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Figure 1: Images showing a) our object registration algorithm, which uses a set of uncertain candidate object positions (in red) to
establish consistent labels (in green) of items in the real world b) a view directly through the HoloLens of resulting labels from our
method in a previously unknown environment, and c¢) a photo of a user wearing the system and calibrated eye tracker used for label

selection.

ABSTRACT

Augmented Reality is a promising interaction paradigm for learning
applications. It has the potential to improve learning outcomes by
merging educational content with spatial cues and semantically rele-
vant objects within a learner’s everyday environment. The impact of
such an interface could be comparable to the method of loci, a well
known memory enhancement technique used by memory champions
and polyglots. However, using Augmented Reality in this manner
is still impractical for a number of reasons. Scalable object recog-
nition and consistent labeling of objects is a significant challenge,
and interaction with arbitrary (unmodeled) physical objects in AR
scenes has consequently not been well explored. To help address
these challenges, we present a framework for in-situ object label-
ing and selection in Augmented Reality, with a particular focus on
language learning applications. Our framework uses a generalized
object recognition model to identify objects in the world in real
time, integrates eye tracking to facilitate selection and interaction
within the interface, and incorporates a personalized learning model
that dynamically adapts to student’s growth. We show our current
progress in the development of this system, including preliminary
tests and benchmarks. We explore challenges with using such a sys-
tem in practice, and discuss our vision for the future of AR language
learning applications.

Index Terms: Human-centered computing — Mixed and aug-
mented reality; Theory and algorithms for application domains —
Semi-supervised learning;

1 INTRODUCTION

For many years, learning new words has often been accomplished
by memorization techniques such as flash cards and phone or tablet
based applications. These often use temporal spacing algorithms
to modulate word presentation frequency such as Anki [11] and
Duolingo [32]. A more effective, albeit time consuming, method
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of language learning is to attach notes with words and illustrated
concepts to real world objects in a familiar physical space, taking
advantage of the learner’s capacity for spatial memory. Learners
constantly see a particular object, recall the associated word and
learn that concept more effectively since the object is in its natural
context and is consistently viewed over time. This type of learning
is also referred to as the method of loci [4,23,33].

Our goal is to replicate this in-situ learning process, but to do
so automatically and with the support of augmented reality (AR),
as represented in Fig. 1 b. In other words, when a user views an
object, we want to automatically display the concept(s) associated
with that object in the target language and provide a method for both
the viewing and selection of a particular term or concept. Deploying
such an interface in a real-world, generalized context is still a very
challenging task.

As a step towards this goal, we introduce a more practical frame-
work that can function as a cornerstone for improving in-situ learning
paradigms. In addition to the process of trial and error to find a more
effective and practical approach to designing such a system, our
contributions include:

1. aclient-server architecture that allows for real-time labelling
of objects in an AR device (Microsoft HoloLens),

2. adescription and solution to the object registration problem
resulting from the use of real-time object detectors (Fig. 1 a),

3. apractical framework for exploring challenges in the imple-
mentation of AR language learning, and a discussion of novel
interaction paradigms that our framework enables.

The practical use of this system can enable in-situ learning for
languages, physical phenomena, and other new concepts.

2 RELATED WORK

Prior work falls into three primary categories, 1) the implementation
of object recognition, semantic modeling, and tracking for in-situ
labeling, 2) view management techniques for labeling in AR, and 3)
the use of AR and VR to facilitate learning of concepts and language.
While all of these three categories are typically different areas of
research, they are each essential for the effective implementation of
in-situ AR language learning.



2.1 Object Recognition and Semantic Modeling

Real-time object detection is a fairly new development, and there are
not many works discussing the integration of these technologies into
an augmented reality system. Current detection approaches utilize
object recognition in 2D image frames, using learning representa-
tions such as Deep and Hierarchical CNNs and Fully-Connected
Conditional Random Fields [6,20], or, for fastest real-time evalua-
tion performance just a single neural network applied to the entire
image frame [28]. Combined 2D/3D approaches [1,21] or object
detection in 3D point cloud space [7,27] may become increasingly
feasible for real-time approaches in the not-too-far future as more
3D datasets [1,7] become available, but currently, approaches that
apply 2D object detection to the 3D meshes generated by AR devices
such as HoloLens or MagicLeap One yield better performance.

Huang et al. [13] compare the general performance of 3 popular
meta architectures for real-time object detection. They show that
the Single Shot Detector (SSD) family of detectors, which predicts
class and bounding boxes directly from image features, has the best
performance to accuracy tradeoff. This is compared to approaches
which predict bounding box proposals first (Faster-RCNN and R-
FCN). We experimented with the performance of both types of
detectors and ultimately settled on an implementation of SSD.

The most recent and closest work to our approach is that of
Runz et al. [29] in 2018. Using machine learning and an RGBD
camera, they were able to segment the 3D shapes of certain objects
in real time for use in AR applications. Their approach utilized the
Mask-RCNN architecture to predict per-pixel object labels, which
comes at a higher performance cost. In contrast, our approach is
implemented directly on an optical see-through HMD (HoloLens)
using a client-server architecture, and uses traditional bounding box
detectors which can run in true real-time (30fps) with few dropped
frames.

Our work links objects that are recognized in real time in 2D
frames to positions in the modeled 3D scene, which is akin to pro-
jecting and disambiguating 2D hand-drawn annotations into 3D
scene space [18].

2.2 View Management for Object Labeling

A body of work in AR research focuses on optimized label place-
ment and appearance modulation. In a similar fashion that we use
2D bounding boxes of recognized objects in the image plane to de-
termine a 3D label position for that object, several view management
approaches optimize the placement of annotations based on the 2D
rectangular extent of 3D objects in the image plane [2,3, 12]. Other
approaches allow the adjustment of labels in 3D space [26,30], a
feature that might be gainfully employed in our system to subtly op-
timize the location of an initially placed label over time as multiple
vantage points accumulate. However, this would pose the additional
problem of disruptive label movement, due to loss of temporal co-
herence. Since potential mislabeling actions due to occlusions —
the main motivation for 3D label adjustment — are automatically
resolved by the HoloLens’ continuous scene modeling (occluders
are automatically modeled as occluding phantom objects), we can
simply avoid label adjustment after we arrived at a good initial
placement. Label appearance optimization [9] and assurance of
legibility [10,22] are beyond the scope of this paper.

2.3 Memory and Learning Interfaces

The idea of augmenting human memory or facilitating learning
with computers appeared almost simultaneously with the history of
modern computing. For example, early work by Siklossy in 1968
proposed the idea of natural language learning using a computer [31].
Since then, much progress has been made, for example by turning
the learning process into a serious game [16]. Though not in an
in-situ environment, Liu et al. proposed the use of 2D barcodes for
supporting English learning. Though relatively simple, this method

helps motivate the use of AR for learning new concepts, as a form
of fully contextualized learning [25].

In addition to language learning, some work has been presented
that seeks to augment or improve memory in general. For example,
the infrastructure proposed by Chang et al. facilitated adaptive
learning using mobile phones in outdoor environments [5]. Similarly,
Orlosky et al. proposed the use of a system that recorded the location
of objects, such as words in books, based on eye gaze, with the
purpose of improving access to forgotten items or words [24].

Other studies like that of Dunleavy et al. found that learning in AR
is engaging, but still faces a number of technical and cognitive chal-
lenges [8]. Kukulska-Hulme et al. further reviewed the affordances
of mobile learning, having similar findings that AR was engaging
and fun for the purpose of education, but found that technology
limitations like tracking accuracy interfered with learning [17]. One
more attempt at facilitating language learning by Santos et al. used a
marker based approach on a tablet and tested vocabulary acquisition
with marker-based AR. In contrast, our approach is designed to be
automatic, and is a hands-free in-situ approach.

Most recently, Ibrahim et al. examined how well in-situ AR can
function as a language learning tool [14]. They studied in-situ object
labelling in comparison to a traditional flash card learning approach,
and found that those who used AR remembered more words after a
4 day delayed post-test. However, this method was set up manually
in terms of the object labels. In other words, the objects needed to
be labelled manually for use with the display in real time. In order
to use the display for learning in practice, these labels need to be
placed automatically, without manual interaction.

This is the main problem our paper tackles. We have developed
the framework necessary to perform this recognition, and at the same
time we solve problems like object jitter due to improper bounding
boxes. This sets the stage for a more effective implementation of
learning via the method of loci, and can even enable reinforcement
type schemes like spacing algorithms [11] that adapt to the pace of
the user based on real world learning.

3 AR LANGUAGE LEARNING FRAMEWORK

As further motivation for this system, we envision a future where
Augmented Reality headsets are smaller and more ubiquitous, and
are capable of being worn and used on a daily basis much like current
smart phones and smart watches. In such an “always-on AR” future,
augmented reality has the potential to transform language learning
by adapting educational material to the user’s own environment,
which may improve learning and recall. Learning content may also
be presented throughout the day, providing spontaneous learning
moments that are more memorable by taking advantage of unique
experiences or environmental conditions. Furthermore, an always-
on AR device allows us to take into consideration the cognitive state
of the user through emerging technologies for vitals sensing. Using
this information, we can gain a better understanding of the user’s
attention, and more readily adapt to their needs. To enable research
into these interaction paradigms, we propose a practical framework
that can be implemented and deployed on current hardware using
current sensing techniques. We believe the fundamental building
blocks for AR language learning include three components:

* Environment sensing with object level semantics
» Attention-aware interaction

¢ Personalized learning models

These components provide the necessary set of capabilities re-
quired by the AR language learning applications we envision. In the
next section, we will introduce a system design which implements
this framework using existing technologies. Then, we will describe
the realization of the first component of our framework, through an



object level semantic labeling system. Finally, we will discuss our
ongoing work regarding the second and third components.

4 SYSTEM DESIGN

In this section, we introduce a client-server architecture composed
of several interconnected components, including the hardware used
for AR and eye tracking, the object recognition system, the gaze
tracking system, and the language learning and reinforcement model.
The overall design and information flow between these pieces and
parts is shown in Figure 2.

The combination of these pieces and parts allow us to detect new
objects, robustly localize them in 3D despite jitter, shaking, and
occlusion, and label the objects properly despite improper detection.
Our current implementation targets English as a Second Language
(ESL) students, thus our labels are presented in English. But the label
concepts could be translated and adapted to many other languages.

4.1 Hardware

We chose the Microsoft Hololens for our display, primarily because
it provides access to the 3D structure of the environment and can
stream the 2D camera image to a server for object recognition. How
we project, synchronize, and preserve the 2D recognition points onto
their 3D positions in the world will be described later.

The HoloLens is also equipped with a 3D printed mount that
houses two Pupil-Labs infrared (IR) eye tracking cameras, as shown
in Fig. 1 c¢). These cameras are each equipped with two IR LEDs,
and have adjustable arms that allow us to adjust the camera positions
for individual users. The eye tracking framework employs a novel
drift correction algorithm that can account for shifts on the users
face.

For the server side of our interface, we utilized a VR backpack
with an Intel Core i7-7820HK and Nvidia Geforce GTX 1070 graph-
ics card. Since the backpack is designed for mobile use, this allows
both the Hololens and Server to be mobile, as long as they are con-
nected via network. To maximize throughput during testing and
experimentation, we connected both devices on the same subnet.

4.2 Summary of Data Flow

Our system starts by initializing the Unity world to the same tracking
space as the Hololens. Next, we begin streaming images from the
Hololens forward-facing camera, which are sent to and from the
server-side backpack via custom encoding. Upon reaching the server,
they are decoded and input into the object recognition module, which
returns a of 2D bounding box with an object label. The center of
this bounding box is then sent back to the Hololens and projected
into 3D world space by raycasting against the mesh provided by the
Hololens. This projected point is treated as a “candidate point”,
which is fed into our object registration algorithm. The object
registration algorithm looks over the set of candidate points over
time to decide where to assign a final object label and position. Once
an object and its position have been correctly assigned, the object is
synchronized with the Unity space on the server side. Finally, labels
on the objects are activated using eye-gaze selection, giving the user
a method for interaction. The results from this interaction are fed
into a personalized learning model, providing the ability to design
content that adapts to the growth of the user.

5 IN-SITU LABELING

The success of Convolutional Neural Networks (CNNs) has lead
to technological breakthroughs in object recognition. However, it
is not yet obvious how to integrate these technologies into AR.
Three major parts need to be in place for these tools to be used
practically. First, they need to be tested in practice (not just on
individual image data sets) and provide good enough recognition to
label an object correctly over time. Secondly, we need to establish
object registration that is resilient to failed recognition frames, jitter,
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Figure 2: Diagram of our entire architecture, including hardware in
grey, algorithms and systems in blue, and data flow in green. The
left-hand block includes all processing done on the Hololens and the
right-hand block includes all processing done on the VR backpack.

radical changes to display orientation, and objects entering/leaving
the display’s field of view (FoV). Finally, current AR devices are not
powerful enough to run state-of-the-art CNNs. We need to handle
the synchronization and reprojection between streamed frames from
the AR device and recognition results from a server with a powerful
GPU.

5.1 Object Recognition Module

The first step for the development of our system was finding a scal-
able object recognition approach that could be used with the forward
facing camera on the HoloLens. Due to the real-time performance
constraint, we had to test and refine a variety of approaches before
finding one that worked. We finally found the Single Shot MultiBox
Detector (SSD) by Liu et al. to be effective [19]. Specifically, we
use the implementation provided by the TensorFlow Object Detec-
tion API, using the ssd_mobilenet_v1_coco model, which has been
pre-trained on MS COCO.

We stream video frames from the built-in HoloLens front facing
camera to a server running on an MSI VR backpack. To keep
packet sizes small, we used the lowest available camera resolution of
896x504. Each frame is encoded into JPEG at 50% quality, so that
their final size fits into a single UDP packet. We also encode and
send the current camera pose along with each frame. On the server
side, we place all frames into an input queue. An asynchronous
processing thread takes the most recent frame from the input queue
and feeds it through the SSD network. The resulting 2D bounding
boxes and labels are then sent back to the HoloLens, along with the
original camera pose. Back on the HoloLens, we project the center
point of each 2D bounding box onto the 3D mesh by performing a
raycast from the original camera pose.

This particular implementation of SSD takes 30ms per predic-
tion on the VR backpack, which just barely allows us to achieve
30fps under ideal network conditions. There is a slight delay due to
network latency, as our network has a round trip time of 150ms.

SSD and similar CNN based real-time object recognition archi-
tectures are known to perform poorly with small objects [13]. In
practice, we found that small objects, such as spoons and forks,
experience much higher false positive rates and predictions are not



Figure 3: Left: Raw points returned from object recognition as pro-
jected into 3D space, accumulated over several frames. This shows
the variance in predicted positions and false positive label predictions.
Right: Scene correctly labeled with object-permanent labels.

consistent across frames. Large objects are more reliable, such
as predictions for TVs, chairs, and people. For medium sized ob-
jects, typically performance improves under realistic environmental
conditions where the camera is able to capture more contextual
information, such as keyboards and mouses being near each other.

To solve this problem, we make use of multiple streamed frames
to establish an initial estimate of the object’s location, confirm this
location using a sliding window approach based on past labels and
proximity, and finally assign a position for the label. This results
in a very stable, properly registered augmentation that is persistent
despite various camera rotations or traveling in and out of various
areas of a workspace. The algorithm we use for this purpose is
described as follows:

First, an image streamed from the forward-facing HoloLens cam-
era is passed to the SSD network, which then provides an initial
prediction for a given object location in the form of a 2D bounding
box. This 2D pose (i.e. the center of the bounding box in screen
space) is then sent back to the HoloLens, and it is projected into 3D
space as summarized previously.

Second, for every subsequent prediction, we check every instance
of the same label in 3D space for the past W frames. A grouping
of some of these labels can be seen on the left of Fig. 3. If the
Euclidean distance between these subsequent 3D positions are within
a threshold D (e.g. 50 centimeters away for a keyboard object),
we average these positions and affix the object. After thorough
testing and refinement, we found that object predictions converge
well if there are 20 positively identified instances over a window
of W = 60 frames under the defined threshold. An example of
successful assignment of objects can be seen on the right of Fig. 3.

One advantage of this approach is that we can use semantic
information to help guide the distance threshold. For example, a
sofa might use points spaced one meter away versus a pencil with
points less than ten centimeters away.

5.2 Evaluation of Object Registration

We performed a simple evaluation of our object registration algo-
rithm in order to determine the quality of the label positioning
(registration). To do so, we laid out 5 objects on a table: a com-
puter monitor, keyboard, scissors, plastic bottle, and a paper cup.
We marked a target point on the desk from which to compare each
object and measured the distance with millimeter accuracy between
the target point and the center of each object using a tape measure.
This measurement served as the ground truth (GT in Table 1) for our
position estimation.

During the evaluation, a user stood in a fixed position in front
of the desk wearing the HoloLens and was given a handheld input
device (a small bluetooth keyboard). The user is asked not to move

Table 1: Data for ground truth (GT) and Estimation error in cm of
the Euclidean distance between user-selected center points of each
object in cm and a known 3D point in the tracking space.

Object GT  Userl User2 User3  AvgError
TV 495 5729 57.33 56.75 7.62
Keyboard 17.8  18.69 18.14 249 3.19
Scissors  50.8 50.3 51.06 51.32 0.90
Bottle 61 74.46 63.2 67.88 7.51
Cup 66 67.33 60.77 61.63 3.64
Overall 4.57

or rotate their body but only their head. The user is instructed
to look around the desk until the mesh is constructed, which is
indicated by the appearance of a blue cursor in the center of the
display. They were then asked to look at each object and confirm
that a label has been placed for each object. Afterwards, the user was
directed to point the blue cursor onto the marked target point and
click a button on the handheld input device. This triggers a raycast
from the center of the display in order to determine the target point
pose within the HoloLens’ coordinate system. We then measure
the distance between the estimated label positions and the target
point and compare them to ground truth in Table 1. This evaluation
was conducted by 3 users who had some prior experience with the
HoloLens.

These preliminary results show that, on average, our object reg-
istration algorithm automatically converges on an object position
up to 4.6cm away from the actual center position. Naturally, this
is influenced by a number of factors, such as the size of the object
to be labeled, and the initial vantage point when the label is first
placed, but these values proved to be quite stable between users and
repetitions.

In the future, we plan to evaluate performance on more challeng-
ing conditions. For instance, where the user is moving around the
environment, or under poor lighting conditions. For now, the current
registration performance is good enough for our needs.

6 EYE TRACKING, INTERACTION, AND DISCUSSION

One more challenge in achieving a practical AR Language Learning
system is the implementation of a method for selecting or activating
an item for labelling. Simply labelling all objects in the environment
is not feasible since the objects would clutter the users view, so a
method (either active or passive) for selection or specification is
necessary. We believe the natural solution is an attention-aware
interface such as eye tracking. Such an interface allows us to deliver
learning content when the user is in an amicable state, and provides
interaction without a cumbersome external device or difficult to use
gestures.

In order to facilitate basic interaction with content, we imple-
mented a calibration framework for our system to allow users to
activate items via eye gaze. Though the evaluation of this area is
a work in progress, we describe the implementation, how eye gaze
fits into our overall framework, and several possible mechanisms for
interaction below.

6.1 Eye Tracking and Calibration Module

Gaze based selection of objects provides an intuitive interface for
managing AR content without the need for additional input devices
or complex gestures. Since individuals almost always tend to gaze
upon an item or object when learning through the method of loci,
unknown concepts should be displayed quickly. In this way, our
learning framework allows us to explore the effects of passive learn-
ing, in which educational content may be consumed throughout a
users daily routine.



Our calibration framework is based on the open source eye tracker
built by Itoh et al. [15] for VR headsets, but with modifications
made for the HoloLens. Much like a typical eye-to-video tracker
calibration, we utilize a 5-point calibration interface in the Hololens.
However, most eye tracking calibration procedures are executed with
a sufficiently large field of view (FoV); i.e. the user gazes at several
points on a 2D screen within the world-camera’s wide FoV. In VR
implementations, calibration points are often affixed to the display
rather than registered in the world to counteract head movement.
Since the Hololens FoV is only 35 degrees, we modified the same
procedure used for VR and located vertical calibration points on the
viewable portion of the screen. Though this can result in a minor
reduction in vertical calibration accuracy, it sufficed for the purposes
of activating labels on objects of interest.

6.2 Personalized Learning Model

The final component of our language learning framework is a per-
sonalized learning model. Specifically one that automatically adapts
to the learners growth. We believe this is a fundamental difference
between AR language learning and other existing language learning
technologies. In our view, the future of augmented reality includes
a collection of other vitals sensors which can monitor the physi-
cal and mental state of the user, similar to the trend of including
health sensors in smartwatches. Already, we see devices like the
Magic Leap One which include built-in eye trackers. This provides
the ability to gauge the user’s current understanding of the foreign
language through continued monitoring of their cognitive response
when consuming educational content.

As a first step, we plan to utilize eye and gaze signals, which
have been shown to be good indicators of a users point of focus.
To validate a users understanding of foreign words, we can use the
duration of focus as an indicator of understanding. For example, la-
bels that are gazed upon longer or multiple times within a short time
period are likely to be unlearned. We plan to use these eye signals
to develop a machine learning classifier that can detect whether a
user understands or is confused about a foreign word. With such a
classifier, we could identify how much foreign vocabulary a student
has learned, and adapt by modifying the content (i.e, by introducing
new words and removing words they have already learned).

We have recorded some preliminary results through a pilot study
of 15 users. During the study, we presented English words in increas-
ing difficulty to non-native English speakers while they wore a head
mounted eye tracker. When presented with a word, the participants
responded whether they did or did not know the meaning of the
word. Afterwards, we developed an SVM classifier using the eye
signals that was able to achieve 75% accuracy on the most difficult
words. We plan to improve the performance by gathering more data
and testing other classification techniques such as Recurrent Neural
Networks.

6.3 Discussion and Future Work

Upon trying to implement a practical object labelling system in AR,
we encountered many challenges that are not present in other object
recognition implementations. For example, even though object
recognition rates can exceed 90% on many 2D image datasets, this
does not guarantee consistent use in the real world. Especially for
a lower resolution camera that uses compressed images (such as
the camera on the HoloLens), recognition from these algorithms is
almost unusable unless modified as described in Section 5.1.

One other approach that we would like to explore is the re-training
of object recognition models on video streams. Since integrated eye
tracking in combination with the environment mesh can help deter-
mine the scale and depth of an object, we could potentially use this
information to continuously re-train recognition for that particular
object. User confirmation of recognition results also deserves con-
sideration. For example, classification results may return the terms

“tool” and “pen” for a ball-point pen. Allowing the user to select
the term pen from a list could not only confirm the registered label
in the immediate environment but improve recognition of that item
upon the next encounter.

Our framework also tracks eye metrics such as pupil diameter
and eye movement while users consume learning content in AR. As
future work, we are investigating the use of machine learning based
approaches to fuse and classify these signals for real time use. If we
can automatically determine when a user understands a word, we
can automate the learning algorithm used and suggest better, more
relevant words to learn.

7 CONCLUSION

In this paper, we introduced a framework for realizing in-situ aug-
mented reality language learning. As part of this framework, we
describe our current progress implementing a client-server archi-
tecture that provides the ability to conduct both object recognition
and environment mapping in real-time using a convolutional neu-
ral network. We explored the problem of object registration when
using such a network, and provide a solution that accounts for the
mismatched recognition errors that may occur. Our method is imple-
mented directly on an AR headset. We described how to integrate eye
tracking into our framework to allow for user selection or activation
of annotations. We also described how to integrate a personalized
learning model into our framework including initial results. We hope
that this work will open up new avenues of research into methods
and interactions for AR language learning and encourage others to
contribute to this growing field.
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