
Noname manuscript No.
(will be inserted by the editor)

Blended Coarse Gradient Descent for Full Quantization of Deep Neural

Networks

Penghang Yin · Shuai Zhang · Jiancheng Lyu ·

Stanley Osher · Yingyong Qi · Jack Xin*

Received: date / Accepted: date

Abstract Quantized deep neural networks (QDNNs) are attractive due to their much lower mem-
ory storage and faster inference speed than their regular full precision counterparts. To maintain
the same performance level especially at low bit-widths, QDNNs must be retrained. Their training
involves piecewise constant activation functions and discrete weights, hence mathematical chal-
lenges arise. We introduce the notion of coarse gradient and propose the blended coarse gradient
descent (BCGD) algorithm, for training fully quantized neural networks. Coarse gradient is gener-
ally not a gradient of any function but an artificial ascent direction. The weight update of BCGD
goes by coarse gradient correction of a weighted average of the full precision weights and their
quantization (the so-called blending), which yields sufficient descent in the objective value and
thus accelerates the training. Our experiments demonstrate that this simple blending technique is
very effective for quantization at extremely low bit-width such as binarization. In full quantization
of ResNet-18 for ImageNet classification task, BCGD gives 64.36% top-1 accuracy with binary
weights across all layers and 4-bit adaptive activation. If the weights in the first and last layers
are kept in full precision, this number increases to 65.46%. As theoretical justification, we show
convergence analysis of coarse gradient descent for a two-linear-layer neural network model with
Gaussian input data, and prove that the expected coarse gradient correlates positively with the
underlying true gradient.

Keywords weight/activation quantization · blended coarse gradient descent · sufficient descent
property · deep neural networks

Mathematics Subject Classification (2010) 90C35, 90C26, 90C52, 90C90.

P. Yin, S. Zhang and J. Lyu contributed equally.

Penghang Yin · Stanley Osher
Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095
E-mail: yph@ucla.edu, sjo@math.ucla.edu

Shuai Zhang · Yingyong Qi
Qualcomm AI Research, San Diego, CA 92121
E-mail: shuazhan@qti.qualcomm.com, yingyong@qti.qualcomm.com

Jiancheng Lyu · Jack Xin
Department of Mathematics, University of California at Irvine, Irvine, CA 92697
E-mail: jianchel@uci.edu; jxin@math.uci.edu, *corresponding author, (949)-331-6314.



Blended Coarse Gradient Descent 1

1 Introduction

Deep neural networks (DNNs) have seen enormous success in image and speech classification, nat-
ural language processing, health sciences among other big data driven applications in recent years.
However, DNNs typically require hundreds of megabytes of memory storage for the trainable full-
precision floating-point parameters, and billions of FLOPs (floating point operations per second) to
make a single inference. This makes the deployment of DNNs on mobile devices a challenge. Some
considerable recent efforts have been devoted to the training of low precision (quantized) models
for substantial memory savings and computation/power efficiency, while nearly maintaining the
performance of full-precision networks. Most works to date are concerned with weight quantiza-
tion (WQ) [8,22,28,36,5,35]. In [13], He et al. theoretically justified for the applicability of WQ
models by investigating their expressive power. Some also studied activation function quantization
(AQ) [17,28,18,4,26,37], which utilize an external process outside of the network training. This is
different from WQ at 4 bit or under, which must be achieved through network training. Learning
activation function σ as a parametrized family (σ = σ(x, α)) and part of network training has
been studied in [15] for parametric rectified linear unit, and was recently extended to uniform AQ
in [6]. In uniform AQ, σ(x, α) is a step (or piecewise constant) function in x, and the parameter
α determines the height and length of the steps. In terms of the partial derivative of σ(x, α) in
α, a two-valued proxy derivative of the parametric activation function (PACT) was proposed [6],
although we will present an almost everywhere (a.e.) exact one in this paper.

The mathematical difficulty in training activation quantized networks is that the loss function
becomes a piecewise constant function with sampled stochastic gradient a.e. zero, which is undesir-
able for back-propagation. A simple and effective way around this problem is to use a (generalized)
straight-through (ST) estimator or derivative of a related (sub)differentiable function [16,1,17,18]
such as clipped rectified linear unit (clipped ReLU) [4]. The idea of ST estimator dates back to the
perceptron algorithm [29,30] proposed in 1950s for learning single-layer perceptrons with binary
output. For multi-layer networks with hard threshold activation (a.k.a. binary neuron), Hinton
[16] proposed to use the derivative of identity function as a proxy in back-propagation or chain
rule, similar to the perceptron algorithm. The proxy derivative used in backward pass only was
referred as straight-through estimator in [1], and several variants of ST estimator [17,18,4] have
been proposed for handling quantized activation functions since then. A similar situation, where
the derivative of certain layer composited in the loss function is unavailable for back-propagation,
has also been brought up by [33] recently while improving accuracies of DNNs by replacing the
softmax classifier layer with an implicit weighted nonlocal Laplacian layer. For the training of the
latter, the derivative of a pre-trained fully-connected layer was used as a surrogate [33].

On the theoretical side, while the convergence of the single-layer perception algorithm has been
extensively studied [34,11], there is almost no theoretical understanding of the unusual ‘gradient’
output from the modified chain rule based on ST estimator. Since this unusual ‘gradient’ is certainly
not the gradient of the objective function, then a question naturally arises: how does it correlate
to the objective function? One of the contributions in this paper is to answer this question. Our
main contributions are threefold:

1. Firstly, we introduce the notion of coarse derivative and cast the early ST estimators or proxy
partial derivatives of σ(x, α) in α including the two-valued PACT of [6] as examples. The coarse
derivative is non-unique. We propose a three-valued coarse partial derivative of the quantized
activation function σ(x, α) in α that can outperform the two-valued one [6] in network training.
We find that unlike the partial derivative ∂σ

∂x (x, α) which vanishes, the a.e. partial derivative
of σ(x, α) in α is actually multi-valued (piecewise constant). Surprisingly, this a.e. accurate
derivative is empirically less useful than the coarse ones in fully quantized network training.

2. Secondly, we propose a novel accelerated training algorithm for fully quantized networks, termed
blended coarse gradient descent method (BCGD). Instead of correcting the current full preci-
sion weights with coarse gradient at their quantized values like in the popular BinaryConnect
scheme [8,17,28,22,37,4,23,35], the BCGD weight update goes by coarse gradient correction
of a suitable average of the full precision weights and their quantization. We shall show that
BCGD satisfies the sufficient descent property for objectives with Lipschitz gradients, while Bi-
naryConnect does not unless an approximate orthogonality condition holds for the iterates [35].



2 Penghang Yin et al.

3. Our third contribution is the mathematical analysis of coarse gradient descent for a two-layer
network with binarized ReLU activation function and i.i.d. unit Gaussian data. We provide
an explicit form of coarse gradient based on proxy derivative of regular ReLU, and show that
when there are infinite training data, the negative expected coarse gradient gives a descent
direction for minimizing the expected training loss. Moreover, we prove that a normalized
coarse gradient descent algorithm only converges to either a global minimum or a potential
spurious local minimum. This answers the question.

The rest of the paper is organized as follows. In section 2, we discuss the concept of coarse
derivative and give examples for quantized activation functions. In section 3, we present the joint
weight and activation quantization problem, and BCGD algorithm satisfying the sufficient descent
property. For readers’ convenience, we also review formulas on 1-bit, 2-bit and 4-bit weight quan-
tization used later in our numerical experiments. In section 4, we give details of fully quantized
network training, including the disparate learning rates on weight and α. We illustrate the enhanced
validation accuracies of BCGD over BinaryConnect, and 3-valued coarse α partial derivative of σ
over 2-valued and a.e. α partial derivative in case of 4-bit activation, and (1,2,4)-bit weights on
CIFAR-10 image datasets. We show top-1 and top-5 validation accuracies of ResNet-18 with all
convolutional layers quantized at 1-bit weight/4-bit activation (1W4A), 4-bit weight/4-bit acti-
vation (4W4A), and 4-bit weight/8-bit activation (4W8A), using 3-valued and 2-valued α partial
derivatives. The 3-valued α partial derivative out-performs the two-valued with larger margin in
the low bit regime. The accuracies degrade gracefully from 4W8A to 1W4A while all the convolu-
tional layers are quantized. The 4W8A accuracies with either the 3-valued or the 2-valued α partial
derivatives are within 1% of those of the full precision network. If the first and last convolutional
layers are in full precision, our top-1 (top-5) accuracy of ResNet-18 at 1W4A with 3-valued coarse
α-derivative is 4.7 % (3%) higher than that of HWGQ [4] on ImageNet dataset. This is in part due
to the value of parameter α being learned without any statistical assumption.

Notations. ‖ · ‖ denotes the Euclidean norm of a vector or the spectral norm of a matrix; ‖ · ‖∞
denotes the ℓ∞-norm. 0 ∈ R

n represents the vector of zeros, whereas 1 ∈ R
n the vector of all ones.

We denote vectors by bold small letters and matrices by bold capital ones. For any w, z ∈ R
n,

w⊤z = 〈w, z〉 =∑i wizi is their inner product. w ⊙ z denotes the Hadamard product whose i-th
entry is given by (w ⊙ z)i = wizi.

2 Activation Quantization

In a network with quantized activation, given a training sample of input Z and label u, the asso-
ciated sample loss is a composite function of the form:

ℓ(w,α; {Z, u}) := ℓ(wl ∗ σ(wl−1 ∗ · · ·w2 ∗ σ(w1 ∗ Z, α1) · · · , αl−1); u), (1)

where wj contains the weights in the j-th linear (fully-connected or convolutional) layer, ‘∗’ denotes
either matrix-vector product or convolution operation; reshaping is necessary to avoid mismatch in
dimensions. The j-th quantized ReLU σ(xj , αj) acts element-wise on the vector/tensor xj output
from the previous linear layer, which is parameterized by a trainable scalar αj > 0 known as
the resolution. For practical hardware-level implementation, we are most interested in uniform
quantization:

σ (x, α) =











0, if x ≤ 0,

kα, if (k − 1)α < x ≤ kα, k = 1, 2, . . . , 2ba − 1,
(

2ba − 1
)

α, if x >
(

2ba − 1
)

α,

(2)

where x is the scalar input, α > 0 the resolution, ba ∈ Z+ the bit-width of activation and k the
quantization level. For example, in 4-bit activation quantization (4A), we have ba = 4 and 2ba = 16
quantization levels including the zero.

Given N training samples, we train the network with quantized ReLU by solving the following
empirical risk minimization

min
w,α

f(w,α) :=
1

N

N
∑

i=1

ℓ(w,α; {Z(i), u(i)}) (3)





4 Penghang Yin et al.

Surprisingly, this a.e. derivative is not the best in terms of accuracy or computational cost in
training, as will be reported in section 4. We propose an empirical three-valued proxy partial
derivative in α as follows

∂σ

∂α
(x, α) ≈











0, if x ≤ 0,

2(ba−1), if 0 < x ≤
(

2ba − 1
)

α,

2ba − 1, if x >
(

2ba − 1
)

α.

The middle value 2ba−1 is the arithmetic mean of the intermediate k values of the a.e. partial
derivative above. Similarly, a more coarse two-valued proxy, same as PACT [6] which was derived
differently, follows by zeroing out all the nonzero values except their maximum:

∂σ

∂α
(x, α) ≈

{

0, if x ≤
(

2ba − 1
)

α,

2ba − 1, if x >
(

2ba − 1
)

α.

This turns out to be exactly the partial derivative
∂σ̃

∂α
(x, α) of the clipped ReLU defined in (4).

We shall refer to the resultant composite ‘gradient’ of f through the modified chain rule and
averaging as coarse gradient. While given the name ‘gradient’, we believe it is generally not the
gradient of any smooth function. It, nevertheless, somehow exploits the essential information of the
piecewise constant function f , and its negation provides a descent direction for the minimization.
In section 5, we will validate this claim by examining a two-layer network with i.i.d. Gaussian data.
We find that when there are infinite number of training samples, the overall training loss f (i.e.,
population loss) becomes pleasantly differentiable whose gradient is non-trivial and processes cer-
tain Lipschitz continuity. More importantly, we shall show an example of expected coarse gradient
that provably forms an acute angle with the underlying true gradient of f and only vanishes at
the possible local minimizers of the original problem.

During the training process, the vector α (one component per activation layer) should be
prevented from being either too small or too large. Due to the sensitivity of α, we propose a
two-scale training and set the learning rate of α to be the learning rate of weight w multiplied by
a rate factor far less than 1, which may be varied depending on network architectures. That rate
factor effectively helps quantized network converge steadily and prevents α from vanishing.

3 Full Quantization

Imposing the quantized weights amounts to adding a discrete set-constraint w ∈ Q to the opti-
mization problem (3). Suppose M is the total number of weights in the network. For commonly
used bw-bit layer-wise quantization, Q ⊂ R

M takes the form of Q1×Q2 · · ·×Ql, meaning that the
weight tensor in the j-th linear layer is constrained in the form wj = δjqj ∈ Qj for some adjustable
scaling factor δj > 0 shared by weights in the same layer. Each component of qj is drawn from the
quantization set given by {±1} for bw = 1 (binarization) and {0,±1, · · · ,±(2bw−1−1)} for bw ≥ 2.
This assumption on Q generalizes those of the 1-bit BWN [28] and the 2-bit TWN [22]. As such,
the layer-wise weight and activation quantization problem here can be stated abstractly as follows

min
w,α

f(w,α) subject to w ∈ Q = Q1 ×Q2 · · · × Ql, (5)

where the training loss f(w,α) is defined in (3). Different from activation quantization, one
bit is taken to represent the signs. For ease of presentation, we only consider the network-wise
weight quantization throughout this section, i.e., weights across all the layers share the same
(trainable) floating scaling factor δ > 0, or simply, Q = R+ × {±1}M for bw = 1 and Q =

R+ ×
{

0,±1, . . . ,±(2bw−1 − 1)
}M

for bw ≥ 2.

3.1 Weight Quantization

Given a float weight vector wf , the quantization of wf is basically the following optimization
problem for computing the projection of wf onto set Q

projQ(wf ) := arg min
w∈Q

‖w −wf‖2. (6)



Blended Coarse Gradient Descent 5

Note that Q is a non-convex set, so the solution of (6) may not be unique. When bw = 1, we have
the binarization problem

min
δ,q

‖δ q−wf‖2 subject to δ > 0, q ∈ {±1}M . (7)

For bw ≥ 2, the projection/quantization problem (6) can be reformulated as

min
δ,q

‖δ q−wf‖2 subject to δ > 0, q ∈
{

0,±1, · · · ,±(2bw−1 − 1)
}M

. (8)

It has been shown that the closed form (exact) solution of (7) can be computed at O(M) complexity
for (1-bit) binarization [28] and at O(M log(M)) complexity for (2-bit) ternarization [36]. An
empirical ternarizer of O(M) complexity has also been proposed [22]. At wider bit-width bw ≥ 3,
accurately solving (8) becomes computationally intractable due to the combinatorial nature of the
problem [36].

The problem (8) is basically a constrained K-means clustering problem of 1-D points [35] with
the centroids being δ-spaced. It in principle can be solved by a variant of the classical Lloyd’s
algorithm [25] via an alternating minimization procedure. It iterates between the assignment step
(q-update) and centroid step (δ-update). In the i-th iteration, fixing the scaling factor δi−1, each
entry of qi is chosen from the quantization set, so that δi−1qi is as close as possible to wf . In the
δ-update, the following quadratic problem

min
δ∈R

‖ δ qi −wf‖2

is solved by δi =
(qi)⊤wf

‖qi‖2 . Since quantization (6) is required in every iteration, to make this proce-

dure practical, we just perform a single iteration of Lloyd’s algorithm by empirically initializing δ
to be 2

2bw−1
‖wf‖∞, which is derived by setting

δ

2

(

(2bw−1 − 1) + 2bw−1
)

= ‖wf‖∞.

This makes the large components in wf well clustered.

First introduced in [8] by Courbariaux et al., the BinaryConnect (BC) scheme has drawn much
attention in training DNNs with quantized weight and regular ReLU. It can be summarized as

wt+1
f = wt

f − η∇f(wt), wt+1 = projQ(w
t+1
f ),

where {wt} denotes the sequence of the desired quantized weights, and {wt
f} is an auxiliary

sequence of floating weights. BC can be readily extended to full quantization regime by including
the update of αt and replacing the true gradient ∇f(wt) with the coarse gradients from section
2. With a subtle change to the standard projected gradient descent algorithm (PGD) [7], namely

wt+1
f = wt − η∇f(wt), wt+1 = projQ(w

t+1
f ),

BC significantly outperforms PGD and effectively bypasses spurious the local minima in Q [23].
An intuitive explanation is that the constraint set Q is basically a finite union of isolated one-
dimensional subspaces (i.e., lines that pass through the origin) [35]. Since wt

f is obtained near the

projected point wt, the sequence {wt
f} generated by PGD can get stuck in some line subspace

easily when updated with a small learning rate η; see Figure 2 for graphical illustrations.

3.2 Blended Gradient Descent and Sufficient Descent Property

Despite the superiority of BC over PGD, we point out a drawback in regard to its convergence.
While Yin et al. provided the convergence proof of BC scheme in the recent papers [35], their anal-
ysis hinges on an approximate orthogonality condition which may not hold in practice; see Lemma
4.4 and Theorem 4.10 of [35]. Suppose f has L-Lipschitz gradient1. In light of the convergence
proof in Theorem 4.10 of [35], we have

f(wt+1)− f(wt) ≤ −1

2

(

1

η
(‖wt+1 −wt

f‖2 − ‖wt −wt
f‖2)− L‖wt+1 −wt‖2

)

. (9)

1 This assumption is valid for the population loss function; we refer readers to Lemma 2 in section 5.









Blended Coarse Gradient Descent 9

5 Analysis of Coarse Gradient Descent for Activation Quantization

As a proof of concept, we analyze a simple two-layer network with binarized ReLU activation.
Let σ be the binarized ReLU function, same as hard threshold activation [16], with the bit-width
ba = 1 and the resolution α ≡ 1 in (2):

σ(x) =

{

0 if x ≤ 0,

1 if x > 0.

We define the training sample loss by

ℓ(v,w;Z) :=
1

2

(

v⊤σ(Zw)− (v∗)⊤σ(Zw∗)
)2

,

where v∗ ∈ R
m and w∗ ∈ R

n are the underlying (nonzero) teacher parameters in the second and
first layers, respectively. Same as in the literature that analyze the conventional ReLU nets [10,24,
32,3], we assume the entries of Z ∈ R

m×n are i.i.d. sampled from the standard normal distribution
N (0, 1). Note that ℓ(v,w;Z) = ℓ(v,w/c;Z) for any scalar c > 0. Without loss of generality, we fix
‖w∗‖ = 1.

5.1 Population Loss Minimization

Suppose we have N independent training samples {Z(1), . . . ,Z(N)}, then the associated empirical
risk minimization reads

min
v∈Rm,w∈Rn

1

N

N
∑

i=1

ℓ(v,w;Z(i)). (12)

The major difficulty of analysis here is that the empirical risk function in (12) is still piecewise
constant and has a.e. zero partial w gradient. This issue can be resolved by instead considering
the following population loss minimization [24,3,10,32]:

min
v∈Rm,w∈Rn

f(v,w) := EZ [ℓ(v,w;Z)] . (13)

Specifically, in the limit N → ∞, the objective function f becomes favorably smooth with non-
trivial gradient. For nonzero vector w, let us define the angle between w and w∗ by

θ(w,w∗) := arccos
( w⊤w∗

‖w‖‖w∗‖
)

= arccos
(w⊤w∗

‖w‖
)

,

then we have

Lemma 1. If every entry of Z is i.i.d. sampled from N (0, 1), ‖w∗‖ = 1, and ‖w‖ 6= 0, then the
population loss is

f(v,w) =
1

8

[

v⊤(I+ 11⊤)v − 2v⊤
((

1− 2

π
θ(w,w∗)

)

I+ 11⊤
)

v∗ + (v∗)⊤
(

I+ 11⊤)v∗
]

.

(14)
Moreover, the gradients of f(v,w) w.r.t. v and w are

∂f

∂v
(v,w) =

1

4

(

I+ 11⊤)v − 1

4

((

1− 2

π
θ(w,w∗)

)

I+ 11⊤
)

v∗ (15)

and

∂f

∂w
(v,w) = − v⊤v∗

2π‖w‖

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

, for θ(w,w∗) ∈ (0, π), (16)

respectively.

When w 6= 0, the possible (local) minimizers of problem (13) are located at



10 Penghang Yin et al.

1. Stationary points where the gradients defined in (15) and (16) vanish simultaneously (which
may not be possible), i.e.,

v⊤v∗ = 0 and v =
(

I+ 11⊤)−1
((

1− 2

π
θ(w,w∗)

)

I+ 11⊤
)

v∗. (17)

2. Non-differentiable points where θ(w,w∗) = 0 and v = v∗, or θ(w,w∗) = π and v =
(

I +

11⊤)−1
(11⊤ − I)v∗.

Among them, {(v,w) : v = v∗, θ(w,w∗) = 0} are the global minimizers with f(v,w) = 0.

Proposition 2. If (1⊤v∗)2 < m+1
2 ‖v∗‖2, then

{

(v,w) ∈ R
m+n : v = (I+ 11⊤)−1

( −(1⊤v∗)2

(m+ 1)‖v∗‖2 − (1⊤v∗)2
I+ 11⊤

)

v∗,

θ(w,w∗) =
π

2

(m+ 1)‖v∗‖2
(m+ 1)‖v∗‖2 − (1⊤v∗)2

}

gives the stationary points obeying (17). Otherwise, problem (13) has no stationary points.

The gradient of the population loss,
(

∂f
∂v ,

∂f
∂w

)

(v,w), holds Lipschitz continuity under a bound-

edness condition.

Lemma 2. For any (v,w) and (ṽ, w̃) with min{‖w‖, ‖w̃‖} = c > 0 and max{‖v‖, ‖ṽ‖} = C,
there exists a constant L > 0 depending on c and C, such that

∥

∥

∥

∥

(

∂f

∂v
,
∂f

∂w

)

(v,w)−
(

∂f

∂v
,
∂f

∂w

)

(ṽ, w̃)

∥

∥

∥

∥

≤ L‖(v,w)− (ṽ, w̃)‖.

5.2 Convergence Analysis of Normalized Coarse Gradient Descent

The partial gradients ∂f
∂v and ∂f

∂w , however, are not available in the training. What we really have
access to are the expectations of the sample gradients, namely,

EZ

[

∂ℓ

∂v
(v,w;Z)

]

and EZ

[

∂ℓ

∂w
(v,w;Z)

]

.

If σ was differentiable, then the back-propagation reads

∂ℓ

∂v
(v,w;Z) = σ(Zw)

(

v⊤σ(Zw)− (v∗)⊤σ(Zw∗)
)

. (18)

and
∂ℓ

∂w
(v,w;Z) = Z⊤(σ′(Zw)⊙ v

)

(

v⊤σ(Zw)− (v∗)⊤σ(Zw∗)
)

. (19)

Now that σ has zero derivative a.e., which makes (19) inapplicable. We study the coarse gradient
descent with σ′ in (19) being replaced by the (sub)derivative µ′ of regular ReLU µ(x) := max(x, 0).
More precisely, we use the following surrogate of ∂ℓ

∂w (v,w;Z):

g(v,w;Z) = Z⊤(µ′(Zw)⊙ v
)

(

v⊤σ(Zw)− (v∗)⊤σ(Zw∗)
)

(20)

with µ′(x) = σ(x), and consider the following coarse gradient descent with weight normalization:















vt+1 = vt − ηEZ

[

∂ℓ
∂v (v

t,wt;Z)
]

wt+ 1
2 = wt − ηEZ [g(vt,wt;Z)]

wt+1 = wt+1/2

‖wt+1/2‖
(21)



Blended Coarse Gradient Descent 11

Lemma 3. The expected gradient of ℓ(v,w;Z) w.r.t. v is

EZ

[

∂ℓ

∂v
(v,w;Z)

]

=
∂f

∂v
(v,w) =

1

4

(

I+ 11⊤)v − 1

4

((

1− 2

π
θ(w,w∗)

)

I+ 11⊤
)

v∗. (22)

The expected coarse gradient w.r.t. w is

EZ

[

g(v,w;Z)
]

=
h(v,v∗)

2
√
2π

w

‖w‖ − cos

(

θ(w,w∗)

2

)

v⊤v∗
√
2π

w
‖w‖ +w∗
∥

∥

∥

w
‖w‖ +w∗

∥

∥

∥

, 2 (23)

where h(v,v∗) = ‖v‖2 + (1⊤v)2 − (1⊤v)(1⊤v∗) + v⊤v∗. In particular, EZ

[

∂ℓ
∂v (v,w;Z)

]

and

EZ

[

g(v,w;Z)
]

vanish simultaneously only in one of the following cases

1. (17) is satisfied according to Proposition 2.
2. v = v∗, θ(w,w∗) = 0, or v = (I+ 11⊤)−1(11⊤ − I)v∗, θ(w,w∗) = π.

What is interesting is that the coarse partial gradient EZ

[

g(v,w;Z)
]

= 0 is properly defined

at global minimizers of the population loss minimization problem (13) with v = v∗, θ(w,w∗) =
0, whereas the true gradient ∂f

∂w (v,w) does not exist there. Our key finding is that the coarse

gradient EZ

[

g(v,w;Z)
]

has positive correlation with the true gradient ∂f
∂w (v,w), and consequently,

−EZ

[

g(v,w;Z)
]

together with −EZ

[

∂ℓ
∂v (v,w;Z)

]

give a descent direction in algorithm (21).

Lemma 4. If θ(w,w∗) ∈ (0, π) , and ‖w‖ 6= 0, then the inner product between the expected coarse
and true gradients w.r.t. w is

〈

EZ

[

g(v,w;Z)
]

,
∂f

∂w
(v,w)

〉

=
sin (θ(w,w∗))

2(
√
2π)3‖w‖

(v⊤v∗)2 ≥ 0.

Moreover, the following lemma asserts that EZ

[

g(v,w;Z)
]

is sufficiently correlated with ∂f
∂w (v,w),

which will secure sufficient descent in objective values {f(vt,wt)} and thus the convergence of
{(vt,wt)}.

Lemma 5. Suppose ‖w‖ = 1 and ‖v‖ ≤ C. There exists a constant A > 0 depending on C, such
that

∥

∥

∥EZ

[

g(v,w;Z)
]∥

∥

∥

2

≤ A

(

∥

∥

∥

∥

∂f

∂v
(v,w)

∥

∥

∥

∥

2

+

〈

EZ

[

g(v,w;Z)
]

,
∂f

∂w
(v,w)

〉

)

.

Equipped with Lemma 2 and Lemma 5, we are able to show the convergence result of iteration
(21).

Theorem 1. Given the initialization (v0,w0) with ‖w0‖ = 1, and let {(vt,wt)} be the sequence
generated by iteration (21). There exists η0 > 0, such that for any step size η < η0, {f(vt,wt)}
is monotonically decreasing, and both

∥

∥

∥EZ

[

∂ℓ
∂v (v

t,wt;Z)
]∥

∥

∥ and
∥

∥

∥EZ

[

g(vt,wt;Z)
]∥

∥

∥ converge to 0,

as t → ∞.

Remark 1. Combining the treatment of [10] for analyzing two-layer networks with regular ReLU
and the positive correlation between EZ [g(w,v;Z)] and ∂f

∂w (v,w), one can further show that if the
initialization (v0,w0) satisfies (v0)⊤v∗ > 0, θ(w0,w∗) < π

2 and (1⊤v∗)(1⊤v0) ≤ (1⊤v∗)2, then
{(vt,wt)} converges to the global minimizer (v∗,w∗).

2 We redefine the second term as 0 in the case θ(w,w∗) = π.



12 Penghang Yin et al.

6 Concluding Remarks

We introduced the concept of coarse gradient for activation quantization problem of DNNs, for
which the a.e. gradient is inapplicable. Coarse gradient is generally not a gradient but an artifi-
cial ascent direction. We further proposed BCGD algorithm, for training fully quantized neural
networks. The weight update of BCGD goes by coarse gradient correction of a weighted average
of the float weights and their quantization, which yields sufficient descent in objective and thus
acceleration. Our experiments demonstrated that BCGD is very effective for quantization at ex-
tremely low bit-width such as binarization. Finally, we analyzed the coarse gradient descent for a
two-layer neural network model with Gaussian input data, and proved that the expected coarse
gradient essentially correlates positively with the underlying true gradient.

Acknowledgements. This work was partially supported by NSF grants DMS-1522383, IIS-
1632935; ONR grant N00014-18-1-2527, AFOSR grant FA9550-18-0167, DOE grant DE-SC0013839
and STROBE STC NSF grant DMR-1548924.

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432 (2013)

2. Bertsekas, D.P.: Nonlinear programming. Athena scientific Belmont (1999)
3. Brutzkus, A., Globerson, A.: Globally optimal gradient descent for a convnet with gaussian inputs. arXiv

preprint arXiv:1702.07966 (2017)
4. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave gaussian quantization.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
5. Carreira-Perpinán, M.: Model compression as constrained optimization, with application to neural nets. part i:

General framework. arXiv preprint arXiv:1707.01209 (2017)
6. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakrishnan, K.: Pact: Parameterized

clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018)
7. Combettes, P.L., Pesquet, J.C.: Stochastic approximations and perturbations in forward-backward splitting for

monotone operators. Pure and Applied Functional Analysis 1, 13–37 (2016)
8. Courbariaux, M., Bengio, Y., David, J.: Binaryconnect: Training deep neural networks with binary weights

during propagations. In: Advances in Neural Information Processing Systems (NIPS), p. 3123–3131 (2015)
9. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: A large-scale hierarchical image database. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
10. Du, S.S., Lee, J.D., Tian, Y., Poczos, B., Singh, A.: Gradient descent learns one-hidden-layer cnn: Don’t be

afraid of spurious local minimum. arXiv preprint arXiv:1712.00779 (2018)
11. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Machine learning 37(3),

277–296 (1999)
12. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM

Journal on Optimization 2(1), 21–42 (1992)
13. He, J., Li, L., Xu, J., Zheng, C.: Relu deep neural networks and linear finite elements. arXiv preprint

arXiv:1807.03973 (2018)
14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385

(2015)
15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification. In: IEEE International Conference on Computer Vision (ICCV) (2015)
16. Hinton, G.: Neural networks for machine learning, coursera. Coursera, video lectures (2012)
17. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training neural

networks with weights and activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830 (2016)
18. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: Training neural

networks with low precision weights and activations. Journal of Machine Learning Research 18, 1–30 (2018)
19. Ioffe, S., Szegedy, C.: Normalization: Accelerating deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167 (2015)
20. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech Report (2009)
21. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In:

Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)
22. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)
23. Li, H., De, S., Xu, Z., Studer, C., Samet, H., Goldstein, T.: Training quantized nets: A deeper understanding.

In: NIPS, pp. 5813–5823 (2017)
24. Li, Y., Yuan, Y.: Convergence analysis of two-layer neural networks with relu activation. In: Advances in Neural

Information Processing Systems, pp. 597–607 (2017)
25. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Info. Theory 28, 129–137 (1982)



Blended Coarse Gradient Descent 13

26. Park, E., Ahn, J., Yoo, S.: Weighted-entropy-based quantization for deep neural networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5456–5464 (2017)

27. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer,
A.: Automatic differentiation in pytorch. Tech Report (2017)

28. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In: European Conference on Computer Vision (ECCV) (2016)

29. Rosenblatt, F.: The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical
Laboratory (1957)

30. Rosenblatt, F.: Principles of neurodynamics. Spartan Book (1962)
31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2015)
32. Tian, Y.: An analytical formula of population gradient for two-layered relu network and its applications in

convergence and critical point analysis. arXiv preprint arXiv:1703.00560 (2017)
33. Wang, B., Luo, X., Li, Z., Zhu, W., Shi, Z., Osher, S.J.: Deep neural nets with interpolating function as output

activation. arXiv preprint arXiv:1802.00168 (2018)
34. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation.

Proceedings of the IEEE 78(9), 1415–1442 (1990)
35. Yin, P., Zhang, S., Lyu, J., Osher, S., Qi, Y., Xin, J.: Binaryrelax: A relaxation approach for training deep

neural networks with quantized weights. arXiv preprint arXiv:1801.06313; SIAM Journal on Imaging Sciences,
to appear (2018)

36. Yin, P., Zhang, S., Qi, Y., Xin, J.: Quantization and training of low bit-width convolutional neural networks
for object detection. arXiv preprint arXiv:1612.06052; J. Comput. Math., to appear (2018)

37. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint arXiv: 1606.06160 (2016)



14 Penghang Yin et al.

Appendix

A. Additional Preliminaries

Lemma 6. Let z be a Gaussian random vector with entries i.i.d. sampled from N (0, 1). Given
nonzero vectors w and w̃ with angle θ, we have

E
[

1{z⊤w>0}
]

=
1

2
, E

[

1{z⊤w>0, z⊤w̃>0}
]

=
π − θ

2π
,

and

E
[

z1{z⊤w>0}
]

=
1√
2π

w

‖w‖ , E
[

z1{z⊤w>0, z⊤w∗>0}
]

=
cos(θ/2)√

2π

w
‖w‖ + w̃

‖w̃‖
∥

∥

∥

w
‖w‖ + w̃

‖w̃‖

∥

∥

∥

.3

Proof. The third identity was proved in Lemma A.1 of [10]. To show the first one, since Gaussian
distribution is rotation-invariant, without loss of generality we assume w = [w1, 0,0

⊤]⊤ with
w1 > 0, then E

[

1{z⊤w>0}
]

= P(z1 > 0) = 1
2 .

We further assume w̃ = [w̃1, w̃2,0
⊤]⊤. It is easy to see

E
[

1{z⊤w>0, z⊤w̃>0}
]

= P(z⊤w > 0, z⊤w̃ > 0) =
π − θ

2π
,

which is the probability that z forms an acute angle with both w and w∗.

To prove the last identity, we use polar representation of 2-D Gaussian random variables,
where r is the radius and φ is the angle with dPr = r exp(−r2/2)dr and dPφ = 1

2πdφ. Then
E
[

zi1{z⊤w>0, z⊤w∗>0}
]

= 0 for i ≥ 3. Moreover,

E
[

z11{z⊤w>0, z⊤w∗>0}
]

=
1

2π

∫ ∞

0

r2 exp

(

−r2

2

)

dr

∫ π
2

−π
2
+θ

cos(φ)dφ =
1 + cos(θ)

2
√
2π

and

E
[

z21{z⊤w>0, z⊤w∗>0}
]

=
1

2π

∫ ∞

0

r2 exp

(

−r2

2

)

dr

∫ π
2

−π
2
+θ

sin(φ)dφ =
sin(θ)

2
√
2π

.

Therefore,

E
[

z1{z⊤w>0, z⊤w∗>0}
]

=
cos(θ/2)√

2π
[cos(θ/2), sin(θ/2),0⊤]⊤ =

cos(θ/2)√
2π

w
‖w‖ + w̃

‖w̃‖
∥

∥

∥

w
‖w‖ + w̃

‖w̃‖

∥

∥

∥

,

where the last equality holds because w
‖w‖ and w̃

‖w̃‖ are two unit-normed vectors with angle θ.

Lemma 7. For any nonzero vectors w and w̃ with ‖w̃‖ ≥ ‖w‖ = c > 0, we have

1. |θ(w,w∗)− θ(w̃,w∗)| ≤ π
2c‖w − w̃‖.

2.

∥

∥

∥

∥

∥

∥

1
‖w‖

(

I−ww
⊤

‖w‖2

)

w∗

∥

∥

∥

(

I−ww
⊤

‖w‖2

)

w∗

∥

∥

∥

− 1
‖w̃‖

(

I− w̃w̃
⊤

‖w̃‖2

)

w∗

∥

∥

∥

(

I− w̃w̃
⊤

‖w̃‖2

)

w∗

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ 1
c2 ‖w − w̃‖.

Proof. 1. Since by Cauchy-Schwarz inequality,
〈

w̃,w − cw̃

‖w̃‖

〉

= w̃⊤w − c‖w̃‖ ≤ 0,

we have

‖w̃ −w‖2 =

∥

∥

∥

∥

(

1− c

‖w̃‖

)

w̃ −
(

w − cw̃

‖w̃‖

)∥

∥

∥

∥

2

≥
∥

∥

∥

∥

(

1− c

‖w̃‖

)

w̃

∥

∥

∥

∥

2

+

∥

∥

∥

∥

w − cw̃

‖w̃‖

∥

∥

∥

∥

2

≥
∥

∥

∥

∥

w − cw̃

‖w̃‖

∥

∥

∥

∥

2

= c2
∥

∥

∥

∥

w

‖w‖ − w̃

‖w̃‖

∥

∥

∥

∥

2

. (24)

3 Same as in Lemma 3, we redefine E

[

z1{z⊤w>0, z⊤w
∗>0}

]

= 0 in the case θ(w,w∗) = π.



Blended Coarse Gradient Descent 15

Therefore,

|θ(w,w∗)− θ(w̃,w∗)| ≤ θ(w, w̃) = θ

(

w

‖w‖ ,
w̃

‖w̃‖

)

≤ π sin





θ
(

w
‖w‖ ,

w̃
‖w̃‖

)

2



 =
π

2

∥

∥

∥

∥

w

‖w‖ − w̃

‖w̃‖

∥

∥

∥

∥

≤ π

2c
‖w − w̃‖,

where we used the fact sin(x) ≥ 2x
π for x ∈ [0, π

2 ] and the estimate in (24).

2. Since
(

I− ww⊤

‖w‖2

)

w∗ is the projection of w∗ onto the complement space of w, and likewise for
(

I− w̃w̃⊤

‖w̃‖2

)

w∗, the angle between
(

I− ww⊤

‖w‖2

)

w∗ and
(

I− w̃w̃⊤

‖w̃‖2

)

w∗ is equal to the angle between

w and w̃. Therefore,

〈

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

,

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

〉

=

〈

w

‖w‖ ,
w̃

‖w̃‖

〉

,

and thus

∥

∥

∥

∥

∥

∥

1

‖w‖

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

− 1

‖w̃‖

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

w

‖w‖2 − w̃

‖w̃‖2
∥

∥

∥

∥

=
‖w − w̃‖
‖w‖‖w̃‖ ≤ 1

c2
‖w − w̃‖.

The second equality above holds because

∥

∥

∥

∥

w

‖w‖2 − w̃

‖w̃‖2
∥

∥

∥

∥

2

=
1

‖w‖2 +
1

‖w̃‖2 − 2〈w, w̃〉
‖w‖2‖w̃‖2 =

‖w − w̃‖2
‖w‖2‖w̃‖2 .

B. Proofs

Proof of Proposition 1. We rewrite the update (11) as

wt+1 = arg min
w∈Q

〈w,∇f(wt)〉+ 1− ρ

2η
‖w −wt

f‖2 +
ρ

2η
‖w −wt‖2.

Then since wt, wt+1 ∈ Q, we have

〈wt+1,∇f(wt)〉+ 1− ρ

2η
‖wt+1 −wt

f‖2 +
ρ

2η
‖wt+1 −wt‖2 ≤ 〈wt,∇f(wt)〉+ 1− ρ

2η
‖wt −wt

f‖2,

or equivalently,

〈wt+1 −wt,∇f(wt)〉+ 1− ρ

2η

(

‖wt+1 −wt
f‖2 − ‖wt −wt

f‖2
)

+
ρ

2η
‖wt+1 −wt‖2 ≤ 0. (25)

On the other hand, since f has L-Lipschitz gradient, the descent lemma [2] gives

f(wt+1) ≤ f(wt) + 〈∇f(wt),wt+1 −wt〉+ L

2
‖wt+1 −wt‖2. (26)

Combining (25) and (26) completes the proof.



16 Penghang Yin et al.

Proof of Lemma 1. We first evaluate EZ

[

σ(Zw)σ(Zw)⊤
]

, EZ

[

σ(Zw)σ(Zw∗)⊤
]

, and EZ

[

σ(Zw∗)σ(Zw∗)⊤
]

.
Let Z⊤

i be the i-th row vector of Z. Since w 6= 0, using Lemma 6, we have

EZ

[

σ(Zw)σ(Zw)⊤
]

ii
= E

[

σ(Z⊤
i w)σ(Z⊤

i w)
]

= E

[

1{Z⊤
i w>0}

]

=
1

2
,

and for i 6= j,

EZ

[

σ(Zw)σ(Zw)⊤
]

ij
= E

[

σ(Z⊤
i w)σ(Z⊤

j w)
]

= E

[

1{Z⊤
i w>0}

]

E

[

1{Z⊤
j w>0}

]

=
1

4
.

Therefore, EZ

[

σ(Zw)σ(Zw)⊤
]

= EZ

[

σ(Zw∗)σ(Zw∗)⊤
]

= 1
4

(

I+ 11⊤). Furthermore,

EZ

[

σ(Zw)σ(Zw∗)⊤
]

ii
= E

[

1{Z⊤
i w>0,Z⊤

i w∗>0}

]

=
π − θ(w,w∗)

2π
,

and EZ

[

σ(Zw)σ(Zw∗)⊤
]

ij
= 1

4 . So,

EZ

[

σ(Zw)σ(Zw∗)⊤
]

=
1

4

((

1− 2θ(w,w∗)

π

)

I+ 11⊤
)

.

We thus have proved (14) by noticing that

f(v,w) =
1

2

(

v⊤
EZ[σ(Zw)⊤σ(Zw)]v − 2v⊤

EZ[σ(Zw)⊤σ(Zw∗)]v∗

+ (v∗)⊤EZ[σ(Zw
∗)⊤σ(Zw∗)]v∗).

Next, since (15) is trivial, we only show (16). Since θ(w,w∗) = arccos
(

w⊤w∗

‖w‖

)

is differentiable

w.r.t. w at θ(w,w∗) ∈ (0, π), we have

∂f

∂w
(v,w) =

v⊤v∗

2π

∂θ

∂w
(w,w∗) = −v⊤v∗

2π

‖w‖2w∗ − (w⊤w∗)w

‖w‖3
√

1− (w⊤w∗)2

‖w‖2

= − v⊤v∗

2π‖w‖

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

.

Proof of Proposition 2. Suppose v⊤v∗ = 0 and ∂f
∂v (v,w) = 0, then by Lemma 1,

0 = v⊤v∗ = (v∗)⊤(I+ 11⊤)−1

((

1− 2

π
θ(w,w∗)

)

I+ 11⊤
)

v∗. (27)

From (27) it follows that

2

π
θ(w,w∗)(v∗)⊤(I+ 11⊤)−1v∗ = (v∗)⊤(I+ 11⊤)−1

(

I+ 11⊤)v∗ = ‖v∗‖2. (28)

On the other hand, from (27) it also follows that
(

2

π
θ(w,w∗)− 1

)

(v∗)⊤(I+ 11⊤)−1v∗ = (v∗)⊤(I+ 11⊤)−11(1⊤v∗) =
(1⊤v∗)2

m+ 1
,

where I is an m-by-m identity matrix, and we used (I+ 11⊤)1 = (m+ 1)1. Taking the difference
of the two equalities above gives

(v∗)⊤(I+ 11⊤)−1v∗ = ‖v∗‖2 − (1⊤v∗)2

m+ 1
.

By (28), we have θ(w,w∗) = π
2

(m+1)‖v∗‖2

(m+1)‖v∗‖2−(1⊤v∗)2
, which requires

π

2

(m+ 1)‖v∗‖2
(m+ 1)‖v∗‖2 − (1⊤v∗)2

< π, or equivalently, (1⊤v∗)2 <
m+ 1

2
‖v∗‖2.

Otherwise, ∂f
∂v (v,w) and ∂f

∂w (v,w) do not vanish simultaneously, and there is no critical point.



Blended Coarse Gradient Descent 17

Proof of Lemma 2. It is easy to check that ‖I+ 11⊤‖ = m+ 1. Invoking Lemma 7.1 gives

∥

∥

∥

∥

∂f

∂v
(v,w)− ∂f

∂v
(ṽ, w̃)

∥

∥

∥

∥

=
1

4

∥

∥

∥

∥

(

I+ 11⊤)(v − ṽ) +
2

π
(θ(w,w∗)− θ(w̃,w∗))v∗

∥

∥

∥

∥

≤ 1

4

(

(m+ 1)‖v − ṽ‖+ 2‖v∗‖
π

|θ(w,w∗)− θ(w̃,w∗)|
)

≤ 1

4

(

(m+ 1)‖v − ṽ‖+ ‖v∗‖
c

‖w − w̃‖
)

≤ 1

4

(

m+ 1 +
‖v∗‖
c

)

‖(v,w)− (ṽ, w̃)‖.

Using Lemma 7.2, we further have

∥

∥

∥

∥

∂f

∂w
(v,w)− ∂f

∂w
(ṽ, w̃)

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

v⊤v∗

2π‖w‖

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

− ṽ⊤v∗

2π‖w̃‖

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

v⊤v∗

2π‖w‖

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

− v⊤v∗

2π‖w̃‖

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

v⊤v∗

2π‖w̃‖

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

− ṽ⊤v∗

2π‖w̃‖

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

(

I− w̃w̃⊤

‖w̃‖2

)

w∗
∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ |v⊤v∗|
2πc2

‖w − w̃‖+ ‖v∗‖
2πc

‖v − ṽ‖

≤ (C + c)‖v∗‖
2πc2

‖(v,w)− (ṽ, w̃)‖.

Combining the two inequalities above validates the claim.

Proof of Lemma 3. (22) is true because ∂ℓ
∂v (v,w;Z) is linear in v. To show (23), by (20) and

the fact that µ′ = σ, we have

EZ [g(v,w;Z)] = EZ

[(

m
∑

i=1

viσ(Z
⊤
i w)−

m
∑

i=1

v∗i σ(Z
⊤
i w

∗)

)(

m
∑

i=1

Ziviσ(Z
⊤
i w)

)]

= EZ

[(

m
∑

i=1

vi1{Z⊤
i w>0} −

m
∑

i=1

v∗i 1{Z⊤
i w∗>0}

)(

m
∑

i=1

1{Z⊤
i w>0}viZi

)]

.

Invoking Lemma 6, we have

E

[

Zi1{Z⊤
i w>0,Z⊤

j w>0}

]

=

{

1√
2π

w
‖w‖ if i = j,

1
2
√
2π

w
‖w‖ if i 6= j,

(29)

and

E

[

Zi1{Z⊤
i w>0,Z⊤

j w∗>0}

]

=







cos(θ(w,w∗)/2)√
2π

w

‖w‖
+w∗

‖ w

‖w‖
+w∗‖ if i = j,

1
2
√
2π

w
‖w‖ if i 6= j.

(30)



18 Penghang Yin et al.

Therefore,

EZ [g(v,w;Z)] =

m
∑

i=1

v2iE
[

Zi1{Z⊤
i w>0}

]

+

m
∑

i=1

m
∑

j=1

j 6=i

vivjE
[

Zi1{Z⊤
i w>0,Z⊤

j w>0}

]

−
m
∑

i=1

viv
∗
i E

[

Zi1{Z⊤
i w>0,Z⊤

i w∗>0}

]

−
m
∑

i=1

m
∑

j=1

j 6=i

viv
∗
jE

[

Zi1{Z⊤
i w>0,Z⊤

j w∗>0}

]

=
1

2
√
2π

(

‖v‖2 + (1⊤v)2
) w

‖w‖ − cos

(

θ(w,w∗)

2

)

v⊤v∗
√
2π

w
‖w‖ +w∗
∥

∥

∥

w
‖w‖ +w∗

∥

∥

∥

− 1

2
√
2π

(

(1⊤v)(1⊤v∗)− v⊤v∗) w

‖w‖ ,

which is exactly (23).

Proof of Lemma 4. Notice that
(

I − ww⊤

‖w‖2

)

w = 0 and ‖w∗‖ = 1, if θ(w,w∗) 6= 0, π, then we

have

〈

EZ

[

g(v,w;Z)
]

,
∂f

∂w
(v,w)

〉

= cos

(

θ(w,w∗)

2

)

(v⊤v∗)2

(
√
2π)3

〈

1

‖w‖

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

(

I− ww⊤

‖w‖2

)

w∗
∥

∥

∥

,
w∗

∥

∥

∥

w
‖w‖ +w∗

∥

∥

∥

〉

= cos

(

θ(w,w∗)

2

)

(v⊤v∗)2

(
√
2π)3

‖w‖2 − (w⊤w∗)2

‖‖w‖2w∗ −w(w⊤w∗)‖ ‖w + ‖w‖w∗‖

= cos

(

θ(w,w∗)

2

)

(v⊤v∗)2

(
√
2π)3

‖w‖2 − (w⊤w∗)2
√

‖w‖4 − ‖w‖2(w⊤w∗)2
√

2(‖w‖2 + ‖w‖(w⊤w∗))

= cos

(

θ(w,w∗)

2

)

(v⊤v∗)2

4(
√

π‖w‖)3
‖w‖2 − (w⊤w∗)2

√

‖w‖2 − (w⊤w∗)2
√

‖w‖+ (w⊤w∗)

= cos

(

θ(w,w∗)

2

) (v⊤v∗)2
√

1− w⊤w∗

‖w‖

4(
√
π)3‖w‖

= cos

(

θ(w,w∗)

2

)

(v⊤v∗)2
√

1− cos(θ(w,w∗))

4(
√
π)3‖w‖

=
sin (θ(w,w∗))

2(
√
2π)3‖w‖

(v⊤v∗)2.

Proof of Lemma 5. Denote θ := θ(w,w∗). By Lemma 1, we have

∂f

∂v
(v,w) =

1

4

(

I+ 11⊤)v − 1

4

((

1− 2θ

π

)

I+ 11⊤
)

v∗.

Since ‖w‖ = 1, Lemma 3 gives

EZ

[

g(v,w;Z)
]

=
h(v,v∗)

2
√
2π

w − cos

(

θ

2

)

v⊤v∗
√
2π

w +w∗

‖w +w∗‖ , (31)



Blended Coarse Gradient Descent 19

where

h(v,v∗) = ‖v‖2 + (1⊤v)2 − (1⊤v)(1⊤v∗) + v⊤v∗

= v⊤ (I+ 11⊤)v − v⊤(11⊤ − I)v∗

= v⊤ (I+ 11⊤)v − v⊤
(

11⊤ +

(

1− 2θ

π

)

I

)

v∗ + 2

(

1− θ

π

)

v⊤v∗

= 4v⊤ ∂f

∂v
(v,w) + 2

(

1− θ

π

)

v⊤v∗, (32)

and by Lemma 4,
〈

EZ

[

g(v,w;Z)
]

,
∂f

∂w
(v,w)

〉

=
sin (θ)

2(
√
2π)3

(v⊤v∗)2.

Hence, for some A depending only on C, we have

∥

∥

∥EZ

[

g(v,w;Z)
]∥

∥

∥

2

=

∥

∥

∥

∥

∥

2v⊤ ∂f
∂v (v,w)√
2π

w + cos

(

θ

2

)

v⊤v∗
√
2π

(

w − w +w∗

‖w +w∗‖

)

+

(

1− θ

π
− cos

(

θ

2

))

v⊤v∗
√
2π

w

∥

∥

∥

∥

∥

2

≤ 6C2

π

∥

∥

∥

∥

∂f

∂v
(v,w)

∥

∥

∥

∥

2

+ cos2
(

θ

2

)

3(v⊤v∗)2

2π

∥

∥

∥

∥

w − w +w∗

‖w +w∗‖

∥

∥

∥

∥

2

+

(

1− θ

π
− cos

(

θ

2

))2
3(v⊤v∗)2

2π

≤ 6C2

π

∥

∥

∥

∥

∂f

∂v
(v,w)

∥

∥

∥

∥

2

+ cos2
(

θ

2

)

3θ2

8π
(v⊤v∗)2 +

(

1− θ

π
− cos

(

θ

2

))2
3(v⊤v∗)2

2π

≤ 6C2

π

∥

∥

∥

∥

∂f

∂v
(v,w)

∥

∥

∥

∥

2

+
3π

8
cos2

(

θ

2

)

sin2
(

θ

2

)

(v⊤v∗)2 +
3 sin(θ)

2π
(v⊤v∗)2

≤ A

(

∥

∥

∥

∥

∂f

∂v
(v,w)

∥

∥

∥

∥

2

+

〈

EZ

[

g(v,w;Z)
]

,
∂f

∂w
(v,w)

〉

)

,

where the equality is due to (31) and (32), the first inequality is due to Cauchy-Schwarz inequality,

the second inequality holds because the angle between w and w+w∗

‖w+w∗‖ is θ
2 and

∥

∥

∥w − w+w∗

‖w+w∗‖

∥

∥

∥ ≤ θ
2 ,

whereas the third inequality is due to sin(x) ≥ 2x
π , cos(x) ≥ 1− 2x

π , and

(

1− 2x

π
− cos(x)

)2

≤
(

cos(x)− 1 +
2x

π

)(

cos(x) + 1− 2x

π

)

≤ sin(x)(2 cos(x)) = sin(2x),

for all x ∈ [0, π
2 ].

Proof of Theorem 1 . To leverage Lemma 2 and Lemma 5, we would need the boundedness
of {vt}. Due to the coerciveness of f w.r.t v, there exists C0 > 0, such that ‖v‖ ≤ C0 for any
v ∈ {v ∈ R

m : f(v,w) ≤ f(v0,w0) for some w}. In particular, ‖v0‖ ≤ C0. Using induction,
suppose we already have f(vt,wt) ≤ f(v0,w0) and ‖vt‖ ≤ C0. If wt = ±w∗, then wt+1 =
wt+2 = · · · = ±w∗, and the original problem reduces to a quadratic program in terms of v. So
{vt} will converge to v∗ or (I + 11⊤)−1(11⊤ − I)v∗ by choosing a suitable step size η. In either

case, we have
∥

∥

∥EZ

[

∂ℓ
∂v (v

t,wt;Z)
]∥

∥

∥ and
∥

∥

∥EZ

[

g(vt,wt;Z)
]∥

∥

∥ both converge to 0. Else if wt 6= ±w∗,

we define for a ∈ [0, 1] that

vt(a) := vt − a(vt+1 − vt) = vt − aηEZ

[

∂ℓ

∂v
(vt,wt;Z)

]

and

wt(a) := wt − a(wt+1/2 −wt) = wt − aηEZ

[

g(vt,wt;Z)
]

,



20 Penghang Yin et al.

which satisfy
vt(0) = vt, vt(1) = vt+1, wt(0) = wt, wt(1) = wt+1/2.

Let us fix 0 < c < 1 and C ≥ C0. By the expressions of EZ

[

∂ℓ
∂v (v

t,wt;Z)
]

and EZ [g(vt,wt;Z)]
given in Lemma 3, and since ‖wt‖ = 1, for sufficiently small η̃ depending on C0, with η ≤ η̃,
it holds that ‖vt(a)‖ ≤ C and ‖wt(a)‖ ≥ c for all a ∈ [0, 1]. Possibly at some point a0 where

θ(wt(a0),w
∗) = 0 or π, such that ∂f

∂w (vt(a0),w
t(a0)) does not exist. Otherwise,

∥

∥

∥

∂f
∂w (vt(a),wt(a))

∥

∥

∥

is uniformly bounded for all a ∈ [0, 1]/{a0}, which makes it integrable over the interval [0, 1]. Then
we have

f(vt+1,wt+1) = f(vt+1,wt+1/2) = f(vt + (vt+1 − vt),wt + (wt+1/2 −wt))

= f(vt,wt) +

∫ 1

0

〈

∂f

∂v
(vt(a),wt(a)),vt+1 − vt

〉

da

+

∫ 1

0

〈

∂f

∂w
(vt(a),wt(a)),wt+1/2 −wt

〉

da

= f(vt,wt) +

〈

∂f

∂v
(vt,wt),vt+1 − vt

〉

+

〈

∂f

∂w
(vt,wt),wt+1/2 −wt

〉

+

∫ 1

0

〈

∂f

∂v
(vt(a),wt(a))− ∂f

∂v
(vt,wt),vt+1 − vt

〉

da

+

∫ 1

0

〈

∂f

∂w
(vt(a),wt(a))− ∂f

∂w
(vt,wt),wt+1/2 −wt

〉

da

≤ f(vt,wt)−
(

η − Lη2

2

)∥

∥

∥

∥

∂f

∂v
(vt,wt)

∥

∥

∥

∥

2

− η

〈

∂f

∂w
(vt,wt),EZ

[

g(vt,wt;Z)
]

〉

+
Lη2

2

∥

∥

∥EZ

[

g(vt,wt;Z)
]∥

∥

∥

2

≤ f(vt,wt)−
(

η − (1 +A)
Lη2

2

)∥

∥

∥

∥

∂f

∂v
(vt,wt)

∥

∥

∥

∥

2

−
(

η − ALη2

2

)〈

∂f

∂w
(vt,wt),EZ

[

g(vt,wt;Z)
]

〉

. (33)

The third equality is due to the fundamental theorem of calculus. In the first inequality, we called
Lemma 2 for (vt,wt) and (vt(a),wt(a)) with a ∈ [0, 1]/{a0}. In the last inequality, we used Lemma

5. So when η < η0 := min
{

2
(1+A)L , η̃

}

, we have f(vt+1,wt+1) ≤ f(v0,w0) and thus ‖vt+1‖ ≤ C0.

Summing up the inequality (33) over t from 0 to ∞ and using f ≥ 0, we have

η

∞
∑

t=0

(

1− (1 +A)
Lη

2

)∥

∥

∥

∥

∂f

∂v
(vt,wt)

∥

∥

∥

∥

2

+

(

1− ALη

2

)〈

∂f

∂w
(vt,wt),EZ

[

g(vt,wt;Z)
]

〉

≤ f(v0,w0) < ∞.

Hence,

lim
t→∞

∥

∥

∥

∥

∂f

∂v
(vt,wt)

∥

∥

∥

∥

= 0

and

lim
t→∞

〈

∂f

∂w
(vt,wt),EZ

[

g(vt,wt;Z)
]

〉

= 0.

Invoking Lemma 5 again, we further have

lim
t→∞

∥

∥

∥
EZ

[

g(vt,wt;Z)
]∥

∥

∥
= 0,

which completes the proof.

View publication statsView publication stats


