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Abstract

We present LBW-Net, an efficient optimization based method for quantization and
training of the low bit-width convolutional neural networks (CNNs). Specifically, we quan-
tize the weights to zero or powers of 2 by minimizing the Euclidean distance between
full-precision weights and quantized weights during backpropagation (weight learning).
We characterize the combinatorial nature of the low bit-width quantization problem. For
2-bit (ternary) CNNs, the quantization of N weights can be done by an exact formu-
la in O(N log N) complexity. When the bit-width is 3 and above, we further propose a
semi-analytical thresholding scheme with a single free parameter for quantization that is
computationally inexpensive. The free parameter is further determined by network re-
training and object detection tests. The LBW-Net has several desirable advantages over
full-precision CNNs, including considerable memory savings, energy efficiency, and faster
deployment. Our experiments on PASCAL VOC dataset show that compared with its
32-bit floating-point counterpart, the performance of the 6-bit LBW-Net is nearly lossless
in the object detection tasks, and can even do better in real world visual scenes, while
empirically enjoying more than 4x faster deployment.

Mathematics subject classification: 90C26, 90C10, 90C90.
Key words: Quantization, Low bit width deep neural networks, Exact and approximate
analytical formulas, Network training, Object detection.

1. Introduction

Deep convolutional neural networks (CNNs) have demonstrated superior performance in
various computer vision tasks [3,13-16,18,22-24]. However deep CNNs typically have hundreds
of millions of trainable parameters which easily take up hundreds of megabytes of memory, and
billions of FLOPs for a single inference. This poses a significant challenge for the deployment
of deep CNNs on small devices with limited memory storage and computing power such as
mobile phones. To address this issue, recent efforts have been made to compress the model
size [7,9] and train neural networks with heavily quantized weights, activations, and gradients
[1,2,6,7,9,17,20,21,26-28], which demand less storage and fewer FLOPs for deployment.
These models include BinaryConnect [1], BinaryNet [2], XNOR-Net [21], TWN [17], TTQ [28],
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DoReFa-Net [27] and QNN [9], to name a few. In particular, binary (1-bit) and ternary (2-bit)
weight models not only enable high model compression rate, but also eliminate the need of most
floating-point multiplications during forward and backward propagations, which shows promise
to resolve the problem. Compared with binary models, ternary weight networks such as TWN
strike a better balance between model size and accuracy. It has been shown that ternary weight
CNNs [17] can achieve nearly lossless accuracy on MNIST [16] and CIFAR-10 [12] benchmark
datasets. Yet with fully ternarized weights, there is still noticeable drop in performance on
larger datasets like ImageNet [4], which suggests the necessity of relatively wider bit-width
models with stronger performance for challenging tasks.

An incremental network quantization strategy (INQ) is proposed in [26] for converting pre-
trained full-precision CNNs into low bit-width versions whose weights are either zero or powers
of two. A b bit-width model can have 2°~1 +1 distinct candidate values, in which 2 bits are used
for representing the zero and the signs, while the remaining b — 2 bits for the powers. More
precisely, the parameters are constrained to 2% x {O,:|:21_2b72,:|:22_ ,..., 1} associated
with a layerwise scaling factor 2%, s an integer depending only on the weight maximum in the
layer. At inference time, the original floating-point multiplication operations can be replaced
by faster and cheaper binary bit shifting. The quantization scheme of [26] is however heuristic.

217—2

In this paper, we present the exact solution of the general b-bit approximation problem of
a real weight vector W/ in the least squares sense. If b = 2 and the dimension of W7 is N,
the computational complexity of the 2 bit solution is O(N log N). At b > 3, the combinatorial
nature of the solution renders direct computation too expensive for large scale tasks. We shall
develop a semi-analytical quantization scheme involving a single adjustable parameter u to set
up the quantization levels. The exponent s in the scaling factor can be calculated analytically
from p and the numbers of the downward sorted weight components between quantization
levels. If the weight vector comes from a Gaussian ensemble, the parameter p can be estimated
analytically. However, we found that the weight vectors in CNNs (in particular ResNet) are
strongly non-Gaussian. In this paper, i is determined based on the object detection performance
after retraining the network. This seems to be a natural choice in general as quantization is
often part of a larger computer vision problem as is here. Therefore, the optimal parameter p
should not be decided by approximation (the least squares problem) errors alone. Indeed, we
found that at b > 4, u = 2||W/||» gives the best detection performance, which suggests that a
percentage of the large weights plays a key role in representing the image features and should
be encoded during quantization.

Network retraining is necessary after quantization as a way for the system to adjust and ab-
sorb the resulting errors. Besides warm start, INQ [24] requires a careful layerwise partitioning
and grouping of the weights which are then quantized and re-trained incrementally group by
group rather than having all weights updated at once. Due to both classification and detection
networks involved in this work, we opted for a simpler retraining method, a variant of the
projected stochastic gradient descent (SGD) method (see [1,17,21] and references therein). As
a result, our LBW-Net can be trained either from scratch or a partial warm start. During each
iteration, besides forward and backward propagations, only an additional low cost thresholding
(projection) step is needed to quantize the full-precision parameters to zero or powers of two.
We train LBW-Net with randomly initialized weights in the detection network (R-FCN [3]),
and pre-trained weights in ResNet [8]. We conduct object detection experiments on PASCAL
VOC data sets [5] as in [3,22]. We found that at bit-width b = 6, the accuracies of the quan-
tized networks are well within 1% of those of their 32-bit floating-point counterparts on both
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ResNet-50 and ResNet-101 backbone architectures. In some complex real world visual scenes,
the 6-bit network even detects persons missed by the full-precision network.

The rest of the paper is organized as follows. In section 2, we construct the exact solution of
the general low bit-width approximation problem and present our semi-analytical quantization
scheme with a single adjustable parameter pu. We also outline the training algorithm and the
choice of . In section 3, we describe our experiments, the datasets, the object detection results,
the non-Gaussian and sparsity properties of the floating weights in training. In section 4, we
conclude with remarks on future work.

2. Training Low Bit-width Convolutional Neural Networks

2.1. Weight quantization at low bit-width

For general quantization problem, we seek to minimize the Euclidean distance between the
given full-precision weight vector W/ and quantized weight vector W9, which is formulated as
the following optimization problem:

19[/151 [W?—W/|> subject to W€ Q,

where Q is the set of quantized states.

To quantize the full-precision weights into low-precision ones of b bits (b > 2), we constrain
the quantized weights to the value set of 2% x {0, £21—" 4+22-" . 41} for some integer s € Z,
where n = 2°=2 and 2° serves as the scaling factor. The minimal distance problem becomes:

(s*,Q") = arg mzi% 12°Q — W/||?  subject to Q; € {0, 427" ... +1}. (2.1)
se”Z,

Then the optimal quantized weight vector is given by 25" Q*. A precise characterization of (2.1)
is as follows.

Theorem 2.1. Let b > 2, n = 272, and ko, ..., ko1 € N. Suppose that W}

largest components in magnitude of W/ and zeros out the other components; W[J;l] extracts the
next ki largest components and zeros out the other components, and so on. The solution Q* to
(2.1) is:

keeps the ko

n—1
@ = 3 sin(Wif 2"
t=0
where
n—1 n—1
* * _ : f —t —2t
(k... k) = arg min g <; Wiy lh2 ,;ktz ) (2.2)

with
2

g(u,v) :=v (2“‘%2 £l 2)2 v
v v

The bracket || in g(u,v) is the floor operation or the closest integer on the left. Moreover, the
optimal power of scaling is:

n—1 45—
43775 27 Wi,

1
3 El:ol ky2—2 J .

st = Llog2
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Proof. Let k; be the number of entries in @ quantized to £27%, ¢t =10,...,n — 1. It follows
that

n—1
lQI2 = Zktz % and QW) < 3 W a2 (2.3)
t=0
Therefore, for any s € Z,

12°Q — W1 = 22| QI* — 2°*H(Q, W) + W72

n—1 n—1

223 k27 = 2T S W27 WP (by (2.3))
t=0 t=0

2
— iso W lh2™ - i W 12702 :
_<Zkt22t> <2S— =Ty o — 1[ W% (2.4)
t=0 Zt:o kt2 Et:o k2~

Since s € Z, by symmetry of the parabola, it suffices to find the nearest power of 2 to
Yo ||W w270/ 2505 ! k272 to achieve the lower bound in (2.4). The nearest power 2°
satlsﬁes

22 YA HWf 127 PR

3

2 - :0 kt2 2t 2
or equivalently,
1T W T W
log, —1<s<log, .
3300 ! k22 3N, Uk, 2-2t
Therefore,
43050 W 2™
s*=|lo . 2.5
llog, 3En1k22t ] (25)
Let us define
2 2
g(u,v) = v<21°g2L§1U — E) L
v v
Then we examine the minimum value of g(3°;—, HW w1127 " k272 over all possible
combinations of natural numbers ko, ..., k,_1, i.e., the 0pt1ma1 numbers of quantized weights
at the n levels are given by
n—1
(kyy. o ki) = argmln (Z W, kt]|\12_t, Z kt2_2t> :
Koyerskin Pt
Finally, to achieve the minimum in (2.4) with respect to (kg,...,k%_;), we must have
n—1
. _ . f _
@ =S swmor e
t=0
A W 127
so that (Q*,W/) =31 ||Wf*]|| 27t and choose s* = |log, 0 Ll |. O

3T, kr2—2t

In Theorem 2.1, we have assumed that the components of W/ have no ties in magnitudes,
as such situation occurs with zero probability for random floating vectors from continuous
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distributions. To solve the problem (2.1) by Theorem 2.1, we need to sort the elements of W7
in magnitude, and find the optimal numbers of weights k§,...,k)_; at n quantization levels
by solving (2.2). We can then obtain the optimal scaling factor 2°". The largest kg weights
(in magnitude) are quantized to +2°", and the next largest ki weights to +2°" 1, and so on.
Finally, all the remaining small weights are pruned to 0.

The subproblem (2.2) is intrinsically combinatorial. In the simplest case b = 2 of the ternary
weight networks, by Theorem 2.1,

kg = arg min g(||W 1, ko), (2.6)

and the solution to (2.1) is given by:

f
4Wiks)

1
2.7
3 kg (27)

Q" = sign(Wj.)), s* = [log,
The formula (2.6)-(2.7) is first found by the authors in [25]. It shows that the weight ternar-
ization mainly involves sorting magnitudes of the elements in W/ and computing a cumulative
sum of the sorted sequence, which requires a computational complexity of O(N log(NN)), where
N is number of entries in W /.

When b > 2 and n > 1, solving (2.2) by direct enumeration becomes computationally too
expensive for large scale problems such as convolutional neural networks and thus impractical.
Hereby we propose a low-cost approximation of Q*, motivated by the empirical quantization
schemes in [17,26]. To this end, by selecting a proper threshold value u, we set

2277@

sign(W/)2i=n if 2l < (Wl <22y
Qr = (2.8)
sign(Wi)2—t if 27ty <|W/| <27ty t=1,...,n—2,

sign(W]) it < W/,

Note that the case t = n — 1 in (2.8) needs special treatment because one of the neighboring
quantized values is 0. The parameter p is the only free parameter in (2.8).

Theorem 2.2. The optimal power §* of the scaling factor with respect to the approximate Q*
in (2.8) is
n—1q_—
4215:0 2 t||W£* 1
S (2.9)
3> o k22

§* = |log,

Here W[,;;] is defined as in Theorem 2.1, and l%;‘ is the number of entries of W in the t-th
largest group according to the division of (2.8).

Proof. Let Q* be defined as in (2.8). Since ||2°Q* — W/||? is a quadratic function in terms
of 2%, and

+IW/IR,
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the minimizer § € Z must occur at either |log, %J or the ceiling [log, %], the
closest integer from the right. By grouping the elements in @ according to their magnitudes,
we have further

n—1 n—1
@ Wiy =32 Wl QP =Y k2,
t=0 t=0

where [t] == {i: |Q¥| =27t},t =0,...,b—2, and k; is the cardinality of [t]. This completes
the proof. O

Remark 2.1. We remark that the output of Q* consists of mostly the scaled signs, hence Q*
resembles a “phase factor”. On the other hand, the scaling factor 2°” is the corresponding am-
plitude. Putting the two factors together, one can view the low bit-width weight approximation
as an approximate polar decomposition of the real weight vector.

2.2. Training algorithm

We used a projected SGD-like algorithm as in [1,17,21] for training LBW-Net. At each
gradient-descent step, the minibatch gradient is evaluated at the quantized weights, and a
scaled gradient is subtracted from the full-precision weights instead of the quantized weights in
standard projected gradient method. The quantization is done layer by layer by the formulas
(2.8) and (2.9) with p selected as 2||W /|| for each layer at bit-width 4 or above. To compute
the optimal power s* in (2.9), we find it sufficient to use the partial sums Zf:o 2’t||W[£;] 1

and Z?:o l~f§2_2t instead, as the tail values are negligible. In addition, we adopted batch
normalization [10], adaptive learning rate, and Nesterov momentum [19] to promote training
efficiency.

3. Experiments

We implemented our LBW-Net with the R-FCN [3] structure on PASCAL VOC [5] dataset
which has 20 object categories. Same as [3], the training set is the union of VOC 2007 trainval
and VOC 2012 trainval (“07+12”), and test results are evaluated on the VOC 2007 test set.
So there are in total 16,551 images with 40,058 objects in the training set, and 4,952 images
in the test set. The performance of object detection is measured by mean Average Precision
(mAP). All mAP scores are computed with the Python version of the test codes provided by
RCNN/Fast RCNN/Faster RCNN GitHub repositories. Our experiments are carried out on
Caffe [11] with a Titan X GPU under Linux system.

3.1. R-FCN on PASCAL VOC

We employed ResNet-50 [8] as the backbone network architecture for R-FCN. In the exper-
iments, we tested 4, 5, 6-bit LBW-Net and compared evaluation results with the corresponding
32-bit floating point models. For fair comparison, all these tests used the same initial weights,
which are pre-trained convolutional feature maps from ResNet-50 while the weights in the other
convolution layers are randomly initialized. A similar procedure is applied for experiments with
ResNet-101. In [20], comparable results to ours were reported on ResNet-50 based detection.
However, their method did not work on the deeper ResNet-101 based detection. Interesting
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though, their approach succeeded in the classification task using ResNet-101, which suggests
that quantization of detection networks is more challenging.

In the R-FCN structure, there is no fully-connected layer. We quantized all convolutional
layers with the same low bit-width quantization formula for each layer.

32-bit 6-bit

Fig. 3.1. Curated examples of 6-bit LBW detection results on 3 sample images, compared with those
from the corresponding full precision model. The left columns are results of 32-bit full-precision model,
while the right images come from 6-bit LBW model. The network is R-FCN + ResNet-50, and the
training data is 200742012 trainval. The threshold value 0.5 is used for display.

Table 3.1 shows mAP results from our experiments. With larger bit-width, LBW models
achieved higher mAP values, true for both R-FCN + ResNet-50 and R-FCN + ResNet-101.
The models trained with the 6-bit LBW scheme almost approach the best mAP of 32-bit full
precision models. Besides these quantitative measures, in Fig. 3.1, we illustrate detection
accuracies using R-FCN 4 ResNet-50 via samples processed by 6-bit LBW in comparison with
those by the ‘ground truth’ full precision model. The first 2 photos are chosen from the 2007
Pascal VOC dataset and the third photo is taken at a university campus with a much more
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Table 3.1: Object detection experiments on PASCAL VOC with R-FCN + ResNet-50/ResNet-101.
Training set is VOC 07+12 trainval. The results are evaluated on VOC 07 test.

R-FCN, ResNet-50 | mAP | R-FCN, ResNet-101 | mAP

4-bit LBW 74.37% 4-bit LBW 76.79%
5-bit LBW 76.99% 5-bit LBW 77.83%
6-bit LBW 77.05% 6-bit LBW 78.24%

32-bit full-precision | 77.46% | 32-bit full-precision | 78.94%

complicated visual scene. In the first 2 photos, both the 6-bit LBW and full precision models
detected the major objects correctly, with nearly the same bounding box positions and high
classification scores. In the third photo, the 6-bit LBW even surpassed the performance of the
full precision model, by detecting a student at the very left side of the top staircase with a score
of 0.710. Also the 3rd student from the right (the student in the middle) on the top staircase is
detected with a score of 0.952 (0.906) by the 6 bit LBW vs. 0.886 (0.820) by the full precision
model. Interestingly, these three students are all side-viewed.

3.2. Statistical Analysis of Weights

In Fig. 3.2, we illustrate the weight distributions of two floating convolutional layers by
histograms. The p-values of a standard hypothesis testing procedure in statistics on normality
showed up very small (less than 107%), indicating the strong non-Gaussian behavior of the
floating weights in training. This phenomenon posed a challenge to the analytical effort of
estimating the parameter ¢ in quantization using probability distribution functions as suggested
for TWN [38].

Conv layer in residue block RPN layer [22]
00 900 T T
500 BOO |-
700+
500
600 |
400 500
300 400
300
200
200
100 100 |-
—0.8 A . i | oz 04 06 na —%.10 —0:05 0.00 0.65
Kurtosis = 6.113, Skewness = —0.112 Kurtosis = 9.398, Skewness = —0.481

Fig. 3.2. Histograms of the float weights in 2 convolutional layers of 32-bit full-precision trained R-FCN
+ ResNet-50 model. For both of these 2 layers, the p-values of normal distribution hypothesis testing
are extremely small, less than 1075, Also the excess kurtosis measures are much larger than the value
for normal distribution, which is 0. Thus these weights are far from being normally distributed.

In Table 3.2 and Table 3.3, we show the weight percentage distribution of two sample con-
volutional layers in R-FCN 4 ResNet50 between different magnitude levels of the quantization
for low-bit width and full-precision models. The three low bit-width models involve truncation
and encoding operations. The 6 bit-width columns appear to approach the 32-bit float columns
on most rows. However, the percentages on the last three (two) rows under the low-bit LBW
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Table 3.2: Statistics of low-bit and full precision weights (w) of one convolutional residual block layer
in R-FCN + ResNet-50 at different bit-widths. For 4, 5, 6-bit LBW models, the weights in the first
row of partition are exactly equal to 0, and come from rounding down small floating weights during

training.

R-FCN, ResNet-50 | 4-bit LBW | 5-bit LBW | 6-bit LBW | 32-bit full-precision
lw| < 271° 82.882% 10.072% 0.030% 0
2710 <w| <2710 0 0 0.060% 0.076%
27 < |w| <27 0 0 0.141% 0.225%
27 M < w| <271 0 0 0.233% 0.271%
271 < |w| < 2712 0 0 0.486% 0.613%
2712 <w| <27 0 0 0.922% 1.283%
27 <w| <271 0 0 1.964% 2.610%
2710 < jw| < 27° 0 0 3.776% 4.945%
279 < |w| < 278 0 0 7.343% 9.524%
278 < |lw| < 277 0 18.392% 13.509% 16.713%
277 <Jw|<27° 0 21.221% 21.221% 23.581%
270 <|w| < 27° 0 24.270% 24.270% 22.993%
275 < |w| < 274 0 17.706% 17.706% 12.627%
27 < Jw| <278 15.479% 6.700% 6.700% 3.784%
273 < |w| < 272 1.408% 1.408% 1.408% 0.608%
272 < |w| < 271 0.228% 0.228% 0.228% 0.098%
271 < Jwl 0.003% 0.003% 0.003% 0

Table 3.3: Statistics of low-bit and full precision weights (w) of one RPN layer in R-FCN + ResNet-50
at different bit-widths. For 4, 5, 6-bit LBW models, the weights in the first row of partition are exactly
equal to 0, and come from rounding down small floating weights during training.

R-FCN, ResNet-50 | 4-bit LBW | 5-bit LBW | 6-bit LBW | 32-bit full-precision
|w| < 271 58.188% 4.000% 0.016% 0.019%
2710 <w| <2718 0 0 0.031% 0.022%
2718 < w| < 27 0 0 0.047% 0.045%
271 < w| < 27 0 0 0.095% 0.089%
2710 <w| <2710 0 0 0.185% 0.177%
27 < |w| <27 0 0 0.370% 0.355%
27 M < w| <271 0 0 0.751% 0.714%
271 < |w| <2712 0 0 1.501% 1.413%
2712 < |w| <27 0 0 2.993% 2.836%
27 < w| < 2710 0 7.949% 5.952% 5.616%
2710 < jw| < 27° 0 11.676% 11.685% 11.061%
279 < |lw| < 278 0 21.571% 21.588% 20.625%
278 <|w| <277 0 31.553% 31.539% 31.370%
277 < |w] < 27 39.837% 21.137% 21.134% 23.257%
270 <|w| < 27° 1.953% 2.093% 2.091% 2.397%
275 < |w| < 274 0.022% 0.021% 0.022% 0.004%
274 < Jwl 0.0001% 0.0001% 0.0001% 0

models in Table 3.2 (3.3) are identical to each other and are much larger than the corresponding

percentage in the full precision model. This shows that the trained low-bit LBW models
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captured rather well a small percentage of the large weights. In deep CNNs, the large magnitude
weights occupy a small percentage yet have a significant impact on the model accuracy. That
is why we chose the partition parameter 4 to be near the maximum norm of the weights.

It is worthwhile to note from the two tables that the 4-bit LBW can save lots of memory
thanks to both low-bit weights and high sparsity. Over 82% (58%) of the weights are zeros
in the convolutional residual block (RPN layer) of the R-FCN plus ResNet50 network. With
the help of 'Mask’ technology in circuit chip design, zero-valued weights will be skipped and
the computational efficiency can be much improved. However, as shown in Table 3.1, the 4-bit
LBW still suffers a few more percentages of accuracy loss than the 5-bit and 6-bit models.
The 6-bit LBW model approximates the feature representation capability of the full precision
network the best with a sufficient number of smaller levels of quantized weights. For that
reason, it almost recovers the performance of the full precision model on the test set. The 6-bit
LBW model saves around 5.3x weights memory with a small loss of accuracy. The memory
savings and the near lossless accuracy of the 6-bit LBW may work well on a modern chip design
where all multiplication operations in the convolutional layers can be replaced by bit-wise shift
operations, thus highly improving the computing efficiency in applications.

4. Concluding Remarks

We discovered the exact solution of the general low-bit approximation problem of a real
weight vector in the least squares sense, and proposed a low cost semi-analytical quantization
scheme with a single adjustable parameter. This parameter is selected and optimized through
training and testing on object detection data sets to approach the performance of the corre-
sponding full precision model. The accuracy of our 6-bit width model is well-within 1% of the
full precision model on PASCAL VOC data set, and can even outperform the full-precision
model on real-world test images with complex visual scenes. Moreover, our low-bit-width mod-
el is 4x faster. In future work, we plan to improve the low bit width models (especially the
4 bit-width model) further by exploring alternative training algorithms and adapting quanti-
zation levels so that small weights are quantized with fewer levels than in the current work.
Quantizing small weights with two many levels due to the restriction of powers of 2 is prone to
introducing noise to the network. This problem can be solved in a more general quantization
framework [20] where our quantization formulas in Theorem 2.1 and Theorem 2.2 extend.
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