is delegated to an autopilot. Efforts are focusing 
on achieving this through new simulation frameworks 
that allow large control networks to be modeled using 
state-of-the-art hydraulic solvers and control algorithms 
(Mullapudi et al. 2017).

Rather than running continuously, as is done in most 
water simulations, the water model can be halted after 
every step so that an external algorithm can “make deci-
sions” on how to control valves or other assets. This 
allows a variety of algorithms to be evaluated in a phys-
ically realistic manner before being deployed on real-
world systems (figure 3). These efforts are being freely 
shared through open source toolboxes to reach engi-
neers in other disciplinary communities (e.g., control 
theory, machine learning) and encourage them to apply 
their own algorithms to combat flooding and improve 
water quality.

This simulation framework has already been used to 
begin investigating algorithms ranging across  dynamical 
feedback control, market-based optimization, and 
reinforcement learning controllers. It can also help 
municipal managers decide on investments in real-time 
control.

Initial results obtained by University of Michigan 
researchers show that the addition of even a few con-
trol valves across urban watersheds allows the infra-
structure to handle storms more than twice as large as 
those it was designed for. These findings also suggest 
that it may be possible to construct some new infra-
structure at half the size when using real-time control, 
promising significant cost savings when compared to 
traditional methods.

Outlook

The adoption of smart water systems is no longer limited 
by technology (Kerkez et al. 2016), which has matured 
to the point that it can be ubiquitously deployed. 

FIGURE 2 The real-time controlled watershed (blue region) in Ann Arbor, Michigan. Starting from the top right corner of the region, 
the numbers indicate water flow (in reverse order). (1) designates the outlet of the watershed, where urban stormwater flows enter the 
Huron River. Sensor nodes at each location measure multiple parameters: flows and water levels (locations 3, 4, 6, and 7), soil moisture 
and rainfall (location 5), and water quality (locations 1 and 3). The watershed is also controlled at a number of points using remotely 
controllable valves (locations 2 and 4). The current placement and density of sensors follow major infrastructure assets; the sensor net-
work is continuously being expanded to capture the remaining parts of the watershed. Reprinted from Bartos et al. (2018) with permis-
sion from the Royal Society of Chemistry.
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 Rather, other barriers are becoming apparent and must 
be overcome to encourage and enable broader adoption:

• A new generation of control algorithms needs to be 
engineered, to ensure safe and autonomous operation 
at the scale of entire cities.

• More important, perhaps, social barriers to adop-
tion need to be addressed. Doing so will require an 
understanding of how residents and decision makers 
perceive the benefits of smart versus traditional water 
systems.

• Finally, a new cross-disciplinary workforce needs to 
be trained and educated to be able to build, operate, 
and maintain this new generation of water systems.

New Control Algorithms
From a fundamental engineering perspective, there is 
a need to investigate how large water systems can be 
safely and autonomously controlled across the scales of 
entire cities and regions, requiring hundreds or thou-
sands of control sites. To that end, extensive knowledge 
of water systems must be embedded in robust control 
algorithms.

While many control techniques for distributed sys-
tems have been successfully developed and applied in 
other engineering domains, an application-agnostic, 
one-size-fits-all approach may not be appropriate for 
water—what works for one type of water system may not 
work for another. For example, guidance on controlling 
flows across large spatial scales may come from research 
on reservoir operations (Wardlaw and Sharif 1999), 
water distribution systems (Cembrano et al. 2000), 
and control sewer systems (Marinaki and Papageorgiou 
2005). However, the application of the same algorithms 
to stormwater may quickly reach limitations because of 
the need to account for challenges such as noisy sen-

sor data, weather uncertainty, or the types of timescales, 
complexities, and feedbacks inherent in urban water-
sheds. Research is needed to determine which real-time 
control techniques will meet performance goals with-
out risking the safety of nearby residents, property, and 
downstream ecosystems.

The need to solve these challenges presents an excit-
ing opportunity for civil and environmental engineers 
to collaborate with colleagues in systems and computer 
science, electrical engineering, and other fields.

Public Buy-in
Even perfectly engineered smart systems may not be 
adopted if public trust is not secured. As autonomy 
moves into the sphere of residential and commercial 
water systems, it must be accompanied by a deep appre-
ciation of how residents, decision makers, and  regulators 
perceive its benefits and risks.

The vast majority of water utilities and districts in the 
United States are publicly owned. An understandable 
level of risk aversion has developed over the decades 
since even small changes in operations can have large 
implications. The close connection between water and 
public safety, health, and other local priorities means 
that decisions are not always based on economics or 
efficiency. Engineers’ limited understanding of the per-
ceptions of decision makers and the public regarding 
smart water technologies may be the biggest barrier to 
adoption.

The engineering disciplines must begin engaging 
with the social and economic sciences to develop a 
more holistic appreciation of the opportunities afforded 
by modern technologies for water management.

Workforce Development 
Growing interest in smart cities promises exciting 
opportunities for a new workforce of engineers and 

FIGURE 3 Control algorithms developed as part of the Open-Storm.org project allow watersheds to be abstracted into control models, 
which can then be used to simulate performance before the control systems are ported to the real world.

http://Open-Storm.org
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technicians who will respond to a multitude of cross-
disciplinary challenges. In the context of water, this will 
require educating a new generation of students whose 
knowledge of water systems will be combined with 
mastery of other disciplines, such as computer science 
and electrical engineering. Novel graduate and under-
graduate educational initiatives are forming to fill this 
need, such as the University of Michigan’s Intelligent 
Systems graduate program in the Department of Civil 
and Environmental Engineering.

This new generation of students must be embraced 
by an industry willing to value skills that have not 
traditionally been part of its core. The economic and 
efficiency gains resulting from smart water systems will 
need to be translated into commensurate salaries for 
appropriately educated, technologically savvy engi-
neers, who may otherwise be lured into much higher-
paying tech careers.

Similarly, there is an opportunity to begin training 
a new workforce of smart water technicians and main-
tenance experts, who will not need college degrees to 
benefit from a tech career. This new workforce of engi-
neering technicians may also help to advance equity 
and inclusion (Kuehn 2017).

Conclusions

Smart and autonomous water systems are well within 
reach, driven by pioneering efforts in a growing  number 
of US communities and utilities. Early implementation 
of these systems indicates that, before resorting to  costly 
new construction, it may already be possible to use exist-
ing infrastructure much more effectively.

Lessons learned by early adopters are being shared 
through new cross-sector groups and consortiums of reg-
ulators, companies, utilities, and academics, such as the 

international Smart Water Networks Forum (SWAN), 
and initiatives of established water organizations, such 
as ASCE’s Environmental Water Resources Institute 
(EWRI) and the Water Environment Foundation 
(WEF). In addition, the National Science Foundation, 
through its new Smart and Connected Communities 
program, is funding efforts to encourage fundamental 
discovery and meaningful engagement with cities and 
communities; one recently funded project will work 
across a number of US cities to investigate and over-
come major barriers to adoption of smart stormwater 
systems (NSF 2017).

Anyone interested in efforts to enhance water man-
agement is encouraged to engage with these groups or to 
learn and contribute through open source efforts such as 
WaterAnalytics.org and Open-Storm.org.
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Real-Time Control of Urban Headwater Catchments Through
Linear Feedback: Performance, Analysis, and Site Selection
B. P. Wong1 and B. Kerkez1

1Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract The real-time control of urban watersheds is now being enabled by a new generation of “smart”
and connected technologies. By retrofitting stormwater systems with sensors and valves, it becomes possible
to adapt entire watersheds dynamically to individual storms. A catchment-scale control algorithm is
introduced, which abstracts an urban watershed as a linear integrator delay dynamical system, parameterizes
it using physical watershed characteristics, and then controls network flows using a Linear Quadratic
Regulator. The approach is simulated on a 4-km2 urban headwater catchment in Ann Arbor, Michigan,
demonstrating the gains of a stormwater system that can adaptively balance between flood mitigation and
flow reduction. We introduce an equivalence analysis and illustrate the performance of the controlled
watershed across large events (30-year storms) to show the uncontrolled passivewatershed can only match it
during smaller events (10-year storm). For these smaller events, the storage volume of the controlled storage
nodes (ponds, basins, and wetlands) could be reduced as much as 50% and still achieve the same
performance of the controlled watershed. A controller placement analysis is also carried out, whereby all
possible combinations of controlled sites are simulated across a wide spectrum of design storms. We show
that the control of every storage node may not be needed in a watershed, but rather that in our case study a
small subset (30%) of the overall watershed can be controlled in coordination to achieve outcomes that
match a fully controlled system, even when tested across a long-term rainfall record and under noisy
sensor measurements.

Plain Language Summary Internet-connected sensors are changing how we study and manage
water systems. By adding valves, gates, and pumps to stormwater systems, it will be possible to adaptively
control urban watershed in response to individual storms. Without requiring new and expensive
construction, this will allow existing infrastructure to be used more effectively. In this paper, we introduce a
control algorithm that can be used to control urban watersheds. We also investigate how many control
valves are needed to retrofit an urban watershed and where, which may serve as tools for city managers to
reduce flooding and manage flows.

1. Introduction

Population pressures continue to drive land use changes, often resulting in more paved and impermeable
urban landscapes. Stormwater runoff has become more flashy and polluted, leading to flooding, erosion,
and ecosystem impairments (Boyer & Kieser, 2012). Often referred to as the urban stream syndrome (Walsh
et al., 2005), this collection of challenges is compounded by a changing climate that drives storms of increas-
ing intensity and frequency (Alexander et al., 2006; Cheng & AghaKouchak, 2014). At a time of declining infra-
structure funding (Grigg, 2015; Pagano & Perry, 2008), pressure is mounting on urban watershedmanagers to
do more with less.

Traditionally, flooding and stream erosion have been mitigated through the expansion of constructed storm-
water infrastructure, which conveys runoff from buildings and roads through a complex system of below-
ground and aboveground infrastructure, such as pipes, detention basins, and constructed wetlands. Most
recently, green infrastructure has risen to prominence in the form of many smaller and distributed assets, such
as bioswales, rain gardens, and green roofs (Benedict et al., 2012; Fletcher et al., 2014). Watershed managers
thus have a large portfolio of stormwater options, ranging from large centralized assets to smaller distributed
solutions, most of which are very expensive. Cost are dependent on location but can vary from hundreds of
thousands of dollars per city block for green infrastructure, millions of dollars for residential basins, and
upward of billions of dollars for large tunnels (Keeley et al., 2013; Schütze et al., 2002). These solutions are

WONG AND KERKEZ 7309

Water Resources Research

RESEARCH ARTICLE
10.1029/2018WR022657

Key Points:
• A linear feedback controller is

formulated for the control of urban
catchments (1-5 km2) using physical
catchment properties

• Simulations show strong flow control
performance when compared to
uncontrolled catchment

• Desired hydraulic outcomes can be
achieved by retrofitting a small
number of control sites

Supporting Information:
• Supporting Information S1
• Figure S1
• Figure S2
• Figure S3

Correspondence to:
B. P. Wong,
bpwong@umich.edu

Citation:
Wong, B. P., & Kerkez, B. (2018).
Real-time control of urban headwater
catchments through linear feedback:
Performance, analysis, and site
selection. Water Resources Research, 54,
7309–7330. https://doi.org/10.1029/
2018WR022657

Received 29 JAN 2018
Accepted 29 AUG 2018
Accepted article online 4 SEP 2018
Published online 4 OCT 2018

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0002-0109-6150
http://orcid.org/0000-0002-8041-5366
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
http://dx.doi.org/10.1029/2018WR022657
mailto:bpwong@umich.edu
https://doi.org/10.1029/2018WR022657
https://doi.org/10.1029/2018WR022657
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2018WR022657&domain=pdf&date_stamp=2018-10-04


oftentimes designed to meet specific performance criteria; however, once constructed, passive stormwater
systems become costly and difficult to adapt to changes in land use and weather patterns. While many of
these solutions have shown to have very positive outcomes (Askarizadeh et al., 2015; Rosenberg et al.,
2010; Strecker et al., 2001), recent studies have also shown that aggressive adoption via many large or distrib-
uted stormwater assets can actually lead to worse watershed outcomes if individual elements are not tuned
to system-level outcomes (Goff & Gentry, 2006; Petrucci et al., 2013). In such instances, while a neighborhood-
scale fix may attenuate local peak flows and thus give the impression of a favorable outcome, its hydrograph
peak may be pushed to align more closely with a downstream peak, thus contributing more to downstream
flooding and erosion than before the measure was put in place (Emerson et al., 2005). As such, there is an
urgent need to find new adaptive solutions that are aware of the larger watershed.

“Smart” stormwater systems have recently been proposed to achieve real-time adaptation and system-level
control (Eggimann et al., 2017; Kerkez et al., 2016). In lieu of new construction, this paradigm proposes to use
many distributed, low-cost sensors and controllers (valves, gates, pumps, etc.) to coordinate flows across the
scales of entire watersheds. While the use of controlled assets—such as pumps—is not necessarily new, they
are rarely used since many stormwater systems simply rely on gravity for conveyance. If deployed, they are
often operated with simple control logic (e.g., level control). More importantly, their operation is not coordi-
nated across the broader watershed, which reduces their utility as an adaptive tool for watershed-scale man-
agement. The ability to connect such assets to the Internet using new and inexpensive wireless technologies
allows for their joint coordinated operation, effectively allowing an entire watershed to be reconfigured on a
storm-by-storm basis. For systems that do not have any controlled assets, cheap and open source wireless
valves can now readily be used to retrofit basins, ponds, wetlands, and green infrastructure (Bartos
et al., 2017).

Sensors and controllers have been applied across various smart water systems, such as drinking water distri-
bution systems, wastewater treatment and conveyance, and irrigation (Lemos & Pinto, 2012; Montestruque &
Lemmon, 2015; Ocampo-Martinez et al., 2013; Van Overloop et al., 2010). While it would seem intuitive that
such benefits could be translated to stormwater systems, it is still unclear how. Unlike strictly man-made sys-
tem, stormwater systems comprise amix of man-made and natural components, leavingmuch research to be
conducted to determine how they should be controlled safely and reliably across the scale of entire water-
sheds. This requires an interdisciplinary knowledge of domains spanning hydrology, infrastructure, data
science, and control theory.

In this paper, we take a step toward the coordinated, real-time control of urban watersheds (Figure 1, Top) by
asking the question: Where should urban catchments be retrofitted for real-time control and what perfor-
mance gains can be achieved compared to passive alternatives? More specifically, we seek to investigate
how control algorithms can be synthesized to reduce flooding and erosion in urban environments. The
fundamental contributions of this paper are the following:

1. A feedback control methodology, which uses physical parameters of a watershed to mathematically for-
mulate a dynamical, integrator-delay linear system and then uses a linear-quadratic (LQ) regulator (LQR)
controller to coordinate the operation of valves and gates in the watershed.

2. A simulation-based approach to help identify howmany distributed control valves are needed and where
they should be placed to achieve the best real-time control outcomes, focusing specifically on reducing
flooding and erosion.

3. A holistic equivalence analysis, which compares the real-time controlled system to passive solutions
across many storms of varying intensities and durations.

Given that smart stormwater systems have yet to be constructed at large scales, this analysis will be carried
out in simulation, which will allow for a variety of scenarios to be evaluated before results can be used to build
real-world control networks. Furthermore, the analysis will focus on the scale of urban headwater catchments
(1–5 km2), which will serve as building blocks to inform the control of larger watersheds in the future.

2. Background

Wireless technologies are becoming increasingly more affordable and accessible (Gubbi et al., 2013). When
coupled with measurements, such as low-cost water depth and in situ water quality sensors (Hart &
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Martinez, 2006; Wong & Kerkez, 2014), field-deployed devices are able to stream unprecedented amounts of
real-time measurements about the health and performance of large watersheds (Bartos et al., 2017; Wong &
Kerkez, 2016b). The resulting real-time data streams become particularly important when used in a
bidirectional fashion. Namely, rather than simply receiving measurements, commands may be transmitted
back to watersheds to change flows and hydrologic behavior. A simple example involves the addition of
an inexpensive control valve (Figures 1a and 1b) to the outlet of a stormwater basin, such as those
currently being retrofitted by the authors in the Midwestern United States (Bartos et al., 2017; Wong &
Kerkez, 2016b). Compared to passive solutions, where the outflows are determined by the fixed geometry
of an outlet, real-time control provides the ability to actively modulate runoff and adapt site behavior based
on real-time hydrologic states and rainfall forecasts (Marsalek, 2005).

Even a single remotely controlled valve can yield immediate benefits (Bryant & Wadzuk, 2017; Gaborit et al.,
2013; Muschalla et al., 2014). For example, a valve can be used to extend hydraulic retention time, thus pro-
moting the capture of sediment-bound pollutants (Carpenter et al., 2014; Gaborit et al., 2016; Gilpin & Barrett,
2014). When a storm is forecasted or detected, water can then be released to create additional storage capa-
city. By extension, modulation of flows (hydrograph shaping) from a site could reduce erosion by ensuring
that outflows do not exceed critical levels. Real-time control can thus adaptively balance water quality and
flooding benefits, which is difficult to accomplish using passive solutions. Given the recent advent of these
technologies, research studies addressing the benefits of real-time stormwater control have primarily
focused on benefits that can be obtained at the scale of individual sites (Carpenter et al., 2014; Gaborit
et al., 2013; Middleton & Barrett, 2008). Many of these studies rely on rule-based controls that are tailored
and parameterized for each individual site (Gaborit et al., 2013). Thus, it becomes difficult to posit how these
lessons may scale to the coordinated control of a watershed with many control sites.

Figure 1. Conceptual representation of the study watershed, with and without controlled flows (top). Photos of sites
instrumented with control valves (a and b) and sensors (a, b, and outlet) are shown on the bottom row.
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Presently, the synthesis of real-time control strategies for separated stormwater systems remains largely
unexplored. Guidance may however be taken from work on other water systems, including reservoir opera-
tions, open-channel irrigation systems, water distribution systems, and sewer systems (Hashemy et al., 2013;
Montestruque & Lemmon, 2015; van Overloop, 2006; van Overloop et al., 2008). While these prior approaches
show great promise, they do not explicitly account for the types of time scales and feedbacks inherent in
urban watersheds. These time-dependent complexities, which span hydrology, rapidly changing weather,
flashy flows, hydraulics, and even water quality, pose a pressing challenge to even the latest studies on
networked-system control (Liu et al., 2011). In their work in controlling canal systems, van Overloop (2006)
used a time-varying Integrator Delay model as the model for a model predictive controller that controlled
the system while ensuring stable flows. While these results are promising, the studied canal systems were
not subjected to rapid storm impulses, which makes it unclear how stable their operation would be in flashy
urban watershed.

While control of sewer systems has received attention, it has primarily focused on the control of man-made
infrastructure, with limited attention to hydrologic features. For example, the successful control of an
11-reservoir sewer network considered flows but neglected backwater effects, which occur as water levels
rise from closing valves (Marinaki & Papageorgiou, 2003). Optimization-based control approaches, such as
population dynamics (Barreiro-Gomez et al., 2015; Ramírez-Llanos & Quijano, 2010), game theoretic, and
agent-based control (Barreiro-Gomez et al., 2017), can bypass the use of a physical hydraulic-hydrologic
model altogether and instead rely on a mass-balance relationship to stabilize flows throughout the network.
As a result, optimization-based controllers require complex parameterizations that are dependent on the
availability and accuracy of data, which does not always exist (García et al., 2015). When data are limited,
heuristics and expert knowledge about general system behavior can be leveraged by alternatives like fuzzy
logic controllers (Aulinas et al., 2011; Klepiszewski & Schmitt, 2002; Marinaki & Papageorgiou, 2003). However,
there is no general convention for these approaches, and they may require a large number of rules or
scenarios (Gaborit et al., 2013; Muschalla et al., 2014).

Urban control for one site, no less an entire stormwater system, is still an emerging area of research. There is
an opportunity, however, to build upon prior discoveries in other water domains to synthesize a system-level
controller that factors in hydrologic processes but can also be parameterized by easily measurable and read-
ily available sensor data. Here we present such a formulation, which is based on a linear integrator delay
model, which can be parameterized by watershed features, such as storage curves and the distance between
storage nodes (SNs). The system is then controlled by a linear quadratic regulator, which only requires water
levels as measurements. We apply this approach to a simulated case study to an urban headwater catchment
in the Midwestern United States and evaluate the performance of the approach under flooding and
flow objectives.

3. Methods
3.1. Approach

When retrofitting urban watersheds for real-time control, a choice must be made in regard to the spatial
scales at which these technologies will first be implemented and analyzed. We contend that the analysis of
real-time control strategies should begin at the scale of urban headwater catchments. These subcatchments
are as large as 5 km2 (2 mi2) and can be found in most urban and suburban communities, small and large
(Emerson et al., 2005; J. G. Lee et al., 2012; Zhen et al., 2004). Overall, the choice to focus on this scale is moti-
vated by a number of fundamental and practical factors. Fundamentally, the scalability of real-time
watershed control requires smaller-scale systems to be analyzed and understood first (J. H. Lee & Bang,
2000). If feasible at these scales, the control of smaller catchments will ultimately underpin the control of
larger watersheds.

Practically, it is unlikely that entire cities will be retrofitted with control valves all at once. Rather, valves will be
added one-by-one or as controlled clusters. In the United States, decisions to build or upgrade stormwater
infrastructure are often driven by new residential or commercial development projects, which impact flows
at the scale of local pipes and stream networks (Grigg, 2012; Kessler, 2011). Given the recent emphasis on dis-
tributed stormwater management, these measures often include ponds, basins, and wetlands at commercial
complexes, subdivisions, neighborhoods, and precincts. Urban flash flooding occurs at the scale of local road
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networks, which suggests that control strategies should operate to prevent flooding even as far upstream as
first-order catchments. In fact, the U.S. Federal Emergency Management Agency provides flood advisory and
insurance information at scale of 5 km2 (2 mi2) subwatersheds (https://msc.fema.gov/portal/search), which
makes them of particular interest for analysis. Most existing radar and gage rainfall products are offered at
1–5-km2 resolution as well, which is relevant if rainfall forecasts are to be integrated with real-time control.
As such, both fundamental and practical considerations suggest that the scale of headwater catchments
(1–5 km2) provides a good starting point to answer the questions posed in this paper. Future studies can then
analyze how the control of larger watersheds can be achieved through lessons learned at the
catchment scale.

3.2. Dynamical System Representation

Most modern physically based models of urban watersheds, such as Environmental Protection Agency’s
Stormwater Management Model (SWMM; Gironás et al., 2010), are based on a coupled hydrologic-hydraulic
approach, where hydrologic dynamics, such as runoff and infiltration, are represented via physical or empiri-
cal submodels. Flows are subsequently routed using a hydraulic engine, typically based on nonlinear Saint-
Venant equations for shallow water flow (Rossman, 2010). Given the high degree of detail, complexity, and
nonlinearities inherent in these models, the application of formal control and optimization approaches
becomes intractable. Fortunately, for many complex control systems, such as those used on autopilots and
factory processes, perfect models are not necessary to achieve desirable control outcomes (Schütze et al.,
2002). Rather, for model-based controllers like linear quadratic regulators and model predictive controllers,
a control model that approximates the dynamics of the underlying system is often sufficient as long it satis-
fies stability criteria since the actual control actions will often steer the system back into domains where the
approximations hold true (Francis & Wonham, 1976). In feedback control, this is often accomplished by line-
arizing the system dynamics around desired setpoints (e.g., flows and flood stages), after which modern con-
trol techniques can be applied. For the specific control of water flows in pipes and canals, examples of
approximated models have included the integrator delay (Schuurmans et al., 1995), integrator delay zero
models (Litrico & Fromion, 2009), reduced Saint-Venant (Xu et al., 2011), Muskingum (Gill, 1978), and linear
tank models (Ocampo-Martinez et al., 2013).

For our approach, the control model is based on a state-space representation of the hydraulic dynamics as an
integrator delay model (Schuurmans et al., 1995). In recent studies, this representation has been used for the
control of water levels in irrigation canals that are connected in series (Xu et al., 2011). However, the use of
this formulation for urban watersheds presents additional complexities, making it unclear how well it will
work in the control for stormwater systems, if at all. These include the need to accommodate hydrologic
effects (runoff, antecedent moisture, etc.) and rainfall, as well as complex and interconnected infrastructure
topologies (parallel SNs or tree-like networks). Our choice to adopt this approach is based on our expectation
that it will sufficiently capture hydrologic and shallow-water flow dynamics to enable feedback control. Most
importantly, however, the matrix-based representation can be fully parameterized from the watershed phy-
sical features, including the distance between SNs and their storage curves. This formulation also only relies
on water level measurements for implementation, which our prior studies have shown to be very ubiquitous
and cost effective (Bartos et al., 2017; Wong & Kerkez, 2014).
3.2.1. State-Space Representation of an Urban Watershed
Our integrator delay model conceptualizes an urban watershed as a system of interconnected SNs (Figure 2a)
as a linearized state-space representation (1). The full time-varying state-space representation is given by

x k þ 1ð Þ ¼ A kð Þx kð Þ þ Bu kð Þu kð Þ þ Bdd kð Þ
y kð Þ ¼ Cx kð Þ;

(1)

where the state vector x (k) is composed of the heights hi (k) and outflows Qi (k) of all SNs in the system at the
kth time step; the control vector u (k) contains the controlled outflow Qcontrol, i (k) for each controllable orifice
and valve in the system; and the disturbance vector d (k) is a vector of the total runoffQrunoff, i (k) from all local
subcatchments that flows into the ith SN. The output vector y(k) is composed of the height of each SN. In this
study, all necessary states are assumed observable (measured by sensors), allowing us to focus solely on con-
trolling the evolution of the state vector x (k).
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The state matrix A(k) relates the heights and flows from the current time step to the next; the control matrix
Bu(k) links the control outflow to its associated SN; and the disturbance matrix Bd routes the rainfall-
generated runoff from a given subcatchment to its associated SN. The output matrix C relates the state vector
to the output vector. Thematrices in (1) are composed of submatrices that are dependent on physical proper-
ties of the system, where each matrix is constructed from integrator and delay block components that corre-
spond to each individual SN and channel, respectively.

The dynamics for the integrator delay model can be decomposed into two main components—integrators
and delays.
3.2.2. The Integrator Component
xintegrator i(k + 1) = [hi(k + 1)], where

hi k þ 1ð Þ ¼ hi kð Þ (2)

þ %T
AS;i kð Þ

! "
1 orificesf g ið ÞQcontrol kð Þ þ T

As;i kð Þ

! "
1 subcatchmentsf g ið ÞQrunoff kð Þ

¼ Aintegrator i kð Þhi kð Þ þ Bu; integrator i kð ÞQcontrol kð Þ þ Bd; integrator i Qrunoff kð Þ: (3)

The integrator component 2models the change in height of the ith SN as a function of themeasured height hi
(k), inflows qi (k) from one or multiple upstream nodes, runoff inflows from local catchment di (k), and the con-
trolled outflows ui (k). Each integrator component also includes the sampling period T and the cross-sectional
area of the ith SN at the current time step As, i(k), which is obtained from the storage curve using the mea-
sured height hi (k). Aintegrator i(k) is a submatrix of A(k), while Bu, integrator i(k) and Bd, integrator i are submatrices
of Bu(k) and Bd, respectively.
3.2.3. The Delay Component

xdelay i k þ 1ð Þ ¼

Qi k þ 1ð Þ
Qi kð Þ

Qi k % 1ð Þ
⋮

Qi k % nð Þ

2

6666664

3

7777775
, where

Qi k þ 1ð Þ
Qi kð Þ

Qi k % 1ð Þ
⋮

Qi k % nð Þ

2

6666664

3

7777775
¼

0 0 ⋯ 0 0

1 0 0

0 1 ⋮

⋮ ⋱ ⋱ 0 0

0 ⋯ 0 1 0

2

6666664

3

7777775

Qi kð Þ
Qi k % 1ð Þ
Qi k % 2ð Þ

⋮

Qi k % n% 1ð Þ

2

6666664

3

7777775
þ

1

0

0

⋮

0

2

6666664

3

7777775
1 orificesf g ið ÞQcontrol i kð Þ (4)

Figure 2. Graphical representation of (a) an integrator-delay model and (b) the block diagram of the feedback controller.
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¼ Adelay i kð Þ

Qi kð Þ
Qi k % 1ð Þ
Qi k % 2ð Þ

⋮

Qi k % n% 1ð Þ

2

6666664

3

7777775
þ Bu;delay i kð ÞQcontrol i kð Þ: (5)

The delay component 4 represents the travel time of water from one SN through a channel to the next node.
The number of delay terms n is determined by the distance between SNs, the slope, and the sampling period
T. For each delay component, Bu, delay i(k) routes the control outflow from a given orifice to the ith channel,
while Adelay i(k) delays this control outflow in time until it reaches the downstream SN. Adelay i(k) is a submatrix
of A(k), while Bu, delay i(k) is a submatrix of Bu(k). Together with the integrator components, these submatrices
combine to form the linearized state-space representation of an urban watershed.
3.2.4. The Indicator Function

1 ξf g jð Þ ¼ x1 x2 ⋯ xn½ ';wherexi ¼
1;

0;

Element ξi flows into channel j

otherwise:

(
(6)

An indicator function 6 is used in the formulation of each integrator component 2 to indicate which con-
trol inputs and runoff disturbances are associated with the ith SN. An indicator function is also used to in
the formulation of each delay component 4 to indicate which control outflows are routed into the ith
channel.

3.3. Constructing the System Matrices From a Physical Representation

The link component 7 is a block matrix with a scalar value in the upper-right corner that fills in the nondia-
gonal submatrices of A(k) to effectively link the dynamics of the integrator and delay components.

Alink i;j kð Þ ¼
0 ⋯ a kð Þ
⋮ ⋱ ⋮

0 ⋯ 0

2

64

3

75;where a kð Þ ¼

1;

T
As;i kð Þ;

0;

Ai;Aj aredelay blocks

Ai is an integrator block

otherwise:

8
>>>><

>>>>:

(7)

To begin constructing a state-space representation from a physically based model or real-world system, the
integrator 2, delay 4, and link components 7 can be combined to form the state matrix A(k):

A kð Þ ¼

Aintegrator 1 kð Þ Alink 12 kð Þ ⋯

Alink 21 kð Þ ⋱

⋮ Aintegrator m kð Þ
Adelay 1 kð Þ

⋱

Adelay n kð Þ

2

6666666664

3

7777777775

: (8)

Here T is the sampling period, and As, i(k) is the cross-sectional area, which is obtained from the storage curve
for the ith node using the measured height hi (k) at the current time step.

The control matrix Bu(k) is similarly assembled by iterating through all SNs and vertically concatenating
the integrator components Bu, integrator i(k) followed by concatenating the delay components Bu, delay

i(k). The disturbance matrix Bd is assembled by iterating through all SNs and vertically concatenating
the integrator components Bd, integrator i(k) and padding the remaining rows with zeros for the
delay components:
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Bu kð Þ ¼

Bu;integrator 1 kð Þ
⋮

Bu;integrator m kð Þ
Bu;delay i kð Þ

⋮

Bu;delay n kð Þ

2

6666666664

3

7777777775

: (9)

Bd kð Þ ¼

Bd;integrator 1 kð Þ
⋮

Bd;integrator m kð Þ
0

⋮

0

2

6666666664

3

7777777775

: (10)

3.4. Estimating Outflow for Partial Valve Opening

To model the outflow for each controlled node Qcontrol i (k) from the control vector u (k), the effective cross
section of each valve (how far the valve is opened), Avalve(k), is obtained by inverting the equation for flow
through a free-flowing undershot gate 11 (Schuurmans, 1997).

Avalve i kð Þ ¼ Qcontrol i kð Þ
Cμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghi kð Þ

p : (11)

HereQcontrol i (k) is the desired controlled outflow; C is a calibration coefficient; μ is the contraction coefficient;
g is the gravitational acceleration; and hi (k) is the water level of the SN. To approximate the outflow for an
uncontrolled orifice, the equation for flow through a free-flowing undershot gate 11 is linearized about the
height of the SN 12. This is necessary to linearly model the outflow from uncontrolled SNs to the
connected links at each time step.

Q kð Þ ¼ Cμhi kð Þ·Widthvalve
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g h kð Þ % μ·hi kð Þð Þ

p
; (12)

Q k þ 1ð Þ % Q kð Þ≅λ kð Þ· hi kð Þ % h0 kð Þð Þ;where (13a)

λ kð Þ ¼ gCμhi kð Þ·Widthvalveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g h0 kð Þ % μ·hi kð Þð Þ

p ; (13b)

and h0(k) is the linearization point. Changes in valve position are assumed to be small, so linearization terms
about hi(k) are neglected.

3.5. Control Algorithm

Once a linear representation of the catchment is formulated, our approach uses an LQR to set the outflows
from each controllable SN for any given time step (Figure 2b). The approach takes the desired system states
(e.g., heights at each SN) as an input, compares these to the corresponding states throughout the actual sys-
tem, and then calculates the necessary outflows at each controlled node to push the system toward these
desired setpoints.

LQ control is a matrix-based, closed-loop feedback control method that incorporates open-loop dynamics to
achieve desired setpoints (Malaterre & Baume, 1998). LQR is suitable for real-time control since the matrix
computations are relatively fast, making it possible to run even on modern microcontrollers. LQR controls
a linear dynamical system 1 by minimizing a quadratic cost function 14 using a control input u (k) based
on the latest sensor measurements x (k) (Dorato et al., 1995).
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J ¼ xT Nð ÞQx Nð Þ þ ∑
N%1

k¼0
ρ·xT kð ÞQx kð Þ þ uT kð ÞRu kð Þ
$ %

: (14)

Cost matrices, Q and R, are tuned to generate a cost function J that produces results aligned with the desired
setpoints. The matrix Q represents the cost of all measured levels throughout the network that deviate from
the desired setpoints, while R signifies the collective cost of all the control outflows, specifically their magni-
tude. The parameter ρ shifts the relative weight of the cost between states (e.g., measured vs. desired levels)
and control actions (e.g., outflows). Over the period which the system dynamics are constant, the perfor-
mance cost of LQ control for linear, time-invariant systems, if it exists, is minimal, bounded, and optimal
(Lin, 2007; Sinha, 2007).

Given the cost matrices and assuming the state and input matrices (A(k), Bu(k)) from the state-space repre-
sentation are stabilizable, the controlled outflow for each SN is then given by the control vector:

u kð Þ ¼ %K kð Þx kð Þ; (15)

where K(k) is the gain matrix:

K kð Þ ¼ BT
u kð ÞP kð Þ Bu kð Þ þ R

$ %%1
BT
u kð ÞP kð Þ A kð Þ

$ %
; (16)

and the cost-to-gomatrix P(k) is the solution to the discrete time Riccati equation (Lancaster & Rodman, 1995):

P k % 1ð Þ ¼ AT kð ÞP kð ÞA kð Þ % AT kð ÞPBT
U kð Þ

$ %
BT
u kð ÞP kð ÞBu kð Þ þ R

$ %%1
BT
u kð ÞP kð ÞA kð Þ

$ %
þ Q: (17)

To ensure a gain matrix could be computed for every valve placement combination, the system is factored
into controllable and uncontrollable components using Kalman Decomposition (Dahleh et al., 2004). The trans-
formed system is obtained by applying a linear transformation T:

x̂ kð Þ ¼
x̂ C kð Þ
x̂NC kð Þ

! "
¼ Tx kð Þ; (18)

Â kð Þ ¼
ÂC kð Þ Â12 kð Þ
Â21 kð Þ Â22 kð Þ

" #

¼ TA kð ÞT%1; (19)

B̂u kð Þ ¼ B̂u;C kð Þ
0

" #
¼ TBu kð Þ; (20)

where matrices bAC kð Þ and bBu;C kð Þ are the controllable components. Applying the same transformation to the
cost matrices yields

Q̂ ¼ TQT%1; (21)

R̂¼R: (22)

Since the resulting pair (bAC kð Þ; bBu;C kð Þ) is stabilizable, the gain matrix bK kð Þcan be obtained for the controllable
subsystem using the transformed cost matrices ((21) and (22)) and the same method (16). Finally, the control
input for the controllable valves can be computed as

u kð Þ ¼ %K̂ kð Þx̂ kð Þ: (23)

3.6. Enforcing Physical Constraints

Before applying the controller inputs, a clipping component 24 is used to enforce real-world constraints on
the outflow and opening of each valve. This ensures that the outflow of a controlled SN cannot be negative
or exceed physically achievable values (e.g., pressure head) given the current water level height of the SN. At
each time step, once all control outflows are calculated, each control outflow is constrained to a nonnegative
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range limited by the maximum allowable outflow Q(
i;max also by using a clipping function. The clipping func-

tion is given by the piecewise function:

ui kð Þ ¼

Q(
i;max;

ui kð Þ;

0

ui kð Þ > Q(
i;max

0≤ui kð Þ≤Q(
i;max

ui kð Þ < 0

8
>><

>>:
: (24)

Once the control outflows are clipped, they are transformed using 11 to determine the opening of each
orifice. A second clipping component is used to constrain each orifice to a nonnegative area limited by the
maximum orifice area. Once these values are determined, they are used to set the state of each valve.

4. Implementation

To promote transparency and accelerate future research of these topics, all of the models and source code
from this study are available as part of an open source effort. Those interested in applying or contributing
to these efforts are encouraged to join this web portal (open-storm.org).

4.1. Physical Simulations

Many studies often evaluate the performance of control algorithms on the linear models they are based on.
However, if this simplified linear model does not adequately capture the physical hydraulic-hydrologic
dynamics, it may give the impression that the controller performs better than it actually would in the real
world. To address this concern, our approach applied the linear controller to a physically based model. In this
fashion, the linearized model was used to make control decisions, while the physically based model reflected
what could be expected in the real world.

Control performance was evaluated using the U.S. Environmental Protection Agency SWMM, a popular
hydrologic-hydraulic computational model that has been successfully used in the planning, analysis and
design of urban drainage systems (Avellaneda et al., 2017; Cantone & Schmidt, 2011; Gironás et al., 2010;
Wang & Guo, 2018). SWMM numerically solves the one-dimensional Saint-Venant equations to accurately
model transient surface runoff and open-channel flow. Stormwater hydrology is modeled based on a collec-
tion of homogeneous subcatchment areas that receive precipitation and generate runoff (Rossman & Huber,
2016), while stormwater hydraulics are modeled by routing runoff through a network of channels, storage
units, and orifices. Although SWMM is computationally more complex than our integrator-delay model, accu-
rately modeling the water levels in the SNs and channel flows is vital to understanding how the proposed
algorithms may actually perform when subjected to real-world physics.

While SWMMprovides a powerful simulation engine and rudimentary control rules (e.g., site-scale water level
control), it was not designed for system-level control algorithms such as the one in this study. To that end, we
implemented a customized modeling framework that uses the SWMM engine but executes the model in a
stepwise fashion (Mullapudi et al., 2017; Riaño-Briceño et al., 2016). Rather than running the model for the
duration of an entire storm, the model is halted every time step, after which the states can be extracted
and an external logic module (in our case, an LQR controller) can be used to set the states of valves and gates
across the entire system. While the routing step in our SWMM model was set to 5 s, the control input was
updated every 60 simulation steps, or 5 min, to more realistically match the sampling frequency of our
sensor nodes.

Since the physics engine, which is written in the C programming language, is implemented as a stand-alone
library, the framework provides a wrapper to interface SWMMwith modern and popular languages, including
Python and Matlab. This allows for the seamless interaction of modern computational and control libraries
with the physically based modeling of SWMM without necessarily having to implement the controller in
the original SWMM model itself. More importantly, implementing this methodology does not necessarily
depend on SWMM. Instead, SWMM is used as an evaluation engine for the controller. This, in fact, is much
more comprehensive than most control approaches, which evaluate a control algorithm using the simplified
linear model that the controller is based on. A summary of how the algorithms were implemented is provided
in supporting information S1 of this paper, with pseudocode to guide replication.
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4.2. Case Study Area

The control approach was evaluated on a 4-km2 catchment in Ann Arbor, Michigan (Figure 3), which is pre-
sently being retrofitted for real-time control by the authors (Figure 1, sites A and B). This particular catchment
has been of interest to local officials due to stream erosion, calling for improved means to reduce flows at the
outlet of the watershed (Lawson et al., 2017; Pratt, 2016). The catchment is composed of 11 storage basins,
ranging in volume from 370 to 32,000 m3. A calibrated SWMM model of the catchment was made available
to the authors by city managers, thus reflecting the most up-to-date knowledge of the real system. To repre-
sent valves, each SN in the model was retrofitted with an adjustable 0.1-m2 orifice, located at the bottom of
the SN. Each orifice had a higher invert elevation than the overflow height of all downstream SNs, and all con-
duits between SNs were circular in geometry with variation in length from 40 to 400 m and Manning rough-
ness coefficient of 0.01. The choice to use this modeled catchment as a case study was also motivated by its
low baseflow and limited influences of groundwater effects (HRWC, 2013), which reduces one element of
uncertainty when conducting the initial evaluation of the proposed control algorithm for managing storm-
water runoff. The soil types are largely type C and some type D according to U.S. Geological Survey and U.
S. Department of Agriculture soils data, and a Green-Ampt model was used to model soil infiltration in the
subcatchments (Rawls et al., 1983). The model was last calibrated in 2015 (CDM Smith, 2015). Additional
model details for the SNs and links can be found in Tables S2 and S3.

A linear control model was formulated from the SWMMmodel using the methods described in section 3. For
the catchment in this study, A(k) is a 55 × 55 matrix; Bu(k) is a 55 × 11 matrix; and Bd is a 55 × 19 matrix. The
state vector x(k) is a 55 × 1 vector, and the control vector u (k) is an 11 × 1 vector. After applying the trans-

formation matrix T to decompose the integrator-delay model and isolate the controllable components, bAC

kð Þ and bBu;C kð Þ, the time-varying gain matrix bK kð Þ was approximated using (16). While the model was simu-
lated at a 5-s resolution, control actions were constrained to 5 min windows to be consistent with the sensor
and control networks currently being deployed by the authors (Wong & Kerkez, 2016a). All simulations were
carried out using up to 100 cores in parallel on a high-performance Linux cluster at the University of Michigan.

Figure 3. The study catchment in Ann Arbor, MI, represented as (a) a Stormwater Management Model and (b) a network for the linearized model reflecting the rela-
tive sizes of the storage nodes, their interconnection, and subcatchments.
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The cluster consists of approximately 27,000 compute cores each with at least 4 GB RAM (http://arc-ts.umich.
edu/flux/).

5. Performance Evaluation

Following common practice in stormwater engineering, the modeled catchment was subjected to a variety
of synthetic design storms (Guo, 2001). To account for storms of various intensity and duration, the physically
based model was simulated with rainfall from Soil Conservation Survey Type-II design curves (U.S. SCS, 1986),
which are commonly used in the United States infrastructure design (Akitsu et al., 2011). Storms ranged from
15min to 24 hr in duration and 5- to 200-year return period. Statistical storm data provided by NOAA Atlas 14
defined the intensity of the storms for a given storm duration and return period (Unruh & Yekta, 2013). For
example, a design storm of 24-hr duration with a 10-year return period, henceforth referred to as a 10-year,
24-hr storm, has an average cumulative rainfall of 83 mm in Southeast Michigan.

Beyond the idealized design storms, the modeled catchment was also evaluated under real rainfall data col-
lected from 1 April to 1 December 2013, which corresponded with the time period during which the SWMM
model was calibrated (CDM Smith, 2015). As opposed to using individual events, a long-term simulation
offers additional insight into performance under rainfall variability while allowing model initial conditions
to settle toward realistic values throughout the duration of the simulation (Gironás et al., 2009). Both syn-
thetic storms and long-term rainfall data were sampled at a 5-min resolution and serve as the rainfall time
series for each the simulation. It should be noted again that the control algorithm is feedback-based, rather
than predictive, which means that control decisions are based on current conditions and not subject to
weather uncertainty. Nonetheless, to evaluate performance under uncertainty, an additional analysis was car-
ried out during which virtual sensor noise was injected into the water levels retrieved from the physically
based model. Noise levels were parameterized based on a water level sensors currently being used
(MaxBotix MB7384, 2012), sampled at each time step from a Gaussian distribution of mean zero and standard
deviation σ = 2.5 mm. The impact of two larger noise levels was also investigated, wherein the realistic noise
levels were amplified by 5 and 10 times to evaluate how robust the algorithm is under high levels of
measurement uncertainty.

To evaluate the performance of the LQR-based feedback controller, a baseline performance objective was
first established by evaluating how the uncontrolled system responds to a relatively small event (2-year,
24-hr storm). During this storm, there were no overflows at any of the SNs and the peak flows in the catch-
ment reached 0.3 m3/s at the outlet. It was then evaluated if the controlled system could reach the same
baseline performance during larger events. While infrastructure designed for 100-year, 24-hr events may also
perform very well for a 2-year, 24-hr storm, it however would be over designed. Instead, rather than continue
to dig up pipes or build bigger SNs, this was intended to reflect the benefits of retrofitting existing infrastruc-
ture with gates and valves and operating them in coordination to improve the use of existing storage ele-
ments and limit flows throughout the network. In effect, this reduces flooding as well as stream erosion,
which is often triggered through the exceedance of geomorphically significant flow magnitude (Bledsoe,
2002; Pomeroy et al., 2008; Tillinghast et al., 2011). This reasoning also aligns with many current infrastructure
design philosophies, which seek to capture larger storms and release them as smaller storms (MacRae, 1996;
Nehrke & Roesner, 2004; Rohrer & Roesner, 2006; e.g., capture a 10-year event and release with outflows com-
parable to a 2-year event prior to the addition of control measures). To maintain a clear relationship between
tuning parameters and LQR control performance (15), the tuning parameter ρwas set to 3,500 followingman-
ual tuning during the 10-year storm, while the Q and Rmatrices were set to be identity matrices. In this con-
figuration, Q was a 55 × 55 identity matrix, and R was an 11 × 11 identity matrix.

The performance was evaluated across the entire system by combining the volume of flooding along with
the flow exceedance (Q(

i;max ¼0.29 m3/s) across the duration of an entire storm. Specifically,

P ¼ ∑
nodes

∑
timesteps

Qi;flood kð Þ þ α· max Qi;outflow kð Þ % Q(
i;max; 0

& '
: (25)

The weighing parameter α can be tuned to reflect the relative importance of each objective (localized
flooding vs. downstream erosion, e.g.). In this analysis, α was chosen to be 0.1 to scale the outflows to have
the same magnitude as the overflows.
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First, the performance P for both the controlled and uncontrolled systems was compared for a 10-year,
24-hr event, assuming that all 11 SNs were controlled. In our study area, this event is designated by reg-
ulatory guidelines as the design storm that all new developments must meet (Pratt, 2016). Next, using the
same storm, the remaining configurations for controlled systems were evaluated, ranging from only one
site being controlled to all 11 sites being controlled in coordination. Altogether, these 2,048 configura-
tions were then ranked to determine which specific configuration provided the best performance, seeking
to identify which sites and features may be indicative of good performance. This search was then
repeated for 5-, 25-, 50-, 100-, and 200-year, 24-hr storms to confirm if the same configuration was con-
sistent for larger storm events of similar duration. Once the top configuration was identified, its perfor-
mance was compared to the uncontrolled case over a comprehensive array of storms, ranging across
5-, 10-, 25-, 50-, 100-, and 200-year return periods, across durations from 15 min to 24 hr. Finally, to inves-
tigate how much smaller storage volumes could be constructed when control is used, the volume of the
controlled SNs was reduced until the system-level performance matched the performance of the
uncontrolled system.

6. Results
6.1. Performance of a Fully-Controlled Network

On average, when all SNs were controlled, the LQR-based control approach outperformed the uncontrolled
system, both at the scale of individual sites and at the watershed outlet. Specifically, when evaluated on the
10-year, 24-hr storm, only one SN had an overflow event and outflows at each SN did not exceed the critical
flow level of 0.3 m3/s. Plotted in Figure 4 is a dynamic comparison for the uncontrolled (gray line) and coor-
dinated control (blue line) of SNs across the system for a 10-year, 24-hr storm. The outflows of the uncon-
trolled SNs exhibited the familiar hydrograph shape, with a distinct peak and recession period, whereas
the outflow hydrographs from the controlled sites exhibited dynamics with lower flows over a longer period
of time. This also resulted in longer retention times and higher water levels in the controlled system since
water was held within the SNs so as to not exceed the outflow threshold.

6.2. Top-Performing Individual Control Sites

For the 10-year, 24-hr storm, when only one SN was controlled at a time, 6 of the 11 possible sites showed a
notable improvement compared to the uncontrolled system, as measured by the performance across the
entire catchment (Figure 5). The baseline performance for the uncontrolled case was P0 = 2,100. The control
of one site, in particular (SN4), exhibited an improvement in reducing system-wide overflows and outflows
compared to the uncontrolled system, where PSN4 = 1,100. Control of 3 of the 11 SNs did not result in
improvements compared to the uncontrolled system because the uncontrolled system already met the con-
trol objectives. Only one site (SN9) performed worse when controlled, exhibiting local flooding compared to
the uncontrolled case, where PSN9 = 2,200. This SN had the smallest storage capacity in the entire system but
a relatively large contributing catchment area. Adding a controller led to closure of the valve at the onset of
a storm, after which the SN filled up and could not be drained fast enough once the peak of the
storm arrived.

6.3. Benefits of Increasing the Number of Controlled Sites

The impact of adding controllers was evaluated based on design performance (25). The addition of the first
control valve added the biggest benefit. The addition of more control valves improved the performance, but
each successive valve led to marginal returns (Figure 5). The major exception to this trend occurred when the
control network was expanded to include 10 and 11 controlled SNs, which resulted to slight degradation in
performance due to local flooding at smaller SNs. In all, over 15,000 simulations (carried out across all possible
2,048 possible control configurations and over 24-hr 1-, 2-, 5-, 10-, 25-, 50-, 100-, and 200-year storms) showed
that addingmore control valves improved the relative performance of the overall system, as measured by the
performance function (25). The time required to simulate a single 24-hr storm event was approximately
5 min, requiring over 50 days in total computation time for 15,000 simulations.

When analyzing the performance of all possible 2,048 control configurations, SNs 4, 6, 10, and 11 consistently
appeared in configurations that ranked in the top 10% (Figure 6). Interestingly, these same SNs were those
that showed the relatively best performance when controlled individually. Overall, out of all 2,048 possible
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Figure 4. System diagram of storage nodes, where the connected boxes are scaled to represent the relative area of the total subcatchment that contributes runoff to
each respective storage node. The response in height, flow, overflow, and valve opening at each node is plotted for cases with zero controllers (no control, gray line)
and 11 controllers operated in coordination by the system-level controller.
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combinations of controlled sites, the control of SNs 4, 6, 10, and 11 resulted in the best performance for the
10-year, 24-hr storm using the least number of control points. No physical features (volume, location in
watershed, etc.) were consistent across SNs 4, 6, 10, and 11 as an explanation as to why these sites
performed the best.

In addition to the 10-year, 24-hr storm, the same minimal control configuration (SNs 4, 6, 10, and 11) was
compared to the uncontrolled system across a spectrum of design storms (5 to 200-year storm events
spanning 15 min to 24 hr in duration). Overall, this configuration improved performance as seen by the
notable expansion in the number of cases, or zones, associated with relatively high performance (no over-
flows and low outflows), as indicated by the larger dark blue region in Figure 7. By reducing overflows and
lowering outflows, the minimal controlled system, in turn, improved the metric P from 2,100 to 500 for a
10-year, 24-hr event (Figure 7). In fact, for an approximately 30-year, 24-hr storm event, the minimal con-
trolled system had the same performance (P = 2,100) as the uncontrolled system during a 10-year, 24-hour
event (solid lines, Figure 7). In other words, the controlled system was able to handle much bigger storms,
without compromising performance. Furthermore, it was determined that the SNs that were controlled
could be reduced in volume by over 50% and still achieve the same performance as the original
uncontrolled system.

6.4. Weather Variability and Measurement Noise

The result of running the control algorithm for eight months of rainfall data is shown in Figure 8, comparing
the uncontrolled system to the controlled system under zero noise and 10 times the realistic noise level. For
illustrative purposes, the figure plots the depth of the outlet as well as its outflows. All remaining nodes are

Figure 5. System-wide performance improvement as evaluated by equation (25) compared to the case where there is no
control for a 10-year, 24-hr storm event (P0 = 2,100) when only one valve is controlled at a time (left) and when increasing
the number of controlled valves (right).

Figure 6. The ranking and location of the storage nodes that appeared most frequently in the top 10% of performances for
all controller combinations.
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plotted in supporting information S1 of this paper. For the simulated time period, except for nodes 8 and 9,
the controlled outflow did not exceed the critical flow threshold of Q(

i;max = 0.029 m3/s (Figures S1–S3). This

threshold corresponded to the response that would have been seen with the uncontrolled system given a
1-year 5-min storm event.

Figure 7. System performance for a range of design storms with various durations and intensities. Nodes 4, 6, 10, and 11
are controlled in the controlled case. The controlled system “shifts” the performance zone notably, achieving the same
performance for a 30-year storm as the uncontrolled system for a 10-year storm. The star in the uncontrolled casemarks the
performance of the same four controlled nodes when they have half the original storage volume.

Figure 8. The depth and outflow from node 1 simulated from 1 April to 1 December 2013 and a detail of the rainfall leading
up to 19 April—the first storm used in the initial calibration. Conditions are plotted for no control and control with both
perfect measurements and measurements with white noise (σ = 25 mm).
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For the realistic noise scenario (σ = 2.5 mm), the difference in control performance was not visually evident,
which is why the figure plots only the performance for the highest, 10-fold noise level. Even with artificial
measurement noise as much as 10 times larger than a realistic noise levels, the controlled system outper-
formed the uncontrolled system. For example, Pmod = 1,237 for the uncontrolled case, whereas with 11 con-
trollers, Pmod = 77 with σ = 25 mm. Even when controlling SNs 4, 6, 10, and 11 at 50% volume and σ = 25 mm,
Pmod = 360. The overall performance is summarized in Table S1, which compares the performance of an
uncontrolled system, a fully controlled system, a system with only four controlled basis, as well a scenario
wherein the four basins are modeled at 50% of their actual volume.

7. Discussion
7.1. Control Performance

Despite the nonlinear hydraulic and hydrologic dynamics inherent to water systems like urban watersheds,
an LQ feedback controller was able to notably improve flow management throughout the modeled catch-
ment. This was not only true for the idealized design storm scenarios but also when controlling the system
using historical rainfall data and subjecting it to measurement noise. It is important to note that there was,
at the onset, no guarantee that this was going to be the case, since the linear representation of the control
dynamics may have seemed oversimplified compared to more traditional and physically based urban
watershed models. This validates the use of feedback-based methods, even for the control of complex and
nonlinear stormwater catchments.

It is likely that nonlinearities and travel times may become more important as the scale of the controlled sys-
tems grows. While this may be worth exploring in future studies, it may also result in the need for more com-
plex control approaches. To that end, the authors contend that the control of larger watersheds could be
achieved by controlling individual subwatersheds, such as the one in our case study, and setting their out-
flows to meet a cumulative goal at the larger scale. As alluded to earlier, this may also be more realistic, since
many management and design decisions occur at these smaller headwater scales.

In this case, the framework presented in this study shows great promise for the initial analysis of real-time
control at the urban headwater scale (1–5 km2). Should the control of larger areas become important, control
techniques from other domains (e.g., power grid operations) could be adopted. These include centralized
controllers like structured and reciprocal LQR (Bareiss & van den Berg, 2015; Yang & Cimen, 1996), as well
as decentralized approaches like droop control (Riccobono et al., 2016; Zhu et al., 2013) and agent-based
and game-theoretic approaches (Lemos & Pinto, 2012; Maestre et al., 2014; Zhang & Li, 2007) which require
a control model to approximate the behavior of neighboring systems. While the deployment of real-time
controllable stormwater valves is still in its infancy, the results of our simulations suggest that physical
watershed properties can indeed be used to formulate a valid control model for real-time control. This pre-
sents exciting new research opportunities to investigate the generalizability and scalability of the framework
beyond our study catchment by coupling it with these broader control techniques toward the control neigh-
boring catchments and ultimately entire urban watersheds.

In our study, the control objectives were tuned to reduce outflows and flooding, but the controller and cost
function could readily be extended to meet other goals. For example, systems could be tuned to maximally
retain water by keeping storage levels near capacity. This would increase hydraulic residence times after
storms and thus help with the treatment of sediment-bound and dissolved pollutants. Our study also showed
how outflows from the catchment could be “shaped” beyond a traditional hydrograph. In this study, the con-
trolled hydrograph was flat for the majority of its duration, rather than exhibiting a clear peak. By dynamically
changing the setpoint of the controller, other outflows patterns could be achieved.

The opportunity to set desired outflows and water levels based on management objectives will open up
entirely new management possibilities, which should be evaluated through future research. For example,
control valves could be used to mimic “predevelopment” conditions, which is often the goal of many storm-
water infrastructure projects (Guan et al., 2015). Furthermore, rather than operating the system in a one-
size-fits-all configuration, valves could be controlled based on multiobjective management goals. For
example, the system could be operated for water quality benefits during smaller, more frequent storms
and operated for flood control during larger storms. This further highlights the flexibility of real-time
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controlled systems, as their operation can adapt not only to unaccounted conditions such as noise but
also with changing watershed-level management goals, something that is difficult to accomplish using
passive infrastructure.

7.2. Number of Control Points

As expected, the addition of each subsequent valve improves the performance of the control system. This is
intuitive, since each control point provides additional dynamic storage and flexibility to buffer flows. More
importantly, however, the benefit of successively adding valves is marginal, whereby adding more valves
may not improve performance. Economically, this is important, since it suggests that the entire catchment
may not need to be controlled, but rather that simulation and engineering judgment can be used to deter-
mine the number of required control valves for a catchment. The number of required valves could then be
chosen based on a specific management goal or by finding the point at which investment into more valves
will not provide major returns.

Ultimately, each stormwater system has performance limits, which are a function of the hydrology, infrastruc-
ture, control objectives, and costs, as well as the specific control algorithms. Real-time control will only be
able to push water system to a certain point, beyond which new infrastructure construction may need to
be considered. As illustrated in our own study, if construction is needed, new sites can be smaller when
real-time control is used. This is particularly important in many urban areas, where cost of construction is high
and land availability may be limited.

In addition to having a sufficient number of control points, it is also important to determine where to place
valves to maximize catchment-wide benefits. Given the lack of prior studies on this topic, our approach
exhaustively simulated every possible configuration of valves across the entire catchment for multiple
events, which required over 15,000 model runs. For the catchment studied in our case study, the locations
selected for control could be prioritized based on their individual performance. For our study catchment,
this means that the simulations of only one valve at a time (all other sites uncontrolled) could be used to
rank sites, after which multivalve configurations could be made by combining valves that had the best indi-
vidual performance. As such, the number of simulations required for valve selection may only need to be as
high as the number of candidate sites in a catchment, which may speed up future analyses for site selection.
In practice, rather than requiring a specific configuration for a given number of valves, valves could be
added without needing to change the location of the valve placed before it. This is very important, since
valves could be added one-by-one to benefit the overall system, rather than requiring a preset configura-
tion. Beyond exhaustive simulation, theoretical placement approaches (e.g., Liu et al., 2011) should also
be evaluated, but they will need to be adapted to the unique temporal and nonlinear dynamics of
stormwater systems.

The physical characteristics of what makes one site more suitable for control than another are still not very
clear. In our study, most of the SNs that ranked the highest in their ability to improve catchment-wide perfor-
mance had a relatively low catchment area to volume ratio. In other words, they received very limited local
runoff but had large storage volume. This made them relatively suitable for buffering flows from upstream
sites. As such, in-line storage may be a big factor in the ability of a site to contribute to catchment-wide ben-
efits. However, this was not necessarily true of all “good” control sites and instead may be dependent on the
actual catchment being studied. As such, more studies will be required in the future to determine if this is a
reliable feature when selecting new control sites.

It did become clear in our study, however, that there are types of sites that may lead to worse performance
compared to the uncontrolled case. This was particularly evident for SN5 and SN9, which overtopped when
controlled. This occurred because the site had a small storage volume but large contributing runoff area,
which did not permit it to react to rapid changes in runoff. For such smaller SNs, which are subjected to
very flashy inputs, feedback control should likely not be applied unless the cost function is adjusted for
more conservative outcomes. This may also be overcome by predictive control, which will not only
respond to real-time states but also to forecasts for weather and runoff. Given the performance of the
feedback-based LQR controller during both event and long-term simulations, the application of model pre-
dictive control (Hashemy et al., 2013; van Overloop, 2006; van Overloop et al., 2008) in urban hydrologic
catchments appears very promising and will be evaluated in future studies. In fact, the role of weather
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uncertainty remains unstudied in the emerging field of real-time stormwater control and poses a promis-
ing research frontier.

This study serves as a baseline for assessing the integration of active control measures into urban catchments
using dynamical control. While the approach shows great promise, several limiting assumptions were made
that will need to be addressed in future studies. In all simulations, the SNs were initially empty, and some
remained filled after a storm. Once the storm had passed, nodes could be slowly drained to meet the outflow
constraint. While this is not possible in passive systems, it may also become a problem if another storm
begins before the SNs have been entirely drained. Alternatively, some catchments, such as those in the dry
regions of the world, may be configured for stormwater capture and reuse. In those cases, keeping SNs full
becomes an objective, which poses risks to the control of the system if not enough storage is available to
buffer incoming storms. This, again, stresses the importance of weather forecasts and their inherent uncer-
tainty, which will need to be studied to determine how a system can be prepared ahead of incoming storms.
Since our algorithm relies only on feedback, this may require the future investigation of model predictive
control formulation. Without constraints, model predictive control mathematically becomes an LQR control-
ler (Garcia et al., 1989; Morari & Lee, 1999), which suggests that model predictive control may be applied suc-
cessfully using the integrator delay formulation presented in this study.

Given the nascent nature of real-time control in urbanized hydrologic catchments, there is an urgent need to
develop a framework to compare controlled and uncontrolled catchments on an equal footing. While it may
be tempting to showcase plots of controlled hydrographs, the number of plots can quickly balloon, even for
small systems. The cost functions that are used to parameterize control algorithms do not underpin the
language used by decision makers andmay ineffectively communicate the benefits to be gained by real-time
control. To that end, an equivalence analysis will be necessary to contextualize and synthesize these benefits
in terms of traditional systems. As opposed to the tables used in previous studies, we believe that visualiza-
tions, such as those in Figure 7, will provide a baseline intuition that can be used to more effectively
promote adoption.

Further, while varying degrees of noise were considered, our centralized LQ controller assumed full knowl-
edge of all states and the impacts of estimation to compensate for incomplete knowledge remain to be
investigated. While modern sensors are becoming much more reliable and accurate, the role of sensor place-
ment, measurement uncertainty, and sensor reliability must be studied to ensure robust control perfor-
mance. Given the dynamical formulation of our framework, this could be accomplished through formal
estimation approaches (e.g., Kalman filters; Faragher, 2012).

8. Conclusions

Active control poses an exciting frontier with the potential to transform stormwater management of urban
watersheds. We introduce a novel framework for analyzing the impact of real-time control across urban head-
water catchments. By confirming the ability of feedback control to achieve desired flows and reduce flooding,
the approach offers an alternative to new construction, which is currently the only solution to cope with
changes in land use and weather. The approach would, of course, need to be evaluated further not only in
simulation but also in the real world, which should now be very feasible given that the necessary sensing
and control technologies have been developed. The retrofitting of catchments should also be aided by the
discovery that only a few key locations may need to be controlled, but this should still be validated on
catchment-by-catchment basis.

Much research remains to be conducted to determine the generalizability and scalability of the methods pro-
posed in this paper. In particular, the control of larger urban watersheds should be evaluated. The authors
contend that control at this larger scale may be most effectively achieved through the control of many
smaller catchment “building blocks.” The need to segment control into smaller clusters may also be moti-
vated by the practicality of working across ownership boundaries, insurance requirements, and social con-
straints. Social factors may ultimately become the most important barrier to the adoption of real-time
control, since the best control algorithmsmay only be as good as the willingness of the public to adopt them.
As such, there will be many opportunities to engage other disciplines in the emerging area of research. To
encourage outreach and engagement, detailed technical information regarding software and implementa-
tion of this study are provided online at http://open-storm.org/.
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ABSTRACT: Existing stormwater systems require significant invest-
ments to meet challenges imposed by climate change, rapid urbanization,
and evolving regulations. There is an unprecedented opportunity to
improve urban water quality by equipping stormwater systems with low-
cost sensors and controllers. This will transform their operation from
static to adaptive, permitting them to be instantly “redesigned” to
respond to individual storms and evolving land uses.

■ INTRODUCTION
The design of stormwater and sewer systems is based on
historical observations of precipitation and land use. These
systems require significant investments to meet challenges
imposed by rapid urbanization, evolving regulations and an
uncertain climate. As a result, runoff from urban environments
is threatening environmental health by lowering the quality of
receiving waters, including fisheries, recreational sites and
sources of drinking water. There is an unprecedented
opportunity, however, to improve urban water flow and quality
by equipping existing stormwater systems with low-cost sensors
and controllers. This will enable a new generation of intelligent
green and gray stormwater networks, which will adapt their
operation to maximize water quality benefits in response to
individual storm events and changing landscapes.

■ STATIC SOLUTIONS TO A DYNAMIC PROBLEM
The vast majority of the world’s population resides in or near
urban centers, underscoring the need to sustainably manage
anthropogenic environmental impacts. Urbanization and land
development are disruptive to the hydrologic cycle since they
result in an altered, more impervious landscape, which
promotes increased runoff at the expense of infiltration and
evapotranspiration.1,2 While most cities maintain a dedicated
stormwater infrastructure, ecosystems near many postindustrial

cities in the U.S. are adversely impacted by exfiltration and
overflows from combined sewers.3−5 These overflows have
increased due to leaks in aging infrastructure and shrinking
municipal budgets.
The increase in the volume, velocity and contaminants in

stormwater runoff has caused a crisis in receiving water
bodies.6−9 Harmful algal blooms, associated with anthropogenic
inputs of nutrients, have resulted in unsafe drinking water,
impaired fisheries and damage to recreational waters.10−14 As
such, managing pollutant loadings from urban stormwater has
become one of our most pressing environmental chal-
lenges.15,16

Expansion and upsizing of gray infrastructure are perhaps the
most common solutions to coping with increased runoff
resulting from changing weather and land use.17 Aggressive
climate adaptation via traditional tools may lead to over-
designed gray infrastructure, which conveys water too quickly
to streams, leading to floodplain encroachment, increases in
runoff volumes, and stream erosion. To preserve stream
stability and ecological function, advances in stormwater
science are calling for traditional peak attenuation designs to
be replaced with those that reduce stream erosion during
smaller, more frequent storms.18 As communities seek more
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resilient and adaptive stormwater solutions, novel and non-
traditional alternatives to new construction must be considered.
One such alternative is provided by green inf rastructure (GI),

which augments impervious urban areas with pervious solutions
such as bioswales, green roofs and rain gardens.19−21 GI is
designed to restore some ecosystem functions to preurbaniza-
tion levels by capturing runoff and contaminants before they
enter the stormwater system. These solutions have experienced
a significant rise in popularity due to their promise to offer a
low impact alternative toward buffering flows and improving
runoff water quality.22 Much research remains to be conducted,
however, to test the efficacy and scalability of GI as an
alternative to gray infrastructure. To that end, more cost-
effective sensing solutions are required to assess the in situ
performance and improve the maintenance of GI.23,24

While stormwater systems do change (albeit slowly), their
design performance is often regarded as static due to limited
ability to adapt to changing climate and land uses. More
importantly, stormwater solutions are engineered on a site-by-
site basis, with little consideration given to ensuring that local
benefits are actually adding up to achieve a collective
outcome.25 Rather than offering an alternative, a new solution
promises to augment, rather than replace, green and gray
infrastructure. This approach relies heavily on sensor and
information technology to make existing stormwater systems
more adaptive by embedding them with connectivity and
intelligence.

■ REAL-TIME ADAPTIVE MANAGEMENT
The past decade has witnessed significant advances and
reduction in the cost of novel sensors, wireless communications
and data platforms. In large, much of this development has
accompanied the recent boom on the Internet of Things (IoT), a
technological movement that promises to build the next
generation of interconnected and smart buildings and cities.26

The stormwater sector has been slow in its adoption of these
technologies, especially in the context of high-resolution and
real-time decision-making. Present uses of sensors range from
regulatory compliance27,28 to performance studies of individual

stormwater facilities.29 These technological advances have the
potential to become highly transformative, however, by
enabling stormwater infrastructure to evolve from static to
highly adaptive (Figure 1). By coupling the flow of water with
the flow of information, modern stormwater infrastructure will
adapt itself in real-time to changing storms and land uses, while
simultaneously providing a highly cost-effective solution for
cities that are otherwise forced to spend billions on stormwater
reconstruction.30

Given advances of modern sensors and data acquisition
systems, it is now feasible to monitor green and gray
infrastructure projects pre- and postconstruction to provide in
situ performance metrics. This is afforded by a significant
reduction in the cost of sensors and cloud-hosted real-time data
systems. Many commercial and open-source platforms,
specifically geared toward demands imposed by storm and
sewer applications, are now available and promising to lower
the cost of wireless sensor deployments. Water flow, stage,
precipitation and soil-moisture can now be measured
seamlessly and continuously. The development of robust and
affordable in situ water quality sensors for nutrients, metals or
bacteria is still evolving.
While new measurements will provide significant insight into

the study and management of stormwater systems, it is the
ability to directly and proactively control these systems that
presents the biggest potential impact to water quality. Low-cost,
reliable and secure actuators (e.g., valves, gates, pumps) can
now be attached to existing stormwater systems to control the
flow of water in pipes, ponds and green infrastructure.
Examples include inflatable pillows that can be used to take
advantage of underused inline storage,31 or smart outlet
structures that control water levels in response to real-time
data and weather forecasts (Figure 2).
While real-time process control in water and wastewater

treatment has been studied extensively and continues to be a
fruitful area of research,33 there is now the opportunity to
distribute these treatment ideas to the watershed scale. This
presents an exciting new paradigm: retrof itting existing storm-
water inf rastructure through cost-ef fective sensors and actuators will

Figure 1. System-level stormwater measurement and control.
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transform its operation f rom static to adaptive, permitting it to be
instantly “redesigned” to respond to changing conditions. There is
an inherent complexity associated with control of city-scale
systems, however, as they are comprised of a variety of gray and
green solutions and driven by complex storm patterns,
hydrologic phenomena, and water quality dynamics. The
number of studies addressing real-time water quality control
is limited but promising, ranging from local- to city-scale
control.

■ REAL-TIME CONTROL OF INDIVIDUAL
STORMWATER FACILITIES

Many existing studies focus on the real-time control of
stormwater basins and ponds, which are some of the most
common elements in a stormwater system.34−36 Pollutant
removal in basins comprises a complex interaction between a
number of mechanisms, including sedimentation, flotation,
infiltration, biological conversion, and degradation.37 Tradition-
ally, these facilities are designed as compromises between flood
control (detention) and water quality control (retention), with
limited ability to adapt functionality to individual storm events.
Retrofitting an existing site with a real-time control valve
permits it to serve both as a detention and retention basin, as
well as a spectrum of in-between configurations. One control
rule, for example, opens a valve to drain a pond if a storm is
forecasted, which creates additional storage for incoming
runoff. Similarly, runoff can be strategically retained after a
storm to improve settling and biological uptake. It has been
shown, for example, that by temporarily converting a detention
basin to a retention basin, the removal efficiency of total
suspended solids (TSS) increased from 39% (189 120 g inflow
vs 98 269 g outflow) to 90% (e.g., 59 807 g inflow vs 8055 g
outflow) and ammonia-nitrogen increased from 10% (101.1 g
inflow vs 79.2 g outflow) to nearly 90% (e.g., 163.5 g inflow vs
7.8 g outflow).37,38 Using data from these studied, Mushalla et
al.39 simulated that retaining water using real-time controls may
result in up to a 60% improvement in small particle removal
compared to a traditional design.
Some studies are also beginning to show that real-time

control can play a significant role in removing biological, metal

and dissoved contaminants. A controlled basin in Pflugerville,
Texas, achieved 6-fold reduction in nitrate plus nitrite-nitrogen
compared to the same preretrofit dry basin (0.66 mg/L to 0.11
mg/L) by extending detention time and releasing water before
a storm to create additional storage.40 While biological uptake
likely contributed to nitrogen removal, reliable and affordable in
situ sensors for many dissolved pollutants are still needed to
fully understand the impacts of control to dissoved pollutant
removal in natural treatment systems.
Real-time control of a retrofitted detention pond showed that

the removal of Escherichia coli was improved by strategically
retaining water for 24 h after a storm rather than allowing the
water to flow though the pond as originally designed.41 For the
controlled basin the outlet concentrations were an order of
magnitude lower than inlet concentrations (1940 MPN/100
mL in vs 187 MPN/100 mL out; and 3410 MPN/100 mL in vs
768 MPN/100 mL out), whereas the uncontrolled basin
showed limited removal and even increased E. coli at the outlet
(4350 MPN/100 mL in vs 8860 MPN/100 mL out; 10800
MPN/100 mL in vs 11000 MPN/100 mL out). Since
streambed concentrations of E. coli were three times higher
than in the streamwater, the primary mechanisms for removal
were attributed to sedimentation and increased exposure to
sunlight. This example also speaks to the need to be cognizant
of flow releases from controlled basins, as high outflows can
resuspend pollutants. As such, real-time control can be used to
modulate the flow rate from storage facilities to reduce
downstream erosion and pollutant loads. Such strategies
begin to place real-time control into a much broader systems
context, whereby each individual stormwater facility not only
generates local benefits, but can also be used to improve flow
and water quality at the city-scale.
Flow modulation for stream protection was demonstrated at

two pilot sites owned by Clean Water Services (CWS) in
Washington County, Oregon. In one system (sized to retain 0.2
in. of rainfall), the addition of real-time control to an existing
wet pond reduced the volume and duration of channel forming
discharges by approximately 25%. In a second facility (a dry
detention pond), the use of real-time control was used to
minimize release rates in smaller, more frequent storm events
while maintaining the ability to match predevelopment peak
flows during larger storms. This enhancement was modeled to
reduce the volume of erosive flows by nearly 60% and the
volume of wet weather discharges by nearly 70% compared to a
passive basin (Figure 3). Additionally, the use of real-time
control increased the average residence time of this facility from
1 to 19 h. In a simulation case study real-time control reduced

Figure 2. Example sensing and control devices (a) Remote valve for
basin control, (b) smart sensing manhole cover, and (c) an open-
source sensor node for distributed measurement and control.32

Figure 3. Improvement achieved by retrofitting an existing basin to
reduce erosive flows.
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the required pond volume by 30−50%, compared to a passive
facility, while achieving the same level of flow-duration control
performance. Finally, based on whole lifecycle cost estimates, it
was determined that a real-time control retrofit of an existing
stormwater detention facility would be approximately three
times lower in lifecycle cost than the equivalent passive
alternative.42

■ SCALING UP
An insight into the scalability of real-time control is provided by
a large-scale control network that is presently deployed in
South Bend, Indiana.43 The network encompasses 100 km2 and
is comprised of 120 real-time flow and water depth sensors
(Figure 4), which share information every 5 min. The system
has been retrofitted with control valves located at nine CSO
regulators to modulate flow into the city’s interceptor line. The
control valves allow more water to enter the interceptor line
when conveyance capacity is available, while avoiding
surcharging the interceptor, which may cause surface flooding
or structural damage. The system operates by taking advantage
of excess conveyance capacity within the interceptor line, which
is driven dynamically by spatial or temporal features of specific
storms.
The distributed control strategy uses an agent-based control

scheme to optimize the water collection system, whereby each
infrastructure component trades its own storage or conveyance
capacity to other upstream assets, similar to traders in a stock
market.44 Even before the system was controlled, benefits were
achieved by means of monitoring alone. By isolating
maintenance issues in its first year of operation (2008), the
system helped the utility eliminate critical dry weather sewer
overflows, which were occurring an average of 27 times per
year. Overall, the control system reduced total sewer overflow
volumes from 2100 MGal to 400 MGal from 2006−2014
(Figure 4). Even after adjusting for total annual rainfall, a near
5-fold performance improvement (ratio of overflows to
precipitation) was achieved. While a reduction in E. coli
concentrations (443 cfu/100 mL to 234 cfu/100 mL) in the
downstream sewer locations was also observed, a more
comprehensive ecological study is warranted to study the
impacts of real-time control to E. coli removal mechanisms. It is
estimated that over one billion gallons of untreated sewer flows
were blocked from flowing into the river, suggesting that real-
time control played a role in improving water quality.

■ KNOWLEDGE GAPS
Systems Thinking. While nascent, research on real-time

stormwater control is not limited by technology, but rather by a
much more fundamental need to understand the complex
spatiotemporal dynamics that govern water flow and quality
across large urban areas. One of the largest challenges with
existing stormwater solutions relates to their design as single
entities. This means that benefits achieved at a local scale may
often be masked or eliminated at the city scale if the
performance of an individual element is not designed in a
broader systems context.25,45 Perhaps the biggest benefit of
control relates to the ability to leverage real-time interconnec-
tion to guide the behavior of individual elements to achieve
city-scale benefits.
There is a need to build upon prior and ongoing research

efforts on best management practices (BMPs)20,29,46,47 to
understand how individual green and gray stormwater solutions
perform when stressed by varying climate, storms, and runoff
dynamics. Many studies focus on hydrologic control and
removal of solids and bacteria, but much work still remains to
be done to determine the impacts of these solutions to the
treatment of metals, nutrients and emerging contaminants. This
will require the expanded development of cheap and reliable
sensors for these pollutants. Furthermore, there is an urgent
need to fill a knowledge and measurement gap on the
interconnectedness of BMPs across various scales and runoff
dynamics (e.g., first flush vs peak flow). By improving the
understanding of stormwater networks as a function of scale, it
will then be possible to posit how very large systems (ten to a
hundred ponds, for example) should be controlled or tuned in
real-time to achieve a collective outcome.
Uncertainty. The role of uncertainty is rarely acknowledged

in the design of traditional stormwater systems, since it is
assumed that many transient system behaviors will average out
into a cumulative performance over time. The benefits of real-
time control, however, are highly underpinned by uncertainties
related to weather forecasts, models, control algorithms, and
sensor measurements. Some elements of the system will always
remain unmeasured or not understood. Furthermore, many
control decisions will continue to be based on hydraulic
parameters, such as flow or residence time. Until reliable and
low-cost water quality sensors become available, water quality
control decisions will rely on statistical correlations or physical

Figure 4. Comparison of combined sewer overflows (CSOs) before and after commissioning of real-time sensing and control system in South Bend,
IN.
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models. It will be important to quantify the role of the resulting
“error bars” on the performance of real-time control.
As with many controlled systems, there may be an inherent

risk to infrastructure, private property, or even human life due
to poorly designed control algorithms. Since risk relates directly
to uncertainty, reliable and consistent real-time operations can
only be achieved by exhaustively quantifying the role of
uncertainty in control operations. Furthermore, even the best
controllers and sensors may only achieve marginal benefits if
storms cannot be predicted adequately, thus calling for the need
to begin investigating the value of weather forecasts in control
operations. Many other examples can be given, but studies
exploring the role of uncertainty have yet to be conducted.

■ OUTLOOK AND BROADER ADOPTION
Real-time control promises to revolutionize the management of
urban water quality by providing the ability to significantly
improve the operation of existing stormwater assets. As the
community of researchers grows, there will be a need to
develop baseline performance metrics, study sites, measure-
ment platforms, and data sets. Research on stormwater capture
and direct use (reuse) has recently increased48 due to the
potential of reclaimed stormwater to serve arid regions. In
drought-prone regions of the U.S., where stormwater direct use
is becoming one of the few viable water recovery options,
sensing and real-time control will improve stormwater
extraction compared to static or natural treatment options.
Controlling the timing and magnitude of flows and improving
removal of contaminants before they reach the plant will also
result in a reduction in resources required for treatment in
combined sewer systems.
Outfitting stormwater infrastructure with sensors and digital

control systems introduces new opportunities for efficiency and
new risks of failure. Responsible use of these systems extends
beyond deployment, requiring ongoing effort to maintain trust
in the data produced and the integrity with which control
actions are followed. As with all Best Management Practices,20

standards will be required to facilitate broader adoption of real-
time control and to assess the risks introduced by the use of
information sourced from these embedded systems. Future
standards may focus around data formats, sensor requirements
or actuator specifications, and will need to ensure interoper-
ability between various sites. Failure to recognize, plan for, and
manage the ongoing cyber security risks introduced by the
distributed installation of sensors and actuators in stormwater
infrastructure will result in new risks to public health and safety,
which may undermine trust in broader efforts to deliver the
potential benefits of these technologies.
There will be a need to address regulatory compliance,

ownership, governance, and operational jurisdictions relating to
real-time controlled systems. Unlike existing deployments of
sensor and control systems in wastewater treatment, digital
stormwater infrastructure is deployed across a watershed,
outside of buildings staffed by an operations team. A key
tension relates to jurisdiction, both in terms of who owns the
infrastructure being controlled and which software system
provides this dynamic capacity. Many cities may only wish to
try retrofitting some sites, with the plan to augment their
systems over time as they see benefits. This raises the possibility
that many software systems may operate simultaneously and
interfere with a global goal. If control systems are deployed by a
spectrum of public and private stakeholders, they should
nonetheless interoperate to provide capacity for watershed-

scale control and maintenance. Governance models must be
explored to facilitate cooperation and liability concerns. While
solutions to these concerns can build on successful models used
for ownership and operation of passive controls, they may
require further thought in their translation to real-time
controlled systems.
Beyond technical challenges, the ecosystem of municipalities

and engineering firms must adapt to accommodate real-time
control within a large umbrella of green and gray infrastructure
solutions. Broader community engagement is necessary to
facilitate dissemination and adoption of real-time stormwater
control. Compliance regulators, such as state and federal
environmental protection agencies, must be highlighted as
members of this community, since many cities are wary of
innovation because of perceptions that regulators will reject
nontraditional solutions. Environmental consulting firms,
municipalities, and researchers will need to acquire nontradi-
tional skillsets, which span electrical engineering and computer
science. To help with this effort, a major initiative is presently
underway to organize an open-source consortium and share
reference implementations on real-time stormwater control
(http://open-storm.org). While open-source options for
sensing and control are alluring due to their perceived cost,
examples of holistic open-source approaches, which integrate
environmental science, technology and engineering design,
have yet to be developed. To that end, this consortium will
serve as a hub for reference applications, standards,
architectures, sensors, hardware and algorithms, to show that
it is well within the abilities of most academic groups,
municipalities and engineering firms to begin instrumenting
and controlling stormwater infrastructure.
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Retrofitting stormwater systems with sensors and controllers will allow cities to be operated as real-time,

distributed treatment plants. Unlike static infrastructure, which cannot adapt its operation to individual

storms or changing land uses, “smart” stormwater systems will use system-level coordination to maximize

watershed pollutant removal and treatment. We illustrate that this vision is not limited by technology, which

has matured to the point at which it can be ubiquitously deployed. Rather, the challenge is much more

fundamental and rooted in a system-level understanding of environmental science. Once distributed

stormwater systems become highly instrumented and controlled, how should they be operated to achieve

desired watershed outcomes? The answer to this question demands the development of a theoretical

framework for smart stormwater systems. In this paper, we lay out the requirements for such a theory. Ac-

knowledging that the adoption of these systems may still be years away, we also present a modeling

framework to allow for the simulation of controlled stormwater systems before they become common-

place. We apply this control framework to two simulated case studies in which stormwater sites are con-

trolled to reduce nitrate loads to downstream water bodies.

Rapid advances in sensing, computation, and wireless
communication are promising to merge the physical with the
virtual. Calls to build the “smart” city of the future are being
embraced by decision makers. While the onset of self-driving
cars provides a good example that this vision is becoming a
reality, the role of information technology in the water sector
has yet to be fleshed out. These technologies stand to enable
a leap in innovation in the distributed treatment of urban
runoff, one of our largest environmental challenges.

Retrofitting stormwater systems with sensors and control-
lers will allow cities to be controlled in real time as distrib-
uted treatment plants. Unlike static infrastructure, which
cannot adapt its operation to individual storms or changing
land uses, “smart” stormwater systems will use system-level
coordination to reduce flooding and maximize watershed pol-
lutant removal. Given the sheer number of stormwater con-

trol measures in the United States, even a small improvement
in their performance could lead to a substantial reduction in
pollutant loads. Intriguingly, such a vision is not limited by
technology, which has matured to the point at which it can
be ubiquitously deployed. Rather, the challenge is much
more fundamental and rooted in a system-level understand-
ing of environmental science. Once stormwater systems be-
come highly instrumented and controlled, how should they
actually be operated to achieve desired watershed outcomes?
The answer to this question demands the development of a
theoretical framework for smart stormwater systems. In this
paper, we lay out the requirements for such a theory. Ac-
knowledging that the broad adoption of these systems may
still be years away, we also present and evaluate a modeling
framework to allow for the simulation of smart stormwater
systems before they become commonplace.

Recent urban floods,1 many of which are driven by flashy
events and inadequately sized infrastructure, are an all too
common example that aging stormwater infrastructure is
struggling to keep pace with a dynamic and changing cli-
mate. While flood control often emerges as one of the most
promising application areas, to illustrate the flexibility of
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Water impact

“Smart” stormwater systems will transform cities into coordinated and real-time controlled treatment plants. Retrofitting existing stormwater elements with
sensors and controllers will allow them to change their configuration to maximize watershed-scale pollutant removal. We discuss that fundamental knowl-
edge gaps must be addressed before these systems become a reality and present a simulation framework to model real-time control of urban stormwater.
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smart stormwater systems, this paper will focus on the im-
pacts on urban water quality.

1 Do best local practices achieve the
best global outcomes?
Pollutants in runoff are threatening the health of down-
stream ecosystems, as evinced by harmful algal blooms, such
as those on Lake Erie2 and Chesapeake Bay.3,4 Simulta-
neously, “dry” regions of the country are struggling to find
new and clean sources of water. By some estimates, the cap-
ture of stormwater in Los Angeles5 and San Francisco6 could
offset the water used by these cities. This, however, requires
at least some level of treatment to ensure that captured
stormwater is safe for direct use or aquifer injection. In the
face of these challenges, novel solutions for stormwater man-
agement are needed.

Reductions in hydraulic or pollutant loads are commonly
achieved via a set of distributed stormwater solutions,7,8 such
as ponds or treatment wetlands. Our body of knowledge on
the treatment potential of these systems is extensive, showing
that significant water quality and hydraulic benefits can be
achieved at the level of individual sites.9,10 Most recently, an
exciting and growing research area has formed around
smaller-scale and more distributed Green Infrastructure (GI)
solutions, such as green roofs or bioswales.11 Most of these
solutions are grouped under the broader umbrella of Best
Management Practices12 (BMPs) or Stormwater Control Mea-
sures (SCMs).13

Given the aggressive adoption of these stormwater prac-
tices, rarely is the question asked: does doing the “best” at a
local scale translate to doing the best at the watershed scale?
Research on this question is limited,14–16 but paints a cau-
tionary picture. Unless designed as part of a coordinated,
city-scale solution, a system of SCMs may actually worsen
watershed-scale outcomes. For example, unless coordinated
at design-time, hydrographs from individual SCMs may add
up to cause larger downstream flows compared to having no
SCMs at all.17 This, in turn, can lead to increased stream ero-
sion and re-suspension of sediment-bound pollutants. More
examples can be given, but there is an urgent need to investi-
gate the scalability of SCMs and to ensure that their function-
ality is tuned in the context of broader stormwater systems.

Even if system-level optimization is used to determine the
placement of SCMs,18,19 it is difficult to guarantee that the
overall system will perform as designed. The sheer variability
in rainfall,20 seasonal pollutant loadings,21 and broader land
use changes22 will always push stormwater systems beyond
their intended design for the “average” storm.23 As such, it
becomes imperative to find a way to adapt to these uncertain
disturbances. One solution relies on real-time sensing and
control. By equipping stormwater elements with control
valves, which can be operated in real time based on sensor
readings, the overall performance of the entire system can be
adapted to achieve watershed-scale benefits (Fig. 1a).

1.1 Existing studies on real-time control

The bulk of existing literature on real-time control of
stormwater SCMs focuses on water quality and hydraulic im-
pacts at individual sites, particularly ponds and basins. These
studies assume that the outlet of a BMP has been retrofitted
with a remotely controllable gate or valve. By strategically
controlling outflows before or during storm events, internal
volumes can be modified and hydraulic retention time (HRT)
can be increased. Jacopin et al.24 demonstrated that deten-
tion basins, typically designed for flood control, can reduce
sediment-based pollutant loading (57% decrease) in down-
stream water bodies by simply opening and closing a valve.
Middleton et al.25 analyzed the water quality response of a
controlled detention basin, observing up to a 90% improve-
ment in TSS and ammonia–nitrate removal. Recent
studies26–28 in Quebec, Canada proposed a rule-based control
logic for a pond, based on rainfall forecasts, to maximize re-
tention time and reduce hydraulic shocks to the downstream
water bodies. These studies reported a 90% improvement in
TSS retention. A comprehensive review of these and other
studies is summarized by Kerkez et al.,29 along with addi-
tional information on how these solutions are deployed in
the field. While these studies demonstrate significant poten-
tial to improve water quality at the scale of individual sites,
the mechanisms behind the removal of pollutants in con-
trolled SCMs remain a research challenge. This is particularly
true in the removal of dissolved pollutants, such as ammonia

Fig. 1 Application of control and optimization methods to the real-time
operation of stormwater systems will be made possible by abstracting
physical models (part a) into system-theoretical representations (part b).
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and nitrate. Furthermore, the scalability of real-time control
must be evaluated to ensure that local benefits do not over-
shadow watershed-scale benefits.

Since the 2000 European Union's Water Framework Direc-
tive,30 there has been an increasing emphasis on integrated,
system-level control of sewer water distribution systems. The
resulting control strategies vary in complexity31–33 and have
since been implemented in a number of urban water net-
works.34 Applying these methods to distributed stormwater
solutions introduces a new set of challenges. However, unlike
in well-maintained sewer networks, the exposed and distrib-
uted nature of stormwater systems introduces complexities
associated with the urban hydrologic cycle, such as infiltra-
tion, evaporation, soil moisture and groundwater dynamics.
Furthermore, one major function of stormwater systems re-
lates to the distributed control of a large variety of solid,
dissolved and emerging pollutants. Control of sewer networks
is often targeted at volume control to mitigate sewer over-
flows or overloading treatment plants. As such, much work
remains to be conducted on investigating how these methods
can be applied to the distributed control of stormwater.

2 Toward a framework for smart
stormwater systems
Many methods have been developed by the operational re-
search and control theory communities to optimize the oper-
ation of networked systems.35,36 Given their inherent non-
linearity and complexity, existing stormwater models are not
compatible with these tools. To that end, our knowledge of
treatment processes and the physical nature of stormwater
systems must first be embedded in a system-theoretical
framework (Fig. 1b). Such a formal and mathematical ap-
proach will be crucial toward developing a system-level un-
derstanding of stormwater. Not only will this framework help
to control future stormwater systems, but it will also create a
foundation to answer critical questions, such as how many
controllers are needed and where should they be placed to
achieve the best system-level benefits? Consequently, how
many sensors are needed and where should they be placed to
help the control system achieve these objectives?

Until sensors and controllers become ubiquitously
deployed across stormwater systems, which may take years to
accomplish, there is enough domain knowledge embedded
in existing models to begin answering these questions
through simulation.

2.1 Limitations of existing simulation approaches

Existing stormwater models can be broadly grouped into two
categories: those that focus on hydrology (including hydrau-
lics) and those that focus on water quality. The former range
across simple routines, such as Muskingum routing37 and
the Rational method,38 to more complex hydrodynamic
models that solve the St. Venant equation, such as popular
packages like SWMM39 and HEC-RAS.40 The latter, which in-

clude models such as HYDRUS41,42 and FITOVERT,43 are
used to simulate treatment processes within individual sites,
such as wetlands and green infrastructure. While some pack-
ages support extended features that model both hydrology
and water quality, much work needs to be conducted to im-
prove their accuracy.44 This often forces a trade-off between
comprehensively modeling system-level hydrology and local-
level treatment.

Pollutant removal in stormwater is a highly complex and
dynamic process. The rate at which pollutants undergo trans-
formation is dependent upon the pollutant type and its inter-
action with a given stormwater element (oxygen concentra-
tion, soil type, biomass, settling time, water temperature,
etc.). Given the complexity of these interactions, popular
stormwater models, such as SWMM, MUSIC45 and SUS-
TAIN,46 often approximate pollutant treatment using first-
order decay models:47

(1)

where the concentration C of a pollutant is assumed to de-
crease exponentially following a decay coefficient k. While
this may be sufficient for approximating the settling dynam-
ics of sediment-bound pollutants, it does not capture the nu-
anced and complex transformation of dissolved compounds.
This often leads to treating the hydraulic retention time
(HRT) as the main proxy for water quality.

To that end, a number of approaches have been developed
to extend first-order decay models to account for variations
in background concentration,48 temperature,47 loading
rates49 or mixing conditions.50,51 A number of process
models have also been developed, applying knowledge from
treatment plant operations to stormwater.52 Langergraber
et al.53,54 used finite element analysis to model pollutant
transformations in subsurface flow wetlands. While these
more comprehensive water quality models are highly promis-
ing, their ability to simulate system-level treatment remains
to be explored.

Given the need to develop a better understanding of the
system-level transport and treatment of stormwater, there is a
need to couple existing hydraulic and water quality models.

3 Simulating controlled systems
The real-time operation of gates and valves introduces dy-
namics that impact hydraulics and water quality. To that
end, the biggest limitation of existing models is their ability
to simulate the system-wide impacts of real-time control.
This includes the ability to dynamically route flows based on
a variety of desired control actions, as well as the capacity to
simulate a variety of pollutant buildup, washoff, and non-
steady state treatment dynamics. While models such as
SWMM do have some rudimentary control capabilities, the
built-in control logic is limited to site-level control (e.g.
maintaining levels or flow in a pond).39 Advanced features,
such as system-level control, optimization, or the ability to
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control around external factors (such as weather forecasts),
are not yet implemented.55

While it would be possible to extend an existing model to
capture all these functionalities, the effort would be signifi-
cant. To that end, we contend that a coupled modeling ap-
proach56 will be the most flexible way to accomplish this. By
coupling models, rather than translating their features into
one large model, it becomes possible to construct a modeling
chain whose complexity varies based on the scientific or
management question that needs to be answered. More im-
portantly, if individual models undergo updates by their re-
spective domain experts, these new features would become
available to the coupled model as well without much imple-
mentation overhead.

In our coupled modeling approach (Fig. 2), each element
in the broader stormwater system can be represented as a
storage node, which receives inflows q1, q2,…, qn from up-
stream nodes, each of which has a corresponding concentra-
tion c1, c2,…, cn for a pollutant of interest. The node has an
outflow qout which, unlike in static hydraulic infrastructure,
is governed by a real-time control action u. A treatment po-
tential k governs the removal or transformation of the pollut-
ant based on a number of hydraulic and water quality states.

Given that control actions change the hydraulic behavior,
which in turn affects the treatment of the pollutants, it be-
comes necessary to implement a modeling cycle that couples
these processes in an interconnected, step-wise fashion. In
our implementation, the hydraulic simulation can be carried
out by any number of hydraulic models, ranging from simple
hydraulic routing schemes to more complex models such as
SWMM or MUSIC. Outputs from the hydraulic model are fed
to the water quality model, which, depending on the pollut-
ant of interest, can range from simple first-order process-
based methods to more complex finite-element models. Fi-
nally, the control module processes the outputs from the hy-
draulic and water quality models. Based on the objective,
which can depend on the states of multiple elements in the
overall system, it sets the discharge rate qout by closing or
opening the outlet. The benefits of the coupled approach re-
late to its flexibility since individual elements can be
connected together to represent highly complex stormwater
networks.

4 Simulated studies
To illustrate the potential benefits that can be achieved
through real-time stormwater control, we applied the pro-
posed simulation framework to two simulated case studies,
which were inspired by our current research efforts in the
midwestern United States. Multiple sites are currently being
retrofitted for control and will be compared to these simula-
tions in the coming years. The analysis was targeted on ni-
trate removal since most of the existing literature focuses on
hydraulic control or sediment-bound pollutants.

1. Local scale: the first study investigated the impacts of
real-time control on nitrate removal in a single stormwater
pond.

2. System scale: the second study evaluated how nitrate re-
moval can be coordinated between a system of controlled
stormwater elements.

4.1 Model implementation

Given the scope of the use cases, a simple flow balance mod-
ule was sufficient to simulate the hydraulic behavior of each
element. The change in water volume was modeled as the dif-
ference between inflows and outflows, which could be used
to calculate the water height h in each element based on its
area A. Outflows from each element were proportional to the
instantaneous pressure head, unless the element was con-
trolled. Such controlled elements were assumed to be
equipped with an outlet structure (i.e. butterfly or gate valve)
that can be used to regulate outflows such that:

(2)

Inflow into upstream elements was based on a hydrograph
that was directly measured at one of our study sites in Ann
Arbor, Michigan (Fig. 3). For the purpose of this study, this
hydrograph can be considered as a synthetic, but realistic, in-
put into the simulation. Overflows were simulated in the case
that the storage volume was exceeded. For simplicity, infiltra-
tion was assumed to be negligible in the study sites.

A water quality model was developed to simulate nitrogen
removal in each stormwater element. While nitrogen removal
processes are complex, we can simplify their function for this
example by assuming that the removal of nitrogen in
stormwater ponds and wetlands occurs through two primary
pathways: nitrification (conversion of ammonia to nitrate)
and de-nitrification (conversion of nitrate to nitrogen
gas).47,57 Nitrification is an aerobic process (oxygen acts an
electron acceptor), while denitrification is anoxic (nitrate acts
as an electron acceptor). While denitrification requires suffi-
cient biomass, it is often not limited by this requirement
since plants, grass and other sources of carbon are readily
present in stormwater ponds and wetlands.58 As such, oxygen
availability becomes a critical factor in nitrogen removal. This
can readily be tuned through hydraulic control since reten-
tion can be used to create anaerobic conditions.

Fig. 2 Each element in the broader stormwater system can be
modeled in a step-wise fashion that simulates hydraulic, water quality
and control dynamics.
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We constrained our case studies by focusing only on de-
nitrification, assuming that the majority of nitrogen entering
our system was in the form of nitrate. While ammonia is

present in some stormwater systems, prior measurement of
our study sites, as well as other literature studies,47 indi-
cated a nitrate-dominated runoff. Future studies will inves-
tigate the more complex dual-pathway conversion. A syn-
thetic time series for nitrate inflow concentrations was
generated to simulate loads to upstream elements. This was
achieved by assuming a rough correlation between flow
and nitrate (2 mg L−1 per m3 s−1), which was based on prior
measurements.29

The water treatment for each element was simulated using
a continuously stirred tank reactor (CSTR) representation,
which is commonly used to simulate similar processes in
wastewater treatment plants.59 Given the dynamic flow condi-
tions that result from real-time control, a closed-form solu-
tion that is based on hydraulic residence time does not ade-
quately capture the change in concentration of the pollutant.
As such, it becomes necessary to expand it into a complete
CSTR mass-balance relation60–62 to model the concentration
C of the dissolved pollutant:

(3)

At each time step, the CSTR module communicates with
the hydraulic module to update the hydraulic states

. The transformation rate k is computed at

each time step based on the hydraulic conditions of the
stormwater element. Specifically, denitrification can begin
once the oxygen concentration at the soil–water interface
drops below a minimum threshold (following a first-order de-
cay assumption). Once this occurs, a constant removal rate k
is activated. After the element drains, soil is exposed to the
air and must be submerged before denitrification can begin
again. As such, the model assumes that cumulative denitrifi-
cation is maximized when the water is in contact with the
most anaerobic soil area.

All simulations were implemented in MATLAB Simulink63

using a fixed time step solver (ode8 Dormand-Prince64) at 5
minute intervals. The step-wise coupled modeling approach
was implemented by representing each module (hydraulic,
water quality, and control) as an individual Simulink object
(Fig. 4). All of the source code, inputs and implementation
details are attached to this paper as ESI.†

4.2 Case study 1: local control

The first case study is motivated by the objective of control-
ling a single stormwater basin, which was originally designed
for flood remediation as a detention pond (flow-through).
The model parameters and physical attributes are provided
in the appendix of this paper. In its original configuration,
the pond merely serves to attenuate peak flows, with little
emphasis on water quality. By equipping this pond with a

Fig. 3 Impact of real-time control on hydraulic behavior and nitrate
treatment, showing inflow concentrations (top panel), pond water
height and outflows (second panel), nitrate concentrations inside the
pond (third panel), and cumulative nitrate loads exiting the pond (bot-
tom panel).
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control valve, its original functionality can remain unaffected
during large storms by simply keeping the valve open. Major
water quality benefits can arise, however, by controlling this
pond during smaller and more frequent events.

When enabled, the control algorithm keeps the valve
closed and only opens it if the water height exceeds 1.0 m to
prevent the pond from overflowing. As a further constraint,
when the height exceeds 1.0 m, the valve is modulated to
ensure that outflows do not exceed 2 m3 s−1, which is the
threshold at which downstream sediments are assumed to
be re-suspended. This additional condition ensures that the
controller behaves realistically, as the real-world operation
would likely have a bound on the outflows to prevent
downstream erosion. Two variations of the control algo-
rithm are also evaluated. The first strategy completely
drains the pond before a rain event, thus maximizing cap-
tured volumes. Based on the magnitude of the rain event
(assumed to be known through a weather forecast), the sec-
ond strategy only partially drains the pond, maximizing the
anaerobic conditions at the soil–water interface and thus
speeding up denitrification of the inflows. In this case
study, the height of the partially drained configuration was
set to 0.15 m, assuming that this height would be suffi-
cient to maintain the saturated conditions and prevent the
diffusion of oxygen into the soil.57

Compared to the uncontrolled scenario, which only atten-
uated the peak flow, both controlled scenarios retained a wa-
ter height of 1.0 m after the storm (Fig. 3). Since the pond
can be drained at a later time, this volume of water was effec-
tively removed from downstream infrastructure during the
storm event. In static stormwater systems, volume reduction
strategies are typically only assumed to be possible through
upstream infiltration and capture. As such, control may effec-
tively serve as a volume reduction strategy by shifting flows
outside of the storm window. Furthermore, outflows for the
controlled scenarios resembled a “step”, which kept flows be-
low a predetermined erosion threshold. This reduces down-
stream sediment loads, compared to the uncontrolled sce-
nario, whose outflows spent over 50% of the time exceeding
the 2 m3 s−1 erosion threshold.

Nitrate inside the pond and the effluent revealed distinct
dynamics between each control configuration. In the
uncontrolled scenario, very limited treatment occurred due to
short hydraulic retention time. The effluent concentrations
peaked before dropping to zero since the pond was drained
completely following the storm. The controlled scenarios did
not see this drop-off in internal nitrate because the flows
were retained for treatment. The partially drained scenario
showed lower nitrate concentrations at the beginning of the
storm due to higher anaerobic soil area and denitrification
potential.

While internal concentrations are an indicator of treat-
ment dynamics inside the pond, perhaps the best measure of
treatment capacity is given by the cumulative nitrate load
exiting the pond (bottom panel, Fig. 3). The uncontrolled sce-
nario exhibited the largest cumulative nitrate loads since the
runoff effectively just flowed through the pond with limited
treatment. The controlled pond showed a nearly 45% mass
reduction (from 8.6 kg to 4.7 kg) in nitrate due to increased
volume capture, HRT and denitrification. The partially
drained control strategy did indicate an improved load reduc-
tion compared to the fully drained control strategy (14% im-
provement). This suggests that, rather than simply draining
the pond before a storm event, improved load reductions
may be achieved through more complex control approaches.
More complex control comes at the cost of uncertainty, how-
ever. The partially drained controller assumed prior knowl-
edge about inflows to decide how much water to drain before
a storm. If these decisions are made around weather fore-
casts, the uncertainty embedded in the inputs may cause ad-
verse impacts, such as overflows. The anticipated benefits of
any control strategy should thus always be weighted against
the uncertainty of any inputs.

4.3 Case study 2: system-level control

The second case study evaluated how control strategies may
change when a system of multiple stormwater assets is con-
trolled. A system of four elements was considered, consisting
of three parallel ponds draining into a constructed wetland
(Fig. 5). Two of the upstream ponds were controlled while the
treatment wetland and the other pond remained
uncontrolled. The objective was to control the upstream
ponds to boost the nitrate treatment and reduce the effluent
concentrations at the outlet of the wetland. The configuration
was based on a real-world site currently being retrofitted for
control in southeastern Michigan.

Due to their large biomass area, wetlands have a higher
nitrate treatment capacity than ponds.65 As such, the con-
trol objective was to keep the downstream wetland “active”,
by maximizing its water height and thus the biomass treat-
ment area. While a prolonged inundation may damage the
emergent vegetation in the wetland, the proposed control
algorithm maximizes the treatment area of the wetland only
during the duration of the storm event, which should im-
prove the treatment while only briefly inundating the

Fig. 4 MATLAB Simulink implementation of the first case study. The
overall model functions in a step-wise fashion and couples stand-
alone hydraulic, water quality, and control models.
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wetland. In the uncontrolled scenario, the flows from the
upstream ponds actually added up causing the wetland
to overflow (Fig. 6, fourth column), which also impaired
treatment.

The controlled scenario (see Appendix for implementation
details) balanced the outflows from the two ponds to ensure
that the wetland remained filled (2 m – just below its over-
flow height) as long as the uncontrolled third pond was
discharging. Once the third pond was entirely drained, the
upstream ponds retained any additional inflows, as long as it
would not cause them to overflow. This strategy eliminated
downstream overflows while simultaneously increasing the
wetland's anaerobic treatment area. As such, flows from the
third pond were exposed to a higher degree of denitrification
compared to those in the uncontrolled case. Overall, the con-
trolled system achieved a 46.48% (from 17.9 kg to 9.6 kg) re-
duction in cumulative nitrate loads. While some of this over-
all reduction was driven by the fact that the two controlled
ponds remained filled after the storm, thus retaining some
nitrate mass upstream, two major benefits arose compared to
the uncontrolled scenario. Firstly, the wetland effluent con-
centrations were reduced over time, showing a 15.25% reduc-
tion in concentration. Secondly, the case study showed that a
subset of upstream elements may be controlled to reduce
downstream hydraulic loads, which, similar to the first case
study, has the potential to reduce erosion.

A natural extension of this control strategy would be the
direct control of the wetland. In many real-world situations,
however, not all elements of the system will be controllable.
In these instances, system-level benefits may still be achieved
via control of other elements. The purpose of this case study
was to illustrate one possible example focused on system-
level nutrient control. While simple, this control strategy was
nonetheless effective at improving the hydraulic and water
quality behavior of the overall system. More complex control
strategies will be evaluated in the future, especially in the

context of larger and more heterogeneous stormwater
systems.

5 Discussion
Current state-of-the-art stormwater solutions are still primar-
ily focused on static (non-controlled) solutions. As such, our
analysis compared real-time control to static solutions, which
were designed in accordance to modern engineering prac-
tices. Sensor-driven, real-time control of stormwater presents
an exciting new paradigm and research area. It is presently
unclear, however, how results generated by existing research,
as well as the case studies presented in this paper, can be
scaled to large watersheds. Many existing studies focus solely
on the control of individual elements and, specifically, on
sediment reduction or flood remediation. While the case
studies in this paper took a step toward simulating the re-
moval of more complex dissolved pollutants in a multi-
element system, it is important to note that the control logic
was uniquely tailored to one specific storm and study area.
The efficacy of the controls in our case studies was reliant on
the ability to hold water after a storm to allow for extended
treatment. This strategy may be impacted by limits on hy-
draulic retention time. Modifying the water levels and resi-
dence times may introduce issues related to aesthetics, plant
survival and mosquito breeding.66 Thus, the potential bene-
fits to water flow and quality must be studied as part of a
multi-objective optimization problem. Much of the real world
is underpinned by significant uncertainty, especially related
to weather forecasts. Since these forecasts determine when
and how much water needs to be released, the stochastic na-
ture of weather must be taken into consideration when con-
trolling such systems.

Control strategies may also change entirely if the removal
of different pollutants is required. A simple example can be
given by watersheds in which runoff is dominated by ammo-
nia rather than nitrate, thus requiring stages of both nitrifica-
tion and denitrification. The intricacy of control strategies
will likely increase with the number of objectives67 and the
complexity of runoff dynamics. This introduces the exciting
paradigm of controlling the overall system to create treat-
ment chains in which individual elements are tuned to
achieve specific objectives. By tuning the hydraulic behavior
of each element, there will be an unprecedented opportunity
to begin applying process-based knowledge from wastewater
treatment to distributed stormwater modeling. The modeling
of such complete control approaches will be made easier by
the simulation approach proposed in Fig. 2, which will allow
for coupling of knowledge spanning hydrology, hydraulics,
and water quality.

6 Knowledge gaps
While research is needed to improve our fundamental under-
standing and modeling of system-level stormwater, two major
knowledge gaps become evident when we view stormwater

Fig. 5 System-level control case study: three ponds, two of which are
controlled, draining into a treatment wetland.
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control in a system-theoretical framework. This can be ac-
complished by visualizing it as a feedback loop (Fig. 7), a tech-
nique common in the control communities and dynamical
systems theory.68 This loop estimates the difference between
a desired watershed outcome (downstream nitrate concentra-
tions, for example) and the actual watershed outcome and
feeds it into the control logic to drive the system toward the
desired outcome. The physical requirements of this feedback
loop, which include sensors, controllers and the physical in-
frastructure, already exist or have matured to the point at
which they do not present major research challenges. Rather,
our biggest knowledge gaps span the virtual components of
the feedback loop and include the (1) assimilation of noisy,
sparse, and heterogeneous sensor data into real-time models

(state estimation), and (2) the automated synthesis of control
logic in response to these estimates.

6.1 Toward a new generation of real-time models

Unlike in static infrastructure systems, where adaptation
strategies take place on monthly or yearly time scales, real-
time control reduces adaptation to minutes or seconds.
Existing stormwater models have not been designed to inter-
face with real-time data. Rather, sensor data is often used
merely as a convenience to parameterize the model. It is not
uncommon for these predictions to drift away from real-
world conditions over the modeling horizon. Given the need
to base control actions on the best sources of information, a

Fig. 6 Impact of real-time control on hydraulics and nitrate treatment across a system of stormwater elements: inflow concentrations (top row),
pond water height and outflows (second row), nitrate concentrations inside each element (third row), and cumulative nitrate loads exiting the pond
(bottom row).
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new generation of data-driven and real-time models must be
developed. Rather than executing unchecked into the future,
they will “learn” from the data and update their states to re-
flect changing field conditions. Such models will need to be
self-calibrating, robust to uncertainty, and computationally
efficient to execute in the amount of time required to make
control decisions. This raises the question: how complex
does a system model need to be to enable an effective and ro-
bust control loop? While the answer to this question remains
to be investigated, many other control applications (aircraft
autopilots, for example) suggest that it is very likely that
stormwater control models will not need to be as complex as
the models currently used for simulation. This does not
mean that existing physically driven models or our proposed
simulation framework (Fig. 2) will not be needed. In fact,
existing simulation approaches will be critical in the plan-
ning and design of control systems, while real-time models
will be used for the actual control.

In our case studies, an assumption was made that control
actions were informed by known in situ conditions, such as
water flows, pond levels, and nitrate concentrations. This will
be far from true in many real-world control systems, where
sensors will be sparsely placed and noisy. New models will
thus have to be developed to make predictions at locations
that are uninstrumented and for parameters that are
unmeasured. By quantifying the uncertainty inherent in such
models, it will also be possible to develop sensor placement
algorithms to determine how many sensors are required and
where they should be placed to improve real-time model per-
formance. Many of the methods required for these tasks al-
ready exist in other communities (system identification, data
assimilation, machine learning, etc.), but their application to
stormwater systems remains to be investigated.

6.2 Control algorithms

While there is potential to apply more advanced control algo-
rithms to our case studies, the application of complex control
logic to stormwater presents an open area of research. It is

unclear which real-time control and optimization techniques
will be the most robust and suitable for distributed
stormwater systems. Most current studies, as well as the case
studies presented in this paper, have been built around sim-
ple rule-based control (e.g. drain a pond before a storm).
While such control approaches preserve intuition and incor-
porate operator expertise, they do not scale for systems of ar-
bitrary sizes. This impedes the ability to transfer lessons from
one watershed to another. The complexity of operational
rules will increase drastically with the size of watersheds or
extended control objectives. The logic associated with operat-
ing a network of distributed stormwater assets, consisting of
hundreds or thousands of controllers, will become over-
whelming unless formal mathematical methods are devel-
oped to abstract the physical stormwater dynamics into a
system-theoretical framework. These mathematical underpin-
nings will finally allow for performance or safety guarantees
to be provided. This, in turn, will enable new methods to de-
termine how many controllers are needed and where they
should be placed to ensure that desired watershed outcomes
are met.

7 Conclusions
The goal of this paper was to illustrate the need for a “smart”
stormwater systems theoretical framework. Before such sys-
tems become adopted, much work remains to be conducted
on simulating their performance, which can be accomplished
by coupling existing hydrologic, hydraulic and water quality
models. As demonstrated by our case studies, real-time con-
trol of stormwater has the potential to significantly improve
the performance of existing infrastructure, introducing new
alternatives to tightly manage nutrients, metals and other
pollutants in urban watersheds. Considering the current
funding mechanisms for stormwater, especially in the United
States, the cost of retrofitting will provide a more budget-
conscious alternative to new construction while achieving
similar or better water quality outcomes. Aside from techni-
cal or research gaps, which must be addressed before these

Fig. 7 The stormwater feedback control loop. A desired watershed outcome is compared, in real time, to an actual watershed state based on
sensor measurements. The control logic then adjusts the states of valves, gates and pumps to drive the system toward the desired state.
Disturbances, such as precipitation, may drive the system away from the desired outcome and must be controlled against when the feedback loop
repeats.
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systems become a reality, it will be imperative to encourage a
broad community of researchers, engineers, and cities to
adopt these technologies as part of their existing toolboxes.
To that end, our team has been spearheading the open-
storm.org portal, a collaborative and open-source initiative
aimed at sharing end-to-end blueprints and tutorials on soft-
ware, hardware and sensors required to instrument and con-
trol urban watersheds. Updates (photos, videos, results, etc.
open-storm.org will track and disseminate its future work.

8 Appendix
Parameterization of models used for the case studies. The
MATLAB Simulink models and data used for generating the
plots are available at https://github.com/kLabUM/control-sim-
es-wrt.

8.1 Case study 1: local control

• Area: 500 m2

• Max height: 1.5 m
• KNitrate = 42.048 per year
• KOxygen = 31.536 per year

8.2 Case study 2: system-level control (Fig. 8)

• Pond 1
- Area: 1000 m2

- Max height: 2.5 m
- KNitrate = 21.024 per year
- KOxygen = 525.60 per year

• Pond 2
- Area: 600 m2

- Max height: 2.5 m
- KNitrate = 21.024 per year
- KOxygen = 1051.2 per year

• Pond 3
- Area: 1000 m2

- Max height: 2.5 m
- KNitrate = 15.768 per year
- KOxygen = 1051.2 per year

• Wetland
- Area: 1000 m2

- Max height: 2.4 m
- Weir height: 1.5 m
- KNitrate = 25.228 per year
- KOxygen = 1051.2 per year
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a b s t r a c t 
The need to attenuate hydrograph peaks is central to the design of stormwater and flood control systems. How- 
ever, few guidelines exist for siting hydraulic control structures such that system-scale benefits are maximized. 
This study presents a new graph-theoretic algorithm for stabilizing the hydrologic response of watersheds by 
placing controllers at strategic locations in the drainage network. This algorithm identifies subcatchments that 
dominate the peak of the hydrograph, and then finds the “cuts ” in the drainage network that maximally isolate 
these subcatchments, thereby flattening the hydrologic response. Evaluating the performance of the algorithm 
through an ensemble of hydrodynamic simulations, we find that our controller placement algorithm produces 
consistently flatter discharges than randomized controller configurations —both in terms of the peak discharge 
and the overall variance of the hydrograph. By attenuating flashy flows, our algorithm provides a powerful 
methodology for mitigating flash floods, reducing erosion, and protecting aquatic ecosystems. More broadly, we 
show that controller placement exerts an important influence on the hydrologic response and demonstrate that 
analysis of drainage network structure can inform more effective stormwater control policies. 

1. Introduction 
In the wake of rapid urbanization, aging infrastructure and a chang- 

ing climate, effective stormwater management poses a major challenge 
for cities worldwide ( Kerkez et al., 2016 ). Flash floods are one of 
the largest causes of natural disaster deaths in the developed world 
( Doocy et al., 2013 ), and often occur when stormwater systems fail to 
convey runoff from urban areas ( Wright and Marchese, 2017 ). At the 
same time, many cities suffer from impaired water quality due to in- 
adequate stormwater control ( Walsh et al., 2005 ). Flashy flows erode 
streambeds, release sediment-bound pollutants, and damage aquatic 
habitats ( Booth and Jackson, 1997; Finkenbine et al., 2000; Walsh et al., 
2005; Wang et al., 2001 ), while untreated runoff may trigger fish kills 
and toxic algal blooms ( Sahagun, 2013; Wines, 2014 ). Engineers have 
historically responded to these problems by expanding and upsizing 
stormwater control infrastructure ( Rosenberg et al., 2010 ). However, 
larger infrastructure frequently brings adverse side-effects, such as dam- 
induced disruption of riparian ecosystems ( Dam, 2000 ), and erosive dis- 
charges due to overdesigned conveyance infrastructure ( Kerkez et al., 
2016 ). As a result, recent work has called for the replacement of tradi- 
tional peak attenuation infrastructure with targeted solutions that bet- 
ter reduce environmental impacts ( Arora et al., 2015; Hawley and Vietz, 
2016 ). 

∗ Corresponding author. 
E-mail addresses: mdbartos@umich.edu (M. Bartos), bkerkez@umich.edu (B. Kerkez). 

As the drawbacks of oversized stormwater infrastructure become 
more apparent, many cities are turning towards decentralized stormwa- 
ter solutions to regulate and treat urban runoff while reducing ad- 
verse impacts. Green infrastructure, for instance, uses low-impact rain 
gardens, bioswales, and green roofs to condition flashy flows and re- 
move contaminants ( Askarizadeh et al., 2015; Coffman et al., 1999; 
Strecker et al., 2000 ). Smart stormwater systems take this idea further 
by retrofitting static infrastructure with dynamically controlled valves, 
gates and pumps ( Bartos et al., 2018; Kerkez et al., 2016; Mullapudi 
et al., 2018; 2017 ). By actuating small, distributed storage basins and 
conveyance structures in real-time, smart stormwater systems can halt 
combined sewer overflows ( Montestruque and Lemmon, 2015 ), miti- 
gate flooding ( Kerkez et al., 2016 ), and improve water quality at a frac- 
tion of the cost of new construction ( Bartos et al., 2018; Kerkez et al., 
2016 ). While decentralized stormwater management tools show promise 
towards mitigating urban water problems, it is currently unclear how 
these systems can be designed to achieve maximal benefits at the wa- 
tershed scale. Indeed, some research suggests when stormwater control 
facilities are not designed in a global context, local best management 
practices can lead to adverse system-scale outcomes —in some cases in- 
ducing downstream flows that are more intense than those produced 
under unregulated conditions ( Emerson et al., 2005; Petrucci et al., 
2013 ). 
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Thus, as cities begin to experiment with decentralized stormwa- 

ter control, the question of where to place control structures be- 
comes crucial. While many studies have investigated the ways in 
which active control can realize system-scale benefits (using techniques 
like feedback control ( Wong and Kerkez, 2018 ), market-based con- 
trol ( Montestruque and Lemmon, 2015 ), or model-predictive control, 
( Gelormino and Ricker, 1994; Mollerup et al., 2016 )), the location of 
control structures within the drainage network may serve an equally 
important function. Hydrologists have long recognized the role that 
drainage network topology plays in shaping hydrologic response ( Gupta 
and Mesa, 1988; Gupta et al., 1986; Kirkby, 1976; Mantilla et al., 2011; 
Marani et al., 1991; Mesa and Mifflin, 1986; Tejedor et al., 2015a,b; 
Troutman and Karlinger, 1985 ). It follows that strategic placement of 
hydraulic control structures can shape the hydrograph to fulfill opera- 
tional objectives, such as maximally flattening flood waves and regu- 
lating erosion downstream. To date, however, little research has been 
done to assess the problem of optimal placement of hydraulic control 
structures in drainage networks: 
• Recent studies have investigated optimal placement of green infras- 
tructure upgrades like green roofs, rain tanks and bioswales ( Meerow 
and Newell, 2017; Norton et al., 2015; Schilling and Logan, 2008; 
Schubert et al., 2017; Yao et al., 2015; Zellner et al., 2016; Zhang 
et al., 2015 ). However, these studies generally focus on quantifying 
the potential benefits of green infrastructure projects through repre- 
sentative case studies ( Schubert et al., 2017; Yao et al., 2015; Zellner 
et al., 2016; Zhang et al., 2015 ), and do not intend to present a gen- 
eralized framework for placement of stormwater control structures. 
As a result, many of these studies focus on optimizing multiple ob- 
jectives (such as urban heat island mitigation ( Norton et al., 2015 ), 
air quality ( Meerow and Newell, 2017 ), or quality of life consider- 
ations ( Schilling and Logan, 2008 )), or use complex socio-physical 
models and optimization frameworks ( Zellner et al., 2016 ), making 
it difficult to draw general conclusions about controller placement 
in drainage networks. 

• Studies of pressurized water distribution networks have investigated 
the related problems of valve placement ( Cattafi et al., 2011; Creaco 
et al., 2010 ), sensor placement ( Perelman and Ostfeld, 2013 ), sub- 
network vulnerability assessment ( Yazdani and Jeffrey, 2011 ), and 
network sectorization ( Hajebi et al., 2015; Tzatchkov et al., 2008 ). 
While these studies provide valuable insights into the ways that com- 
plex network theory can inform drinking water infrastructure de- 
sign, water distribution networks are pressure-driven and cyclic, and 
are thus governed by different dynamics than natural drainage net- 
works, which are mainly gravity-driven and dendritic. 

• Recent studies in distributed reservoir management have revealed 
that the placement of reservoirs plays an important role in flood 
control. Ayalew et al. (2015) develop a framework that combines 
rainfall-runoff modeling, reservoir routing and Monte Carlo simu- 
lation to assess reservoir-regulated flood response ( Ayalew et al., 
2013 ), and then subsequently use this framework to investigate the 
effects of reservoir placement on flood frequency ( Ayalew et al., 
2015 ). Using a randomly-generated 1,000-year rainfall time series 
along with a simulated catchment, they find that two retention 
basins placed in parallel provide better flood control than either (i) 
two retention basis placed in series along the river main stem, or 
(ii) a single large retention basin upstream of the watershed out- 
let. This research demonstrates that placement of hydraulic control 
structures exerts a powerful influence on the performance of flood 
control infrastructure, and raises questions about how larger num- 
bers of control structures should best be distributed throughout a 
watershed to improve flood control. 

• Inspiration for the controller placement problem can be drawn from 
recent theoretical work into the controllability of complex networks. 
These studies show that the control properties of complex systems 
ranging from power grids to gene expression pathways are inex- 

tricably linked with topological properties of an underlying net- 
work representation ( Liu and Barabási, 2016 ). The location of driver 
nodes needed for complete controllability of a linear system, for in- 
stance, can be determined from the maximum matching of a graph 
associated with that system’s state space representation ( Liu et al., 
2011 ). For systems in which complete control of the network is 
infeasible, the relative performance of driver node configurations 
can be measured by detecting controllable substructures ( Ruths and 
Ruths, 2014 ), or by leveraging the concept of “control energy ” from 
classical control theory ( Shirin et al., 2017; Summers and Lygeros, 
2014; Yan et al., 2012; 2015 ). While these studies bring a theoretical 
foundation to the problem of controller placement, they generally as- 
sume linear system dynamics, and may thus not be well-suited for 
drainage networks, which are driven by nonlinear runoff formation 
and channel routing processes. 

• Recent studies have drawn on advances in complex network the- 
ory to examine the controllability of stream networks ( Riasi and 
Yeghiazarian, 2017 ) and enhance understanding of geomorpho- 
logical processes ( Czuba and Foufoula-Georgiou, 2015 ). Riasi and 
Yeghiazarian apply several theoretical controllability metrics to real- 
world drainage networks, ultimately finding that control of dendritic 
river networks requires a relatively large proportion of driver nodes 
(Riasi and Yeghiazarian, 2017) . Czuba and Foufoula-Georgiou in- 
vestigate spatial and temporal patterns in sediment accumulation 
in a river network arising from the combined effects of transport dy- 
namics and stream network topology (Czuba and Foufoula-Georgiou, 
2015) . They find that the emergence of persistent clusters of mass 
on the network is a major driver of geomorphological change, and 
conclude that management efforts should seek to “identify the source 
contributions that synchronize on the network to form clusters ”, and 
then break the synchronization by reducing sediment generation in 
these regions. 
Despite the critical need for system-scale stormwater control, there 

is to our knowledge no robust theoretical framework to guide the place- 
ment of hydraulic control structures for the purposes of improving hy- 
drograph peak attentuation. To address this knowledge gap, we for- 
mulate a new graph-theoretic algorithm that uses the network struc- 
ture of watersheds to determine the controller locations that will maxi- 
mally “de-synchronize ” tributary flows. By flattening the discharge hy- 
drograph, our algorithm provides a powerful method to mitigate flash 
floods and curtail water quality impairments in urban watersheds. Our 
approach is distinguished by the fact that it is theoretically-motivated, 
and links the control of stormwater systems with the underlying struc- 
ture of the drainage network. The result is a fast, generalized algorithm 
that requires only digital elevation data for the watershed of interest. 
More broadly, through our graph-theoretic framework we show that net- 
work structure plays a dominant role in the control of drainage basins, 
and demonstrate how the study of watersheds as complex networks can 
inform more effective stormwater infrastructure design. 
2. Algorithm description 

Flashy flows occur when large volumes of runoff arrive syn- 
chronously at a given location in the drainage network. If hydraulic 
control structures are placed at strategic locations, flood waves can be 
mitigated by “de-synchronizing ” tributary flows before they arrive at a 
common junction. With this in mind, we introduce a controller place- 
ment algorithm that minimizes flashy flows by removing regions of 
the drainage network that contribute disproportionately to synchronous 
flows at the outlet. In our approach, the watershed is first transformed 
into a directed graph consisting of unit subcatchments (vertices) con- 
nected by flow paths (edges). Next, critical regions are identified by 
computing the catchment’s width function (an approximation of the dis- 
tribution of travel times to the outlet), and then weighting each vertex in 
the network in proportion to the number of vertices that share the same 
travel time to the outlet. The weights are used to compute a weighted 
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Fig. 1. Left panel: Digital elevation model (DEM) of a watershed with river network highlighted. Right panel (from left to right, top to bottom): (i) DEM detail 
(colors not to scale); (ii) flow directions; (iii) delineated subcatchment graph; (iv) adjacency matrix representation of graph. 
accumulation score for each vertex, which sums the weights of every 
possible subcatchment in the watershed. The graph is then partitioned 
recursively based on this weighted accumulation score, with the most 
downstream vertex of each partition representing a controller location. 
2.1. Definitions 

Graph representation of a watershed: Watersheds can be repre- 
sented as directed graphs, in which subcatchments (vertices or cells) 
are connected by elevation-dependent flow paths (edges). The directed 
graph can be formulated mathematically as an adjacency matrix, A , 
where for each element a ij , a ij ≠0 if there exists a directed edge con- 
necting vertex v j to v i , and conversely, ! "# = 0 if there does not exist a 
directed edge connecting vertex v j to v i . Nonzero edge weights can be 
specified to represent travel times, distances, or probabilities of tran- 
sition between connected vertices. Flow paths between adjacent cells 
are established using a routing scheme, typically based on directions of 
steepest descent (see Fig. 1 ). 

In this study, we determine the connectivity of the drainage network 
using a D8  routing scheme ( O’Callaghan and Mark, 1984 ) . In this scheme, 
elevation cells are treated as vertices in a 2-dimensional lattice (meaning 
that each vertex v i is surrounded by eight neighbors  " ). A directed 
link is established from vertex v i to a neighboring vertex v j if the slope 
between v i and v j is steeper than the slope between v i and all of its 
other neighbors  " ⧵ $ # (where v j has a lower elevation than v i ). The D8  
routing scheme produces a directed acyclic graph where the indegree of 
each vertex is between 0 and 8 (with an indegree of 8 indicating that 
the vertex is a “sink ”), and the outdegree of each vertex is 1 (except for 
the watershed outlet, which has an outdegree of 0). It should be noted 
that other schemes exist for determining drainage network structure, 
such as the D-infinity routing algorithm, which better resolves drainage 
directions on hillslopes Tarboton (1997) . However, because the routing 
scheme is not essential to the construction of the algorithm, we focus on 
the simpler D8  routing scheme for this study. Similarly, to simplify the 
construction of the algorithm, we will assume that the vertices of the 
watershed are defined on a regular grid, such that the area of each unit 
subcatchment is equal. 1 Fig. 1 shows the result of delineating a river 
network from a digital elevation model (left), along with an illustration 
1 Thus, for watershed models derived from a digital elevation model (DEM), 

a unit subcatchment is equivalent to a single DEM cell. 

of the underlying graph structure and adjacency matrix representation 
(right). 

Controller : In the context of this study, a controller represents any 
structure or practice that can regulate flows from an upstream channel 
segment to a downstream one. Examples include retention basins, dams, 
weirs, gates and other hydraulic control structures. These structures may 
be either passively or actively controlled. For the validation assessment 
presented later in this paper, we will examine the controller placement 
problem in the context of volume capture , meaning that controllers are 
passive, and that they are large enough to completely remove flows from 
their upstream contributing areas. However, the algorithm itself does 
not require the controller to meet these particular conditions. 

Mathematically, we can think of a controller as a cut in the graph 
that removes one of the edges. This cut halts or inhibits flows across the 
affected edge. Because the watershed has a dendritic structure, any cut 
in the network will split the network into two sub-trees: (i) the delin- 
eated region upstream of the cut, and (ii) all the vertices that are not 
part of the delineated region. Placing controllers is thus equivalent to 
removing branches (subcatchments) from a tree (the parent watershed). 

Delineation : Delineation returns the set of vertices upstream of a 
target vertex. In other words, this operation returns the contributing 
area of vertex v i . Expressed in terms of the adjacency matrix: 
% & ( ', $ " ) = { $ # ∈ % |( ' ( ) "# ≠ 0 for some ( ≤ )} (1) 
where A n is the adjacency matrix A raised to the n th power, i is the row 
index, j is the column index, V is the vertex set of A , and D is the graph 
diameter. Note that ( A n ) ij is nonzero only if vertex v j is located within 
an n-hop neighborhood of vertex v i . Note that the delineation operation 
can also be performed in a single step by analyzing the null space of 
the graph Laplacian of the watershed’s adjacency matrix ( Tejedor et al., 
2015a ). 

Pruning : Pruning is the complement of delineation. This operation 
returns the vertex set consisting of all vertices that are not upstream of 
the current vertex. 
% * ( ', $ " ) = % ⧵ % & ( ', $ " ) (2) 

Subgraphs induced by the delineated and pruned vertex sets are de- 
fined as follows: 
' & ( ', $ " ) = ' ( +[ % & ]) 
' * ( ', $ " ) = ' ( +[ % * ]) (3) 
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Fig. 2. Left: width function (travel-time histogram) of the watershed, assuming that channelized travel time is ten times faster than on hillslopes ( , = 10 ). Right: 
weights associated with each vertex of the graph. Brighter regions correspond to areas that contribute to the peaks of the width function. 
where A ( G [ V ]) represents the adjacency matrix of the subgraph induced 
by the vertex set V . 

Width function : The width function describes the distribution of 
travel times from each upstream vertex to some downstream vertex, 
v i 2 ( Rodriguez-Iturbe and Rinaldo, 2001 ). In general terms, the width 
function can be expressed as: 
-( ., $ " ) = ∑

/∈Γ" 0( / , . ) (4) 
Along with an indicator function, I ( /, t ): 

0( / , . ) = { 
1 1 ( /) = . 
0 otherwise (5) 

where Γi is the set of all directed paths to the target vertex v i , and T ( /) 
is the travel time along path /. If the travel times between vertices are 
constant and equal for all vertices, the width function of the graph at 
vertex v i can be described as a linear function of the adjacency matrix: 3 
-( ., $ " ) = ( ' . ! )( " ) (6) 
where 1 signifies the vector of all ones, A t represents the adjacency ma- 
trix A raised to the power t (with t representing the discrete time step), 
and ( A t 1 )( i ) indicates the i th element of the vector A t 1 . In real-world 
drainage networks, travel times between grid cells are not uniform. Cru- 
cially, the travel time for channelized cells will be roughly 1–2 orders 
of magnitude faster than the travel time in hillslope cells ( Rodriguez- 
Iturbe and Rinaldo, 2001; Tak and Bras, 1990 ). Thus, to account for this 
discrepancy, we define , to represent the ratio of hillslope to channel 
travel times: 
, = . ℎ 

. 3 (7) 
where t h is the travel time for hillslopes and t c is the travel time for 
channels. Fig. 2 (left) shows the width function for an example water- 
shed, under the assumption that channel velocity is ten times faster than 
2 The width function H ( x ) was originally defined by Shreve to yield the num- 

ber of links in the network at a topological distance x from the outlet (Shreve, 
1969) . Because travel times may vary between hillslope and channel links, we 
present a generalized formulation of the width function here. 
3 While mathematically concise, this equation is computationally inefficient. 

See Section S1 in the Supplementary Information for the efficient implementa- 
tion used in our analysis. 

hillslope velocity ( , = 10 ). The width functions for various values of ,
are shown in Figs. S3 and S4 in the Supplementary Information. 

Note that when the effects of hydraulic dispersion are ignored, the 
width function is equivalent to the geomorphological impulse unit hy- 
drograph (GIUH) of the basin ( Rodriguez-Iturbe and Rinaldo, 2001 ). The 
GIUH represents the response of the basin to an instantaneous impulse 
of rainfall distributed uniformly over the catchment; or equivalently, 
the probability that a particle injected randomly within the watershed 
at time . = 0 exits the watershed through the outlet at time . = . ′. 

Accumulation : The accumulation at vertex v i describes the number 
of vertices located upstream of v i (or alternatively, the upstream area 
( Moore et al., 1991 )). It is equivalent to the cumulative sum of the width 
function with respect to time 4 : 
4( $ " ) = ( ∞∑

. =0 ' . ! ) 
( " ) (8) 

Fig. 3 (left) shows the accumulation at each vertex for an exam- 
ple catchment. Because upstream area is correlated with mean dis- 
charge ( Rodriguez-Iturbe and Rinaldo, 2001 ), accumulation is fre- 
quently used to determine locations of channels within a drainage net- 
work ( Moore et al., 1991 ). 

Weighting function : To identify the vertices that contribute most to 
synchronous flows at the outlet, we propose a weighting function that 
weights each vertex by its rank in the travel time distribution. Let 5 ij 
represent the known travel time from a starting vertex v j to the outlet 
vertex v i . Then the weight associated with vertex v j can be expressed in 
terms of a weighting function W ( v i , v j ): 
6 # = 7 ( $ " , $ # ) = -( 5"# , $ " ) 

max  
. ( -( $ " )) (9) 

where 5 ij represents the travel time from vertex v j to vertex v i , H ( 5 ij , v i ) 
represents the width function for an outlet vertex v i evaluated at time 5 ij , 
and the normalizing factor max t ( H ( v i )) represents the maximum value 
of the width function over all time steps t . In this formulation, vertices 
are weighted by the rank of the associated travel time in the width func- 
tion. Vertices that contribute to the maximum value of the width func- 
tion (the mode of the travel time distribution) will receive the highest 
possible weight (unity), while vertices that contribute to the smallest 
4 See Section S1 in the Supplementary Information for the efficient implemen- 

tation of the accumulation algorithm. 
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Fig. 3. Left: accumulation (number of cells upstream of every cell). Right: ratio of weighted accumulation to accumulation ( C w / C ). 
values of the width function will receive small weights. In other words, 
vertices will be weighted in proportion to the number of vertices that 
share the same travel time to the outlet. Fig. 2 shows the weights cor- 
responding to each bin of the travel time distribution (left), along with 
the weights applied to each vertex (right). Weights for varying values 
of , are shown in Figs. S3 and S4 in the Supplementary Information. 

Weighted accumulation : Much like the accumulation describes the 
number of vertices upstream of each vertex v i , the weighted accumulation 
yields the sum of the weights upstream of v i . If each vertex v j is given a 
weight w j , the weighted accumulation at vertex v i can be defined: 
4 6 ( $ " , " ) = ( ∞∑

. =0 ' . " ) 
( " ) (10) 

where w is a vector of weights, with each weight w j associated with a 
vertex v j in the graph. When the previously-defined weighting function 
is used, the weighted accumulation score measures the extent to which 
a subcatchment delineated at vertex v i contributes to synchronous flows 
at the outlet. In other words, if the ratio of weighted accumulation to ac- 
cumulation is large for a particular vertex, this means that the subcatch- 
ment upstream of that vertex contributes disproportionately to the peak 
of the hydrograph. Fig. 3 (right) shows the ratio of weighted accumula- 
tion to accumulation for the example catchment. The weighted accumu- 
lation provides a natural metric for detecting the cuts in the drainage 
network that will maximally remove synchronous flows, and thus forms 
the basis of the controller placement algorithm. 
2.2. Controller placement algorithm definition 

The controller placement algorithm is described as follows. Let A 
represent the adjacency matrix of a watershed delineated at some vertex 
v i . Additionally, let k equal the desired number of controllers, and c 
equal the maximum upstream accumulation allowed for each controller. 
The graph is then partitioned according to the following scheme: 
1. Compute the width function, H ( t, v i ), for the graph described by ad- 

jacency matrix A with an outlet at vertex v i . 
2. Compute the accumulation C ( v j ) at each vertex v j . 
3. Use H ( t, v i ) to compute the weighted accumulation C w ( v j ) at each 

vertex v j . 
4. Find the vertex v opt , where the accumulation C ( v opt ) is less than the 

maximum allowable accumulation and the weighted accumulation 

C w ( v opt ) is maximized: 
$ 8*. ← argmax 

$ 9 ∈% 9 ( 4 6 ( $ 9 )) (11) 
where V s is the set of vertices such that vertex v i is reachable from 
any vertex in V s and the accumulation C at any vertex in V s is less 
than c . 

5. Prune the graph at vertex v opt : A ← A p ( A, v opt ) 
6. If the cumulative number of partitions is equal to k , end the algo- 

rithm. Otherwise, start at (1) with the catchment described by the 
new A matrix. 
The algorithm is described formally in Algorithm 1 . An open-source 

implementation of the algorithm in the Python programming language is 
also provided ( Bartos, 2018a ), along with the data needed to reproduce 
our results. Efficient implementations of the delineation, accumulation , 
and width function operations are provided via the pysheds toolkit, 
which is maintained by the authors ( Bartos, 2018b ). 

Fig. 4 shows the controller configuration generated by applying the 
controller placement algorithm to the example watershed, with : = 15 
controllers, each with a maximum accumulation of 3 = 900 (i.e. each 
controller captures roughly 8% of the catchment’s land area). In the left 
panel, partitions are shown in order of decreasing priority from dark to 
light (i.e. darker regions are partitioned first by the algorithm). The right 
panel shows the stacked width functions for each partition. The sum of 
the width functions from each partition reconstitute the original width 
function for the catchment. From the stacked width functions, it can be 
seen that the algorithm tends to prioritize the pruning of subgraphs that 
align with the peaks of the travel time distribution. Note for instance, 
how the least-prioritized paritions gravitate towards the low end of the 
travel-time distribution, while the most-prioritized partitions are cen- 
tered around the mode. Controller placement schemes corresponding to 
different numbers of controllers are shown in Fig. S5 in the Supplemen- 
tary Information. 
3. Algorithm validation 

To evaluate the controller placement algorithm, we simulate the con- 
trolled network using a hydrodynamic model, and compare the perfor- 
mance to a series of randomized controller placement configurations. 
Performance is characterized by the “flatness ” of the flow profile at the 
outlet of the watershed, as measured by both the peak discharge and the 
variance of the hydrograph (i.e. the extent to which the flow deviates 

171 



M. Bartos and B. Kerkez Advances in Water Resources 127 (2019) 167–179 
Algorithm 1 Controller placement algorithm. 

from the mean flow over the course of the hydrologic response). To es- 
tablish a basis for comparison, we simulate a “volume capture ” scenario 
( Emerson et al., 2005 ), wherein roughly half of the total contributing 
area is controlled, and each controller completely captures the discharge 
from its respective upstream area. Additionally, we simulate a “delayed 
release ” scenario in which each controller continuously releases water 
from a large, bottom-mounted orifice, thereby delaying rather than halt- 
ing flows from the upstream channel network. These scenarios are cho- 
sen as bounding cases, given that most real-world reservoir operation 
will fall somewhere between these two regimes. 

The validation experiment is designed to test the central premises of 
the controller placement algorithm: that synchronous cells can be iden- 
tified from the structure of the drainage network, and that maximally 
capturing these synchronous cells will lead to a flatter overall hydrologic 
response. If these premises are accurate, we expect to see two results. 
First, the controller placement algorithm will produce flatter flows than 

the randomized control trials. Second, the performance of the algorithm 
will be maximized when using a large number of small partitions. Us- 
ing many small partitions allows the algorithm to selectively target the 
highly-weighted cells that contribute disproportionately to the peak of 
the hydrograph. Conversely, large partitions capture many extraneous 
low-weight cells that don’t contribute to the peak of the hydrograph. In 
other words, if increasing the number of partitions improves the perfor- 
mance of the algorithm, it not only confirms that the algorithm works 
for our particular experiment, but also justifies the central premises on 
which the algorithm is based. 
3.1. Experimental design 

We evaluate controller configurations based on their ability to flat- 
ten the outlet hydrograph of a test watershed when approximately 50% 
of the contributing area is controlled. This test case is chosen because 
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Fig. 4. Left: partitioning of the example watershed using the controller placement algorithm. Numeric labels indicate the order in which partitions are generated 
(from first to last). Right: stacked width functions for each partition. The brightness expresses the priority of each partition, with the darker partitions being prioritized 
over the brighter ones. 
it presents a practical scenario with real-world constraints, and because 
it allows for direct comparison of many different controller placement 
strategies. For our test case, we use the Sycamore Creek watershed, a 
heavily urbanized creekshed located in the Dallas–Fort Worth Metroplex 
with a contributing area of roughly 83 km 2 (see Fig. 1 ). This site is the 
subject of a long-term monitoring study led by the authors ( Bartos et al., 
2018 ), and is chosen for this analysis because (i) it is known to experi- 
ence issues with flash flooding, and (ii) it is an appropriate size for our 
analysis —being large enough to capture fine-scale network topology, 
but not so large that computation time becomes burdensome. 

A model of the stream network is generated from a conditioned dig- 
ital elevation model (DEM) by determining flow directions from the el- 
evation gradient and then assigning channels to cells that fall above an 
accumulation threshold. Conditioned DEMs and flow direction grids at a 
resolution of 3 arcseconds (approximately 70 by 90 m) are obtained from 
the USGS HydroSHEDS database ( Lehner et al., 2008 ). Grid cells with 
an accumulation greater than 100 are defined to be channelized cells, 
while those with less than 100 accumulation are defined as hillslope 
cells. This threshold is based on visual comparison with the stream net- 
work defined in the National Hydrography Dataset (NHD) ( United States 
Geological Survey, 2013 ). Hillslope cells draining into a common chan- 
nel are aggregated into subcatchments, with a flow length corresponding 
to the longest path within each hillslope, and a slope corresponding to 
the average slope over all flow paths in the subcatchment. Percent im- 
pervious area and land cover classifications for each subcatchment are 
obtained from the National Land Cover Database ( Homer et al., 2015 ), 
allowing for overland flow velocities to be reasonably approximated (see 
Section S3 in the Supplementary Information). Channel geometries are 
assigned to each link within the channelized portion of the drainage 
network. We assume that each stream segment can be represented by 
a “wide rectangular channel ”, which is generally accurate for natural 
river reaches in which the stream width is large compared to the stream 
depth ( Mays, 2010 ). To simulate channel width and depth, we assume 
a power law relation between accumulation and channel size based on 
an empirical formulation from Moody and Troutman (2002) : 
; = 7  . 2 ⋅< 0 . 50±0 . 02 
ℎ = 0 . 27  ⋅< 0 . 30±0 . 01 (12) 
where ; is stream width, h is stream depth, and Q is the mean river 
discharge. Knowing the width and depth of the most downstream reach, 
and assuming that the accumulation at a vertex is proportional to the 
mean flow, we generate channel geometries using the mean parameter 
values from the above relations. To simulate the effect of floodplain 
storage and prevent channel overflow, a trapezoidal floodplain section 

is added to the top of each channel (see Section S4 of the Supplementary 
Information for additional implementation details). 

Controllers are implemented as retention basins regulated by outlet 
structures with controllable orifices. Orifices are mounted on the bot- 
tom of each outlet structure and have approximately 10% of the cross- 
sectional area of the upstream channel section. For the “volume cap- 
ture ” scenario the orifice is left closed, while for the “delayed release ”
scenario the orifice is left open. Retention basins are sized using a linear 
relationship between depth and surface area, and are checked against 
known real-world retention basins to ensure realistic storage capacities 
(for additional details, see Section S4 in the Supplementary Informa- 
tion). 

Using the controller placement algorithm, control structures are 
placed such that approximately 50 ± 3% of the catchment area is cap- 
tured by storage basins. To investigate the effect of the number of con- 
trollers on performance, optimized controller strategies are generated 
using between : = 1 and : = 35 controllers. The ratio of hillslope-to- 
channel travel times is estimated as , = 50 based on simulations of the 
catchment under uncontrolled conditions. We compare the performance 
of our controller placement algorithm to randomized controller place- 
ment schemes, in which approximately 50 ± 3% of the catchment area is 
controlled but the placement of controllers is random. For this compari- 
son assessment, we generate 50 randomized controller placement trials, 
each using between : = 1 and : = 24  controllers. 5 For each randomized 
trial, the maximum and minimum accumulation that can be handled by 
each controller is selected, then controllers are placed sequentially until 
50 ± 3% of the total catchment is upstream of at least one controller. 
This procedure is similar to the controller placement algorithm, except 
that at each iteration, the controller is placed at a random candidate 
cell (i.e. a cell with an accumulation in the appropriate range) instead 
of the candidate cell with the greatest weighted accumulation (see Sec- 
tion S2 in the Supplementary Information for a detailed description of 
the procedure). 

We simulate the hydrologic response using a hydrodynamic model, 
and evaluate controller placement performance based on the flatness of 
the resulting hydrograph. To capture the hydrologic response under var- 
ious rainfall conditions, we simulate small, medium and large rainfall 
events, corresponding to 11.2, 16.9, and 23.4 mm of rainfall delivered 
5 While the controller randomization code was programmed to use between 1 

and 35 controllers, the largest number of controllers achieved was 24. This result 
stems from the fact that the randomization algorithm struggled to achieve 30+ 
partitions without selecting cells that fell below the channelization threshold 
(100 accumulation). 
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Fig. 5. Results of the hydraulic simulation experiment for the 1-year storm event (11.2 mm) under the volume capture scenario. Top left: best-performing controller 
placement ( : = 30 ), with captured regions in red. Bottom left: hydrographs resulting from each simulation. The uncontrolled simulation is shown in black, while the 
optimized controller placement simulations are shown in red, and the randomized controller simulations are shown in gray. Right: the overall flashiness (variance 
of the hydrograph) and peak discharge for each simulation, using the same coloring scheme. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
instantaneously over the first five minutes of the simulation. These rain- 
fall volumes are based on the 1-year, 10-year and 100-year design storms 
(5-minute duration) from intensity-duration-frequency curves for Tar- 
rant county in Texas ( iSWM, 2006 ). A hydrodynamic model is used to 
simulate the hydrologic response at the outlet by routing runoff through 
the channel network using the dynamic wave equations ( United States 
Environmental Protection Agency, 2018 ). The simulation performance 
is measured by both the peak discharge and the total variance of the hy- 
drograph. The variance of the hydrograph (which we refer to as “flashi- 
ness ”) is defined as: 
=2 = 1 

> > ∑
" =1 ( < " − <̄ ) 2 (13) 

where Q is the discharge, <̄ is the mean discharge in the storm win- 
dow, and N is the number of data points in the storm window. This 
variance metric captures the flow’s deviation from the mean over the 
course of the hydrologic response, and thus provides a natural metric 
for the flatness of the hydrograph. This metric is important for water 
quality considerations like first flush contamination or streambed ero- 
sion —in which the volume of transported material (e.g. contaminants 
or sediments) depends not only on the maximum discharge, but also on 
the duration of flow over a critical threshold ( Wong and Kerkez, 2016 ). 

Note that the validation experiment is not intended to faithfully re- 
produce the precise hydrologic response of our chosen study area, but 
rather, to test the basic premises of the controller placement algorithm. 
As such, site-specific details —such as soil types and existing infrastruc- 
ture —have been deliberately simplified. For situations in which these 

characteristics exert an important influence on the hydrologic response, 
one may account for these factors by adjusting the inter-vertex travel 
times used in the controller placement algorithm. 
4. Results 

The controller placement algorithm produces consistently flatter 
flows than randomized control trials. Fig. 5 shows the results of the 
hydraulic simulation assessment in terms of the resulting hydrographs 
(bottom left), and the overall flashiness and peak discharge of each sim- 
ulation (right) for the 1-year storm event under the volume capture sce- 
nario. The best performance is achieved by using the controller place- 
ment algorithm with : = 30 controllers (see Fig. 5 , top left). Compar- 
ing the overall variances and peak discharges, it can be seen that this 
controller placement produces flatter outlet discharges than any of the 
randomized controller placement strategies. 6 Specifically, the best con- 
troller placement predicted by the algorithm achieves a peak discharge 
that is roughly 29% of that of the uncontrolled case, while the ran- 
domized simulations by comparison achieve an average peak discharge 
that is more than 61% of that of the uncontrolled case. Similarly, the 
hydrograph variance of the best controller placement predicted by the 
6 Note that the controller placement algorithm results in a longer falling limb 

than the randomized trials. This result stems from the fact that the algorithm 
prioritizes the removal of grid cells that contribute to the peak and rising limb 
of the hydrograph, while grid cells contributing to the falling limb are ignored. 
In other words, the controller placement algorithm shifts discharges from the 
peak of the hydrograph to the falling limb. 
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Fig. 6. Left: hydrographs associated with varying numbers of controllers (k), using the controller placement algorithm with 50% watershed area removal (1-year 
event, volume capture scenario). Right: hydrograph variance (top) and peak discharge (bottom) vs. number of controllers. In general, more controllers produces a 
flatter response. 
algorithm is roughly 9.1% of that of the uncontrolled case, compared to 
27% for the randomized simulations on average. Across all numbers of 
controllers considered, the controller placement algorithm yields results 
in approximately 20% lower variance and 15% lower peak discharge on 
average compared to the randomized placement strategy. 

The performance of the controller placement algorithm holds under 
varying rainfall scenarios and reservoir operating rules. When tested 
against storm events of different sizes (10-year and 100-year storm 
events), the controller placement algorithm continues to outperform 
randomized control trials, with roughly 18% lower hydrograph vari- 
ance and 13% lower peak discharge over all numbers of controllers con- 
sidered (see Figs. S6–S9 in the Supplementary Information). Moreover, 
when tested under the delayed release scenario (in which each reser- 
voir continuously releases water from a bottom-mounted orifice), the 
controller placement algorithm performs better than under the volume 
capture scenario. In particular, the algorithm achieves 28% lower hy- 
drograph variance on average, while the best controller placement strat- 
egy obtained by the algorithm achieves 80% lower hydrograph variance 
than the average randomized placement (see Figs. S10–S13 in the Sup- 
plementary Information). While the performance of the algorithm holds 
under different rainfall and reservoir operation scenarios, it should be 
noted that the within-group performance varies with rain event size, 
which could result from the nonlinearities inherent in wave propagation 
speed (see the supplementary note in Section S7). Thus, while the opti- 
mized controller placement still produces flatter flows than randomized 
control trials, the performance of the controller placement algorithm 
could be further improved by tuning the assumed inter-vertex travel 
times to correspond to the expected speed of wave propagation. 

Under the controller placement algorithm, the best performance is 
achieved by using a large number of small-scale controllers; however, 
more controllers does not generally lead to better performance for the 
randomized controller placement scheme. Given that increasing the 
number of controllers allows the algorithm to better target highly syn- 
chronous cells, this result is consistent with the central premise that cap- 
turing synchronous cells will lead to a flatter hydrologic response. Fig. 6 
shows the hydrologic response when the controller placement algorithm 
is applied using varying numbers of controllers (left), along with asso- 
ciated hydrograph variances (top right) and peak discharges (bottom 
right). In all cases, roughly 50% of the watershed is controlled; how- 
ever, configurations using many small controllers consistently perform 

better than configurations using a few large controllers. This trend does 
not hold for the randomized controller placement strategy (see Figs. 
S14 and S15 in the Supplementary Information). Indeed, the three best- 
performing randomized controller placements use a median of : = 17  
controllers, while the three worst-performing randomized controller 
placements use a median of : = 10 controllers (where performance is 
measured in terms of the hydrograph variance). By comparison, when 
the controller placement algorithm is used, the three best-performing 
simulations use a median of : = 30 controllers, while the three worst- 
performing simulations use a median of : = 2 controllers. The finding 
that the controller placement algorithm converges to a (locally) opti- 
mal solution follows from the fact that as the number of partitions in- 
creases, controllers are better able to capture highly-weighted regions 
without also capturing extraneous low-weight cells. This in turn implies 
that the weighting scheme used by the algorithm accurately identifies 
the regions of the watershed that contribute disproportionately to syn- 
chronized flows. Thus, in spite of various sources of model and param- 
eter uncertainty, the experimental results confirm the central principles 
under which the controller placement algorithm operates: namely, that 
synchronous regions can be deduced from the graph structure alone, and 
that controlling these regions results in a flatter hydrograph compared 
to randomized control trials. 

In addition to demonstrating the efficacy of the controller placement 
algorithm, the validation experiments reveal some general principles 
for organizing hydraulic control structures within drainage networks 
to achieve downstream streamflow objectives. Overall, the controller 
placement strategies that perform best —whether achieved through op- 
timization or randomization —tend to partition the watershed axially 
rather than laterally. These lengthwise partitions result in a long, thin 
drainage network that prevents tributary flows from “piling up ”. Fig. 7 
shows the partitions corresponding to the best-performing and worst- 
performing controller placement strategies with respect to peak dis- 
charge (left and center, respectively), along with the associated hydro- 
graphs (right). While the best-performing controller placement strategy 
evenly distributes the partitions along the length of the watershed, the 
worst-performing controller placement strategy controls only the most 
upstream half of the watershed. As a result, the worst-performing strat- 
egy removes the largest part of the peak, but completely misses the por- 
tion of the peak originating from the downstream half of the watershed. 
In order to achieve a flat downstream hydrograph, controller placement 
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Fig. 7. Left: Best controller placement in terms of peak discharge ( : = 30 controllers, using the controller placement algorithm). Center: worst controller placement 
in terms of peak discharge ( : = 6  controllers, randomized). Controller locations are indicated by black crosses, and controlled partitions are indicated by colored 
regions. Right: hydrographs associated with the best and worst controller placement strategies (1-year storm event, volume capture scenario). 
strategies should seek to evenly distribute controllers along the length 
of the watershed. 
5. Discussion 

The controller placement algorithm presented in this study provides 
a tool for designing stormwater control systems to better mitigate floods, 
regulate contaminants, and protect aquatic ecosystems. By reducing 
peak discharge, optimized placement of stormwater control structures 
may help to lessen the impact of flash floods. Existing flood control mea- 
sures often focus on controlling large riverine floods —typically through 
existing centralized assets, like dams and levees. However, flash floods 
may occur in small tributaries, canals, and even normally dry areas. For 
this reason, flash floods are not typically addressed by large-scale flood 
control measures, despite the fact that they cause more fatalities than 
riverine floods in the developed world ( Doocy et al., 2013 ). By facil- 
itating distributed control of urban flash floods, our controller place- 
ment strategy could help reduce flash flood related mortality. More- 
over, by flattening the hydrologic response, our controller placement 
algorithm promises to deliver a number of environmental and water 
quality benefits, such as decreased first flush contamination ( Wong and 
Kerkez, 2016 ), decreased sediment transport ( Muschalla et al., 2014 ), 
improved potential for treatment in downstream green infrastructure 
( Bartos et al., 2018; Kerkez et al., 2016 ), and regulation of flows in sen- 
sitive aquatic ecosystems ( Poresky et al., 2015 ). 
5.1. Key features of the algorithm 

The controller placement algorithm satisfies a number of important 
operational considerations: 
• Theoretically motivated . The controller placement algorithm has 
its foundation in the theory of the geomorphological impulse unit 
hydrograph —a relatively mature theory supported by a established 
body of research ( Gupta and Mesa, 1988; Gupta et al., 1986; Kirkby, 
1976; Marani et al., 1991; Mesa and Mifflin, 1986; Rodriguez-Iturbe 
and Rinaldo, 2001; Troutman and Karlinger, 1985 ). Moreover, the 
algorithm works in an intuitive way —by recursively removing the 
subcatchments of a watershed that contribute most to synchronized 
flows. This theoretical basis distinguishes our algorithm from other 
strategies that involve exhaustive optimization or direct application 
of existing graph theoretical constructs (such as graph centrality met- 
rics). 

• Generalizable and extensible . Because it relies solely on network 
topology, the controller placement algorithm will provide consistent 

results for any drainage network —including both natural stream net- 
works and constructed sewer systems. Moreover, because each step 
in our algorithm has a clear meaning in terms of the underlying hy- 
drology, the algorithm can be modified to satisfy more complex con- 
trol problems (such as systems in which specific regulatory require- 
ments must be met). 

• Flexible to user objectives and constraints . The controller place- 
ment algorithm permits specification of important practical con- 
straints, such as the amount of drainage area that each control site 
can capture, and the number of control sites available. Moreover, the 
weighting function can be adjusted to optimize for a variety of ob- 
jectives (such as the overall “flatness ” of the hydrograph, or removal 
of flows from a contaminated upstream region). 

• Parsimonious with respect to data requirements . The controller 
placement algorithm requires only a digital elevation model of the 
watershed of interest. Additional data —such as land cover and ex- 
isting hydraulic infrastructure —can be used to fine-tune estimates 
of travel times within the drainage network, but are not required by 
the algorithm itself. 

• Fast implementation For the watershed examined in this study 
(consisting of about 12,000 vertices), the controller placement algo- 
rithm computes optimal locations for : = 15 controllers in roughly 
3.0 s (on a 2.9 GHz Intel Core i5 processor). While the computational 
complexity of the algorithm is difficult to characterize, 7 it is faster 
than other comparable graph-cutting algorithms, such as recursive 
spectral bisection or spectral clustering, both of which are O ( n 3 ) in 
computational complexity. 
Taken together, our algorithm offers a solution to the controller 

placement problem that is suitable for research as well as for practical 
applications. On one hand, the algorithm is based in hydrologic and geo- 
morphological theory, and provides important insights into the connec- 
tions between geomorphology and the design of the built environment. 
On the other hand, the algorithm is fast, robust, and easy-to-use, making 
it a useful tool for practicing engineers and water resource managers. 
5.2. Caveats and directions for future research 

While our controller placement algorithm is robust and broadly- 
applicable, there are a number of important considerations to keep in 
mind when applying this algorithm to real-world problems. 
7 The computational complexity of the controller placement algorithm de- 

pends on the implementation of component functions (such as delineation and 
accumulation computation), which can in turn depend on the structure of the 
watershed itself. 
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• The controller placement algorithm implicitly assumes that rainfall 
is uniform over the catchment of interest. While this assumption is 
justified for small catchments in which the average spatial distri- 
bution of rainfall will be roughly uniform, this assumption may not 
hold for large (e.g. continent-scale) watersheds. Modifications to the 
algorithm would be necessary to account for a non-uniform spatial 
distribution of rainfall. 

• The controller placement algorithm is sensitive to the chosen ratio 
of hillslope to channel speeds, ,. Care should be taken to select an 
appropriate value of , based on site-specific land cover and mor- 
phological characteristics. More generally, for situations in which 
differential land cover, soil types, and existing hydraulic infrastruc- 
ture play a dominating role, the performance of the algorithm may 
be enhanced by adjusting inter-vertex travel times to correspond to 
estimated overland flow and channel velocities. 

• Our assessment of the algorithm’s performance rests on the assump- 
tion that installed control structures (e.g. retention basins) are large 
enough to capture upstream discharges. The algorithm itself does 
not explicitly account for endogenous upstream flooding that could 
be introduced by installing new control sites. 

• In this study, experiments were conducted only for impulsive rainfall 
inputs (i.e. with a short duration of rainfall). Future work should as- 
sess the performance of the distance-weighted controller placement 
strategy under arbitrary rainfall durations. 

• Our analysis assumes that reservoirs are initially empty before each 
storm event. While some previous studies in distributed reservoir 
operation contend that an initially-empty condition is “the simplest 
and most defensible approach ” ( Goldman, 2001 ), other studies use 
random initialization of reservoir depths to simulate the effect of 
successive storm events when reservoir operation rules are unknown 
( Ayalew et al., 2013 ). While this latter approach may provide more 
realistic results under unknown reservoir operating conditions, we 
ultimately use an initially-empty condition due to the combinato- 
rial difficulty of assessing the effect of random initial depths along- 
side varying numbers of controllers, controller placement strategies, 
and rainfall scenarios. Random initialization could potentially ef- 
fect the results by inducing overflows under the volume capture sce- 
nario, or by quickening the rising limb under the delayed release 
scenario. Additional work is needed to understand how these effects 
would impact the performance of the controller placement algorithm 
compared to randomized control trials. With this in mind, it should 
be noted that new “smart ” water systems are enabling more flexi- 
ble control of distributed stormwater infrastructure ( Kerkez et al., 
2016 ), which may in turn strengthen the assumption of initially- 
empty storage conditions. Bartos et al., for instance, present a real- 
world case study in which real-time analytics and control are used 
to pre-emptively evacuate retention basins before a storm event, 
reducing the magnitude of the downstream hydrologic response 
(Bartos et al., 2018) . Because initially emptying storage basins often 
leads to a favorable hydrologic response ( Wong, 2017 ), assuming 
empty or near-empty initial storage conditions may be more realis- 
tic than assuming random initial depths for systems with real-time 
control capabilities. 

• This study focuses primarily on event-based diagnostics of system 
performance —specifically, by measuring the flatness of the hydro- 
logic response under independent storm events. However, it should 
be noted that water infrastructure may also be evaluated in terms 
of long-term performance —for instance, by measuring the response 
of the system to an extended stochastic rainfall time series. While 
not computationally feasible for the model used in this study, future 
work should investigate the performance of the controller placement 
algorithm under extended hydrodynamic simulations. 
More broadly, future research should investigate the problem of sen- 

sor placement in stream networks using the theoretical framework de- 
veloped in this paper. While this study focuses on the problem of place- 

ment of hydraulic control structures, our algorithm also suggests a so- 
lution to the problem of sensor placement. Stated probabilistically, the 
geomorphological impulse unit hydrograph (GIUH) represents the prob- 
ability that a “particle ” injected randomly within the watershed at time 
. = 0 exits the outlet at time . = . ′. Thus, the peaks of the GIUH cor- 
respond to the portions of the hydrologic response where there is the 
greatest amount of ambiguity about where a given “particle ” originated. 
It follows that the same locations that maximally de-synchronize flows 
may also be the best locations for disambiguating the locations from 
which synchronous flows originated. Future experiments should inves- 
tigate the ability to estimate upstream states (e.g. flows) within the net- 
work given an outlet discharge along with internal state observers (e.g. 
flow sensors) placed using the algorithm developed in this study. 
6. Conclusions 

We develop an algorithm for placement of hydraulic control struc- 
tures that maximally flattens the hydrologic response of drainage net- 
works. This algorithm uses the geomorphological impulse unit hydro- 
graph to locate subcatchments that dominate the peaks of the hydro- 
graph, then partitions the drainage network to minimize the contribu- 
tion of these subcatchments. We find that the controller placement al- 
gorithm produces flatter hydrographs than randomized controller place- 
ment trials —both in terms of peak discharge and overall variance. By 
reducing the flashiness of the hydrologic response, our controller place- 
ment algorithm may one day help to mitigate flash floods and restore 
urban water quality through reduction of contaminant loads and pre- 
vention of streambed erosion. We find that the performance of the al- 
gorithm is enhanced when using a large number of small, distributed 
controllers. In addition to confirming the central hypothesis that syn- 
chronous cells can be identified based on network structure of drainage 
basins, this result lends justification to the development of decentral- 
ized smart stormwater systems, in which active control of small-scale 
retention basins, canals and culverts enables more effective manage- 
ment of urban stormwater. Overall, our algorithm is efficient, requires 
only digital elevation model data, and is robust to parameter and model 
uncertainty, making it suitable both as a research tool, and as a design 
tool for practicing water resources engineers. 
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a b s t r a c t

As more sensor data become available across urban water systems, it is often unclear which of these new
measurements are actually useful and how they can be efficiently ingested to improve predictions. We
present a data-driven approach for modeling and predicting flows across combined sewer and drainage
systems, which fuses sensor measurements with output of a large numerical simulation model. Rather
than adjusting the structure and parameters of the numerical model, as is commonly done when new
data become available, our approach instead learns causal relationships between the numerically-
modeled outputs, distributed rainfall measurements, and measured flows. By treating an existing nu-
merical model e even one that may be outdated e as just another data stream, we illustrate how to
automatically select and combine features that best explain flows for any given location. This allows for
new sensor measurements to be rapidly fused with existing knowledge of the system without requiring
recalibration of the underlying physics. Our approach, based on Directed Information (DI) and Boosted
Regression Trees (BRT), is evaluated by fusing measurements across nearly 30 rain gages, 15 flow locations,
and the outputs of a numerical sewer model in the city of Detroit, Michigan: one of the largest combined
sewer systems in the world. The results illustrate that the Boosted Regression Trees provide skillful pre-
dictions of flow, especially when compared to an existing numerical model. The innovation of this paper
is the use of the Directed Information step, which selects only those inputs that are causal with mea-
surements at locations of interest. Better predictions are achieved when the Directed Information step is
used because it reduces overfitting during the training phase of the predictive algorithm. In the age of
“big water data”, this finding highlights the importance of screening all available data sources before
using them as inputs to data-driven models, since more may not always be better. We discuss the
generalizability of the case study and the requirements of transferring the approach to other systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The need to understand and predict water flows across cities is
important for predicting flash flooding, reducing sewer overflows,
and designing infrastructure (Field and Tafuri, 2006; Morales et al.,
2017; Paquier et al., 2015). The dynamics of flow across these sys-
tems are complicated by the combined influences of hydrology,
infrastructure, and highly variable rainfall (Konrad, 2003).

Presently, predictive approaches attempt to capture many of these
features explicitly in the form of numerical models. These models,
which are underpinned by physical laws and are often derived from
first-order principles, represent the urban water systems at high
resolutions and capture very specific characteristics, such as pipe
dimensions, soil types, orifices, and subcatchment dynamics. For
large cities, this can often lead to highly structured models that are
difficult to parameterize and calibrate.

Simultaneously, many cities are scaling efforts to monitor assets
in real-time, which means that more distributed sensor data are
becoming available. For example, flow meters, water level sensors,
and water quality sensors are now readily being deployed across
urban water systems (Kerkez et al., 2016). The proliferation of
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sensors seems promising, but more data may not always be helpful,
especially if they do not exhibit a causal relationship with states
being modeled. In those instances, two questions arise: (1) Which
emerging sources of data are actually useful in explaining flow across
large urban water systems? (2) For those inputs that are deemed
important, what quantity of data is required, and how can these data
be rapidly ingested to improve predictions?

Instead of relying on the recalibration of a numerical model, this
paper presents a data-driven approach that combines all available
data sources, including the outputs of an existing numerical model,
into a holistic and automated prediction of water flows. In this way,
the predictive skill embedded in a numerical model is retained
when useful, while any additional sources of sensor data are
ingested to further improve predictions. The fundamental contri-
bution of the paper is a new method to predict flows in urban
drainage systems, which: (1) selects useful (causal) inputs through
a Directed Information algorithm, and (2) yields flow predictions
with the selected inputs using Boosted Regression Trees. As more
diverse data sources become available to decision makers, this
approach will allow for the rapid and automated incorporation of
emerging data into holistic predictions of flows. The approach is
evaluated by fusing measurements from nearly 30 rain gages and
15 flow sensors with the outputs of a numerical sewer model in the
city of Detroit, Michigan.

2. Background

2.1. Predicting through numerical models

A number of popular urban drainage models are presently in
use, including the Stormwater Management Model (SWMM), MIKE
URBAN and HEC-HMS, to name a few. These models couple hy-
drology and hydraulics, numerically computing processes such as
infiltration and shallow water flow. Once calibrated, these models
can be very effective at forecasting and decision making across fine
spatiotemporal resolutions. The most common approach to model
calibration seeks to adjust the model structure and its parameters
so that the model output agrees with the measurements (Sun and
Sun, 2015). This often includes a combination of manual parameter
tuning that relies on the expertise of modelers or, in some cases,
auto-calibration (Doherty, 2015). If knowledge is updatedddue to
changes in infrastructure, new measurements, or updated infor-
mation on the watersheddmodel recalibration is often needed.

It is well known that standard parameter calibration methods
are subject to the curse of dimensionality,where computational cost
increases exponentially with the number of calibrating parameters
(Sun and Sun, 2015). Given this complexity and resulting financial
cost of recalibration, most water models hardly keep pace with
urban change or the emergence of new data sources. In fact, it is not
uncommon for many numerical water models in the United States
to be over a decade. As such, more streamlined approaches are
needed to keep pace with the emergence of new data sources and
to ensure forecasts are made using the most relevant and up-to-
date information.

2.2. Data-driven forecasting

In lieu of statistical models, a number of data-driven approaches
are showing promise to model water systems. Instead of explicitly
modeling physics, these approaches rely only on data, such as
sensor measurements or features of a system, to make forecasts.
While data-driven models cannot always provide insight into sys-
tem behavior, they can enable streamlined and adaptive toolchains

to rapidly ingest many data sources. Broadly, many of these ap-
proaches fall under the umbrella of supervised machine learning
(ML) approaches, which use historical data to “learn” complex
mappings between inputs and a target variable.

When modeling flows across urban water systems, traditional
ML approaches, such as generalized linear regression, may not
work well due to the nonlinearities and collinearities inherent in
complex systems (Dormann et al., 2013). Nonlinear mappings can
be learned through methods such as Artificial Neural Networks
(ANN), but these often require a large amount of data and are
computationally expensive (Schalkoff, 1997). For many applica-
tions, a supervised ML approach known as Boosted Regression Trees,
has recently shown promise in balancing computational intensity
with performance. According to Caruana and Niculescu-Mizil
(2006), Boosted Regression Trees have shown the best overall pre-
dictive performance among supervised learning algorithms, while
remaining immune to collinearity. Regardless of the choice of al-
gorithm, it is well known that many data-driven approaches may
be sensitive to overfitting due to inadequate input data selection,
especially if irrelevant inputs are used during training (Ng,1998). As
such, the prospects associated with access to many new sensor
measurements may be hampered by the realization that more is
not always better. That is, not all data may be useful, and brute-
force use of all available data may actually lead to worse forecasts.

3. Methods

Instead of forcing the choice between a numerical or data-
driven approach, as is commonly done, our method seeks to
strike a balance by combining the benefits of both. The toolchain
uses Boosted Regression Trees to make forecasts by ingesting a large
number of input features (Fig. 1). However, instead of using sensor
data as the only input, we also treat an existing numerical model as
another input data sourcee the idea being that even an out-of-date
or poorly calibrated numerical model may still embed a significant
amount of information, which may not be captured by sensor data
alone. Depending on the location of interest, various combinations
of input features may provide the best forecast. As such, an inno-
vation in our approach is a preliminary step, which uses the crite-
rion of Directed Information, to determine which inputs may lead to
the best prediction. This forms a holistic and automated toolchain,
which ingests all available data but reduces the risk of overfitting by
selecting the most “useful” data for forecasting.

3.1. Feature selection using directed information

Given a set of random processes X ¼ fX1; X2; …; Xmg and a
target random process Y, we seek to predict the process Y using the
processes in X. In our case, Y represents a time series of flow
measurements at the location for which we would like to generate
future predictions (namely, the target variable). The processes X
include time series that could be used to derive a predictive model
for Y, such as rainfall measurements, as well as the outputs of a
numerical model. In many cases, it may not be advantageous to use
all processes from X as inputs to a predictive model because this
may lead to a model that performs well in the training phase, but
one that performs poorly in prediction (i.e. overfitting). Instead, the
goal is to select a subset of processes that are “useful” in describing
Y. Statistically, this can be captured using Granger Causality
(Granger, 1969). If predictions of Y are improved by using a process
Xi2X, we sayXi statistically causes Y. More formally,Xi causes Y, as
measured by Granger Causality, if the past of Xi can help predict the
future of Y.
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The metric of causality, known as Directed Information (DI), is an
information theoretic quantity that measures the statistical
causation. Given a set of random processes X ¼ fX1; X2; …; Xmg
and Y, the Directed Information I fromX1 to Y is defined as the time-
averaged expected log-likelihood ratio between two conditional
probability distributions of Y at time step t, Yt (Equation (1)). This
ratio is also known as KullbackeLeibler Divergence (Kullback and
Leibler, 1951). For the conditional probability in the numerator, Yt

is conditioned on the past of X1, X1:t"1
1 (Marko, 1973; Kramer,

1998):

IðX1/YjjX2;…;XmÞ :

¼
1
n

Xn

t¼1
EPY; X1 ;X2 ;:::;Xm
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PYtj X1:t"1
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#

;

(1)

whereXt1 :t2
i denotes the processXi from time step t1 to t2. If the past

of X1 can help predict the future of Y, then the conditional proba-
bility with X1:t"1

1 , PYtjX1:t"1
1 ;X1:t"1

2 ; …; X1:t"1
m

is larger than the conditional
probability without X1:t"1

1 , and the expected log-likelihood of their
ratio will be positive. Otherwise, if the past of X1 cannot help
predict the future of Y, then the two conditional probabilities are
equal, in which case the expected log-likelihood of their ratio is
zero. In other words, the future value of Y is conditionally inde-
pendent from the past value of X1, X1:t"1

1 given the past value of the
rest processes in X, X1:t"1

2 ;…; X1:t"1
m . For random processes Y and

X1, the larger the Directed Information value, the more causal in-
fluence X1 has on Y e and hence the more “useful” X1 is on pre-
dicting Y.

To reduce potential overfitting, we use a model complexity
penalty known as minimum description length (MDL; Grünwald,
2007):

MDL ¼ h
log2ðnÞ

2n
; (2)

where h denotes theMarkov order and n denotes the sample size of
Xi used for model fitting. The use of this penalty term ensures that
only the random processes with Directed Information values larger
than the MDL are considered as causal. This is summarized in Al-
gorithm 1, which seeks to store all these causal processes in a new
subset G, which will be subsequently used as input to a prediction
algorithm (modified from Quinn et al., 2015). When selecting
candidate features for the Directed Information test, non-
deterministic relationships among all features need to be

guaranteeddthat is, no feature can be derived directly from the
others.

3.2. Prediction using boosted regression trees

Once the causal features are selected using the Directed Infor-
mation (DI) approach, they can be used to train a predictive model,
which in our case takes the form of Boosted Regression Trees (BRT).
Instead of learning one regression tree, Boosted Regression Trees
learn multiple trees and weigh them to describe the relationship
between the target variable and the features. Boosted Regression
Trees rely on boosting methods that create an ensemble of regres-
sion models to improve the accuracy of model fitting (Elith et al.,
2008). Given a regression problem, Boosted Regression Trees assign
individual weights to every sample point of the training data set. A
single regression tree is then constructed and evaluated using the
data. A loss function (Wald, 1950), which describes the deviance
between the measurements and predicted values, is used to update
the individual weights on the tree. The data points with larger
deviance are assigned larger weights in the next step. After the
updated weights are assigned to individual data points, a new
regression tree is constructed. The procedure repeats until the
number of the iterations M is reached (Algorithm 2).

Through a forward and additive fashion, Boosted Regression Trees
gradually optimize predictive performance by using linear combi-
nation of all individual trees. Like many supervised ML approaches,
Boosted Regression Trees can still be subject to overfitting if too
many features are used. To this end, the Directed Information is used
to select only causal features, thereby reducing the potential for
overfitting in the final Boosted Regression Trees.

Fig. 1. Predicting flows (Y) by combining inputs features (sensor data) and the outputs of a numerical model (X1,…,Xm). The Directed Information check is used to select only those
input features that are statistically causal with the flow measurements (Y). The selected features are then used as inputs to the Boosted Regression Trees prediction algorithm.
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4. Case study and implementation

4.1. Study area

Our case study concerns the prediction of flows in large com-
bined sewer systems. Specifically, we focus on the city of Detroit,
Michigan, one of the largest combined sewer collection systems in
the United States (Fig. 2). We seek to predict daily flows at locations
of interest using a large number of available data sources. Detroit
and its surrounding suburbs are the largest urban source of total
phosphorus to the river system connecting lakes Huron and Erie
(Maccoux et al., 2016), and because phosphorus load from this
system is driven primarily by flow, predicting and controlling the

occurrence of combined sewer overflows is important. While
dozens of new measurements (e.g., rain gages) have become
available across the city, they have not yet been used in a predictive
model. A physically-based numerical model is available but was
updated over 6 years ago. As such, this case study presents a great
opportunity to apply our approach to fusing new sensor data with
the expertise embedded in the existing numerical model.

4.2. Data source: numerical model

In 1998, a physically-based hydrological and hydraulic model
was developed using the EPA Storm Water Management Model
(SWMM) for the Detroit sewer collection system's 1963.2 km2

service area (Tenbroek et al., 1999) (Fig. 2). The first version of the
model was initially calibrated with available flow data (Santini
et al., 2001). Since then, it has been updated several times to
reflect new facilities, including 14 major combined sewer overflow
outfalls (sites B through O in Fig. 2). The latest version of the model
was released in 2012, which is the model that has been shared with
the authors. Initial inspection revealed that while the model did
represent some of the larger, downstream flows adequately (e.g.
flows at the final outlet of the system), it generally overestimated
daily flows across smaller, upstream locations.

4.3. Data source: sensor measurements

Hourly flow measurements were made by sensors at the ter-
minal node of the system (Fig. 2, site A from April, 2014 to July,
2014), representing the inflows into the Wastewater Treatment
Plant. Event-based, combined sewer overflow volume

Fig. 2. Detroit sewer collection system service area, showing location of 30 rain gages and 15 prediction points of interest. Site A measures inflow volume to the Wastewater
Treatment Plant and sites B-O measure combined sewer overflow volume.
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measurements from May 2013 to October 2015 were also obtained
from the Michigan Department of Environmental Quality1 for 38
storm events during this period. Most combined sewer overflow
events occurred within one day; however, when an event spanned
multiple days, a daily average was obtained by dividing the total
discharge by the number of days of the event. Hourly precipitation
data from 2013 to 2015, which served as input into the numerical
model, were also obtained from 30 distributed rain gages in the
service area (Fig. 2).

4.4. Implementation

The objective of the evaluationwas to predict daily inflows to the
wastewater treatment plant and sewer overflows at 15 sites. For the
purpose of this study, predicting inflows to the treatment plant tests
the ability of the approach to describe large-scale, continuous flows,
while predicting combined sewer overflows captures the ability to
predict smaller-scale, more dynamic events. Data fromall rain gages
were used as inputs to the SWMM model, after which SWMM out-
puts were used as input into the Directed Information test. The
rainfall data were manually quality controlled by gap filling mea-
surements or saturation points through interpolation with neigh-
boring gages. This was intended to ensure that the highest possible
quality inputs were used as inputs to the SWMM. For each site, the
Directed Information testwasfirst used to select causal input features
from available rain gages and co-located SWMM outputs. While
feasible, upstream flow measurements were not used as inputs to
downstream predictions since it was assumed that upstream dy-
namics are implicitly captured by SWMM. To meet the non-
determinism criterion of the Directed Information test, one of the
gages (site 2) was randomly removed from the data set before the
Directed Information algorithm was executed. Once causal features
were selected, they were forwarded to the Boosted Regression Trees
algorithm (60/40% split for training and validation). Through itera-
tion, the numberof treeswas set to 500,while the treedepthwas set
equal to 4 and the learning rate equal to 0.1.

To promote transparency, experimental repeatability, and
broader adoption, all of the source code for this paper is shared in
an open source web repository (http://github.com/kLabUM/DIBRT).
The entire approach has been implemented in MATLAB. Due to
security considerations and data agreement with the Great Lakes
Water Authority (owner of the data), the authors are unable to
share the SWMMmodel and sensor data. However, an anonymized
dataset has been provided in the same web repository to allow
others to evaluate the general functionality of our approach.

4.5. Evaluation

To evaluate performance, two fit metrics were used, R-squared
(R2) and Nash-Sutcliffe efficiency (NSE):

R2 ¼

0

@
Xn

i¼1
bYiYi " nbYY

1
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2

!Xn
i¼1
bY
2
i " nbY

2"#Xn
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where R22½0; 1&

NSE ¼ 1"

Xn
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2
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%
Yi " Y

&2 ' 100 where NSE2ð "∞; 1&; (3)

where n is the sample size; Yi and bYi are the measurements and
predicted values, respectively; Y and bY are the mean value of Yi and
bYi . For interpretation, an R2 value closer to 1 indicates a good
model fit, while a NSE of 1 indicates perfect fit. To determine if the
Directed Information step of our approach actually improves final
forecasts made by the Boosted Regression Trees, two scenarios were
evaluated. The first used the Directed Information step, as described
previously, and the other did not, instead directly feeding all
available inputs to the regression tree algorithm. The improvement
in R2 and NSE scores was calculated to determine the benefits of
using Directed Information.

5. Results

Given the amount of data in the study, four sites have been
selected to illustrate and visualize the performance of the
approach. The predictive performance across all sites is summa-
rized below, while detailed information and additional figures are
provided in the Supplementary Information of this paper.

5.1. Performance

The performance of the algorithm at site A is shown in Fig. 3,
from April 2014 to July 2014. Measured flows are compared to
those predicted by the numerical model (SWMM), as well as
those predicted by our algorithm. While the SWMM model per-
formed relatively well at this location compared to other sites
(NSE¼ 0.17 and R2¼ 0.59), it nonetheless had a positive bias,
tending to over-predict peak flows. For this location, which cor-
responds to the largest conduit in the system (inflow to the
treatment plant), the Directed Information algorithm selected 7 of
the 30 features as inputs to the Boosted Regression Trees. Out of
these features, SWMM model output was selected as the major
source of information, followed by six rain gages (Table 1). There
was no clear correspondence between the causal influence of
gages and their proximity to the modeled site. Once trained on
two months of data, the Directed Information Boosted Regression
Trees algorithm predicted flows well (NSE¼ 0.52/R2¼ 0.58). The
predictive ability was quite pronounced especially during rainfall
events, during which the Boosted Regression Trees were able to
accurately reconstruct both the magnitude and dynamics of the
flows.

Site O is one of the most downstream combined sewer over-
flows. The frequency of the difference between modeled and pre-
dicted overflow volumes for 2013e2015 is compared for SWMM
and Boosted Regression Trees (Fig. 4a). Since many storms did not
result in overflow events, we compare the frequency of prediction
residuals (difference between measurements and prediction)
rather than a time series comparison. This site had more overflows
compared to other locations, even during small storm events. For
this location, the SWMM model vastly over-predicted the overflow
volumes, by nearly an order of magnitude (NSE¼"24.1 and
R2¼ 0.39). However, the Boosted Regression Trees predictions
showed much better agreement with the measurements
(NSE¼ 0.62 and R2¼ 0.61). For this location, the Directed Informa-
tion algorithm selected 10 total features as inputs to the Boosted
Regression Trees Algorithm. Interestingly, even though SWMM
alone performed poorly, its outputs were still selected as the most
informative feature for the predictive model (Table 1). Compared to
SWMM, the algorithm reduced the overestimation bias by nearly a
factor of 8.

The performance of the algorithm at site I is illustrated by
Fig. 4b, which corresponds to a sewer overflow location in the
system. For site I, the SWMMmodel generally over-predicted flows
(NSE¼"2.71 and R2¼ 0.65) and the Directed Information step did

1 Michigan Department of Environmental Quality (MDEQ): http://www.
michigan.gov/deq/.
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not select it as an influential input feature. As such, the Boosted
Regression Treeswere trained only on six selected gages, yielding an
improved predictive performance (NSE¼ 0.69 and R2¼ 0.8)
compared to SWMM.

The measurements at site L (Fig. 4c) showed very few overflows
across the 2013e2015 study period. Here, neither the SWMM
model (NSE¼"0.07 and R2¼ 0.0), nor the Boosted Regression Trees
(NSE¼ 0.14 and R2¼ 0.16) performed well. While the Directed In-
formation algorithm selected the SWMM outputs as one informa-
tive feature, a number of rain rages were deemed much more
informative (Table 1).

5.2. Selection of informative inputs

Overall, the Boosted Regression Trees approach, when combined
with Directed Information feature selection, was able to predict
flows at 10 of the 15 sites well, as measured by NSE or R2 scores
(>0.4). The SWMM model was selected as an informative input for
11 of the 15 sites (Fig. 5). The number of inputs selected varied from
site to site, with no clear relationships to physical features, such as
distance to the input rain gages. Performance was mainly related to
the magnitude and variability of flows at the target location. The
algorithm generally performed better at locations with more non-
zero measurements (e.g. active flows or overflows during every
storm). Many of the lower-performing sites generally had mostly
no flows or overflows during storms. The variability of flows also
played a role in predicative performance. Flow at sites with highly
variable flows or overflows (measured by deviation from mean)
was more difficult to predict.

The performance of the approach across all sites is summarized
in Table 2 as a comparison of the quality of the predictions with and
without Directed Information. Overall, the use of the Directed In-
formation step reduced the fit during the training phase of the
Boosted Regression Trees, but improved its performance during
validation, as quantified by an improvement in NSE and R2 scores.
The use of the Directed Information step improved the predictive
performance at almost all locations and improved the performance
significantly (increased NSE or R2 by at least 0.05) for more than
half of the sites.

6. Discussion

The use of data-driven prediction techniques, such as Boosted
Regression Trees, shows a good potential for predicting complex and
nonlinear flows across large water systems. As more data become
available, these methods will offer an automated and efficient way
to rapidly ingest and adapt to new sources of information. As
shown here, new data sources are not limited to new sensors, such
as rain gages. Rather, existing numerical models can serve as
valuable inputs. For a given location, if the underlying numerical
model already captures flows accurately, the Boosted Regression
Trees will still improve predictions, but may not outperform the
numerical model. This was the case for site A (Fig. 3) where the
SWMM model already had fairly strong performance. In such in-
stances, Boosted Regression Trees offer a rapid way to ingest new

Fig. 3. Comparison of daily flows (million liters, ML) between April, 2014 and July, 2014 at site A (black-solid: measured inflow; red-dashed: SWMM prediction; blue-solid: Boosted
Regression Trees prediction). The gray dashed line separates the training and validation phases for the Boosted Regression Trees. The upper part of the figure shows the average
precipitation (mm per hour; mm/hr) during this period. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 1
List of influential features on the flow measurements and their DI values.

Site Influential Feature DI Valuea

Site A SWMM-modeled flow 0.99
Gage 10 0.08
Gage 12 0.06
Gage 19 0.06
Gage 25 0.06
Gage 9 0.04
Gage 18 0.04

Site O SWMM-modeled flow 0.72
Gage 30 0.05
Gage 13 0.04
Gage 26 0.03
Gage 34 0.03
Gage 3 0.02
Gage 10 0.02
Gage 21 0.02
Gage 8 0.01
Gage 24 0.01

Site I Gage 19 0.14
Gage 14 0.04
Gage 32 0.03
Gage 18 0.02
Gage 9 0.01
Gage 12 0.01

Site L Gage 30 0.12
SWMM-modeled flow 0.03
Gage 3 0.03
Gage 7 0.01
Gage 11 0.01

a For site A, features with DI value no less than MDL¼ 0.03 were considered as
influential; for sites O, I and L, features with DI value no less than MDL¼ 0.01 are
considered as influential.
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data sources to “nudge” the outputs of the numerical model to
match observations more closely.

Evenwhen the outputs of the numerical model show strong bias
or inaccuracy, they may still prove useful when used as inputs to
Boosted Regression Trees approach. Numerical models, even those
that could be considered “out of date”, still embed a lot of infor-
mation and domain expertise. For example, a numerical model that
may not be correct in regard to absolute flow values, may still be
correct in regard to timing of flows and their relative magnitudes.
This was the case for site O (Fig. 4a), where the outputs of the
SWMM model were heavily biased, but were nonetheless selected
as the most causal feature. In such cases, the role of Boosted
Regression Trees is analogous to correcting these biases by using
additional sources of sensor data. By extension, if the underlying

numerical model improves as the result of better model inputs or
improvement of model structures, or another model becomes
available in the future, the data-driven approach should immedi-
ately benefit since it does not need to be altered to account for these
changes.

As illustrated, the use of more data does not necessarily lead to
better predictions. This important point appears to run counter to
conventional wisdom on water data, which often assumes that
data-driven techniques can arrive at the best answer by ingesting
and optimizing around as much data as possible. Rather, ensuring
statistical causality between inputs and outputs is important. The
use of Directed Information provides a reliable and automated way
to accomplish this. In our case study, when input features were
selected using the Directed Information criterion, the performance

Fig. 4. Histogram of the difference between the combined sewer overflow volume measurements (million liters, ML) to predictions made by the Boosted Regression Trees and the
numerical model for (a) site O, (b) site I, and (c) site L, from May and October from 2013 to 2015. Values were obtained by calculating the difference between each prediction and
measurement. Similar plots for all other sites are included in the supplementary information section of this paper.

Fig. 5. Evaluation of Boosted Regression Trees performance, showing the fit metrics obtained for each site. The boundary of the service area is outlined in light gray, the Detroit
sewer collection system is marked in dark gray, the locations of rain gages are marked by numbers. The input features used by the algorithm (selected by Directed Information
criterion) are indexed in the bar connected to each site. The color-coded bar indicates which features are selected (blue) and which are not (yellow). The first element (M) indicates if
the output of the SWMM model was used as an input to the regression trees, while the other elements indicate the number of the rain gage. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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of the Boosted Regression Trees improved. In many cases, only half or
fewer of the available data sources were actually selected for use in
the predictions.

The role of the Directed Information step in improving predictive
performance may be best explained when interpreting the results
of the training phase of the Boosted Regression Trees (Table 2). The
use of more input features may lead to an improved fit during the
training phase since more data are available to explain the vari-
ability in the target variable (Ng, 1998). However, some of this
variability may only be temporary or the inputs may not exhibit
causality with the target variable. As such, strong fit during training
may lead to worse predictive performance during the validation
phase since the predictive algorithm becomes sensitive to non-
informative inputs. As opposed to selecting all possible input fea-
tures, the chance of overfitting during training will thus be reduced
when using only informative inputs. While this will lead to a
reduction of fit during the training phase, it will often translate to
an improvement in fit during the validation phase, as seen in our

study.
This result suggests that the concept of model complexity

should be considered more broadly. Complexity of a model is often
tied to notions of model structure. As suggested by our case study,
when modeling water systems the amount of input data used
should also be considered, where more input data may lead to
overfitting if not screened ahead of time. As such, the temptation to
use all available data when training data-driven water models
should be accompanied with a keen appreciation of unintended
overfitting.

The SWMM model output was selected as an influential feature
by the Directed Information algorithm in the majority of the study
locations. This is intuitive since the numerical model does
embedded a significant amount of information regarding the con-
nectivity and nonlinearities of the system. However, aside from
Directed Information-based causality, no clear physiographic fea-
tures explainwhy some rain gages were selected over others for use
in the prediction (Fig. 5). Neither gage proximity to the modeled
site nor connectivity via the drainage system were identified as
factors that could explain why one gage may have been selected
over the others. The challenge in identifying informative gages
without the use of a tool such as Directed Informationmay be rooted
in the operational complexity of the Detroit sewer collection sys-
tem. As one of the largest combined sewers in the world, this
system contains a large number of control points, in the form of
pumps, gates, and valves, which are represented in the numerical
model but often operated based on operators’ discretion. As such,
stochastic uncertainty is embedded in measurements of flow,
which limits the ability to deterministically trace the inputs of any
given rain input. As such, many observations of flowmay thus often
be explained by statistical relationships between the input and
output data. This, however, plays to be the strength of our
approach, which blends statistically-, physically-, or numerically-
based mappings.

Through this case study, a number of requirements become
apparent when assessing the ability of our approach to work across
other systems. First and foremost, the approach will benefit from as
many input data as possible e not all, of course, of which will be
used. This will improve the likelihood of finding locations that will
be causal with the output. Since the Directed Information pre-
processing step is computationally efficient, ingesting many data
inputs can be conducted seamlessly. Once the most informative
features are selected, the length of the time record and variability in
the output measurements will become important. In general, the
time record is a proxy for number of available training storms.
While having more storm observations is always better to capture
any statistical variability, the size of the storms plays an important
role as well. A short time record (a few months or less) will suffice
in training the algorithm if the output signal shows a proportional
response to a broad range of inputs. For example, site A (Fig. 3)
shows a proportional response to a large number of storms, which
allowed the Boosted Regression Trees to explore a broad output
space. The length of the time record will become important espe-
cially when predicting sewer overflows. Unlike continually
measured sites (e.g. site A), which generally exhibit many non-zero
flows, measurements of overflow will primarily be populated with
many zero-flow observations. This highly nonlinear behavior
challenges a data-driven prediction algorithm because many rain
inputs may not be large enough to cause any response. For some
sites, large storm events may be less frequent and may thus results
in few, but highly variable outputs (e.g. site L). In these instances,
the Boosted Regression Trees does not have enough relevant training
data unless a longer time record is available. For very few sites, this
may require years of observations, which were not available in our
study. This data requirement does not, however, change the

Table 2
Measures of model fitting and overfitting by NSE and R2 values for all outfalls.

Site DI Test NSE(tr) NSE(val) R2(tr) R2(val)

Aa Yes 0.55 0.52 0.93 0.58
No 0.56 0.5 0.94 0.57
Improvement "0.01 0.02 "0.01 0.01

Ba Yes 0.92 0.43 0.94 0.67
No 0.97 0.32 0.98 0.33
Improvement "0.05 0.11 "0.04 0.34

Ca Yes 0.76 0.42 0.82 0.45
No 0.82 0.41 0.88 0.47
Improvement "0.06 0.01 "0.06 "0.02

Da Yes 0.94 0.69 0.95 0.88
No 0.93 0.68 0.95 0.88
Improvement 0.01 0.01 0 0

Ea Yes 0.39 0.3 0.43 0.3
No 0.45 0.19 0.53 0.34
Improvement "0.06 0.11 "0.1 "0.04

F Yes 1 0.38 1 0.4
No 1 "0.38 1 0
Improvement 0 0.76 0 0.4

Ga Yes 0.65 0.4 0.75 0.41
No 0.71 0 0.83 0.11
Improvement "0.06 0.4 "0.08 0.3

H Yes 0.67 0.25 0.83 0.3
No 0.73 "0.37 0.91 0.09
Improvement "0.06 0.62 "0.08 0.21

I Yes 1 0.69 1 0.8
No 1 0.59 1 0.76
Improvement 0 0.1 0 0.04

J Yes 0.46 0.24 0.72 0.56
No 0.49 0.2 0.74 0.62
Improvement "0.03 0.04 "0.02 "0.06

Ka Yes 0.56 0.28 0.74 0.32
No 0.64 0.35 0.84 0.38
Improvement "0.08 "0.07 "0.1 "0.06

La Yes 0.69 0.14 0.77 0.16
No 0.73 0.15 0.81 0.17
Improvement "0.04 "0.01 "0.04 "0.01

Ma Yes 0.98 0.35 0.98 0.41
No 1 0.28 1 0.31
Improvement "0.02 0.07 "0.02 0.1

Na Yes 0.58 0.29 0.76 0.31
No 0.62 0.26 0.82 0.28
Improvement "0.04 0.03 "0.06 0.03

Oa Yes 0.84 0.62 0.88 0.61
No 0.87 0.52 0.9 0.52
Improvement "0.03 0.1 "0.02 0.09

a Model output from the site is selected as an influential feature by DI test; DI test
(NO) means all the candidate features are used for training and validation rather
than the influential ones selected by DI test (Yes); NSE(R2)(tr) and NSE(R2)(val) are
NSE(R2) values for model training and validation; Improvement indicates the dif-
ference of NSE(R2) values w and w/o DI test.
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implementation of our toolchain, as more data can simply be
ingested as they are measured.

Another important consideration when applying this approach
relates to the temporal granularity of predictions. In our study, daily
flow and volume measurements were available. This placed a
bound on the temporal resolution of the predictions. This daily
resolution still has utility in our case study since Detroit's sewer
system is one of the largest in the world. The system dynamics play
out over relatively long time scales, as can be seen in Fig. 3. Storms
often lead to flow responses or overflows that can last multiple
days, which means that daily forecasts have utility in treatment
planning, collection system dewatering, and overflow operations.
Higher-order dynamics are obscured or averaged at such resolu-
tions, which may be important for some smaller sewer system or
other applications. If higher resolution forecasts are desired, our
approach would require higher resolution flow data. While an
additional analysis would be required to assess performance across
these time scales, the toolchain could be applied to these data
without requiring modifications. This is particularly true about the
Directed Information step of the approach, which can still be used to
determine which input-output relationships are casual. Depending
on the dynamics in higher resolution measurements, the boosted
regression trees could be replaced with more dynamically-based
predictive approaches. This presents good opportunities for
future studies, which will be carried out across smaller and more
rapidly changing systems.

Overall, the approach presented in this study stands to provide a
number of benefits to decision makers and modelers. From an
operational perspective, the toolchain provides an automated
method by which cities and municipalities can leverage all their
existing and emerging data sources to improve forecasts of flows.
This will be particularly useful in operational situations where an
existing numerical model may not provide sufficiently fine-grained
warnings of floods or impending overflows. However, the resulting
predictive model should not be used for infrastructure planning
purposes (changing pipe diameters, evaluating new designs, etc.)
since all relationships are statistical and inherent to the data of the
existing system. For these purposes, the numerical model will
rather need to be updated and recalibrated. To this end, our
approach can also serve as a tool to guide model calibration. The
use of Directed Information can serve as an alternative to traditional
metrics, such as NSE or R2, providing insight not only on fit but
rather the causality between the model structure and observation.
The Directed Information criterion could then be used to help
determine which inputs may be most important to the numerical
model, which may reduce amount of inputs and time spent on
calibration.

Finally, the usefulness of any particular data source must be
viewed holistically. A non-causal relationship may suggest that an
input data source is not relevant or of sufficient quality to explain a
particular output. However, utility and causality are two-way
properties. Namely, a flow measurement (the output) may not be
informative to begin with. If this is the case, the inputs may still be
useful for forecasting at other locations. A level of user discretion
should thus be exercised when evaluating input and output pair-
ings. The Directed Information step will help in this regard, as it will
provide a first check to determine if certain input-output pairings
should even be considered before a predictive model is con-
structed. Ultimately, the quality of the final prediction, which can
be evaluated using more classic fit metrics or specific requirements
of an application, will remain a good proxy for utility of any
particular forecast and thus, implicitly, the utility of the underlying
data. While not conducted in this case study due to the temporal
granularity of data and the assumption that SWMMmodel captures
upstream dynamics, future studies could also consider the value of

flow measurements as predictors for other flow measurements.

7. Conclusions

This paper introduced a holistic, data-driven toolchain based on
Directed Information and Boosted Regression Trees to provide flow
forecasts across urban drainage systems. More broadly, this meth-
odology should also work well for other types of water systems
where many data or numerical models are available. It was
demonstrated that the use of more data is not always advantageous
and may often lead to worse predictions. Rather, a
computationally-efficient pre-processing step (Directed Informa-
tion) will be important in selecting only those input data that are
informative to the overall prediction. The approach based on
Boosted Regression Trees was also shown to be effective at learning
complex and non-linear mappings between rainfall inputs and
flow. More importantly, it was demonstrated that the outputs of a
numerical model could also be used as an important input to the
data-driven approach. Even if a numerical model is no longer fully
calibrated due to aging or changes in the system, it still embeds
valuable information that can improve the predictive performance
of the regression trees. This will provide a rapid and automatedway
for city managers to use a diverse set of information, which may be
at their disposal, without requiring the often-expensive recalibra-
tion of numerical models. Naturally, if a numerical model does
improve, sowill the predictions of our approach. This discoverywill
be important as the push for “smart” water systems and “big water
data” continues. Future work should be carried out to determine
how consistent our findings are across other study areas and other
types of water systems.
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