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a b s t r a c t 

A computational method, based on ℓ 1 -minimization, is proposed for the problem of link 

flow correction, when the available traffic flow data on many links in a road network 

are inconsistent with respect to the flow conservation law. Without extra information, the 

problem is generally ill-posed when a large portion of the link sensors are unhealthy. It is 

possible, however, to correct the corrupted link flows accurately with the proposed method 

under a recoverability condition if there are only a few bad sensors which are located at 

certain links. We analytically identify the links that are robust to miscounts and relate 

them to the geometric structure of the traffic network by introducing the recoverability 

concept and an algorithm for computing it. The recoverability condition for corrupted links 

is simply the associated recoverability being greater than 1. In a more realistic setting, be- 

sides the unhealthy link sensors, small measurement noises may be present at the other 

sensors. Under the same recoverability condition, our method guarantees to give an es- 

timated traffic flow fairly close to the ground-truth data and leads to a bound for the 

correction error. Both synthetic and real-world examples are provided to demonstrate the 

effectiveness of the proposed method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Link volume/flow data is an important data source in both long-term planning and short-term operation applications. 

The examples include but are not limited to signal timing, toll road pricing, origin-destination trip matrix estimation, trans- 

portation planning, traffic safety (e.g. Koonce et al., 2008; Lindsey, 2006; McNally, 2007; Lord and Mannering, 2010 and the 

references therein). 

The flow conservation in a traffic network implies that the total in-flow equals the total out-flow at each non-centroid 

node. The centroids are nodes where traffic originates/is destined to, and non-centroids nodes denotes all the other nodes. 

Practically, when looking at traffic flow counts over a sufficiently long time period (e.g. daily cumulative flow), we expect 

that the sum of cumulative link flows entering the non-centroid node equals the sum of cumulative link flows leaving it. 

The flow conservation law is an important property, which has been exploited in many different applications. For exam- 

ple, the widely used first-order traffic flow model, the LWR model ( Lighthill and Whitham, 1955; Richards, 1956 ), is derived 
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based on the conservation of traffic. In Chen et al. (2009) , the authors mentioned that a path flow estimator (PFE) needs 

reasonably consistent link flows, meaning that the flow conservation law should be satisfied within a certain error bound, 

to reproduce feasible path flow solutions. 

In practice, the flow conservation law can be violated due to numerous flow measuring errors; i.e., the observed flow 

counts are generally corrupted and cause data inconsistency issues. In Sun et al. (2016) , the network sensor health problem 

(NSHP) ( Sun et al., 2016 ) is proposed to evaluate individual sensors’ health indices based on the level of flow data consis- 

tency. Assuming flow counting sensors are already installed on some of the links where at least one base set exists, the 

NSHP tries to find the least inconsistent base set that “minimizes the sum of squares of the differences between observed 

and calculated link flows”. The health index of a specific sensor is evaluated based on the frequency that it appears in the 

least inconsistent set. 

Several studies have looked into the problem of correcting inconsistent flow data according to flow conservation. To 

solve a similar problem in transit planning, Kikuchi et al. (2006) studied the passenger flow balancing problem and pro- 

posed a least square correction method to adjust the flows, so that the counts are conserved and close to the observed 

values. van Zuylen and Branston (1982) assumed that the observed link flows follow probability distributions constrained 

by flow conservation. The study derived the formula for constrained maximum likelihood estimates of the link flows. 

Kikuchi et al. (20 0 0) examined and compared six different methods to adjust observed flow rate according to flow con- 

servation. All of the methods have the same constraints but different objective functions. Vanajakshi and Rilett (2004) stud- 

ied flow inconsistency problem between neighboring upstream and downstream loop detectors. A nonlinear optimization 

problem is proposed to correct loop detector data, in the case when observed data violates flow conservation. 

In summary, given the observed cumulative flows on different links, all of the existing flow correction methods adopted 

optimization approaches that try to meet the following principles: 

• Ensure that flow conservation be followed exactly at all non-centroid nodes after adjustment using a set of constraints, 
• Preserve the integrity of the observed data as much as possible by minimizing the distance between adjusted and ob- 

served flows. 

However, all of the studies are limited to simple hypothetical networks or networks with simple topologies. Also, no 

systematic study has been done regarding the effectiveness and applicability of the methods. 

In this study, we propose a method to estimate the true link flow from corrupted data on observed links as well as 

unobserved links via ℓ 1 -minimization. Similar to the existing methods, the link flow correction method is also formulated 

as an optimization problem to minimize the difference between observed and estimated link flows. As an improvement over 

the existing methods, the node-based formulation of flow conservation is introduced to handle general road network where 

link flows are only observed on monitored links, not on all links as assumed in many existing studies. More importantly, we 

adopt the ℓ 1 -minimization method from compressed sensing ( Candès et al., 20 05; 20 06 ) to analytically derive the condition 

for exact/stable recovery of the true cumulative flow counts. The ℓ 1 norm is the unique convex sparsity promoting penalty. 

Though it is not differentiable, various efficient scalable numerical methods exist to date for its minimization ( Beck and 

Teboulle, 2009; Boyd et al., 2011; Daubechies et al., 2004; Goldstein and Osher, 2009; Yang and Zhang, 2011 ) besides linear 

programming. In addition to ℓ 1 norm, other non-convex sparsity promoting penalty functions can also be considered; see 

Yin et al. (2015) ; Yin and Xin (2017) ; Lou et al. (2016) and references therein. Their minimization is computationally more 

expensive than ℓ 1 , and we shall leave such a study for a future work. 

The rest of the paper is organized as follows. In Section 2 , we state the link flow correction problem formulation, the 

exact and stable recovery theorem, the recoverability condition and the connection with compressed sensing. In Section 3 , 

we use a toy example to illustrate the conditions for exact and stable link flow recovery. In Section 4 , we use real-world 

loop detector data as an application for this method. In both the toy and real world examples, the recoverability condition 

is verified analytically. The concluding remarks are in Section 5 . 

Notations 

Let us fix some notations. R n represents the real coordinate space of n dimensions. Let x ∈ R n , ‖ x ‖ 1 := 
∑ n 

i =1 | x i | takes 
the ℓ 1 norm of x , and ‖ x ‖ denotes the Euclidean ( ℓ 2 ) norm. Given any index set I ⊆ { 1 , 2 , . . . , n } , |I| counts the number of 

elements in I ; I c := { 1 , 2 , . . . , n } \ I is the complement set of I . x I ∈ R |I| consists of the elements in x restricted to the index 

set I . 0 (n ) ∈ R n denotes the vector containing zeros only, while I (n ) ∈ R n ×n denotes the identity matrix of order n . For any 

matrix A ∈ R m ×n , A ⊤ is the transpose of A ; A I ∈ R |I|×n is the submatrix of A restricted to the row index set I ⊆ { 1 , 2 , . . . , m } , 
and A I ∈ R m ×|I| is the submatrix of A restricted to the column index set I ⊆ { 1 , 2 , . . . , n } ; e.g., A {1, 2} extracts the first two 

rows of A , and A {1, 2} extracts the first two columns of A . Ker (A ) := { x ∈ R n : Ax = 0 (m ) } represents the kernel space of A , 
while Ran (A ) := { h ∈ R m : h = Ax for some x ∈ R n } represents the range space of A . 
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2. Methodology 

2.1. Problem setup 

Given a traffic network with non-centroid nodes only, the node-link incidence matrix A ∈ R n ×l with n being the number 

of nodes and l the number of links, can be expressed as 

A i j = 

{ 
−1 if the j-th link is outgoing link of node i 
1 if the j-th link is incoming link of node i 
0 otherwise. 

Then A is always of full (row) rank as proved in Ng (2012) , and traffic flow data ˆ f ∈ R l obeys the flow conservation: 

A ̂  f = 0 (n ) . (2.1) 

Suppose M ⊆ { 1 , 2 , . . . , l} is the set of links whose link flows are observed, and |M| = m . We call M as “monitored set”

thereafter. We assume that 

f M = ˆ f M + e M ∈ R 
m , 

is the observed inconsistent flow data corrupted by sensing errors e M ∈ R m . 

The flow correction problem is to derive an estimate of ˆ f , denoted by f ∗, from the corrupted data f M . Here we impose 

an underlying assumption on M for the flow correction problem to be well-posed. We will need the concept of base set 

introduced in Sun et al. (2016) . 

Assumption 2.1. M contains at least one base set K ⊆ M , meaning that |K| = l − n and A K 
c 

∈ R n ×n is invertible. 

For the consistent data ˆ f M = f M (i.e., e M = 0 (m ) ), of course we have ˆ f K = f K since K ⊆ M . Then the ˆ f can be uniquely 

recovered by performing ( Ng, 2012; Sun et al., 2016 ): 

ˆ f K = f K and ˆ f K c = −(A K 
c 
) −1 A K f K . 

If M contains more than one base set, the ˆ f recovered in the above from different f K will be consistent. 

Assumption 2.1 is the sufficient and necessary condition for the whole link flows to be inferable. It guarantees that the 

whole flow data can be deduced from at least one subset of the observed link flows. Without this assumption, however, 

some of the link flows cannot be estimated from available data and the problem is unsolvable ( Ng, 2012 ), whether the 

measured flows are consistent or not. 

2.2. Flow correction via ℓ 1 -minimization 

Since A is of full row rank, Ker( A ) is an (l − n ) -dimensional subspace of R l . Suppose Z ∈ R l ×(l −n ) is the matrix whose 

columns form a basis of Ker( A ). Since ˆ f ∈ Ker (A ) , we have 

ˆ f = Zx, for some x ∈ R 
l−n . 

As a result, ˆ f M must be of the form Z M x for some x ∈ R l−n . 

Remark 2.1. Clearly the existence of Z is non-unique, but f ∗ is invariant to the choice of Z and only depends on the structure 

of the traffic network. Indeed f ∗ is the one in Ran( Z ) whose restriction on M has the least absolute deviation from f M . So f 
∗

only depends on Ran( Z ) which is same as Ker( A ). Note that A is the node-link matrix uniquely determined by the network 

structure. 

The following result not only gives a concrete construction of Z , but also interprets x ∗ in (2.2) as an estimate of ˆ f K for 

some base set K (not necessarily a subset of M ). 

Theorem 2.1. Let K be any base set. Without loss of generality, suppose A is partitioned as [ A K , A K 
c 
] with A K 

c 
∈ R n ×n being 

invertible. Then 

Z = 

[

I (l−n ) 

−(A K 
c 
) −1 A K 

]

∈ R 
l ×(l −n ) 

is a basis matrix of Ker( A ) . Moreover, by choosing such Z, x ∗ from (2.2) is an estimate of ˆ f K . 

We will show the proof in Appendix C . Our proposed method consists of the following two steps: 

1. We first solve an ℓ 1 -minimization problem: 

x ∗ = arg min 
x ∈ R l−n 

‖ Z M x − f M ‖ 1 , (2.2) 

That is, we seek an estimate of e M = f M − ˆ f M in the affine space { f M − Z M x : x ∈ R l−n } with the least ℓ 1 norm. The 

problem (2.2) can be efficiently solved by the alternating direction method of multipliers (ADMM) ( Boyd et al., 2011 ); 

see Appendix A for the implementation details. 
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Fig. 1. A Toy Network. The solid links are monitored. The numbers in parentheses denote the ground-truth traffic counts. 

2. ˆ f is then estimated by 

f ∗ = Zx ∗. (2.3) 

Zx ∗ may have non-integer entries, in this case, we can just perform rounding. 

2.3. Connections with compressed sensing 

Compressed sensing ( Candès et al., 2006; Donoho, 2006 ) aims to recover a sparse signal (vector) y from an under- 

determined linear system that generally has infinitely many solutions. It enables recovery of the signal y from far fewer 

samples than required by the Nyquist-Shannon sampling theorem. Major ingredients of the standard compressed sensing 

technique include 

• Sparsity: most of the entries in y are zeros. 
• ℓ 1 -minimization: minimizing ‖ y ‖ 1 to exploit the sparsity of y . 

Let us return to the flow correction problem, which is in essence equivalent to the estimation of e M . In an extreme case, 

suppose all the sensors are bad, leading to large sensing errors. Without further information, it is clearly impossible to get a 

good estimate of ˆ f from f M by any means. Intuitively, however, reconstructing ˆ f is promising if most of the sensors record 

consistent flow data. Mathematically speaking, e M is sparse. The flow correction problem thus can be viewed as sparse error 

correction problem ( Candès et al., 2005; Xu et al., 2013 ), which is similar to compressed sensing. Note that, however, the 

flow correction problem deviates from the traditional compressed sensing problem, where the matrix A would be random. 

3. Correction results 

Note that our proposed method does not take advantage of any prior information about the possible bad sensors. Ap- 

parently one can not always hope for a good estimation f ∗ to ˆ f , even if there is only one bad sensor in the network. For 

instance, in the network shown in Fig. 1 , if the sensor on link 1 gives very wrong count, then basically there is no way to 

reasonably correct this error because links 1 and 2 are equivalent in the topology of the network. With that said, without 

extra information, obtaining a good estimate of ˆ f is possible only when the bad sensors are located at some particular links. 

These locations tolerating miscount are somehow determined by the network structure. In the following, we shall introduce 

the concept of recoverability. 

Definition 3.1. Given a network with node-link incidence matrix A and monitored link set M , we define the recoverability 

for the subset S ⊆ M by 

Rec (S;A, M ) := inf 
h ∈ Ker (A ): ‖ h S ‖ 1 � =0 

‖ h M\S ‖ 1 

‖ h S ‖ 1 
, (3.4) 

which is a function of the subset S and also determined by both the network structure A and the monitored link set M . 

Since for any h ∈ Ker( A ), it holds that h = Zv for some v ∈ R l−n , then we can rewrite (3.4) as 

Rec (S;A, M ) = inf 
v ∈ R l−n : Z S v � = 0 

‖ Z M\S v ‖ 1 

‖ Z S v ‖ 1 
, (3.5) 

which resembles the classical Rayleigh quotient for the principal eigenvalue μ of the generalized eigenvalue problem 

( Weinberger, 1974 ): Z ⊤ 
S Z S v = μ Z ⊤ 

M\S 
Z M\S v if ℓ 2 norm replaces the ℓ 1 norm. The optimization of the ratio of two homoge- 

neous functions of degree one has been studied in Hein and Bühler (2010) , where an inverse power iterative algorithm was 

proposed. Based on Hein and Bühler (2010) , we propose an efficient algorithm to solve problem (3.5) which will be detailed 

in Appendix B . 
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3.1. Exact recovery 

We first consider the case where some sensors are bad, which introduce inconsistency of the flow data. The following 

Theorem 3.1 asserts that when the bad sensors are located at certain link set S whose size is expected to be small, then no 

matter how large the errors are, we are able to exactly recover ˆ f from f M . 

Theorem 3.1 (Exact recovery) . Let S := { i ∈ M : e i � = 0 } , which means miscounts only occur at the link set S . If Rec (S;A, M ) > 

1 , then the estimation f ∗ computed by (2.3) is equal to ˆ f . That is, the links in S are robust to miscounts if Rec (S;A, M ) > 1 . 

The proof is omitted here, since the above theorem is a special case of Theorem 3.2 in Section 3.2 . We remark that the 

lower bound for Rec (S;A, M ) in the recoverability condition is sharp. Indeed the method can fail when Rec (S;A, M ) = 1 , 

as will be seen in the following example. 

Example 3.1. Let us consider the traffic network associated with the 3 ×6 node-link incidence matrix 

A = 

[ 
1 1 −1 −1 0 0 
0 0 1 0 −1 0 
0 0 0 1 1 −1 

] 

, 

and the ground-truth network flow ˆ f = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

300 

200 

300 

200 

300 

500 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

as in Fig. 1 , the node and links are labeled with their ID with ground truth 

link flows in the parentheses. 

Then Theorem 2.1 gives that 

Z = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

−1 0 1 
1 0 0 
0 1 0 
0 −1 1 
0 1 0 
0 0 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

. 

Let the monitored link set be M = { 1 , 2 , 4 , 5 , 6 } , then 

Z M = 

⎡ 

⎢ 
⎢ 
⎣ 

−1 0 1 
1 0 0 
0 −1 1 
0 1 0 
0 0 1 

⎤ 

⎥ 
⎥ 
⎦ 

. 

Let the observation be f M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

f 1 
f 2 
f 4 
f 5 
f 6 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

300 

200 

200 

300 

600 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, i.e., the observed link flow on link 6 is inflated by 100 due to sensor error. So 

e M = f M − ˆ f M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

0 

0 

0 

0 

100 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, S = { i ∈ M : e i � = 0 } = { 6 } , and M \ S = { 1 , 2 , 4 , 5 } . 

We can verify by either an analytic approach or Algorithm 2 that the recoverability condition Rec (S;A, M ) = 2 > 1 is 

satisfied. Then Theorem 3.1 asserts that f ∗ derived from (2.2) and (2.3) must be equal to ˆ f . It is indeed true because x ∗ = 
[ 
200 

300 

500 

] 

, and therefore 

f ∗ = Zx ∗ = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

300 
200 
300 
200 
300 
500 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

= ˆ f . 
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Compare this result with the ground truth link flows, we can conclude that the errors are completely eliminated. 

Remark 3.1. We have two remarks below. 

• Without knowing the count at link 3, i.e., M = { 1 , 2 , 4 , 5 , 6 } , the proposed method would fail exact recovery if the count 

was corrupted at any other link except link 6. Take link 1 for example, it is easy to check that Rec ({ 1 };A, M ) = 1 . 

Therefore, link 1 is not guaranteed to be robust to miscount by our theory. Indeed this is the case as mentioned in the 

beginning of this section. 
• Suppose link 3 was also monitored, i.e., M = { 1 , 2 , . . . , 6 } , then any counting error at one of the links 3, 4, 5 and 6 could 

be accurately corrected. 

3.2. Stable recovery 

In a more realistic setting, we assume that all the elements in e M are non-zeros, yet most of them are relatively small 

compared with the other few. This refers to approximate sparsity in compressed sensing. In this case, it is still possible for 

f ∗ to be close enough to ˆ f . In another word, the estimation errors are bounded from above in this case. 

Theorem 3.2 (Stability) . For any S ⊆ M , if Rec (S;A, M ) = α > 1 , then f ∗ computed by (2.3) obeys 

‖ f ∗ − ˆ f ‖ 1 ≤ λ(α, A, M ) ‖ e M\S ‖ 1 , (3.6) 

for some constant λ(α, A, M ) > 0 depending only on α, A and M . Moreover, λ(α, A, M ) decreases in α, meaning that larger 

recoverability leads to higher correction accuracy. 

In view of (3.6) , f ∗ is a good estimation if ‖ e M\S ‖ 1 is small. On the other hand, the estimation error does not rely on 

e S . Theorem 3.1 is essentially a corollary of Theorem 3.2 in the special case ‖ e M\S ‖ 1 = 0 . The proof of Theorem 3.2 will be 

given in Appendix C , in which we derive an explicit expression for the constant factor λ(α, A, M ) . 

Example 3.2. We consider the same setting as in Example 3.1 except that the other observed data contains small sensing 

noise besides the large corruption at link 6. Specifically, let f M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

302 

201 

198 

301 

600 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

and e M = f M − ˆ f M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

302 

201 

198 

301 

600 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

−

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

300 

200 

200 

300 

500 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

2 

1 

−2 

1 

100 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
. 

Again we take S = { 6 } . Since Rec (S) = 2 > 1 , it is asserted by Theorem 3.2 that the ℓ 1 norm of the estimation error ‖ f ∗ −
ˆ f ‖ 1 is comparable to 

‖ e M\S ‖ 1 = 2 + 1 + 2 + 1 = 6 . 

This is true, as we obtain that x ∗ = 

[ 
201 

303 

503 

] 

by (2.2) , f ∗ = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

302 

201 

303 

200 

303 

503 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, and 

‖ f ∗ − ˆ f ‖ 1 = 12 . 

Note that the original counting error at Link 6 is 100, in sharp contrast to the error after correction which is just 3. 

4. Test examples 

In this section, we provide both synthetic and real-world examples to demonstrate effectiveness of our proposed method. 

4.1. A synthetic network 

Fig. 2 shows a parallel highway network ( Hu et al., 2009; Ng, 2012 ) with 9 nodes and 18 links among which 15 links 

are monitored. We create the ground-truth and observed flow data and list them in Table 1 , where the estimation errors 

equal the differences between the estimated and ground-truth values, and the percentage differences equal the relative 

differences between the estimated and observed values. The data on links 3, 10 and 14 are unobservable. They are marked 

by “N/A” in the table and by dashed line in the plot. The recorded data on links 6 and 16 are severely corrupted, while 

the other data contain small noise. So basically M = { 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 , 15 , 16 , 17 , 18 } and S = { 6 , 16 } . It is clear 
that our estimation by Algorithm 1 is fairly close to the ground-truth, and the miscounts on links 6 and 16 are successfully 

detected. In fact, we can check by Algorithm 2 that the recoverability condition Rec (S;A,M ) = 1 . 5 > 1 holds. Therefore, 

Theorem 3.2 provides guarantee for our correction result. 
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Fig. 2. A parallel highway network. 

Table 1 

Computational results for Example 1. Links with corrupted data are labeled with ∗ . 

Link ID Ground-truth Observation Estimation Estimation error Percentage difference 

1 10 0 0 0 9950 9950 −10 0.0% 

2 70 0 0 0 69887 69887 −113 0.0% 

3 80 0 0 N/A 7953 −47 N/A 

4 20 0 0 1997 1997 −3 0.0% 

5 150 0 0 15010 15104 104 0.6% 

6 ∗ 550 0 0 39751 54783 −217 37.8% 

7 20 0 0 0 20043 20043 43 0.0% 

8 30 0 0 3014 3014 14 0.0% 

9 70 0 0 6977 6977 23 0.0% 

10 90 0 0 N/A 9009 9 N/A 

11 50 0 0 5045 5046 46 0.0% 

12 480 0 0 47770 47771 −229 0.0% 

13 25500 25397 25505 5 0.4% 

14 1500 N/A 1515 15 N/A 

15 20 0 0 0 20 0 0 0 20 0 0 0 0 0.0% 

16 ∗ 330 0 0 45302 32817 −183 −27.6% 

17 45500 45912 45505 5 −0.9% 

18 34500 34332 34332 −168 0.0% 

Fig. 3. A road network on I-405 northbound in the city of Irvine. 

4.2. A real-world example 

The daily cumulative flow data in this example is from Caltrans Performance Measurement System (PeMS) database, 

collected on I-405 northbound in the city of Irvine, on April 28, 2016. The network has 18 links and 9 nodes as illustrated 

in Fig. 3 . The loop detectors are installed on all links except for links 3, 13, and 14, which are represented by dashed lines. 

The links are labeled with their IDs and corresponding observed flows in the parentheses. 

The estimated link flows by (2.2) and (2.3) are compared with the observed link flows in Table 2 , where unobserved 

links flows are marked by “N/A”. Our correction result shows that the percentage difference at link 6 is much larger than all 

other links. Since there is no ground-truth data available in this example, we can not check the correction quality directly. 
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Table 2 

Computational results for Example 2. 

Link ID Observation Estimation Difference Percentage difference 

1 123714 123714 0 0.0% 

2 4835 4835 0 0.0% 

3 N/A 128549 N/A N/A 

4 15479 15479 0 0.0% 

5 105748 113070 7322 6.9% 

6 11127 13661 2534 22.8% 

7 127073 126731 −342 −0.3% 

8 16194 16194 0 0.0% 

9 110997 110537 −460 −0.4% 

10 2809 2757 −52 −1.9% 

11 113002 113295 293 0.3% 

12 10941 10941 0 0.0% 

13 N/A 124236 N/A N/A 

14 N/A 139715 N/A N/A 

15 124437 124322 −115 −0.1% 

16 15393 15393 0 0.0% 

17 113411 113413 2 0.0% 

18 10907 10909 2 0.0% 

However, link 6 is flagged as unhealthy sensor by PeMS, which is consistent with our estimation. On the other hand, if link 

6 is indeed the only unhealthy sensor, the quality of the estimated link flow listed in Table 2 is guaranteed by Theorem 3.2 , 

in which we have M = { 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 16 , 17 , 18 } and S = { 6 } . It can be verified that the recoverability 
condition Rec (S;A, M ) = 2 > 1 holds. 

5. Conclusion 

In this study, we systematically studied the link flow correction problem in a traffic network based on flow conservation. 

The problem is formulated as an ℓ 1 -minimization problem, in which the differences between the estimated and observed 

link flows are minimized. We introduced the recoverability concept for a subset of links and specifically derived the recov- 

erability condition for exactly retrieving the missing data: when certain sensors are malfunctioning, no matter how large 

the errors are, the ground truth flow can be exactly recovered. That is, some links are robust to miscounts. Furthermore, 

when small errors are present in observed link flows, the estimation error bound is found such that we can estimate the 

link flows that are close enough to ground-truth under the recoverability condition. We also showed an efficient algorithm 

for computing recoverability. 

For the real-world example in Section 4.2 , the percentage differences between estimated and observed values in 

Table 2 seem to be higher for links (e.g., link 5) closer to the one (link 6 in this case) with an unhealthy sensor. In the 

future we will be interested in exploring the relationship between the percentage differences and the distances to un- 

healthy sensors. However, for the synthetic example in Section 4.1 , such a relation is not so obvious in Table 1 ; this suggests 

that the ℓ 1 norm can effectively prevent error spreading, and a sensor close to an unhealthy sensor does not have to have a 

relatively large percentage difference. 

A few more follow-up study topics can be interesting both theoretically and practically. In addition to the ℓ 1 norm, it 

will be interesting to investigate the feasibility and efficiency of other sparsity promoting penalty functions for formulating 

and solving the flow correction problem. The recoverability defined in (3.4) is central to the flow correction problem, as it 

determines whether exact recovery is possible or not (see Theorem 3.1 ) and also the error bound in stable recovery (see 

(3.6) ). In the future we will be interested in examining with Algorithm 2 how the road network’s structure impacts the 

recoverability of a subset of links, and such a study could provide guidelines for installing flow counting sensors especially 

in a large-scale network. 
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Appendix A. ADMM for solving (2.2) 

The following alternating direction method of multipliers (ADMM) ( Boyd et al., 2011 ) is an thresholding-based iterative 

algorithm. In Algorithm 1 , z ∈ R m and u ∈ R m are auxiliary variables. ’shrink’ is the so-called soft-thresholding operator on 

R m . For any z ∈ R m and r > 0, shrink( z, r ) performs component-wise operation on z given by 

( shrink (z, r) ) i = sign (z i ) max {| z i | − r, 0 } , i = 1 , . . . , m. 
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Algorithm 1 ADMM for solving min x ∈ R l−n ‖ Z M x − f M ‖ 1 . 

Input: Z M , f M , δ > 0 

Initialize: x (0) , z (0) , u (0) 

for i = 0 , 1 , . . . , k 1 − 1 do 

x (i +1) = (Z ⊤ 
M Z M ) 

−1 Z ⊤ 
M ( f M + z (i ) − u (i ) ) 

z (i +1) = shrink (Z M x 
(i +1) − f M + u (i ) , 1 

δ
) 

u (i +1) = u (i ) + Z M x 
(i +1) − z (i +1) − f M 

end for 

Output: x ∗ = x (k 1 ) 

The algorithm stops after some maximum number of iterations. 

Appendix B. An inverse power algorithm for solving (3.5) 

We present Algorithm 2 to solve the following optimization problem (3.5) : 

min 
v ∈ R l−n 

‖ Z M\S v ‖ 1 

‖ Z S v ‖ 1 
. 

The output λ∗ is the computed recoverability in (3.5) , i.e., Rec (S;A, M ) . Note that in Algorithm 2 , updating v under the 

Algorithm 2 An inverse power algorithm ( Hein and Bühler, 2010 ) for solving (3.5) . 

Input: Z M\S , Z S 

Initialize: v (0) , λ(0) = 
‖ Z 

M\S v 
(0) ‖ 1 

‖ Z S v (0) ‖ 1 

for i = 0 , 1 , . . . , k 2 − 1 do 

v (i +1) = arg min v ‖ Z M\S v ‖ 1 − λ(i ) 〈 Z ⊤ 
S sign (Z S v 

(i ) ) , v 〉 subject to ‖ v ‖ ≤ 1 

λ(i +1) = 
‖ Z 

M\S v 
(i +1) ‖ 1 

‖ Z S v (i +1) ‖ 1 
end for 

Output: λ∗ = λ(k 2 ) 

unit ball constraint is non-trivial and requires extra effort. We write an ADMM solver for this subproblem in Algorithm 3 be- 

low. 

Appendix C. Technical proofs 

Proof of Theorem 2.1. To prove Z = 

[

I (l−n ) 

−(A K 
c 
) −1 A K 

]

∈ R l ×(l −n ) gives a basis of Ker( A ), it suffices to show that 

Algorithm 3 ADMM for updating v . 

Input: Z M\S , Z S , b = λ(i ) Z ⊤ 
S sign (Z S v 

(i ) ) from Algorithm 2 , and δ > 0 

Initialize: v (0) , z (0) , u (0) 

for j = 0 , 1 , . . . , k 3 − 1 do 

v ( j+1) = (Z ⊤ 
M\S 

Z M\S ) 
−1 

(

Z ⊤ 
M\S 

(z ( j) + 
u ( j) 

δ
) + 

b 
δ

)

v ( j+1) = 
v ( j+1) 

‖ v ( j+1) ‖ 
if ‖ v ( j+1) ‖ > 1 

z ( j+1) = shrink (Z M\S v 
( j+1) + 

u ( j) 

δ
, 1 

δ
) 

u ( j+1) = u ( j) + δ(z ( j+1) − Z M\S v 
( j+1) ) 

end for 

Output: v (i +1) in Algorithm 2 

1. AZ = O is a zero matrix. It is true since AZ = [ A K , A K 
c 
] 

[

I (l−n ) 

−(A K 
c 
) −1 A K 

]

= A K − A K 
c 
(A K 

c 
) −1 A K = O . 

2. Z has full rank, i.e., rank (Z) = l − n . This is also true because, on one hand rank (Z) ≤ l − n, on the other hand, rank (Z) ≥

rank (I (l−n ) ) = l − n since I (l−n ) is a submatrix of Z . 
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Then by (2.3) , we have 

f ∗ = 

[

I (l−n ) 

−(A K 
c 
) −1 A K 

]

x ∗ = 

[

x ∗

−(A K 
c 
) −1 A K x ∗

]

. 

Since ˆ f = 

[

ˆ f K 

ˆ f K 
c 

]

, we conclude that x ∗ is an estimate of ˆ f K . �

Proof of Theorem 3.2. Suppose f ∗ = ˆ f + v , since f ∗, ˆ f ∈ Ran (Z) , then we have 

v ∈ Ran (Z) . 

Moreover, since f ∗
M = Z M x 

∗ and ˆ f M ∈ Ran (Z M ) , (2.2) implies that 

‖ f ∗
M − f M ‖ 1 = ‖ Z M x 

∗ − f M ‖ 1 ≤ ‖ ̂  f M − f M ‖ 1 . (5.7) 

Bear in mind that e M = f M − ˆ f M is the sensing error, so on the right hand side of (5.7) , 

‖ ̂  f M − f M ‖ 1 = ‖ e M ‖ 1 = ‖ e S ‖ 1 + ‖ e M\S ‖ 1 , (5.8) 

and on the left hand side, 

‖ f ∗
M − f M ‖ 1 = ‖ ( ̂  f + v ) M − f M ‖ 1 = ‖ v M − e M ‖ 1 

= ‖ v S − e S ‖ 1 + ‖ v M\S − e M\S ‖ 1 

≥ ‖ e S ‖ 1 − ‖ v S ‖ 1 + ‖ v M\S ‖ 1 − ‖ e M\S ‖ 1 (5.9) 

In (5.9) , we used the triangle inequality for ℓ 1 norm. Combining (5.7), (5.8) , and (5.9) , we have 

‖ e S ‖ 1 + ‖ e M\S ‖ 1 ≥ ‖ e S ‖ 1 − ‖ v S ‖ 1 + ‖ v M\S ‖ 1 − ‖ e M\S ‖ 1 

or 

2 ‖ e M\S ‖ 1 ≥ −‖ v S ‖ 1 + ‖ v M\S ‖ 1 (5.10) 

By the assumption that 

Rec (S;A, M ) := inf 
h ∈ Ker (A ): ‖ h S ‖ 1 � =0 

‖ h M\S ‖ 1 

‖ h S ‖ 1 
= α > 1 , 

we have α‖ h S ‖ 1 ≤ ‖ h M\S ‖ 1 holds for all h ∈ Ker (A ) = Ran (Z) . Since v ∈ Ran( Z ) as aforementioned, we have further ‖ v M ‖ 1 ≥
(1 + α) ‖ v S ‖ 1 , then it follows from (5.10) that 

2 ‖ e M\S ‖ 1 ≥ ‖ v M ‖ 1 − 2 ‖ v S ‖ 1 ≥ (1 −
2 

1 + α
) ‖ v M ‖ 1 , 

and thus 

‖ ( f ∗ − ˆ f ) M ‖ 1 = ‖ v M ‖ 1 ≤
2(α + 1) 

α − 1 
‖ e M\S ‖ 1 . (5.11) 

In what follows, we derive an upper bound for ‖ ( f ∗ − ˆ f ) M c ‖ 1 . Without loss generality, suppose A = [ A K , A K 
c 
] with K ⊆

M being any base set. Since bo th f ∗ and ˆ f obey flow conservation, we have 

0 (n ) = A ( f ∗ − ˆ f ) = [ A K , A K 
c 
] 

[

( f ∗ − ˆ f ) K 
( f ∗ − ˆ f ) K c 

]

, 

which gives 

( f ∗ − ˆ f ) K c = −(A K 
c 
) −1 A K ( f ∗ − ˆ f ) K . 

Since K ⊆ M , we have M c ⊆ K c . Therefore, ( f ∗ − ˆ f ) K is contained in ( f ∗ − ˆ f ) M , and ( f 
∗ − ˆ f ) M c is contained in ( f ∗ − ˆ f ) K c . 

Using the above facts, we have 
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‖ ( f ∗ − ˆ f ) M c ‖ 1 ≤ ‖ ( f ∗ − ˆ f ) K c ‖ 1 = ‖ − (A K 
c 
) −1 A K ( f ∗ − ˆ f ) K ‖ 1 

≤ ‖ (A K 
c 
) −1 A K ‖ 1 ‖ ( f ∗ − ˆ f ) K ‖ 1 ≤ ‖ (A K 

c 
) −1 A K ‖ 1 ‖ ( f ∗ − ˆ f ) M ‖ 1 

≤
2(α + 1) 

α − 1 
‖ (A K 

c 
) −1 A K ‖ 1 ‖ e M\S ‖ 1 . (5.12) 

In the second inequality above, ‖ (A K 
c 
) −1 A K ‖ 1 is the operator norm of (A K 

c 
) −1 A K induced by ℓ 1 norm. And in the last 

inequality, we used (5.11) . 

Finally, combining (5.11) and (5.12) gives that 

‖ f ∗ − ˆ f ‖ 1 ≤
2(α + 1) 

α − 1 
(‖ (A K 

c 
) −1 A K ‖ 1 + 1) ‖ e M\S ‖ 1 . 

Note that the above inequality holds for arbitrary base set K ⊆ M . Therefore, 

‖ f ∗ − ˆ f ‖ 1 ≤
2(α + 1) 

α − 1 
min 
K⊆M 

K is base set 

{‖ (A K 
c 
) −1 A K ‖ 1 + 1 }‖ e M\S ‖ 1 , 

which concludes the proof. �
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