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Abstract: We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico
to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to
decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf
exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter,
and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero
on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge
was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event,
after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity
tests were carried out to examine the response of sediment dynamics to high and low river discharge,
respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely
reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and
estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely
affect sediment balance in waters around the delta. The impact from decreased fluvial input was
minimum on the sandy shoals ~100 km west of the Mississippi Delta, where deposition of fluvial
sediments was highly affected by winds.
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1. Introduction

The Mississippi-Atchafalaya River system has the third largest drainage basin (3.3 × 106 km2)
and seventh largest freshwater discharge (380 km3/year) in the world [1–3]. About two thirds of
the sediments and water are delivered by the Mississippi River and the rest are diverted to the
Atchafalaya River [4,5]. Over the past decades, especially after the 1950s, sediment flux from the
Mississippi-Atchafalaya River has decreased dramatically [6–9]. The deficit of sediment supply, together
with the eustatic sea level rise, results in severe coastal erosion and land loss [10–12]. The average rate
of land loss was 88 km2/year from 1956 to 2000, and an additional loss of 1329 km2 is projected by
2050 [13]. Climate change within the Mississippi River watershed has been identified as a significant
factor controlling long-term variations of river discharge. Wavelet analysis of the North America
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annual freshwater discharge indicated a four- to eight-year oscillation, which is correlated with the El
Niño-Southern Oscillation event (ENSO hereafter) [14–17]. A longer temporal scale variation (25-year)
is associated with the bi-decadal precipitation oscillation related to the North Atlantic Oscillation (NAO)
and Pacific Decadal Oscillation (PDO) [18–20]. The most dominant change point of the Mississippi
River water discharge was detected around 1970, featured by the eight- to sixteen-year and three-
to six-year modes [21]. Anthropogenic activities have been widely discussed in previous studies as
another factor influencing river discharge [22]. In the 1950s, dam construction on the Missouri River
resulted in substantial sediment flux reduction [7]. The estimated loss of fluvial sediment load at the
Mississippi River mouth was ~225 Mt/year in the period of 1950 to 1975 [15].

Hydrodynamics in the northern Gulf of Mexico (nGoM hereafter) exhibit contrasting patterns
over a year due to the shift in the direction of prevailing winds [23–26]. During non-summer months,
the westward Louisiana Coastal Current (LCC) prevails because of strong easterly wind. In summer
months, intensive westerly winds cease the LCC and the currents reverse to eastward [27]. Waves in
the nGoM are introduced by both local winds and remote swell propagation [28]. For tidal schemes,
K1, O1 and M2 are the most dominant constituents and the tidal currents maximized to ~9 cm/s near
Atchafalaya Bay over the Louisiana–Texas shelf [29]. The maximum tidal range is about 0.6 m [30,31].
Due to the high fluvial discharge and relatively low-energy environment, initial deposition of the
fluvial sediments usually happens <30 km off the river mouth [32–34]. During episodic events such
as hurricanes and winter storms, strong hydrodynamics induced by energetic winds can transport
fluvial sediments further offshore [35–41]. Two depocenters in the nGoM with a deposition >1 cm
per year have been identified: one is around the bird-foot delta in the Louisiana Bight and the other
is in the Atchafalaya Bay [42]. Radionuclide chronologies of sediment cores around the bird-foot
delta indicated a decreasing deposition rate as water became deeper [43–46]. For the Atchafalaya
shelf; however, high deposition rates were found 10–12 km offshore on the clinoform foreset [43]. A
possible explanation of this fast deposition is that the fluid mud escaped from the delta topset [47–53].
Although nourished by the largest river system in North America, the Mississippi Delta and adjacent
coast is still suffering from severe erosion [54]. For example, the Barataria Bay, which is adjacent to the
Mississippi main channel to the west, has been experiencing substantial land loss (16.9 km2/year) and
barrier island retreat over the past decades [55,56]. Many efforts have been made for coastal restoration
purposes, and most noticeable examples are the sediment diversion via Davis Pond diversion and
sediment emplacement over the barrier islands [57–61]. Nevertheless, the diverted sediments and
sand materials dredged from the inner shelf are still insufficient to balance the land loss in the bay.

Submarine shoals over the western Louisiana shelf (e.g., Tiger/Trinity and Ship Shoals; Figure 1)
are reworked prograded deltaic headlands formed during low sea level stand [62]. Due to relatively
high sandy content and little muddy overburden, the transgressive shoals are treated as potential sand
sources for coastal restoration and beach nourishment [59,63,64]. Although the total sand volume of
these deposits is massive, recent surveys show that the total dredgeable sands are highly restricted by
oil infrastructures, environmental concerns, and cultural resources [65,66]. Given the importance of
sandy shoals in coastline protection, understanding long-term sediment dynamics over these shoals
and its interaction with hydrodynamics and rivers are essential.
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Figure 1. The northern Gulf of Mexico (nGoM; upper panel) and Gulf of Mexico (GoM; lower panel) 
grid domains used in the Regional Ocean Modeling System (ROMS) and the Simulating Waves 
Nearshore model (SWAN), overlaid with water depth (color-shading; ETOPO1), locations of tidal 
gauges (red circle), buoy stations (black triangle), sediment stations (magenta diamond), and shoals. 
(AB: Atchafalaya Bay; BB: Barataria Bay; MRD: Mississippi River Delta; MB: Mobile Bay; LP: Lake 
Pontchartrain). 
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in areas with high deposition rate on a decadal scale (e.g., around the Mississippi Delta) due to its 
low temporal resolution (e.g., 210Pb, half-life 22.4 years) or short temporal scale (e.g., 234Th, half-life 
21.4 days; 7Be, half-life 53.2 days). There is a substantial knowledge gap of shelf deposition’s response 
to decreased fluvial sediment flux over the past decades. As an alternative method, numerical model 
has been widely applied to the nGoM to investigate hydrodynamics and sediment dynamics on 
different temporal scales [30,36,39,40]. In this study, we used the Coupled Ocean–Atmosphere–
Wave–Sediment Transport Modeling system (COAWST) to investigate fluvial sediment dynamics 
over the continental shelf on seasonal to decadal scales [69,70]. Compared with existing modeling 
studies in this region, this study is the first effort to investigate shelf sediment dynamics up to a 
decadal time scale. The objective of this study is to understand: i) the seasonal sedimentation patterns 
on the continental shelf; ii) the impacts of rivers, winds, and waves on sediment transport; and iii) 
the bay-shelf sediment exchange and sediment dynamics over submarine shoals. 

2. Model Setup 

The COAWST model (version 3.2) consists of three state-of-the-art numerical models: The 
Regional Ocean Modeling System (ROMS; [71,72]) for ocean hydrodynamics; Simulating Waves 

Figure 1. The northern Gulf of Mexico (nGoM; upper panel) and Gulf of Mexico (GoM; lower
panel) grid domains used in the Regional Ocean Modeling System (ROMS) and the Simulating
Waves Nearshore model (SWAN), overlaid with water depth (color-shading; ETOPO1), locations of
tidal gauges (red circle), buoy stations (black triangle), sediment stations (magenta diamond), and
shoals. (AB: Atchafalaya Bay; BB: Barataria Bay; MRD: Mississippi River Delta; MB: Mobile Bay;
LP: Lake Pontchartrain).

Existing radionuclide studies provide valuable information of deposition rate on seasonal to
decadal scales, and the difference between short-term and long-term deposition rates implies the
relative importance of episodic events [44–46,67,68]. Nevertheless, radionuclide chronology cannot
quantitatively evaluate hydrodynamics’ impact on sedimentation, and physical reworking introduced
by waves and currents might compromise the temporal resolution and accuracy of such measurements.
Moreover, radionuclide chronology can hardly detect the variation of deposition rate in areas with high
deposition rate on a decadal scale (e.g., around the Mississippi Delta) due to its low temporal resolution
(e.g., 210Pb, half-life 22.4 years) or short temporal scale (e.g., 234Th, half-life 21.4 days; 7Be, half-life
53.2 days). There is a substantial knowledge gap of shelf deposition’s response to decreased fluvial
sediment flux over the past decades. As an alternative method, numerical model has been widely
applied to the nGoM to investigate hydrodynamics and sediment dynamics on different temporal
scales [30,36,39,40]. In this study, we used the Coupled Ocean–Atmosphere–Wave–Sediment Transport
Modeling system (COAWST) to investigate fluvial sediment dynamics over the continental shelf on
seasonal to decadal scales [69,70]. Compared with existing modeling studies in this region, this study
is the first effort to investigate shelf sediment dynamics up to a decadal time scale. The objective of
this study is to understand: i) the seasonal sedimentation patterns on the continental shelf; ii) the
impacts of rivers, winds, and waves on sediment transport; and iii) the bay-shelf sediment exchange
and sediment dynamics over submarine shoals.
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2. Model Setup

The COAWST model (version 3.2) consists of three state-of-the-art numerical models: The Regional
Ocean Modeling System (ROMS; [71,72]) for ocean hydrodynamics; Simulating Waves Nearshore
(SWAN; [73]) for waves; and Weather Research and Forecasting Model (WRF-ARW; [74]) for atmospheric
simulation. The Community Sediment Transport Modeling System (CSTMS; [70]) is incorporated into
the ocean model (ROMS) to simulate sediment transport and deposition. The Model Coupling Toolkit
(MCT; [75]) is used for information exchange among different models. In this study, we disabled the
atmosphere (WRF) coupling to focus on interactions among wave, ocean, and sediment transport over
a 20-year period (1993–2012), which was determined by the availability of the model inputs (Hybrid
Coordinate Ocean Model (HYCOM)). Details of our model configuration are described next.

2.1. Ocean and Sediment Models

ROMS (svn 797) is a three-dimensional, free surface, terrain following model that solves
Reynolds-Averaged Navier–Stokes (RANS) equations based on the hydrostatic and Boussinesq
assumptions [76,77]. We used a “two-step” offline nesting method to reduce the computational cost
of the 20-year coupled ocean–wave–sediment simulation. First, we performed a two-way-coupled
simulation (wave–ocean) on the Gulf of Mexico (GoM) domain, with 36 weighted vertical layers at
a 5 km horizontal resolution. We then utilized the GoM model results as the boundary condition
to drive a higher resolution domain covering the nGoM at a 1 km horizontal resolution (Figures 1
and 2; meshes of model domains see Supplementary Materials). Compared to previous sediment
transport models in this region [35,37,40], our nesting mesh resolution was high enough to resolve
physical and sediment transport processes over the shelf and the structured grid made long-term
simulation (20 years) applicable. For the GoM domain, initial conditions of current velocity, sea level,
temperature, and salinity were interpolated from the 1/12◦ data assimilated Hybrid Coordinate Ocean
Model (HYCOM/NCODA, GLBu0.08/expt_19.0 and expt_19.1; [78]). The barotropic velocity boundary
condition was prescribed following Flather [79]. The baroclinic velocity, temperature, and salinity
were specified using the Orlanski-type radiation boundary condition [80]. We extracted the Oregon
State University Tidal Inversion Software (OTIS; [81]) regional tidal solution and interpolated it on
the model grid as tidal forcing. The 6-hourly, 38 km horizontal resolution Climate Forecast System
Reanalysis (CFSR; [82,83]; http://cfs.ncep.noaa.gov) was utilized as meteorological momentum and
buoyancy forcing due to its high quality. Monthly average freshwater and suspended sediment inputs
from 39 rivers debouching into the GoM were retrieved from United States Geological Survey (USGS)
Water Data for the Nation website (http://nwis.waterdata.usgs.gov) and applied as boundary condition.
The stations selected for river inputs were the most downstream sites with consecutive available
data. Sediment bedload from rivers was not considered in our simulation. The mesh bathymetry was
interpolated and smoothed from ETOPO1 dataset [84]. We employed the Mellor-Yamada level-2.5
closure scheme [85] to estimate vertical turbulent mixing. We chose the SSW_BBL module [86,87] for
bottom boundary layer parameterization, which calculates both wave- and current-induced bottom
shear stress for momentum and sediment resuspension. Model outputs were saved every day for
analysis. The time steps for the GoM and nGoM domains were specified as 300 and 120 s, respectively.

The sediment model (CSTMS) integrates several modules to simulate sediment transport,
stratigraphy and geomorphology [70]. Suspended sediment transport in the water column is calculated
by solving advection-diffusion equation. The other two additional sediment source/sink terms are
sediment resuspension from the seabed and sediment vertical settling. As bottom shear stress
calculated in SSW_BBL exceeds critical shear stress (details see Table 1), pre-deposited sediment will be
resuspended into the bottom water layer and the resuspension flux is estimated following Ariathurai
and Arulanandan [88]. We defined four cohesive and two non-cohesive sediment classes for river
inputs. Sediment concentration in the water column was initialized as zero. As this study focused
on dynamics of riverine sediments, we prescribed one non-cohesive, resuspension-resistant class as
shelf sediments with high critical shear stress (100 Pa) following Harris et al. [89]. To achieve the most

http://cfs.ncep.noaa.gov
http://nwis.waterdata.usgs.gov
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reasonable sediment parameterization, we performed a series of sensitivity tests based on the studies
by Xu et al. [35,37] and compared our simulation results with 210Pb-derived deposition rate ([45,46,68];
core locations see Figure 1). In Table 1 we listed a summary of the sediment model parameterization
used in this study, which reproduced the most reasonable deposition rates over the shelf. We prescribed
four layers of sediment on the sea floor, each with a thickness of 1.0 m. Seabed erosion–deposition was
based on non-cohesive parameterizations [70,90]. Due to the lack of suspended sediment observations
at the open boundary, suspended sediment concentration (SSC) at the boundaries of GoM domain was
set to zero and we applied the gradient boundary condition to avert unreal artificial sediment plumes
along the boundaries. In this study we only simulated suspended sediment transport and bedload
transport over the shelf was not considered.

Table 1. Sediment characteristics parameterization.

Sediment Type Grain Diameter
(mm)

Settling Velocity
(mm/s)

Critical Shear Stress
(Pa)

Erosion Rate
(10−4 kg/m2/s)

Mud_01(Mississippi River) 0.004 0.1 0.10 5
Mud_02(Mississippi River) 0.03 0.1 0.16 5
Mud_03(Atchafalaya River) 0.004 0.1 0.10 5
Mud_04(Atchafalaya River) 0.03 0.1 0.16 5
Sand_01(Mississippi River) 0.0625 1 0.20 5
Sand_02(Atchafalaya River) 0.0625 1 0.20 5
Sand_03(seabed) 0.14 1 100.0 5

2.2. Wave Model

The Simulating Waves Nearshore model (SWAN, version 41.01) was employed to simulate
wind–wave generation and propagation. The SWAN model is based on a Eulerian formulation of the
discrete spectral balance of action density that accounts for refractive propagation over bathymetry
and current fields [73]. Other incorporated physical processes include wave-wave interaction,
white-capping, bottom dissipation, and depth-induced wave breaking. The two SWAN model grids
(GoM and nGoM) were the same as those of the ocean models (ROMS). The initial wave spectra were
computed from the CFSR wind speed using the deep-water growth curve [91]. The breaker index
(certain ratio between wave height and water depth at which wave breaks) and the proportionality
coefficient of the dissipation rate were set to 0.73 and 1.0, respectively. The expression of M was applied
to estimate the bottom friction. The time step of wave simulations in GoM and nGoM domains were
the same as corresponding ocean models (300 and 120 s).

2.3. Model Nesting and Coupling

For both ocean and wave models, we first performed a 20-year, two-way (ROMS-SWAN) coupled
simulation on the GoM domain covering the period of 01/01/1993–12/31/2012 (step 1 in Figure 2).
The ocean model sent sea surface current velocity, water level, and bathymetry to the wave model, and
the wave model sent wave parameters (e.g., significant wave height, wave length, wave direction, etc.)
back to the ocean model. The variable exchange interval was specified as 1 h. On completion of the
GoM simulation, we interpolated model simulated physics (sea-level, velocity, salinity, temperature,
and significant wave height, wave period, wave direction) to the nGoM domains (wave and ocean)
as boundary conditions and performed the nGoM 20-year simulation (step 2 in Figure 2). Although
COAWST supports a real-time coupling between the ocean and wave models, information interchange
between models can greatly slow down the long-term simulations. To speed up the simulations
(one benchmark run and two sensitivity tests) in the nGoM domain, we first ran the wave model
independently and then utilized model outputs (wave direction, near bottom wave period, and bottom
wave orbital velocity) at a 6 h interval to drive the ocean and sediment models.
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Figure 2. Flow chart of GoM and nGoM simulation. In step 1 we coupled ocean model (ROMS)
and wave model (SWAN) for the GoM simulation. In step 2 (nGoM), ocean and wave simulations
were conducted independently and the wave model provided inputs (Dwave, Tbot, Ub) for ocean and
sediment simulation (Us Vs: Sea surface current velocity; η: Water level; bath: Bathymetry; Hwave:
Significant wave height; Lwave: Wave length; Dwave: Wave direction; Tsurf: Wave period at the surface;
Tbot: Wave period at the bottom; Qb: Percent breaking; Wdiss: Energy dissipation; Ub: Bottom wave
orbital velocity).

3. Model Validation

We validated the performance of each nGoM model (wave, ocean, and sediment) using available
in-situ measurements. For wave, we gathered monthly-averaged significant wave height at three
buoy stations from the National Data Buoy Center (NDBC, https://www.ndbc.noaa.gov; locations see
Figure 1). The model–data comparison revealed good agreement between simulated and observed
significant wave height (R = 0.94; Figure 3a). To evaluate wave model’s performance on daily scale,
we compared time series of observed and model simulated wave height at 42040 station in 2007 and
the correlation coefficient was 0.92 (Figure 3b).

To evaluate the model’s skill of resolving long-term coastal hydrodynamics, we retrieved water
level records from four NOAA tidal gauges at Calcasieu Pass (station ID: 8768094), Dauphin Island
(8735180), Port Fourchon (8762075), and Pilots Station East (8760922). We applied a 36 h low pass filter to
both simulated and observed time series. An example is shown in Figure 4, where model simulated sea
level anomaly was compared against observations at four stations in 2008. The correlation coefficients
were ≥0.80 at all four stations and the two surges brought by hurricanes Gustav and Ike, respectively,
were captured. To further evaluate model simulated water level over a longer time period, a statistical
assessment is shown in the form of a Taylor diagram (Figure 5), which presents the correlation
coefficients, centered root mean square difference (RMSD), and normalized standard deviations of
annual sea level anomaly time series [93]. Most correlation coefficients varied from 0.7 to 0.9, and the
standard deviation ratios were less than 2. We interpolated simulated salinity to the observation sites
at corresponding period and compared it against available measurements from the Southeast Area
Monitoring and Assessment Program (SEAMAP; http://seamap.gsmfc.org, data are depth-averaged),
which has 2145 data points covering the period from 1993 to 2012. The model-observation comparison
in Figure 6 indicates that the ocean model is capable of reproducing the pattern of salinity distribution,
with low salinity water embracing coastal Louisiana over the inner shelf and high salinity water
further offshore.

https://www.ndbc.noaa.gov
http://seamap.gsmfc.org
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Figure 5. Taylor diagram for observed and modeled annual sea-level anomaly at four tidal stations
from 1996 to 2012. Radial distance represents the ratio of simulated to observed standard deviations,
and azimuthal angle represents model–data correlation. Green arcs represent centered root mean
square difference between model and measurements. To facilitate the comparison of model results and
observations, annual sea level comparisons in certain years are represented by the same symbol (red
plus for years 1996, 1997, 1998, 1999, and 2000; cyan circle for 2001, 2002, 2003, and 2004; purple asterisk
for 2005, 2006, 2007, and 2008; green dot for 2009, 2010, 2011, and 2012). Each dot represents one single
station for a single year. The locations of stations are shown in Figure 1 (red dot). Both observations
and simulations are collected every hour.

For sediment model, we compared simulated sedimentation rate against published estimations
based on radionuclide data (210Pb; core locations see Figure 1). Our sediment model was capable
of capturing the magnitude and variation of the sedimentation rates at these sites. The model–data
correlation coefficient was 0.69 and the root mean square error (RMSE) was 0.78 (Figure 7). Moreover,
we compared the simulated surface SSC against the map derived from Moderate Resolution Imaging
Spectroradiometer (MODIS-aqua; Figure 8). Due to the presence of dense clouds, sun glint, and water
vapor in the coastal region, it was a challenge to retrieve a set of consecutive satellite images with
satisfying quality. We selected one cloud-free satellite image for each season from December 2009
to November 2010 and applied the nGoM SSC algorithm by Miller and McKee [94]. To highlight
the turbid water on the shelf, the region where surface SSC < 1 mg/L was masked out. In spring,
the Mississippi River sediment plume with high SSC (>100 mg/L) extended southwest to the 200 m
isobath (Figure 8a,b). Turbid water from the Atchafalaya River dominated the entire Atchafalaya Bay
and coastal water (water depth < 20 m). Westward sediment transport could be detected over the
coastal Chenier Plain, where westward alongshore current was strong. In summer, both SSC and the
spatial scale of sediment plume reduced dramatically due to calm weather and low fluvial discharge
(Figure 8c,d). The difference between the model result and satellite image in summer were likely due
to i) the application of atmospheric correction in the more oligotrophic summer shelf waters, and
ii) surface water particle characteristics (e.g., smaller particle size; [95]) during summer. In fall and
winter, the shapes of sediment plume were similar to that in spring. The westward transport along
the Chenier Plain coast was even stronger due to intensified easterly winds (Figure 8e–h). Although
such one-frame comparison might not fully capture the seasonality of sediment plume, which could be
easily altered by fluvial discharge and wind condition, our model reproduced the spatial distribution
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pattern and the magnitude of surface SSC. The above model–data comparisons gave us the confidence
that this ocean–wave–sediment model is capable of resolving the major features of the seasonal to
decadal scale variability in hydro- and sediment dynamics.
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shown at upper left of each panel. Unit: mg/L.

4. Results

In this section we first present the seasonal variations of hydrodynamics and sediment dynamics,
followed by an analysis of sedimentation pattern over the 20-year simulation period. We then present
the results of two sensitivity tests to assess shelf deposition’s response to the high and low river
input scenarios.

4.1. Seasonal Variations of Hydro- and Sediment Dynamics

Hydrodynamics in the nGoM is heavily influenced by the prevailing winds. We plotted wind
fields measured at a buoy station east of the bird-foot delta, covering the period of 1995–2012 (station
42040, location see Figure 1, wind roses see Figure 9). The study region was dominated by strong
southeast winds in spring (March, April, and May), south to southwest winds in summer (June, July,
and August), east and northeast winds in fall (September, October, and November), and north and
southwest winds in winter (December, January, and February). Among all seasons, westerly winds
only prevailed in summer with relatively low intensity compared with easterly winds in other seasons.
A 90th percentile of the westerly winds in summer was at 7.3 m/s, while a 90th percentile of the easterly
winds in spring, fall, and winter were at 9.1, 9.9, and 9.9 m/s, respectively.
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Figure 10 shows the depth-averaged current fields and bottom shear stress induced by currents
averaged over each season. The current direction indicates that westward flow dominated the broad
western Louisiana shelf in non-summer seasons (Figure 10a,c,d). Currents between 20 and 50 m
isobaths shifted to eastward in summer due to the weak westerly winds (Figure 10b). Over the eastern
Louisiana–Mississippi–Alabama shelf, current fields did not show strong seasonality and east- and
northeastward currents prevailed throughout the year. Current-induced bottom shear stress (τcurrent)
maximized in fall and winter, and the highest τcurrent was found to the southeast of the bird-foot delta,
reaching more than 0.1 Pa. The spatial patterns of wave-induced bottom shear stress (τwave) were
quite similar among different seasons, with the lowest intensity in summer (Figure 11). High τwave

was found nearshore (water depth < 20 m), including sandy shoals over the inner shelf, around the
bird-foot delta, and to the east of the Chandeleur islands. As a major driving force of resuspension,
the maximum τwave was estimated above 0.2 Pa, which was 2–3 times higher than the maximum τcurrent

in most regions except the southeast of bird-foot delta, where τwave and τcurrent were comparable.
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The seasonal mean sedimentation rates of fluvial materials and riverine suspended sediment flux
(SSF) based on the 20-year simulation results are shown in Figure 12. High sedimentation rate (>1
cm/season) and strong SSF (>0.1 kg/m/s) were simulated near the Mississippi and Atchafalaya River
mouths in spring (Figure 12a). Westward alongshore sediment transport in spring, fall, and winter
dominated the Louisiana–Texas shelf (Figure 12a,c,d). In summer, deposition was patchy and
the intensity of westward SSF was largely reduced (Figure 12b). Offshore sediment transport in
the Atchafalaya Bay was stronger in winter and spring due to high fluvial discharge and strong
resuspension. Over the Louisiana–Mississippi–Alabama shelf, eastward sediment transport was
dominant in spring, summer, and winter (Figure 12a,b,d). Deposition minimized in fall because of the
westward SSF and low fluvial inputs from the bird-foot delta (Figure 12c).
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4.2. Interannual Variation of Sedimentation Rate

Spatially-averaged sedimentation rates over the shelf (h < 200 m) and inner shelf (h < 50 m)
fluctuated between 1 and 8 mm/year during our simulation period with a similar temporal variation
pattern (Figure 13a). Sedimentation rate on the inner shelf was ~0.2–2 mm/year higher than that over
the entire shelf due to its proximity to the river mouths. To explore the influence of fluvial discharge
to shelf deposition, we plotted sediment flux of the Mississippi and Atchafalaya Rivers (Figure 13b;
Data source: http://nwis.waterdata.usgs.gov; station St. Francisville (07373420) for the Mississippi
River and station Melville (07381495) for the Atchafalaya River), and found sedimentation rates over
the shelf and inner shelf to be highly correlated with fluvial sediment discharge (correlation coefficient:
0.80). The dramatic decrease of both sedimentation rate and fluvial sediment discharge in 1998–2000
can be explained by the shift of ENSO phase from a strong El Niño episode (1997/98) to a strong La Niña
episode (1999/2000) [96]. It is noteworthy that we did not include pre-deposited sediment resuspension
and other sediment sources (e.g., coastal erosion), which could introduce more uncertainties. To achieve
more accurate results, these processes should be taken in account in future studies. Compared with
long-term sediment deposition on the shelf, the significance of short-term, event-driven sediment
transport and dispersal have been highlighted in the last several decades. During the passage of cold
fronts and hurricanes, the magnitude of shelf deposition can reach several cm, which is an order of
magnitude higher than annual sediment deposition under calmer hydrodynamic condition [37,40,41].
Therefore, quantitative estimations of intensity and frequency of event-driven sediment dispersal is of
importance in studying long-term sediment transport.
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4.3. Spatial Pattern of Deposition

We averaged model simulated sedimentation rate from 1993 to 2012 based on the changes in the
thickness of sediment layers. As shown in Figure 14, sedimentation rate in the nGoM varied greatly
from more than 10 cm/year to almost zero. The highest sedimentation rate was simulated just off

the mouths of the Mississippi and Atchafalaya Rivers. High sedimentation rate (>5 cm/year) around
the Atchafalaya River estuary and its decreasing trend in an offshore direction suggested that most
sediments debouching into the nGoM through the Atchafalaya River were retained in the bay. For the
Mississippi River; however, high sedimentation rate distributed on both sides of the bird-foot delta
due to bidirectional (eastward and westward) fluvial sediments dispersal with the shift of alongshore
currents direction in different seasons. Over the western Louisiana shelf, fluvial sediments were
transported westward crossing 93◦ W and deposited over the shelf. Sedimentation rate over the
Louisiana–Mississippi–Alabama shelf was less than 1 cm/year. Over the 20-year simulation period,
very little fluvial sediment was deposited in waters deeper than 500 m, indicating limited cross-shelf
suspended sediment transport.
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4.4. Sensitivity Tests for High and Low Fluvial Discharge

The Mississippi-Atchafalaya River system was the dominant sediment source in the nGoM and
both water and suspended sediment fluxes exhibited strong seasonality: most high fluxes started
from late winter until the end of spring (Figure 15a,b and Figure 16a,b). The peak flow appeared from
February to April, ranging between 60 and 100 km3/month for the Mississippi River. Water flux of the
Atchafalaya River was about 55% lower than that of the Mississippi River. In summer and fall, water
fluxes of both rivers were only 20%–30% of their maxima. SSF showed similar temporal pattern as
that of water. The highest monthly SSF (61.7 Mt/month) of the Mississippi River was in April 1995
due to the concurrence of peak streamflow (74.1 km3/month) and SSC (832 mg/L). The SSF peak of
the Atchafalaya River was lower than 20 Mt/month except in 1998 and 1999. Here we applied the
non-parametric change-point Pettitt test [97] to monthly water and suspended sediment fluxes to
detect the presence of any points of change over the modeling period (1993–2012). As a statistical test
used to detect the characteristics of changes, the non-parametric Pettitt test has been widely used in
previous hydroclimatic studies [98–100]. The non-parametric statistic Ut,T is defined as:

Ut,T =
t∑

i=1

T∑
j=t+1

sgn
(
Xi −X j

)
(1)
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where T is the length of the time series, t is the time of the shift, X is monthly water flux or SSF, and

sgn
(
Xi −X j

)
=


1

(
Xi −X j > 0

)
0

(
Xi −X j = 0

)
−1

(
Xi −X j < 0

) (2)

If a change point exists, the value of
∣∣∣Ut,T

∣∣∣ increases with t to its maximum and then decrease and
the most significant change point is established at the time when

∣∣∣Ut,T
∣∣∣ is equal to KT = max(

∣∣∣Ut,T
∣∣∣) .

The significance probability p of KT is estimated with

p = 2 exp

 −6K2
T

T3 + T2

 (3)

If p < 0.05, a significant change point is confirmed and time series show different features before
and after the change point.

As shown in Figure 15c,d and Figure 16c,d, the most significant change points of water and SSF
occurred in 1999. This remarkable change can be ascribed to the phase shift of ENSO from the strong
El Niño episode of 1997/98 to the strong La Niña episode of 1999/2000 [96]. The strong decreasing
variability of other streamflow-related climate indices (e.g., NAO, PDO) after 1999 were likely related to
this climatic/hydrologic regime shift [20]. We, therefore, divided our study period (1993–2012) into two
time spans, before (1993–1998) and after (1999–2012) the change point. For the Mississippi River, the
annual mean water flux declined from 528.8 km3/year in the first span to 433.5 km3/year in the second.
The annual mean SSF almost halved from 122.0 Mt/year (1993–1998) to 69.8 Mt/year (1999–2012). For
the Atchafalaya River, the annual mean water flux went down from 248.3 km3/year to 191.9 km3/year
and the SSF decreased by 34% (from 69.0 to 45.1 Mt/year). To unravel the difference of river discharge
after the change point, we compared the multi-year monthly mean water and sediment fluxes in these
two spans (Figure 15e,f and Figure 16e,f). In general, monthly water flux in the first span was higher
than that in the second span for both rivers. The major difference for the monthly mean Mississippi
River discharge between the two spans was found between January and May, when water and sediment
fluxes were high (Figure 15e,f). Unlike the Mississippi River, the decreases of the Atchafalaya River
monthly mean water and sediment fluxes from the first to the second span were relatively constant in
each month (Figure 16e,f).

To assess the impact of fluvial discharge changes on sediment dispersal over the shelf, we conducted
two 20-year sensitivity tests using the 1993–1998 and 1999–2012 monthly mean SSF to represent the
high and low river discharge scenarios, respectively. Since few studies quantitatively estimate the
Mississippi River channel evolution and its contribution to fluvial sediment flux (proximal sediment
supply), fluvial sediment supply variation due to river bed scour and deposition was not considered
in this study [32]. Over the 20-year simulation period, the sedimentation rate over the entire shelf
turned to be lower in the low fluvial discharge scenario than that under high fluvial discharge scenario
(Figure 17). Substantial reduction in sedimentation rate was simulated around the bird-foot delta
and in the Atchafalaya Bay. Sedimentation rate difference between the two tests was minimum in
waters >200 m deep (Figure 17c), suggesting the impact from reduced river inputs might limit to the
shelf water.
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5. Discussion

Triggered by both anthropogenic activities and natural forces, Louisiana’s coast has been
experiencing severe land loss over the last several decades although efforts have been dedicated to
land building through marsh creation, sediment diversion, barrier island restoration and shoreline
protection [101]. In this section we use the results from our 20-year simulation and scenario tests
to assess the impact of a decreased fluvial inputs on two areas of interests: 1) the exchange of
Louisiana Bight with Barataria Bay where serious land loss is undergoing, and the 2) the distal
transgressive sandy shoals on the Louisiana Shelf, which provide the sandy dredging materials for
coastal restoration purpose.
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5.1. Bay-Shelf Exchange

Our sensitivity tests indicate that the sedimentation in nGoM can be greatly affected by the
changes in fluvial discharge, especially in areas adjacent to the river mouths and deltas. These results
shed light on possible projects from the ongoing Louisiana Coastal Master Plan, which will divert
a large amount of water and sediments away from the main channel to coastal bays where new land is
expected to be built [101].

Here we focused on the circulation and difference of sedimentation rate between the low and high
discharge scenarios in the Louisiana Bight and Barataria Bay region (Figure 18), where 1177 ± 106 km2

of land was lost in the period of 1932–2016 [54]. Our model identified two transport pathways of the
Mississippi-derived sediments: 1) A direct northwestward alongshore transport from the Southwest
Pass; and 2) a gyre-induced clockwise transport, which joins the alongshore transport near Sandy Point
(Figure 18). While these two pathways have been previously reported [30,102,103], our sensitivity
tests, for the first time, indicated that sharp decrease of sedimentation rate due to the decline of fluvial
sediment discharge was expected in waters around the bird-foot delta (>10 cm/year) and within the
clockwise gyre (up to 1 cm/year), where sedimentation rate was higher than that over the entire shelf
(Figure 17). Since our model used fluvial SSC and discharge measurements from USGS river gages as
river input, sediment in-channel storage was treated unchanged although it varies with proximal/distal
sediment supply, flow regimes and sediment particle grain size [32]. To better quantify fluvial sediment
deposition and sediment flux around the bird-foot delta, the effects of sediment dispersal in the river
channel should be taken into account in future study.
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Figure 18. Annual sedimentation rate difference between high and low river scenarios (color) and
20-year averaged barotropic current field in the Louisiana Bight (reddish color represents higher
difference between the two scenarios). The black and magenta solid long arrows illustrate two
pathways of sediment transport to the mouth of the Barataria Bay.

It has been estimated that the net sediment transport through tidal inlets between the Barataria Bay
and the Louisiana Bight were seaward, and the SSF was ~8800 ton/day with 85% of the flow variability
in the pass resulting from tides [30,104]. Fitzgerald et al. [103] related the growth of ebb-tidal deltas
outside the Barataria Bay to eroded inlet and alongshore transport. Although few studies quantitatively
investigated the contributions from different sediment sources (e.g., coastal erosion; resuspension
and fluvial discharge) to the depositions close to the bay mouth, large sediment inputs, associated
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with low salinity and intensified stratification, was observed through tidal inlets, which suggests that
sediments from the Mississippi River can be transported into the Barataria Bay during flood tides [105].
Due to the relatively coarse spatial resolution of our model (1 km) and the lack of information to
prescribe sediment inputs from coastal erosion, this study still cannot quantify the importance of the
Mississippi fluvial sediments to Barataria Bay’s sediment budget. However, if sediment discharge
from the Mississippi River keeps decreasing in the future, we expect less sediment to be transported to
the bay via tidal inlets.

5.2. Sediment Dynamics over Submarine Shoals

5.2.1. River Supply

By the end of our 20-year simulation, the fractions of river-derived sediments in the surficial seabed
layer for Tiger Shoal, Trinity Shoal, and Ship Shoal were 17.6%, 7.1%, and 10.0%, respectively (Table 2).
The values were comparable with the estimations of previous geotechnical investigations [67,106,107].
Moreover, the variation of shoal-wide fluvial sediment fraction under high and low river discharge
scenarios was less than 2.1%, indicating the impact from the changes in riverine inputs was not
significant over shoals (Table 2). The low percentages of modern fluvial sediments were due to the
limited supply of fluvial sediments and resuspension induced by strong hydrodynamics. Previous
studies revealed that modern fluvial sediments transport to the sandy shoals through bedload transport
was trivial because most materials over the three shoals were relict coarse sediments [59,107], so we
did not incorporate bedload in our simulation. Under calm weather conditions, sediment plume of
the Atchafalaya River was mainly confined within the Atchafalaya Bay, and only a small amount
of suspended sediments could be transported over the shelf [27,108]. However, during episodic
events (i.e., cold fronts and hurricanes), previously deposited riverine sediments were resuspended
and transported offshore, suggesting a direct yet intermittent supply of fine riverine sediments to
the shoals [59,109]. Besides, wave-supported fluid mud movement is another important mechanism
in terms of fluvial sediment across-shelf transport over the muddy Atchafalaya Shelf [48,52,110].
Since most fluid mud observations and modeling studies only focus on short-term period (several
days to weeks), the importance of fluid mud transport to sandy shoals on decadal scales is still unclear.

Table 2. Percentage of fluvial sediments over each shoal.

Shoals Benchmark High River Scenario Low River Scenario

Tiger Shoal 17.6% 17.1% 16.5%
Ship Shoal 10.0% 12.1% 10.1%

Trinity Shoal 7.1% 7.6% 6.5%

5.2.2. Hydrodynamics

Given strong bottom shear stress induced by shallow water depth, sediment remobilization
over sandy shoals is potentially intensive. To investigate the temporal variation of hydrodynamics
related to sediment resuspension over these transgressive shoals, we calculated spatially-averaged,
monthly-mean bottom shear stress induced by currents and waves (τcw) over each shoal. The highest
critical shear stress (τc) of fluvial sediments (0.2 Pa; see Table 1) was treated as the threshold of “strong
resuspension” and the number of days with τcw > τc was counted to represent the duration of strong
resuspension. As shown in Figure 19a–d, both τcw and the number of days with excessive bottom
shear stress maximized in cold season. About 80% of the days with excessive bottom shear stress
was found between October and April (82.2% for Tiger Shoal, 80.2% for Ship Shoal, and 78.8% for
Trinity Shoal, respectively). Such unevenly temporal distribution indicates that most resuspension over
the shoals happens during cold season when hydrodynamic are stronger. To quantitatively estimate
the inter-annual variation of bottom resuspension over the three shoals, we plotted the annual mean
bottom shear stress (τm), wind speed (data source: CFSR) and the number of days with excessive
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bottom shear stress in one year over each shoal (right panel of Figure 19). Both τm and the number of
days with strong resuspension (τ > τc) peaked in 1998 and 2008, and the variation of hydrodynamics
was highly correlated with wind speed (Figure 19e–h). Although previous investigations found the
inter-annual variations of strong meteorological and hydrodynamic conditions can be ascribed to
stratospheric ozone depletion, available latent heat, expansion of Hadley cell and large-scale circulation
pattern shift [111–118], the balance and interactions between these factors are still less understood
and it is still a challenge to directly link their influence with regional hydro- and sediment dynamics.
In general, sediment dynamics over the transgressive shoals is mainly impacted by wind-induced
hydrodynamics rather than fluvial inputs.
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Figure 19. Monthly spatial-averaged (diagonal cross region in Figure 1) bottom shear stress over
Tiger Shoal (blue), Ship Shoal (green), and Trinity Shoal (red), and the black solid line shows the
highest critical shear stress (τc = 0.2 Pa) of fluvial sediments (a). Histograms indicate the number of
days in one month with strong resuspension (daily spatial averaged bottom shear stress τcw > 0.2 Pa)
over Tiger Shoal (b), Ship Shoal (c), and Trinity Shoal (d). The background color shows cold season
(October–March; blue) and warm season (April–September; red). (e) shows spatial-averaged, annual
mean bottom shear stress (τm) over each shoal (same legend as panel a). (f)–(h) show the number of
days with excessive bottom shear stress (τcw > 0.2 Pa) in one year and annual mean wind speed over
three shoals.

5.3. Limitations and Future Work

Our 20-year simulation reproduced the overall pattern of the transport and dispersal of
river-derived sediments in the nGoM. However, it is noteworthy that some important sediment
transport processes and mechanisms were not included in our model. First of all, this study only
focused on the dynamics of fluvial sediments, thus the resuspension of shelf sediments was not
considered. Such simplification will underestimate the SSF over the shallow shelf, where resuspension
of shelf sediments can be an important source in addition to river inputs. During intensive events
(hurricanes or cold fronts), sediment resuspension could be an order of magnitude higher than fluvial
discharge [39,119,120]. Secondly, coastal erosion was not included in our model. The Mississippi River
Delta has been experiencing severe land loss over the past decades. Combination of natural processes
(e.g., storms, subsidence, and salt water intrusion) and human activities (e.g., artificial channel, oil
industry, and urbanization) accelerates the erosion process and a large amount of eroded sediments
can be transported to the coastal water [121–123]. Thirdly, our model only simulated suspended load.
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Although model results indicated that deposition of river sediments mainly occurred in waters that are
<200 m deep, one should not rule out the possible cross-shelf transport induced by bedload that were
not included in our model. For instance, Corbett et al. [44] pointed out that cross-isobath sediment
supply to the shelf break could be attributed to subaqueous slides and slumps, where sedimentation
rates could be higher than that around the bird-foot delta. Ross et al. [124] found sediment flux to
the Mississippi Canyon is more related to the sediment availability rather than current speeds and
hurricanes can greatly increase the sediment transport through canyons. Besides, wave-supported
gravity flow (i.e., fluid mud), as an important mechanism of the transport of fine sediments, has
been reported on the Atchafalaya Shelf [48,50,125]. Although the velocity of fluid mud transport is
slower than suspended load, its high concentration (>10 g/L) can substantially increase the sediment
flux and change the deposition pattern near river estuaries [126]. In addition, fluid mud can incur
bottom turbulence dissipation, which can be a dominant feature over the shelf off the Atchafalaya
Bay [52,110]. Bedload transport of non-cohesive sediment and its interaction with hydrodynamics
is also important to the formation and geomorphological changes of an erodible bed [127]. Last but
not least, baroclinic estuarine circulation, tidal pumping effects and sediment storage in the river
channel cannot be resolved in our model since fluvial discharge was treated as point source in ROMS.
Such simplification in estuarine dynamics can affect the sediment flux estimation from river estuaries
to the shelf [32,128]. Further investigation that accounts for the above-mentioned processes is expected
for a more comprehensive analysis of regional sediment dynamics.

6. Conclusions

We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to
investigate sediment dynamics on seasonal to decadal time scales. Extensive model-data comparisons
were carried out to evaluate model performance. Our 20-year model simulation reveals that:

(1) Strong easterly winds prevailed in non-summer seasons. Relatively weak westerly winds in
summer reversed currents between 20 and 50 m isobaths to an eastward direction. Wave-
and current-induced bottom shear stresses exhibited similar temporal (strong in winter and
weak in summer) and spatial (higher over the inner shelf) patterns. High sedimentation
rate (>1 cm/season) and SSF (>0.1 kg/m/s) were found in spring near river mouths. During
summer, calm hydrodynamics and reversed coastal currents resulted in weak eastward SSF
over the Louisiana–Texas shelf. Deposition on the Louisiana–Mississippi–Alabama shelf became
negligible in fall;

(2) Over the 20-year simulation, sedimentation rate ranged from almost zero to more than 10
cm/year in waters near the river mouth and surrounding the delta. Interannual variation of
sedimentation rates over the shelf (h < 200 m) and inner shelf (h < 50 m) were highly correlated
with the fluvial sediment flux. Mississippi-derived sediments dispersed on both sides of the
bird-foot delta, while the Atchafalaya-derived sediments were mainly confined in the Atchafalaya
Bay. Two major pathways for the Mississippi River-derived sediment were identified: A direct
westward alongshore transport from the Southwest Pass, and a gyre-induced clockwise transport
centered in Louisiana Bight;

(3) A change point was detected in 1999 in the time series of water and sediment discharge from the
Mississippi-Atchafalaya River over the period of 1993–2012. This change point was correlated
with the shift of ENSO from a strong warm phase to a strong cold phase. The annual mean
water and sediment fluxes decreased sharply from the 1993–1998 period to the 1999–2012 period.
Model sensitivity tests indicated that the influence of decreased river inputs on sedimentation
rate was limited to waters near the river mouths, which reduced sediment transport into the
Barataria Bay during flood tide and potentially worsen the ongoing land loss in the bay;

(4) Model simulated percentages of fluvial sediments over the Tiger, Trinity, and Ship Shoals were
less than 18%, indicating the variation of river sediment flux might have limited impact on local
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sedimentation. Sediment dynamics over these distal sandy bodies were mostly affected by the
strong winds in cold season between October and April.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/5/938/s1.
Figure S1: Mesh of the GoM domain (longitude: 98◦ W—79◦ W; latitude: 17.6◦ N—34.3◦ N; Horizontal Resolution:
5 km; Number of vertical layer: 36). Figure S2: Mesh of the nGoM domain (longitude: 94◦ W—87.6◦ W; latitude:
27.9◦ N—30.7◦ N; Horizontal Resolution: 1 km; Number of vertical layer: 24).
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