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problem is generally ill-posed when a large portion of the link sensors are unhealthy. It is
possible, however, to correct the corrupted link flows accurately with the proposed method

Keywords: under a recoverability condition if there are only a few bad sensors which are located at
Link flow correction certain links. We analytically identify the links that are robust to miscounts and relate
£,-minimization them to the geometric structure of the traffic network by introducing the recoverability
Flow conservation law concept and an algorithm for computing it. The recoverability condition for corrupted links
Recoverability is simply the associated recoverability being greater than 1. In a more realistic setting, be-

Exact recovery

- sides the unhealthy link sensors, small measurement noises may be present at the other
Correction bound

sensors. Under the same recoverability condition, our method guarantees to give an es-
timated traffic flow fairly close to the ground-truth data and leads to a bound for the
correction error. Both synthetic and real-world examples are provided to demonstrate the
effectiveness of the proposed method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Link volume/flow data is an important data source in both long-term planning and short-term operation applications.
The examples include but are not limited to signal timing, toll road pricing, origin-destination trip matrix estimation, trans-
portation planning, traffic safety (e.g. Koonce et al., 2008; Lindsey, 2006; McNally, 2007; Lord and Mannering, 2010 and the
references therein).

The flow conservation in a traffic network implies that the total in-flow equals the total out-flow at each non-centroid
node. The centroids are nodes where traffic originates/is destined to, and non-centroids nodes denotes all the other nodes.
Practically, when looking at traffic flow counts over a sufficiently long time period (e.g. daily cumulative flow), we expect
that the sum of cumulative link flows entering the non-centroid node equals the sum of cumulative link flows leaving it.

The flow conservation law is an important property, which has been exploited in many different applications. For exam-
ple, the widely used first-order traffic flow model, the LWR model (Lighthill and Whitham, 1955; Richards, 1956), is derived
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based on the conservation of traffic. In Chen et al. (2009), the authors mentioned that a path flow estimator (PFE) needs
reasonably consistent link flows, meaning that the flow conservation law should be satisfied within a certain error bound,
to reproduce feasible path flow solutions.

In practice, the flow conservation law can be violated due to numerous flow measuring errors; i.e., the observed flow
counts are generally corrupted and cause data inconsistency issues. In Sun et al. (2016), the network sensor health problem
(NSHP) (Sun et al., 2016) is proposed to evaluate individual sensors’ health indices based on the level of flow data consis-
tency. Assuming flow counting sensors are already installed on some of the links where at least one base set exists, the
NSHP tries to find the least inconsistent base set that “minimizes the sum of squares of the differences between observed
and calculated link flows”. The health index of a specific sensor is evaluated based on the frequency that it appears in the
least inconsistent set.

Several studies have looked into the problem of correcting inconsistent flow data according to flow conservation. To
solve a similar problem in transit planning, Kikuchi et al. (2006) studied the passenger flow balancing problem and pro-
posed a least square correction method to adjust the flows, so that the counts are conserved and close to the observed
values. van Zuylen and Branston (1982) assumed that the observed link flows follow probability distributions constrained
by flow conservation. The study derived the formula for constrained maximum likelihood estimates of the link flows.
Kikuchi et al. (2000) examined and compared six different methods to adjust observed flow rate according to flow con-
servation. All of the methods have the same constraints but different objective functions. Vanajakshi and Rilett (2004) stud-
ied flow inconsistency problem between neighboring upstream and downstream loop detectors. A nonlinear optimization
problem is proposed to correct loop detector data, in the case when observed data violates flow conservation.

In summary, given the observed cumulative flows on different links, all of the existing flow correction methods adopted
optimization approaches that try to meet the following principles:

o Ensure that flow conservation be followed exactly at all non-centroid nodes after adjustment using a set of constraints,
o Preserve the integrity of the observed data as much as possible by minimizing the distance between adjusted and ob-
served flows.

However, all of the studies are limited to simple hypothetical networks or networks with simple topologies. Also, no
systematic study has been done regarding the effectiveness and applicability of the methods.

In this study, we propose a method to estimate the true link flow from corrupted data on observed links as well as
unobserved links via ¢;-minimization. Similar to the existing methods, the link flow correction method is also formulated
as an optimization problem to minimize the difference between observed and estimated link flows. As an improvement over
the existing methods, the node-based formulation of flow conservation is introduced to handle general road network where
link flows are only observed on monitored links, not on all links as assumed in many existing studies. More importantly, we
adopt the ¢;-minimization method from compressed sensing (Candeés et al., 2005; 2006) to analytically derive the condition
for exact/stable recovery of the true cumulative flow counts. The ¢; norm is the unique convex sparsity promoting penalty.
Though it is not differentiable, various efficient scalable numerical methods exist to date for its minimization (Beck and
Teboulle, 2009; Boyd et al., 2011; Daubechies et al., 2004; Goldstein and Osher, 2009; Yang and Zhang, 2011) besides linear
programming. In addition to ¢; norm, other non-convex sparsity promoting penalty functions can also be considered; see
Yin et al. (2015); Yin and Xin (2017); Lou et al. (2016) and references therein. Their minimization is computationally more
expensive than ¢;, and we shall leave such a study for a future work.

The rest of the paper is organized as follows. In Section 2, we state the link flow correction problem formulation, the
exact and stable recovery theorem, the recoverability condition and the connection with compressed sensing. In Section 3,
we use a toy example to illustrate the conditions for exact and stable link flow recovery. In Section 4, we use real-world
loop detector data as an application for this method. In both the toy and real world examples, the recoverability condition
is verified analytically. The concluding remarks are in Section 5.

Notations

Let us fix some notations. R" represents the real coordinate space of n dimensions. Let x € R", ||x|[; := "I ; |x;| takes
the ¢; norm of x, and ||x|| denotes the Euclidean (¢,) norm. Given any index set Z < {1, 2,...,n}, |Z| counts the number of
elements in Z; Z¢ := {1,2, ..., n} \ Z is the complement set of Z. x; € RV consists of the elements in x restricted to the index
set Z. 0, € R" denotes the vector containing zeros only, while I,y e R™" denotes the identity matrix of order n. For any
matrix A € R™M AT is the transpose of A; A7 € RZIx" is the submatrix of A restricted to the row index set Z < {1,2,..., m},
and A% e R™I7l js the submatrix of A restricted to the column index set Z < {1,2,...,n}; e.g., Aqy, 2y extracts the first two
rows of A, and A{l 2} extracts the first two columns of A. Ker(A) := {x e R" : Ax = O} represents the kernel space of A,
while Ran(A) := {h € R™ : h = Ax for some x € R"} represents the range space of A.
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2. Methodology
2.1. Problem setup

Given a traffic network with non-centroid nodes only, the node-link incidence matrix A € R"*! with n being the number
of nodes and I the number of links, can be expressed as

—1 if the j-th link is outgoing link of node i
Ajj=141  if the j-th link is incoming link of node i
0  otherwise.

Then A is always of full (row) rank as proved in Ng (2012), and traffic flow data f  R! obeys the flow conservation:
Af=0g,. (21)

Suppose M € {1,2,...,1} is the set of links whose link flows are observed, and |[M|=m. We call M as “monitored set”
thereafter. We assume that

fu = Fr+en e R™,
is the observed inconsistent flow data corrupted by sensing errors ey € R™.
The flow correction problem is to derive an estimate of f, denoted by f*, from the corrupted data f,,. Here we impose
an underlying assumption on M for the flow correction problem to be well-posed. We will need the concept of base set
introduced in Sun et al. (2016).

Assumption 2.1. M contains at least one base set K € M, meaning that |K| =1 — n and AK® e R™" is invertible.

For the consistent data ﬁM = fm (ie., ey = 0(y), of course we have f]( = fx since K € M. Then the f can be uniquely
recovered by performing (Ng, 2012; Sun et al., 2016):

fo=fc and  fio = —(A%) A  fi.
If M contains more than one base set, the f recovered in the above from different fi will be consistent.

Assumption 2.1 is the sufficient and necessary condition for the whole link flows to be inferable. It guarantees that the
whole flow data can be deduced from at least one subset of the observed link flows. Without this assumption, however,
some of the link flows cannot be estimated from available data and the problem is unsolvable (Ng, 2012), whether the
measured flows are consistent or not.

2.2. Flow correction via ¢;-minimization

Since A is of full row rank, Ker(A) is an (I —n)-dimensional subspace of R!. Suppose Z € R/*(=" is the matrix whose
columns form a basis of Ker(A). Since f € Ker(A), we have

f = zx, for some x € R\,
As a result, fM must be of the form Z,.x for some x € R'-".

Remark 2.1. Clearly the existence of Z is non-unique, but f* is invariant to the choice of Z and only depends on the structure
of the traffic network. Indeed f* is the one in Ran(Z) whose restriction on M has the least absolute deviation from fy. So f*
only depends on Ran(Z) which is same as Ker(A). Note that A is the node-link matrix uniquely determined by the network
structure.

The following result not only gives a concrete construction of Z, but also interprets x* in (2.2) as an estimate of f,c for
some base set K (not necessarily a subset of M).

Theorem 2.1. Let K be any base set. Without loss of generality, suppose A is partitioned as [AC, AK] with AK® € R™" being
invertible. Then

7= [ _(lql}g;)n—)lAK } € R’x(’_n)

is a basis matrix of Ker(A). Moreover, by choosing such Z, x* from (2.2) is an estimate of f,c.
We will show the proof in Appendix C. Our proposed method consists of the following two steps:
1. We first solve an ¢;-minimization problem:
X' = argxrg;g 1Zrmx = faalli, (2.2)
That is, we seek an estimate of ey = fu —fM in the affine space {fy —Zux : x € RI-"} with the least ¢; norm. The

problem (2.2) can be efficiently solved by the alternating direction method of multipliers (ADMM) (Boyd et al., 2011);
see Appendix A for the implementation details.
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Fig. 1. A Toy Network. The solid links are monitored. The numbers in parentheses denote the ground-truth traffic counts.

2. f is then estimated by
fr=2zx". (2.3)
Zx* may have non-integer entries, in this case, we can just perform rounding.

2.3. Connections with compressed sensing

Compressed sensing (Candes et al, 2006; Donoho, 2006) aims to recover a sparse signal (vector) y from an under-
determined linear system that generally has infinitely many solutions. It enables recovery of the signal y from far fewer
samples than required by the Nyquist-Shannon sampling theorem. Major ingredients of the standard compressed sensing
technique include

» Sparsity: most of the entries in y are zeros.
e ¢;-minimization: minimizing ||y||; to exploit the sparsity of y.

Let us return to the flow correction problem, which is in essence equivalent to the estimation of e,,. In an extreme case,
suppose all the sensors are bad, leading to large sensing errors. Without further information, it is clearly impossible to get a
good estimate of f from fy, by any means. Intuitively, however, reconstructing f is promising if most of the sensors record
consistent flow data. Mathematically speaking, e, is sparse. The flow correction problem thus can be viewed as sparse error
correction problem (Candés et al., 2005; Xu et al.,, 2013), which is similar to compressed sensing. Note that, however, the
flow correction problem deviates from the traditional compressed sensing problem, where the matrix A would be random.

3. Correction results

Note that our proposed method does not take advantage of any prior information about the possible bad sensors. Ap-
parently one can not always hope for a good estimation f* to f even if there is only one bad sensor in the network. For
instance, in the network shown in Fig. 1, if the sensor on link 1 gives very wrong count, then basically there is no way to
reasonably correct this error because links 1 and 2 are equivalent in the topology of the network. With that said, without
extra information, obtaining a good estimate of f is possible only when the bad sensors are located at some particular links.
These locations tolerating miscount are somehow determined by the network structure. In the following, we shall introduce
the concept of recoverability.

Definition 3.1. Given a network with node-link incidence matrix A and monitored link set M, we define the recoverability
for the subset S € M by

lhaos
sl 34
heker(A):[lhslli20  [|hsll1 o

which is a function of the subset S and also determined by both the network structure A and the monitored link set M.

Rec(S;A, M) =

Since for any h e Ker(A), it holds that h = Zv for some v € RI=", then we can rewrite (3.4) as

1Zpsvlla

Rec(S; A, M) = T2
( ) VeRI-":Zsv£0 ”ZSV“l

(3.5)
which resembles the classical Rayleigh quotient for the principal eigenvalue p of the generalized eigenvalue problem
(Weinberger, 1974): Zl Zsv = I’LZ;\I—/I\S Zyp\sV if £, norm replaces the ¢; norm. The optimization of the ratio of two homoge-
neous functions of degree one has been studied in Hein and Biihler (2010), where an inverse power iterative algorithm was
proposed. Based on Hein and Biihler (2010), we propose an efficient algorithm to solve problem (3.5) which will be detailed

in Appendix B.
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3.1. Exact recovery

We first consider the case where some sensors are bad, which introduce inconsistency of the flow data. The following
Theorem 3.1 asserts that when the bad sensors are located at certain link set S whose size is expected to be small, then no
matter how large the errors are, we are able to exactly recover f from fy,.

Theorem 3.1 (Exact recovery). Let S :={i e M : e; # O}A, which means miscounts only occur at the link set S. If Rec(S; A, M) >
1, then the estimation f* computed by (2.3) is equal to f. That is, the links in S are robust to miscounts if Rec(S; A, M) > 1.

The proof is omitted here, since the above theorem is a special case of Theorem 3.2 in Section 3.2. We remark that the
lower bound for Rec(S; A, M) in the recoverability condition is sharp. Indeed the method can fail when Rec(S; A, M) =1,
as will be seen in the following example.

Example 3.1. Let us consider the traffic network associated with the 3 x 6 node-link incidence matrix

1 1 -1 -1 0 O
A=|0 0 1 0 -1 0],

0 0 O 1 1 -1

300
200
and the ground-truth network flow f = 388 as in Fig. 1, the node and links are labeled with their ID with ground truth
300
500
link flows in the parentheses.
Then Theorem 2.1 gives that
-1 0 1
1 0 O
0 1 0
Z=lo -1 1
0 1 0
0 0 1
Let the monitored link set be M = {1, 2,4, 5, 6}, then
-1 0 17
1 0 O
Zuy=]10 -1 1
0 1 0
0 0 1]
[ fi 300
fo 200
Let the observation be fy, = | f4 | = | 200 |, i.e., the observed link flow on link 6 is inflated by 100 due to sensor error. So
fs 300
| fs 600

0

A 0
em=fmu—fu=| 0 |, S={ieM:e #0}={6}, and M\ S={1,2,4,5}.

0

0

100
We can verify by either an analytic approach or Algorithm 2 that the recoverability condition Rec(S;A, M) =2> 1 is
satisfied. Then Theorem 3.1 asserts that f* derived from (2.2) and (2.3) must be equal to f. It is indeed true because x* =

200
300 |, and therefore

500

300
200
300
200
300
500

I
b))

fr=zx =
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Compare this result with the ground truth link flows, we can conclude that the errors are completely eliminated.
Remark 3.1. We have two remarks below.

» Without knowing the count at link 3, i.e.,, M = {1,2,4,5, 6}, the proposed method would fail exact recovery if the count
was corrupted at any other link except link 6. Take link 1 for example, it is easy to check that Rec({1}; A, M) =1.
Therefore, link 1 is not guaranteed to be robust to miscount by our theory. Indeed this is the case as mentioned in the
beginning of this section.

o Suppose link 3 was also monitored, i.e, M ={1,2,..., 6}, then any counting error at one of the links 3, 4, 5 and 6 could
be accurately corrected.

3.2. Stable recovery

In a more realistic setting, we assume that all the elements in ey, are non-zeros, yet most of them are relatively small
compared with the other few. This refers to approximate sparsity in compressed sensing. In this case, it is still possible for
f* to be close enough to f. In another word, the estimation errors are bounded from above in this case.

Theorem 3.2 (Stability). For any S € M, if Rec(S; A, M) =« > 1, then f* computed by (2.3) obeys
£ = Fllh = (@, A M) lleanslli, (3.6)

for some constant A(c, A, M) > 0 depending only on «, A and M. Moreover, A(a,A, M) decreases in o, meaning that larger
recoverability leads to higher correction accuracy.

In view of (3.6), f* is a good estimation if |e, |l is small. On the other hand, the estimation error does not rely on
es. Theorem 3.1 is essentially a corollary of Theorem 3.2 in the special case ||eM\5||1 = 0. The proof of Theorem 3.2 will be
given in Appendix C, in which we derive an explicit expression for the constant factor A(«, A, M).

Example 3.2. We consider the same setting as in Example 3.1 except that the other observed data contains small sensing

302 302 300 2
201 201 200 1
noise besides the large corruption at link 6. Specifically, let fi; = | 198 | and ey = far — fM =198 | —-1200|=| -2
301 301 300 1
600 600 500 100

Again we take S = {6}. Since Rec(S) =2 > 1, it is asserted by Theorem 3.2 that the ¢; norm of the estimation error | f* —
fll1 is comparable to

lexnslli =2+1+2+1=6.

302
201 o
This is true, as we obtain that x* = | 303 | by (2.2), f* = 200 | * and
503 303
503

If* = fllh = 12.

Note that the original counting error at Link 6 is 100, in sharp contrast to the error after correction which is just 3.
4. Test examples

In this section, we provide both synthetic and real-world examples to demonstrate effectiveness of our proposed method.
4.1. A synthetic network

Fig. 2 shows a parallel highway network (Hu et al., 2009; Ng, 2012) with 9 nodes and 18 links among which 15 links
are monitored. We create the ground-truth and observed flow data and list them in Table 1, where the estimation errors
equal the differences between the estimated and ground-truth values, and the percentage differences equal the relative
differences between the estimated and observed values. The data on links 3, 10 and 14 are unobservable. They are marked
by “N/A” in the table and by dashed line in the plot. The recorded data on links 6 and 16 are severely corrupted, while
the other data contain small noise. So basically M = {1,2,4,5,6,7,8,9,11,12,13,15, 16, 17,18} and S = {6, 16}. It is clear
that our estimation by Algorithm 1 is fairly close to the ground-truth, and the miscounts on links 6 and 16 are successfully
detected. In fact, we can check by Algorithm 2 that the recoverability condition Rec(S;A, M) =1.5 > 1 holds. Therefore,
Theorem 3.2 provides guarantee for our correction result.
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1(9950) 7(20043) 17(45912)
9(6977)
Vd
5(15010) 10~ 11(5045) o
'
\
2(70403) 6(39751) 12(47770) 16(45302) 18(34332)
Fig. 2. A parallel highway network.
Table 1
Computational results for Example 1. Links with corrupted data are labeled with *.
Link ID  Ground-truth  Observation  Estimation Estimation error ~ Percentage difference
1 10000 9950 9950 -10 0.0%
2 70000 69887 69887 -113 0.0%
3 8000 N/A 7953 —47 N/A
4 2000 1997 1997 -3 0.0%
5 15000 15010 15104 104 0.6%
6* 55000 39751 54783 —-217 37.8%
7 20000 20043 20043 43 0.0%
8 3000 3014 3014 14 0.0%
9 7000 6977 6977 23 0.0%
10 9000 N/A 9009 9 N/A
1 5000 5045 5046 46 0.0%
12 48000 47770 47771 —229 0.0%
13 25500 25397 25505 5 0.4%
14 1500 N/A 1515 15 N/A
15 20000 20000 20000 0 0.0%
16* 33000 45302 32817 —183 —27.6%
17 45500 45912 45505 5 —0.9%
18 34500 34332 34332 —168 0.0%
Traffic Direction
4
/1651&)7
1
e . O ;.—5.—7 B SNy 14 g 15 o Vg
s 5)/' (105748) /6 (127073) Nnow% 0(113002) 12 (124437) 13
2 (11127) (16194) (2809)  (10941) (10907)
Sand Canyon Ave Jeffrey Rd Culver Dr

***** Links without sensors

———  Links with sensors

Fig. 3. A road network on 1-405 northbound in the city of Irvine.

4.2. A real-world example

The daily cumulative flow data in this example is from Caltrans Performance Measurement System (PeMS) database,
collected on I-405 northbound in the city of Irvine, on April 28, 2016. The network has 18 links and 9 nodes as illustrated
in Fig. 3. The loop detectors are installed on all links except for links 3, 13, and 14, which are represented by dashed lines.
The links are labeled with their IDs and corresponding observed flows in the parentheses.

The estimated link flows by (2.2) and (2.3) are compared with the observed link flows in Table 2, where unobserved
links flows are marked by “N/A”. Our correction result shows that the percentage difference at link 6 is much larger than all
other links. Since there is no ground-truth data available in this example, we can not check the correction quality directly.
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Table 2
Computational results for Example 2.

Link ID  Observation  Estimation  Difference  Percentage difference

1 123714 123714 0 0.0%
2 4835 4835 0 0.0%
3 N/A 128549 N/A N/A
4 15479 15479 0 0.0%
5 105748 113070 7322 6.9%
6 11127 13661 2534 22.8%
7 127073 126731 —342 ~0.3%
8 16194 16194 0 0.0%
9 110997 110537 —460 —0.4%
10 2809 2757 —52 -1.9%
1 113002 113295 293 0.3%
12 10941 10941 0 0.0%
13 N/A 124236 N/A N/A
14 N/A 139715 N/A N/A
15 124437 124322 ~115 ~01%
16 15393 15393 0 0.0%
17 113411 113413 2 0.0%
18 10907 10909 2 0.0%

However, link 6 is flagged as unhealthy sensor by PeMS, which is consistent with our estimation. On the other hand, if link
6 is indeed the only unhealthy sensor, the quality of the estimated link flow listed in Table 2 is guaranteed by Theorem 3.2,
in which we have M ={1,2,4,5,6,7,8,9,10,11,12,15,16, 17,18} and S = {6}. It can be verified that the recoverability
condition Rec(S;A, M) =2 > 1 holds.

5. Conclusion

In this study, we systematically studied the link flow correction problem in a traffic network based on flow conservation.
The problem is formulated as an ¢;-minimization problem, in which the differences between the estimated and observed
link flows are minimized. We introduced the recoverability concept for a subset of links and specifically derived the recov-
erability condition for exactly retrieving the missing data: when certain sensors are malfunctioning, no matter how large
the errors are, the ground truth flow can be exactly recovered. That is, some links are robust to miscounts. Furthermore,
when small errors are present in observed link flows, the estimation error bound is found such that we can estimate the
link flows that are close enough to ground-truth under the recoverability condition. We also showed an efficient algorithm
for computing recoverability.

For the real-world example in Section 4.2, the percentage differences between estimated and observed values in
Table 2 seem to be higher for links (e.g., link 5) closer to the one (link 6 in this case) with an unhealthy sensor. In the
future we will be interested in exploring the relationship between the percentage differences and the distances to un-
healthy sensors. However, for the synthetic example in Section 4.1, such a relation is not so obvious in Table 1; this suggests
that the ¢; norm can effectively prevent error spreading, and a sensor close to an unhealthy sensor does not have to have a
relatively large percentage difference.

A few more follow-up study topics can be interesting both theoretically and practically. In addition to the ¢; norm, it
will be interesting to investigate the feasibility and efficiency of other sparsity promoting penalty functions for formulating
and solving the flow correction problem. The recoverability defined in (3.4) is central to the flow correction problem, as it
determines whether exact recovery is possible or not (see Theorem 3.1) and also the error bound in stable recovery (see
(3.6)). In the future we will be interested in examining with Algorithm 2 how the road network’s structure impacts the
recoverability of a subset of links, and such a study could provide guidelines for installing flow counting sensors especially
in a large-scale network.
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Appendix A. ADMM for solving (2.2)

The following alternating direction method of multipliers (ADMM) (Boyd et al., 2011) is an thresholding-based iterative
algorithm. In Algorithm 1, z € R™ and u € R™ are auxiliary variables. 'shrink’ is the so-called soft-thresholding operator on
R™, For any z € R™ and r > 0, shrink(z, r) performs component-wise operation on z given by

(shrink(z, r)); = sign(z;) max{|z;| —r, 0}, i=1,....,m.
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Algorithm 1 ADMM for solving min, _pi—n |Zyx — fadll1.

Input: Zyg, fa, 6 >0
Initialize: x©@, z©  y©
fori=0,1,...,k; —1do
XD = (Z8 Zv) ' Z] (fm + 20 —u®)
20D = shrink(Zyx(+D — fo +u® 1)
ul+1) — @ +ZMX(1‘+1) _ A+ fr
end for
Output: x* = xk1)

The algorithm stops after some maximum number of iterations.
Appendix B. An inverse power algorithm for solving (3.5)

We present Algorithm 2 to solve the following optimization problem (3.5):
1Z sVl
verin |Zsvlly
The output A* is the computed recoverability in (3.5), i.e,, Rec(S; A, M). Note that in Algorithm 2, updating v under the

Algorithm 2 An inverse power algorithm (Hein and Biihler, 2010) for solving (3.5).
Input: Zy\s. Zs

e 1. HZ\A SU(O)HI
Initialize: v(©, A(0) = ZA\s 71
1Zsv O

fori=0,1,....k; —1do ‘ ‘
v+ = argminy [|Zysvllh — 2D (ZEsign(Zsv™), v)  subject to [|v]| <1

(i) _ MZas? ™Dl
T zZsvlHD
end for

Output: A* = A(k2)

unit ball constraint is non-trivial and requires extra effort. We write an ADMM solver for this subproblem in Algorithm 3 be-
low.

Appendix C. Technical proofs

Proof of Theorem 2.1. To prove Z = |:_( AI)(CIC—)n_)] AK] e RIXU=M gives a basis of Ker(A), it suffices to show that

Algorithm 3 ADMM for updating v.
Input: Zy 5. Zs, b=1DZlsign(Zsv™) from Algorithm 2, and § > 0
Initialize: v©@, z(®  y©

for j=0,1,..., ks —1 do

pU+D = (z/TVl\SZM\S) 1(ZL\S(Z(J) + %) + g)

i (+1) . i
pURD = B U > 1

zU+1) = shrink(Z svU+D + %, )
u) =y 1 50+ — 7, p0+D)
end for
Output: v+ in Algorithm 2

1. AZ = 0 is a zero matrix. It is true since AZ = [AX, A’CC]|: (AI,(CIC)”)lAK:| = AK — AKS(AK)-1AK = 0.

2. Z has full rank, i.e., rank(Z) = | — n. This is also true because, on one hand rank(Z) <[ — n, on the other hand, rank(Z) >
rank(l_n)) =1 —n since I;_p is a submatrix of Z.
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Then by (2.3), we have

. _ Li_n) . _ X
fr= |:_(AKE)1A;C X = —(AK) ARk |-
N fr .
Since f = [f)cc:|’ we conclude that x* is an estimate of fX. O

Proof of Theorem 3.2. Suppose f* = f + v, since f*, f e Ran(Z), then we have
v € Ran(2).

Moreover, since f}, = Zyx* and fM € Ran(Zyy), (2.2) implies that

I£50 = Fualls = 1Zux* = Fall < 1 fwn = faalln (5.7)
Bear in mind that ey, = fa — fM is the sensing error, so on the right hand side of (5.7),

I fu = fulli = llewdl = lleslli + lleans (5.8)

and on the left hand side,

I foe = Sl = 1CF+ ) = faalls = lva — el
= llus —eslli + lvans — ernslh
> lleslls — llvsll + lvansll — lleans|l (5.9)

In (5.9), we used the triangle inequality for ¢; norm. Combining (5.7), (5.8), and (5.9), we have
leslli + lleansllh = lleslls = llvslla + lvans il = lleanslls
or
2Nlesnslli = =llvslls + lvanslla (5.10)

By the assumption that

h
Rec(S; A, M) := inf M =u>1,
heker(A): sl 20 [[hs|l1

we have a|lhs|l1 < [[hypsll1 holds for all h e Ker(A) = Ran(Z). Since v e Ran(Z) as aforementioned, we have further ||valy >
(1 +a)|lvslly, then it follows from (5.10) that

2
2||eM\s||1 > lvmll = 2llvsllh = (1= m)”VM”L
and thus
BN 2(ax+1
1= Fraally = ol = 295 D e (5.11)

In what follows, we derive an upper bound for ||(f* — fA)Mc l;. Without loss generality, suppose A = [AX, AK] with K €
M being any base set. Since both f* and f obey flow conservation, we have

0n=A *—A=A}C,AKC (f*f)/CiI7
=AU =D = ][q*—f),a
which gives

(f* = Pyre = (@A) A (f* = .

Since K € M, we have M€ C K¢. Therefore, (f* — f)]( is contained in (f* — f)M, and (f*— f)Mc is contained in (f* — f);cc.
Using the above facts, we have
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1P = Paelli < G = Prell = I = A)TTAS(F = el
A TAS I = Pl < 1A ARG = Padl

2(a+1 N
< 2O Dy ) A7) fleans . (512)

In the second inequality above, ||(AX*)~'AX|; is the operator norm of (A<*)~1AX induced by ¢; norm. And in the last
inequality, we used (5.11).
Finally, combining (5.11) and (5.12) gives that

« _F 2(x+1) o\
If = fll = OtT(”(AK )AL+ Dlleansll-
Note that the above inequality holds for arbitrary base set X < M. Therefore,

I - fily < 22D

IA

min  {[[A%) A+ 1Hleaslh.
« is base set
which concludes the proof. O
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