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Abstract. We propose BinaryRelax, a simple two-phase algorithm, for training deep neural networks with quan-
tized weights. The set constraint that characterizes the quantization of weights is not imposed until
the late stage of training, and a sequence of pseudo quantized weights is maintained. Specifically, we
relax the hard constraint into a continuous regularizer via Moreau envelope, which turns out to be
the squared Euclidean distance to the set of quantized weights. The pseudo quantized weights are
obtained by linearly interpolating between the float weights and their quantizations. A continuation
strategy is adopted to push the weights towards the quantized state by gradually increasing the
regularization parameter. In the second phase, exact quantization scheme with a small learning rate
is invoked to guarantee fully quantized weights. We test BinaryRelax on the benchmark CIFAR
and ImageNet color image datasets to demonstrate the superiority of the relaxed quantization ap-
proach and the improved accuracy over the state-of-the-art training methods. Finally, we prove the
convergence of BinaryRelax under an approximate orthogonality condition.
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1. Introduction. Deep neural networks (DNNs) have achieved remarkable success in com-
puter vision, speech recognition, and natural language processing systems [18, 20, 19, 31].
There is thus a growing interest in deploying DNNs on low-power embedded systems with
limited memory storage and computing power, such as cell phones and other battery-powered
devices. However, DNNs typically require hundreds of megabytes of memory storage for
the trainable full-precision floating-point parameters or weights, and need billions of FLOPs
to make a single inference. This makes the deployment of DNNs impractical on portable
devices. Recent efforts have been devoted to the training of DNNs with coarsely quan-
tized weights which are represented using low-precision (8 bits or less) fixed-point arithmetic
[15, 9, 22, 41, 42, 37, 40, 27, 1]. Quantized neural networks enable substantial memory sav-
ings and computation/power efficiency, while achieving competitive performance with that
of full-precision DNNs. Moreover, quantized weights can exploit hardware-friendly bitwise
operations and lead to dramatic acceleration at inference time.

The simplest way to perform quantization would be directly rounding the weights of a
pre-trained full-precision network. But without re-training, this naive approach often leads
to poor accuracy at bit-width under 8. From the perspective of optimization, the training
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of quantized networks can be naturally abstracted as a constrained optimization problem of
minimizing some empirical risk subject to a set constraint that characterizes the quantization
of weights:

(1) min
x∈Rn

f(x) :=
1

N

N
∑

j=1

ℓj(x) subject to x ∈ Q.

The problem has specific structures. Given a training sample of input Ij and label uj , the
corresponding training loss takes the form

ℓj(x) = ℓ(σl(xl ∗ · · ·σ1(x1 ∗ Ij)), uj),

where x = [x⊤(1), . . . , x
⊤
(l)]

⊤ and x(i) ∈ R
ni contains the ni weights in the i-th linear (fully-

connected or convolutional) layer with
∑l

i=1 ni = n, σi is some element-wise nonlinear func-
tion. ”∗” denotes either matrix-vector product or convolution operation; reshaping is necessary
to avoid mismatch in dimensions. For layer-wise quantization, the set Q takes the form of
Q1 × · · · × Ql, where x(i) ∈ Qi := R+ × {±q1,±q2, . . . ,±qm}ni . Here R+ denotes the set of
nonnegative real numbers and 0 ≤ q1 < q2 < · · · < qm represent the m quantization levels and
are pre-determined. The weight vector in the i-th layer enjoys the factorization x(i) = si ·Q(i)

for some Q(i) ∈ {±q1,±q2, . . . ,±qm}ni and some trainable layer-wise scalar si ≥ 0. Note that
si does not have to be low-precision. si is shared by all weights across the i-th linear layer
and will be stored separately from the quantized numbers Qi for deployment efficiency. The
storage for the scaling factors is negligible as there are so few of them. Weight quantization
has two special cases as follows.

• 1-bit binarization: m = 1 and Qi = R+ × {±1}ni . The storage of Q(i)’s only needs
1 bit for representing the signs. Compared to the full-precision model, we have 32×
memory savings.

• 2-bit ternarization: m = 2 and Qi = R+ × {0,±1}ni . The storage needs 2 bits for
representing the signs and the binary numbers {0, 1}. Therefore, it gives 16× model
compression rate.

The acceleration through low-bit weights is achieved by leveraging the distributive law dur-
ing forward propagation. For example, propagation through the first linear layer yields the
computation of

x(1) ∗ I = (s1 ·Q(1)) ∗ I = s1 · (Q(1) ∗ I).

When Q(1) is under 1-bit or 2-bit representation, the computation of Q(1) ∗I can be extremely
fast as there are additions/subtractions involved only.

On the computational side, with sampled mini-batch gradient ∇fk at the k-th iteration,
the classical projected stochastic gradient descent (PSGD) [8, 33]

(2)

{

yk+1 = xk − γk∇fk(x
k)

xk+1 = projQ(y
k+1),

performs poorly however, and gets stagnated when updated with a small learning rate γk. It
is the quantization/projection of weights that “rounds off” small gradient updates and causes
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the plateau as explained by Li et al. in a recent study [23]. Instead of using the standard
gradient step in (2), a hybrid gradient update

yk+1 = yk − γk∇fk(x
k)

was adopted by Courbariaux et al. [9] and showed significantly improved accuracy. This
modification of PSGD is referred as BinaryConnect in [23]. BinaryConnect has become the
workhorse algorithm for training quantized DNN models such as Xnor-Net [30] and TWN
[22]. By introducing the augmented Lagrangian of (1), more complicated algorithms based
on alternating minimization were proposed in [3] and [21]. Despite the succinctness and
effectiveness of BinaryConnect, its convergence still lacks understanding. The only analysis
so far, to our knowledge, appeared in [23] under convexity assumption on the loss function.
Researchers have also explored different quantizers, whether uniform or not [9, 30, 41, 22,
37, 27, 40, 4]. All these methods maintain a sequence of purely quantized weights, if not the
optimal, during the training.

In this paper, we propose a novel relaxed quantization approach called BinaryRelax, to
explore more freely the non-convex landscape of the objective function of the DNNs under
the discrete quantization constraint. We relax the set constraint into a continuous regularizer,
which leads to a relaxed quantization update. Besides, we set an increasing regularization
parameter, driving xk slowly to the quantized state. When the training error stops decaying
at small γk, we switch to regular quantization to get genuinely quantized weights as desired.
By exploiting the structure of quantization set Q, we prove the convergence of BinaryRelax
in the non-convex setting, which naturally covers that of BinaryConnect. This seems to be
the first convergence proof of BinaryConnect under non-convexity assumption.

The rest of the paper is organized as follows. In section 2, we introduce the proposed
BinaryRelax method. In section 3, we benchmark CIFAR-10 and CIFAR-100 datasets and
compare BinaryRelax with state-of-the-art methods to demonstrate the benefits of performing
relaxed quantization. In section 4, we establish the convergence results. The concluding
remarks are given in section 5. All technical proofs are provided in the appendix.

Notations. ‖ · ‖ denotes the Euclidean norm; ‖ · ‖1 denotes the ℓ1 norm; ‖ · ‖0 counts the
number of nonzero components. 0 ∈ R

n represents the vector of zeros. For any vector x ∈ R
n

and closed set Q ⊂ R
n,

projQ(x) := argmin
z∈Q

‖x− z‖

is the projection of x onto Q, and

dist(x,Q) := min
z∈Q

‖x− z‖

is the Euclidean distance between x and Q. When Q is a subspace in R
n, x ⊥ Q means that

x is orthogonal to Q. sign(x) is the signum function acting pointwise on x, i.e.,

sign(x)i :=











1 if xi > 0,

−1 if xi < 0,

0 if xi = 0.
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The quantization of y is then given by projQ(y) = s∗ · Q∗. (4) is essentially a constrained
K-means clustering problem of 1-D points. The centroids are of the form ±(s · qj) with
1 ≤ j ≤ m, and they are determined by a single parameter s since qj ’s are fixed. For uniform
quantization where qj = j − 1, these centroids are equi-spaced. Given s, the assignment of
float weights is then governed by Q. So the problem (4) in principle can be solved by a variant
of Lloyd’s algorithm [24], which iterates between the assignment step (Q-update) and centroid
update step (s-update). In the Q-update of the l-th iteration, fixing the scaling factor sl−1,
each Ql

i is chosen from {±q1, . . . ,±qm} so that sl−1Ql
i is the nearest centroid to yi. In the

s-update, a quadratic problem
min
s∈R

‖s ·Ql − y‖2

is solved by sl = 〈Ql,y〉
‖Ql‖2

.

The above procedure however, is impractical here, as the quantization is needed in every
iteration of training. It has been shown that the closed form (exact) solution of (4) can be
computed at O(n) complexity for binarization [30] where Q ∈ {±1}n:

(5) s∗ =
‖y‖1
n

, Q∗
i =

{

1 if yi ≥ 0

−1 otherwise.

In the case of ternarization where Q ∈ {0,±1}n, an O(n log n) exact formula was found in
[37]:

(6) t∗ = arg max
1≤t≤n

‖y[t]‖
2
1

t
, s∗ =

‖y[t∗]‖1

t∗
, Q∗ = sign(y[t∗]),

where y[t] ∈ R
n keeps the t largest component in magnitude of y, while zeroing out the others.

For quantization with wider bit-width (b > 2), accurately solving (4) becomes computationally
intractable [37]. Empirical formulas have thus been proposed for an approximate quantized
solution [22, 37, 40], and they are sufficient for practical use. For example, a thresholding
scheme of O(n) complexity for ternarization was proposed in [22] as

(7) δ =
0.7‖y‖1

n
, s∗ =

∑n
i=1 |yi| · 1|yi|≥δ
∑n

i=1 1|yi|≥δ
, Q∗

i =

{

sign(yi) if |yi| ≥ δ

0 otherwise.

For b > 2, Yin et al. [37] proposed to just perform one iteration of Lloyd’s algorithm with a
carefully initialized Q.

The focus of this paper is not on how to quantize a float weight vector. From now on,
we simply assume that the quantization projQ(y) can be computed precisely, regardless the
choice of qj ’s.

2.2. Moreau envelope and proximal mapping. In the seminal paper [26], Moreau intro-
duced what is now called the Moreau envelope and the proximity operator (a.k.a. proximal
mapping) that generalizes the projection. Let g : Rn → (−∞,∞] be a lower semi-continuous
extended-real-valued function. For any t > 0, the Moreau envelope function gt is defined by

gt(x) := inf
z∈Rn

g(z) +
1

2t
‖z − x‖2.
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In general, gt is everywhere finite and locally Lipschitz continuous. Moreover, gt converges
pointwise to g as t → 0+. Moreau envelope is closely related to the inviscid Hamilton-Jacobi
equation [6]

ut +
1

2
| ∇xu |

2 = 0, u(x, 0) = g(x),

where u(x, t) = gt(x) is the unique viscosity solution of the above initial-value problem via
the Hopf-Lax formula

u(x, t) = inf
z

{

g(z) + tH∗

(

z − x

t

)}

with the Hamiltonian H(t, x, v) = 1
2‖v‖

2 and its Fenchel conjugate H∗ = H. The proximal
mapping of g is defined by

proxg(x) := arg min
z∈Rn

g(z) +
1

2
‖z − x‖2.

It is frequently used in optimization algorithms associated with non-smooth optimization
problems such as total variation denoising [13].

In particular, if g = χA is the indicator function of a close set A ⊂ R
n, where

χA(x) =

{

0 if x ∈ A

∞ otherwise.

The Moreau envelope is well defined for t > 0 and is given by

inf
z

χA(z) +
1

2t
‖z − x‖2 = inf

z∈A

1

2t
‖z − x‖2 =

1

2t
dist(x,A)2.

And the proximal mapping proxg(x) reduces to the projection projA(x).

2.3. Relaxed quantization. Let us begin with the alternative form of DNNs quantization
problem (1):

(8) min
x∈Rn

f(x) + χQ(x),

When both the objective function f(x) and the set Q are non-convex, the discontinuity of χQ

poses an extra challenge in minimization since a continuous gradient descent update can be
made stagnant when projected discontinuously. The Moreau envelope of χQ is 1

2tdist(x,Q)2,
which is continuously differentiable almost everywhere, except at points that have at least two
nearest line subspaces, i.e., there exist two different ways to quantize x. We use 1

2tdist(x,Q)2

as the approximant of the discontinuous χQ(z) and propose to minimize the relaxed training
error

(9) min
x∈Rn

f(x) +
λ

2
dist(x,Q)2,

where λ = t−1 > 0 is the regularization parameter. When λ → ∞, λ
2dist(x,Q)2 converges

pointwise to χQ(x), and the global minimum of (9) converges to that of (8).
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Proposition 2.1. Suppose f(x) is continuous. Let f∗
Q = minx∈Q f(x) be the global minimum

of (8) and x∗λ be the global minimizer of relaxed quantization problem (9). Then

dist(x∗λ,Q) → 0 and f(x∗λ) → f∗
Q, as λ → ∞.

Remark 2.2. Relaxation via Moreau envelope leads to a quadratic penalty formulation.
An interesting but different quadratic penalty was considered in [3] for the general compression
problem of DNNs. In fact, by replacing the Euclidean distance ‖ · ‖ in Moreau envelope with
the metric ‖ · ‖D induced by some matrix D, one can derive a more general penalty

inf
z∈A

1

2
‖z − x‖2D.

We refer the readers to the recent paper [29] for successful application of such penalty to phase
retrieval problem.

2.4. Algorithm. Inspired by the hybrid gradient update proposed in [9], we write a two-
line solver for the minimization problem (9):

(10)

{

yk+1 = yk − γk∇fk(x
k)

xk+1 = argminx∈Rn
1
2 ‖x− yk+1‖2 + λ

2dist(x,Q)2.

The algorithm constructs two sequences: an auxiliary sequence of float weights {yk} and a
sequence of nearly quantized weights {xk}. The mismatch of discontinuous projection and
continuous gradient descent is resolved by the relaxed quantization step in (10), which calls
for computing the proximal mapping of the function λ

2dist(x,Q)2. This can be done via the
following closed-form formula.

Proposition 2.3. Let

projQ(y
k+1) = argmin

x∈Q
‖x− yk+1‖2

be the quantization of yk+1, then the solution to relaxed quantization subproblem in (10) is
given by

(11) xk+1 =
λ projQ(y

k+1) + yk+1

λ+ 1
.

Note that we still need the exact quantization projQ(y
k+1) to perform relaxed quantiza-

tion. The update xk+1 is essentially a linear interpolation between yk+1 and its quantiza-
tion projQ(y

k+1), and λ controls the weighted average. xk+1 is thus not quantized because
xk+1 6∈ Q, but xk+1 approaches Q as λ increases. Hereby we adopt a continuation strategy
and let λ grow slowly. Specifically, we inflate λ after a certain number of epochs by a factor
ρ > 1. Intuitively, the relaxation with continuation will help skip over some bad local minima
of (8) located in Q , because they are not local minima of the relaxed formulation in general.

Proposition 2.4. Suppose f(x) is differentiable. Any point x∗ ∈ Q is not a local minimizer
of the relaxed quantization problem (9) unless ∇f(x∗) = 0.
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Algorithm 1 BinaryRelax.

Input: number of epochs for training, batch size, schedule of learning rate {γk}, growth factor
ρ > 1.

for i = 1, 2,. . . , nb-epoch do

Randomly shuffle the data and partition into batches.
for j = 1, 2, . . . , nb-batch do

yk+1 = yk − γk∇fk(x
k)

if i ≤ T then

xk+1 =
λkprojQ(yk+1)+yk+1

λk+1 // Phase I
if increase λ then

λk+1 = ρλk

else

λk+1 = λk

end if

else

xk+1 = projQ(y
k+1) // Phase II

end if

k = k + 1
end for

end for

In order to obtain quantized weights in the end, we turn off the relaxation mode and
enforce quantization. The BinaryRelax algorithm is summarized in Alg. 1.

Remark 2.5. For BinaryRelax, we replace a discrete quantization constraint with a con-
tinuous regularizer. The similar idea of relaxing the discrete sparsity constraint ‖x‖0 ≤ s
into a continuous and possibly non-convex sparse regularizer has been long known in the
contexts of statistics and compressed sensing [35, 12, 2]. For example, compressed sensing
solvers for minimizing the convex ℓ1 norm [13] or non-convex sparse proxies, such as ℓ1/2
(with smoothing) [5] and ℓ1−2 [36], often empirically outperform those directly tackling the
nonzero counting metric ℓ0. Interestingly, similar to the quantization set Q, the sparsity con-
straint set {x ∈ R

n : ‖x‖0 ≤ s} is also a finite union of low-dimensional subspaces in R
n.

More precisely,

{x ∈ R
n : ‖x‖0 ≤ s} =

⋃

S⊂{1,...,n}, |S|=s

{x ∈ R
n : supp(x) ⊆ S},

where supp(x) denotes the support of x, and each member in the union is a s-dimensional
subspace with s ≪ n.

Remark 2.6. BinaryRelax resembles the linearized Bregman algorithm proposed by Yin,
Osher, Goldfarb, and Darbon [38, 39] for solving the basis pursuit problem [7, 2]

min
x∈Rn

‖x‖1 subject to Ax = b,
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by iterating

{

yk+1 = yk − τkA
⊤(Axk − b)

xk+1 = δ · shrink(yk+1, µ)

where δ, µ, τk > 0 are algorithmic parameters. In linearized Bregman, A⊤(Ax − b) is the
gradient of sum of squares error 1

2‖Ax − b‖2, and shrink(y, µ) is the proximal mapping of ℓ1
norm (a.k.a. soft-thresholding operator [11]):

shrink(y, µ) := argmin
u

1

2µ
‖u− y‖2 + ‖u‖1.

With that said, linearized Bregman also iterates between some sort of hybrid gradient step
and proximal mapping. However, it is not exactly the same as BinaryRelax, as there is a
scaling by δ in the proximal step.

2.5. Connection to BinaryConnect. In fact, the Phase II of BinaryRelax

(12)

{

yk+1 = yk − γk∇fk(x
k)

xk+1 = projQ(y
k+1)

is exactly the BinaryConnect scheme [9]. The performance of BinaryRelax, however, mostly
relies on Phase I training. As will be seen from the experimental results reported in section
3, the gain from Phase II training is very limited. Switching to BinaryConnect in Phase II is
just to get truly quantized weights.

3. Experimental Results. We tested BinaryRelax on benchmark CIFAR [17] and Ima-
geNet [10] color image datasets. The two baselines are the BinaryConnect framework (12)
combined with the exact binarization formula (5) (BWN) [30] and the heuristic ternarization
scheme (7) (TWN) [22], resp.. We used the same quantization formulas for BinaryRelax in
the relaxed quantization update (11). Both algorithms were initialized with the weights of a
pre-trained float model.

3.1. The selection of λ. We always initialize the relaxation parameter λ0 = 1. We split
into roughly 4/5 and 1/5 of the training epochs for Phase I and Phase II, resp.. To guarantee
the smooth transitioning to Phase II from Phase I, a proper growth factor ρ > 1 is chosen so
that λ ∈ (100, 200) at the moment Phase I ends. A relatively small λ will result in noticeable
drop in accuracy when Phase II starts.

3.2. CIFAR datasets. The CIFAR-10 dataset consists of 60000 32×32 color images in 10
classes, with 6,000 images per class. There are 50,000 training images and 10,000 test images.
CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes containing 600 images
each. There are 500 training images and 100 test images per class. Fig. 2 shows some sample
images from CIFAR datasets. In the experiments, we used the testing images for validation.
We coded up the BinaryRelax in PyTorch [28] platform. The experiments were carried out
on two desktops with Nvidia graphics cards GTX 1080 Ti and Titan X, resp..
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CIFAR-10 CIFAR-100

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

apple

aquarium fish

baby

bear

beaver

bed

bee

beetle

bicycle

bottle

Figure 2. Sample images from CIFAR datasets: 10 classes in CIFAR-10 (left); 10 out of 100 classes in
CIFAR-100 (right).

We ran 300 epochs. The initial learning rate γ0 = 0.1 with decay by a factor of 0.1 at
epochs {120, 220}. Phase II starts at epoch 240. λ increases by a factor of ρ = 1.02 after every
epoch. In addition, we used batch size = 128, ℓ2 weight decay = 10−4, batch normalization
[16], and momentum = 0.95.

We tested the algorithms on the popular VGG [34] and ResNet[14] architectures, and the
validation accuracies for CIFAR-10 and CIFAR-100 are summarized in Tab. 1 and Tab. 2,
resp.. Note that ResNet-18 and ResNet-34 tested here were originally constructed for the
more challenging ImageNet classification [10] and then adapted for CIFAR datasets. They
have wider channels in the convolutional layers and are much larger than the other ResNets.
For example, ResNet-18 has ∼ 11 million parameters, whereas ResNet-110 has only ∼ 1.7
million. This explains their higher accuracies. All quantized networks were initialized from
their full-precision counterparts whose validation accuracies are listed in the second column.
Fig. 3 shows the validation accuracies for CIFAR-100 tests with VGG-16 and ResNet-34
during the training process. For the VGG-16 tests, we notice the decay of the validation
accuracies of BinaryRelax occurs in Phase I training. This is due to the increase of the
parameter λ, which makes the regularization more and more stringent. With approximately
the same training cost, our relaxed quantization approach consistently outperforms the hard
quantization counterpart in validation accuracies. As seen from the tables and figure, the
advantage of relaxed quantization is particularly clear when it comes to the large nets ResNet-
18 and ResNet-34, where we have more complex landscapes with spurious local minima. In
this case, our accuracies of binarized networks even surpass that of TWN. The relaxation
indeed helps skip over bad local minima during the training.

3.3. ImageNet. ImageNet (ILSVRC12) dataset [10] is a benchmark for large-scale image
classification task, which has 1.2 million images for training and 50, 000 for validation of 1,000
categories. We quantize ResNet-18 at bit-widths 1 (binary) and 2 (ternary). The experiments
were carried out on a machine with 8 Nvidia GeForce GTX 1080 Ti GPUs.
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CIFAR-10 Float
Binary Ternary

BWN Ours TWN Ours

VGG-11 91.93 88.70 89.28 90.48 91.01

VGG-16 93.59 91.60 91.98 92.75 93.20

ResNet-20 92.68 87.44 87.82 88.65 90.07

ResNet-32 93.40 89.49 90.65 90.94 92.04

ResNet-18 95.49 92.72 94.19 93.55 94.98

ResNet-34 95.70 93.25 94.66 94.05 95.07

Table 1

CIFAR-10 validation accuracies.

CIFAR-100 Float
Binary Ternary

BWN Ours TWN Ours

VGG-11 70.43 62.35 63.82 64.16 65.87

VGG-16 73.55 69.03 70.14 71.41 72.10

ResNet-56 70.86 66.73 67.65 68.26 69.83

ResNet-110 73.21 68.67 69.85 68.95 72.32

ResNet-18 76.32 72.31 74.04 73.15 75.24

ResNet-34 77.23 72.92 75.62 74.43 76.16

Table 2

CIFAR-100 validation accuracies.

We initialized BinaryRelax with the pre-trained full-precision (32-bit) models available
from the PyTorch torchvision package [28]. We trained in total 70 epochs, with phase II
starting at epoch 55. The initial learning rate γ0 = 0.1 and decays by a factor of 0.1 at epochs
{30, 40, 50}. Relaxation parameter λ starts at 1 and increases by a growth factor of ρ = 1.045
after each half (1/2) epoch. In all these experiments, we used momentum= 0.9 and weight
decay = 10−4. The comparison results with BWN and TWN are listed in Tab. 3.

Network Bit-width Method Top-1 Top-5

ResNet-18

32 (float) 69.6 89.0

1 (binary)
BWN 60.8 83.0
Ours 63.2 85.1

2 (ternary)
TWN 61.8 84.2
Ours 66.5 87.3

Table 3

ImageNet validation accuracies.

4. Convergence Analysis. In this section, we analyze the convergence property of the
proposed BinaryRelax. More precisely, we will focus on Phase II of BinaryRelax (i.e., Bina-
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convergence, we need to exploit the property of the set Q being the union of line subspaces
by introducing several technical lemmata in section 4.1. The analysis here cannot be readily
extended to the setup of [23] or other problems under general discrete constraint.

4.1. Preliminaries. We have the following basic assumptions.

Assumption 4.1. f(x) is bounded from below. Without loss of generality, we assume the
lower bound is 0.

Assumption 4.2. f(x) is L-Lipschitz differentiable, i.e., for any x, y ∈ R
n, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Assumption 4.3. E[‖∇f(xk) − ∇fk(x
k)‖2] ≤ σ2 for all k ∈ N, where the expectation is

taken over the stochasticity of the algorithm (i.e., random selection of fk).

Our proof relies on the following technical lemmata that exploit the structure of set Q.

Lemma 4.4 (Approximate orthogonality). Let {yk}, {xk} be defined in (13). There exists
αk ≥ 0, such that

αk‖x
k+1 − xk‖2 + ‖yk − xk‖2 = ‖yk − xk+1‖2.

Proposition 4.5. Let θmin be the smallest angle formed by any two line subspaces in Q. If
‖xk+1 − xk‖ < ‖xk‖ sin θmin, then αk = 1 in Lemma 4.4. Moreover, αk may have to be 0 only
when ‖yk − xk‖ = ‖yk − xk+1‖ and ∇fk(x

k) ⊥ Li with Li containing xk+1.

The above proposition implies that αk is generally positive and approaches 1 when the relative
change in consecutive iterates is getting small.

Lemma 4.6 (Alternative update). Let {xk} be defined in (13). Suppose xk+1 ∈ Li ⊂ Q
with Li being some line subspace and define x̃k := projLi

(yk), then

xk+1 = arg min
x∈Li

‖x− (x̃k − γk∇fk(x
k))‖2.

Moreover, xk+1 is a local minimizer of the following problem

(14) min
x∈Q

‖x− (x̃k − γk∇fk(x
k))‖2.

Lemma 4.7. Let αk and x̃k be defined in Lemma 4.4 and 4.6, resp., it holds that

‖xk+1 − x̃k‖2 ≤ αk‖x
k+1 − xk‖2.

As always, the descent lemma is critical.

Lemma 4.8 (Descent lemma). For any x, y, it holds that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2.

We recall the definition of subdifferential for proper and lower semicontinuous functions.
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Definition 4.9 (Subdifferential [25, 32]). Let h : Rn → (−∞,+∞] be a proper and lower
semicontinuous function. We define dom(h) := {x ∈ R

n : h(x) < +∞}. For a given x ∈
dom(h), the Fréchet subdifferential of h at x, written as ∂̂h(x), is the set of all vectors u ∈ R

n

which satisfy

lim
y 6=x

inf
y→x

h(y)− h(x)− 〈u, y − x〉

‖y − x‖
≥ 0.

When x /∈ dom(h), we set ∂̂h(x) = ∅. The (limiting) subdifferential, or simply the subdiffer-
ential, of h at x ∈ R

n, written as ∂h(x), is defined through the following closure process

∂h(x) := {u ∈ R
n : ∃xk → x, h(xk) → h(x) and uk ∈ ∂̂h(xk) → u as k → ∞}.

4.2. Main results. We are in the position to present the convergence results, which are
established under an approximate orthogonality condition on αk in Lemma 4.4.

Theorem 4.10. Let {xk} be the sequence generated by (13). Suppose there exist
¯
α, ᾱ, γ > 0

such that
¯
α ≤ αk ≤ ᾱ and γk+1 ≤ γk ≤ γ < ¯

α
2L for all k ∈ N. Then

lim
k→∞

E[‖xk+1 − xk‖2] = 0,

if
∑∞

k=0 γ
2
k < ∞. If further

∑∞
k=0 γk = ∞, we have

lim inf
k→∞

E[dist(0, ∂h(xk))2] ≤
σ2

3

(

4ᾱ

¯
α2

+ 1

)

,

where h = f + χQ.

5. Concluding Remarks. From optimization point of view, we proposed BinaryRelax,
a novel relaxation approach for training quantized neural networks. Our algorithm iterates
between a hybrid gradient step for updating the float weights and a weighted average of
the computed float weights and their quantizations. We increase slowly the parameter that
controls the average to drive the weights to the quantized state. In order to get the purely
quantized weights, exact quantization replaces the weighted average in the second phase of
training. Extensive experiments shows that with about the same training cost, BinaryRelax is
consistently better than its BinaryConnect counterpart in terms of validation accuracy. It has
clearer advantage on larger networks, which yield more complex landscape of the training loss
with spurious local minima. In addition, BinaryRelax is provably convergent in expectation
under an approximate orthogonality condition, which is another contribution of this paper.
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Appendix: Technical Proofs.

Proof of Proposition 2.1. Since x∗λ is the global minimizer of (9),

f∗
Q ≥ f(x∗λ) +

λ

2
dist(x∗λ,Q)2 ≥ f∗ +

λ

2
dist(x∗λ,Q)2,

where f∗ = minx∈Rn f(x) > −∞. So

dist(x∗λ,Q) ≤

√

2(f∗
Q − f∗)

λ
→ 0, as λ → ∞.

Denote x∗λ,Q = projQ(x
∗
λ), then ‖x∗λ,Q − x∗λ‖ → 0 as λ → ∞. Since f∗

Q is the minimum in Q,
further we have

f(x∗λ) +
λ

2
dist(x∗λ,Q)2 ≤ f∗

Q ≤ f(x∗λ,Q) → f(x∗λ), as λ → ∞.

Therefore, limλ→∞ f(x∗λ) = f∗
Q.

Proof of Proposition 2.3. Problem (10) amounts to

min
x

min
z∈Q

1

2
‖x− yk‖2 +

λ

2
‖z − x‖2 = min

z∈Q
min
x

1

2
‖x− yk‖2 +

λ

2
‖z − x‖2.

With fixed z ∈ Q, the inner problem is minimized at x = λ z+yk

λ+1 . Then it reduces to

z∗ =argmin
z∈Q

1

2

∥

∥

∥

∥

λz + yk

λ+ 1
− yk

∥

∥

∥

∥

2

+
λ

2

∥

∥

∥

∥

z −
λz + yk

λ+ 1

∥

∥

∥

∥

2

=argmin
z∈Q

‖z − yk‖2 = projQ(y
k).

Therefore, xk =
λ projQ(yk)+yk

λ+1 is the optimal solution.
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Proof of Proposition 2.4. Proof by contradiction. Let us assume x∗ ∈ Q is a local mini-
mizer of problem (9) and ∇f(x∗) 6= 0. Then for any point x in the neighborhood of x∗, we
have

f(x∗) ≤ f(x) +
λ

2
dist(x,Q)2 ≤ f(x) +

λ

2
‖x− x∗‖2.

Set x = x∗ − β∇f(x∗) with a small β > 0. The above inequality reduces to

(15) f(x∗) ≤ f(x∗ − β∇f(x∗)) +
λβ2

2
‖∇f(x∗)‖2.

On the other hand, by Taylor’s expansion,

(16) f(x∗ − β∇f(x∗)) = f(x∗)− β‖∇f(x∗)‖2 + o(β).

Combining (15) and (16), we have

‖∇f(x∗)‖2 ≤
λβ

2
‖∇f(x∗)‖2 + o(1),

which leads to a contradiction as we let β → 0.

Proof of Lemma 4.4. Since xk, xk+1 ∈ Q and xk = projQ(y
k), it holds that ‖yk − xk‖2 ≤

‖yk − xk+1‖2, i.e., αk ≥ 0.

Proof of Proposition 4.5. Since the only intersection of the line subspaces is the origin, the
distance between xk and any other line is at least ‖xk‖ sin θmin. If ‖x

k+1−xk‖ < ‖xk‖ sin θmin,
then xk and xk+1 must lie in the same line, and therefore αk = 1. On the other hand, if αk can
only be 0, then it must hold that ‖xk − yk‖ = ‖xk − yk+1‖ and xk 6= xk+1, meaning that xk+1

is a different projection of yk onto Q. Moreover, since the projection of yk+1 = yk−γk∇fk(x
k)

onto Q is also xk+1. Suppose xk+1 ∈ Li ⊂ Q, then ∇fk(x
k) ⊥ Li.

Proof of Lemma 4.6. By the assumption, we have

xk+1 = projLi
(yk − γk∇fk(x

k)) = projLi
(x̃k − γk∇fk(x

k) + yk − x̃k).

Note that yk − x̃k ⊥ Li (see Fig. 4), then

xk+1 = projLi
(x̃k − γk∇fk(x

k)).

So xk+1 is the closest point to x̃k − γk∇fk(x
k) on Li. If x̃

k − γk∇fk(x
k) = 0, then xk+1 = 0

is the global minimizer of (14). Otherwise, xk+1 6= 0. Since the line subspaces that constitute
Q only intersect at the origin, there exists a neighborhood N of xk+1 such that N ∩Q ⊂ Li.
Therefore, xk+1 is a local minimizer of problem (14).
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Combining (17), (18) and (19) and taking the expectation gives

(20) E[f(xk+1)] ≤ E[f(xk)]− ¯
α− 2γkL

4γk
E[‖xk+1 − xk‖2] +

γkσ
2

¯
α

.

Multiplying (20) by γk and using αk ≥
¯
α > 0, γk+1 ≤ γk ≤ γ < ¯

α
2L and f ≥ 0, we obtain

γk+1E[f(xk+1)] ≤ γkE[f(x
k+1)] ≤ γkE[f(x

k)]− (
¯
α− 2γL)E[‖xk+1 − xk‖2] +

γ2kσ
2

¯
α

Rearranging terms in the above inequality and taking the sum over k, we have

(
¯
α− 2γL)

∞
∑

k=0

E[‖xk+1 − xk‖2] ≤ γf(x0)− lim
k→∞

γkE[f(x
k)] +

σ2

¯
α

∞
∑

k=0

γ2k < ∞.

Therefore, limk→∞ E[‖xk+1 − xk‖2] = 0.

Next we prove the second claim. By Lemma 4.6, the first-order optimality condition of
(14) holds at xk+1. So

0 ∈ ∇fk(x
k) +

xk+1 − x̃k

γk
+ ∂χQ(x

k+1),

which implies

−
xk+1 − x̃k

γk
−∇fk(x

k) +∇f(xk+1) ∈ ∇f(xk+1) + ∂χQ(x
k+1) = ∂h(xk+1).

Therefore,

E[dist(0, ∂h(xk+1))2]

≤E

[

∥

∥

∥

∥

−
xk+1 − x̃k

γk
−∇fk(x

k) +∇f(xk+1)

∥

∥

∥

∥

2
]

≤
1

3

(

E

[

‖xk+1 − x̃k‖2

γ2k

]

+ E[‖∇fk(x
k)−∇f(xk)‖2] + E[‖∇f(xk)−∇f(xk+1)‖2]

)

≤
1

3

(

ᾱE

[

‖xk+1 − xk‖2

γ2k

]

+ σ2 + L2
E[‖xk+1 − xk‖2]

)

.(21)

The second inequality above holds because of Cauchy-Schwarz inequality. In the last inequal-
ity, we used Lemma 4.7 and the assumption that f is L-Lipschitz differentiable. We want to

bound lim infk→∞ E

[

‖xk+1−xk‖2

γ2
k

]

. From (20) it follows that

γk

(

(
¯
α− 2γkL)E

[

‖xk+1 − xk‖2

4γ2k

]

−
σ2

¯
α

)

≤ E[f(xk)− f(xk+1)].
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Summing the above inequality over k yields

∞
∑

k=0

γk

(

(
¯
α− 2γkL)E

[

‖xk+1 − xk‖2

4γ2k

]

−
σ2

¯
α

)

≤ f(x0) < ∞.

Since γk > 0 and
∑∞

k=1 γk = ∞, we must have

lim inf
k→∞

(
¯
α− 2γkL)E

[

‖xk+1 − xk‖2

4γ2k

]

−
σ2

¯
α

≤ 0,

and thus

lim inf
k→∞

E

[

‖xk+1 − xk‖2

γ2k

]

≤ lim
k→∞

4σ2

¯
α(

¯
α− 2γkL)

=
4σ2

¯
α2

.

Finally, from (21) it follows that

lim inf
k→∞

E[dist(0, ∂h(xk))2] ≤
σ2

3

(

4ᾱ

¯
α2

+ 1

)

,

which completes the proof.
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