
On Distributed Storage Allocations of Large Files

for Maximum Service Rate

Pei Peng1 and Emina Soljanin1

Abstract— Allocation of (redundant) file chunks throughout

a distributed storage system affects important performance

metrics such as the probability of file recovery, data download

time, or the service rate of the system under a given data access

model. This paper is concerned with the service rate under the

assumption that the stored data is large and its download time

is not negligible. We focus on quasi-uniform storage allocations

and provide a service rate analysis for two common data access

models. We find that the optimal allocation varies in accordance

with different system parameters. This was not the case under

the assumption that the download time does not scale with

the size of data, where the minimal spreading allocation was

previously found to be universally optimal.

I. INTRODUCTION

Distributed storage systems (DSSs) are, in various guises,
an integral part of different computing and content provid-
ing environments such as cloud data centers, caching edge
networks, and more recently, fog systems. Their purpose is
to ensure reliable storage and/or quick access of data by end
users or computing processes. Today, both goals are being
increasingly addressed by storing data redundantly, either by
replication or erasure coding. This paper is concerned with
allocations of redundant data chunks throughout a DSS that
ensure maximum data access service rate.

Most of the work on data access in DSSs is concerned
with the download latency (see e.g., [1]–[4] and references
therein). It has recently been recognized, that another im-
portant metric that measures the availability of the stored
data is the service rate [5], [6]. Maximizing service rate
(or the throughput) of a distributed system helps support
a large number of simultaneous system users. Rate-optimal
strategies are also latency-optimal in high traffic. Thus, max-
imizing the service rate also reduces the latency experienced
by users in particular in highly contending scenarios.

This paper adopts a DSS model originally proposed in
[7]. In this model, a file is split into multiple chunks, and
(replication or coded) redundancy is introduced at some fixed
level determined by the storage budget that the DSS has for
the file. This total storage is the only constraint, and there is
no limit on how many chunks a particular node can store as
long as it stays within the budget. Attempts to data retrieval
are done according to some limited access models.

Several studies have looked into how to allocate redundant
chunks of data over the storage nodes, focusing mostly on
optimizing two DSS performance metrics [7]–[10]. One of

1Pei Peng and Emina Soljanin are with the Department
of Electrical and Computer Engineering, Rutgers University,
Piscataway, NJ 08854 USA. pei.peng@rutgers.edu;
emina.soljanin@rutgers.edu

them is the probability of successful data recovery when
only a subset of (possibly failed) nodes are accessed, and
the other is the average download time when a set of nodes
from which the file can certainly be recovered is accessed.
Finding these quantities has shown to be quite challenging,
and optimal allocations are known only in some special
cases. Some versions of this problem are related to a long
standing conjecture by Erdős on the maximum number of
edges in a uniform hypergraph [11].

In general, both measures are of interest and should be si-
multaneously taken into account. Often increasing the chance
of successfully downloading a file while desirable should not
come at the cost of intolerable delivery delay. Moreover, in
practice, we may often want to partially sacrifice a successful
but tardy data delivery to some users in order to ensure that
other users, that can receive the data, are indeed served fast.

Note that, depending on the allocation, some subsets of
nodes may not contain enough file chunks between them to
ensure data recovery, and accessing them will result in a
zero system’s service rate. On the other hand, again depend-
ing on the allocation, some subsets of nodes will contain
redundant file chunks, and that redundancy (superfluous for
file recovery) can be exploited to increase the service rate.
These issues were first addressed in [5], where a non intuitive
conclusion was reached that the allocation that maximizes the
probability of successful data recovery is often not the one
that maximizes the average service rate.

Depending on the number of storage nodes and the allo-
cated redundancy budget, it may be beneficial for recovery
to maximally spread the redundant file chunks over the
nodes, whereas concentrating the redundant chunks (min-
imum spreading) may increase the expected service rate.
The work of [5] assumes that the download time is random
because of independent workload fluctuations inherent to the
system, and does not depend on the size of the data being
downloaded. We here assume that the stored data is large,
its download time is not negligible and scales with the size
of the data. We find that the optimal allocation varies in
accordance with different system parameters, which was not
the case in [5], where the minimal spreading allocation was
found to be universally optimal.

The paper is organized as follows. A DSS model and prob-
lem formulation are given in Sec. II. Service rate analysis
considering the effect of access model and the success of
serving a request is presented in Sec. III. Some numerical
examples and further discussion are provided in Sec. IV.

2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

978-1-5386-6596-1/18/$31.00 ©2018 IEEE 784

Fig. 1. A DSS of N nodes where each node stores either k/↵ or 0 data
blocks of interest to some users, and thus only ' = ↵m nodes contain data
blocks. The WiFi sign indicates that the node has enough available capacity
to serve the user. Note that that is independent of whether or not the node has
been accessed or has the data. Here, three nodes are successfully accessed,
but only two of them have (coded) data blocks. One of the accessed node
has data blocks but is not able to serve the user.

II. SYSTEM MODEL
A. Storage Model

A file consisting of k blocks is to be redundantly stored
over a DSS with N storage nodes. To protect the data against
nodes’ failure or unavailability, the file is encoded by an
MDS code into mk (m 2 N) encoded blocks so that any k

of them are sufficient to recover the original file. The mk

encoded blocks are partitioned into N subsets Si’s for i 2
{1, . . . , N} where |Si| = si, and thus

PN
i=1 si = mk. We

refer to such partitioning an allocation. The si blocks in Si

are stored at the storage node i.
We are concerned with quasi-symmetric allocations [9],

where a node can either store a constant number of blocks
k/↵(↵ 2 N) or no blocks at all. (Dealing with a general
storage allocation optimization problem is computationally
difficult for a general setup, see e.g., [8].) We will refer
to such allocations as ↵ quasi-symmetric allocation. Fig. 1
depicts an example quasi-symmetric allocation on N nodes.

We refer to a quasi-symmetric allocation where ↵ = 1 as
minimal spreading [8]. Note that for a minimal spreading
allocation, the k file blocks are simply replicated over some
m storage nodes. Similarly, an allocation with ↵ = N/m

will be referred to as a maximal spreading allocation since
the file chunks are spread over all N nodes in the system.

B. Data Access and Delivery Models

Fixed-size Access: In this model, the download request is
forwarded to a random r-node subset of the N storage nodes
[8], [9]. Therefore, the access to a given r-subset A results in
the successful recovery of the data iff the nodes in A jointly
contain at least k coded blocks:

X

i2A
si ≥ k. (1)

Note that for ↵ > r, it is impossible to recover the data.
Thus, we only consider the 1  ↵  r case.

Probabilistic Access: In this model, the download request
is forwarded to all nodes that store the data. However, the
request to a node fails with probability p. Assuming that A
represents the set of nodes that are successfully accessed, the
condition for data recovery is also (1). In this case, 1  ↵ 
N
m . In this access model, |A| is a Binomial random number

between 1 and N .

Regardless of the access model, for an accessed subset of
nodes A, we denote the number of nodes containing data
by '(A). For instance, in Fig. 1, three nodes (|A| = 3) are
accessed while only '(A) = 2 of them have data. For an ↵

quasi-symmetric allocation, data recovery from this subset is
successful iff '(A) ≥ ↵. The probability of successful file
recovery under an ↵ allocation is, therefore, given by

Ps(↵) =
X

A:
P

i2A si≥k

P (A) (2)

where P (A) is the probability of acccesing A. Note that the
sum goes over all sets A that satisfy the condition (1).

C. Service Models

We assume a request is simultaneously served by all nodes
in the accessed set A that contain data, where each node
takes some i.i.d. random time to deliver its blocks. In the
fixed-size access model |A| = r while in the probabilistic
access model, |A| is a Binomial random variable between
1 and N . Note that the file can be reconstructed when the
accessed nodes jointly deliver k encoded blocks. We here
limit our study to the case where a node has to deliver all
its blocks for the download to count.

For an ↵ quasi-symmetric allocation, the download request
can be served iff '(A) ≥ ↵, and as soon as all blocks are
downloaded from any ↵ out of the '(A) nodes with data.
Therefore, the average download time Ts(↵|'(A)) is the ↵-
th order statistics of '(A) waiting times at the storage nodes.

Scaled Exponential Service: In this model [1], a node delivers
the first file block in some exponential random time, and
each subsequent block in the the same time. We assume
that a node storing the whole file delivers all of its blocks
in a random time exponentially distributed with the mean
1/µ. It is easy to see that, equivalently, we can say that a
node storing 1/↵ fraction of the file delivers all of its blocks
in the random time exponentially distributed with the mean
1/(↵µ). (Recall that in [5], the download times are assumed
exponential i.i.d. and independent of the size of the data
being downloaded.) For this model, we have

Ts(↵|'(A)) =
1

↵µ
(H'(A) −H'(A)−↵), (3)

where H` =
P`

i=1 1/i denotes the `-th harmonic number,
and 1/(↵µ) comes from the service rate scaling discussed
above. The corresponding service rate from set A (with
'(A) > ↵ nodes containing data) is

µ↵(A) =
1

Ts(↵|'(A))
=

↵µ

H'(A) −H'(A)−↵
. (4)

It is not hard to see that

µ'(A) ≥ µs(↵|'(A)) ≥ µ('(A)− ↵+ 1) (5)

Shifted Exponential Service: In this model [1], delivery
consists of two steps: first, the node takes an exponential
random time to process the request; second, the node takes a
constant time proportional to the number of blocks to deliver

785

them to the user. Therefore, the two step delivery time for
a node storing 1/↵ fraction of the file can be modeled by
the shifted exponential distribution with rate µ and the shift
parameter ∆/↵. For this model, we have

Ts(↵|'(A)) =
∆

↵
+

1

µ
(H'(A) −H'(A)−↵), (6)

where ∆
↵ comes from the service rate shifting discussed

above. The corresponding service rate from set A is

µ↵(A) =
↵µ

∆µ+ ↵(H'(A) −H'(A)−↵)
. (7)

As '(A) 2 [↵,↵m], it is not hard to see that
µ'(A)

∆µ+ ↵
≥ µs(↵|'(A)) ≥ ↵µ('(A)− ↵+ 1)

∆µ(↵m− ↵+ 1) + ↵2
(8)

DSS Service Rate: Under an ↵-allocation, the DSS service
rate is given by

µs(↵) =
X

A:
P

i2A si≥k

P (A)µ↵(A) (9)

where µ↵(A) is the service rate when the set of accessed
nodes is A, given by (4) or (7), and P (A) is the probability
of accessing set A, given by (2).

D. Preview of the Results and Future Work

We argue that finding ↵ that maximizes (9) is hard. We
prove that µs(↵) is not always maximal for ↵ = 1, and we
specify two system parameter regions where 1) µs(↵) <

µs(1) and 2) µs(↵) > µs(1). We numerically analyze
the optimal storage allocation. We find that performance
metrics µs(↵) (the service rate) and Ps(↵) (the probability
of successful recovery) may exhibit different trends with
changing allocations. We make conjectures on how optimal
storage allocation changes with the parameter r, p, and m,
which we will try to prove in future work.

III. SYSTEM PERFORMANCE ANALYSIS

A. Fixed-size Access and Scaled Exponential Service

Claim 1: For fixed-size access model under scaled expo-
nential distribution, the DSS service rate (9) becomes

µs(↵) =
µ↵#N
r

$
min(r,↵m)X

'=↵

1

H' −H'−↵

✓
↵m

'

◆✓
N − ↵m

r − '

◆

The claim follows from the assertions in Sec. II. We see
that finding ↵ that maximizes the µs(↵) is hard. Instead, we
prove below that ↵ = 1 is not always optimal.

Theorem 1: For the fixed-size access model, when the
waiting time of each node follows scaled exponential dis-
tribution, the optimal µs(↵) isn’t always reached at ↵ = 1.

Proof: To prove ↵ = 1 is not the optimal choice for
all r, we will show that 1) there is a region of r values
s.t. µs(↵) < µs(1) and 2) there is a region of r values s.t.
µs(↵) > µs(1) for ↵ > 1.

1) We consider µs(↵) < µs(1) as follows: According to (5),

µs(↵)<
µ!
N
r

"
min(r,↵m)X

'=↵

'

↵m

'

!
N − ↵m

r − '

!

=
µ↵m!

N
r

"
min(r,↵m)X

'=↵

↵m− 1
'− 1

!
N − ↵m

r − '

!

=
µ↵m!

N
r

"
min(r,↵m)X

'=↵

↵−2Y

i=0

↵m− 1− i

'− 1− i

↵m− ↵

'− ↵

!
N − ↵m

r − '

!

Since ' goes from ↵ to ↵m, we further have

µs(↵) <
µ↵m!

N
r

"
min(r,↵m)X

'=↵

(
↵−2Y

i=0

↵m− 1− i

↵− 1− i
)

↵m− ↵

'− ↵

!
N − ↵m

r − '

!

=
µ↵m

!
↵m−1
↵−1

"
!
N
r

"
min(r,↵m)X

'=↵

↵m− ↵

'− ↵

!
N − ↵m

r − '

!

=
µ↵m

!
↵m−1
↵−1

"!
N−↵
r−↵

"
!
N
r

" (by Vandermonde’s convolution)

As we know,

µs(1) =
mX

'=1

µs(1|')
!
m
'

"!
N−m
r−'

"
!
N
r

"

=
µ!
N
r

"
mX

'=1

'

m

'

!
N −m

r − '

!
=

µm
!
N−1
r−1

"
!
N
r

"

Then to satisfy µs(↵) < µs(1), we need

µ↵m
#↵m−1

↵−1

$#N−↵
r−↵

$
#N
r

$ <
µm

#N−1
r−1

$
#N
r

$

, ↵

✓
↵m− 1

↵− 1

◆
<

↵−2Y

i=0

N − 1− i

r − 1− i

(10)

As N−1−i
r−1−i <

N−2−i
r−2−i for N > r, we have

Q↵−2
i=0

N−1−i
r−1−i >

(N−1
r−1)

↵−1. Inequality (10) is true when

↵

↵m− 1
↵− 1

!
< (

N − 1
r − 1

)↵−1 , r < 1 +
N − 1

↵−1

q
↵
!
↵m−1
↵−1

"

Thus µs(↵) < µs(1) for r 2
h
↵, 1 + N−1

↵−1
q

↵(↵m−1
↵−1)

⌘
.

2) We consider µs(↵) > µs(1) as follows: According to (5),

µs(↵) >
µ!
N
r

"
min(r,↵m)X

'=↵

('− ↵+ 1)

↵m

'

!
N − ↵m

r − '

!

=
µ!
N
r

"
min(r,↵m)X

'=↵

('− ↵+ 1)
↵−2Y

i=0

↵m− i

'− i

↵m− ↵+ 1
'− ↵+ 1

!
N − ↵m

r − '

!

786

Since ' goes from ↵ to ↵m, we further have

µs(↵) >
µ!
N
r

"
min(r,↵m)X

'=↵

('− ↵+ 1)

↵m− ↵+ 1
'− ↵+ 1

!
N − ↵m

r − '

!

=
µ(↵m− ↵+ 1)

!
N−↵
r−↵

"
!
N
r

" (Vandermonde’s convolution)

As we know, µs(1) =
µm(N−1

r−1)
(Nr)

Then to satisfy µs(↵) > µs(1), we need

µ(↵m− ↵+ 1)
#N−↵
r−↵

$
#N
r

$ >
µm

#N−1
r−1

$
#N
r

$

, ↵m− ↵+ 1

m
>

↵−2Y

i=0

N − 1− i

r − 1− i

(11)

As N−1−i
r−1−i <

N−2−i
r−2−i for N > r, we have

Q↵−2
i=0

N−1−i
r−1−i <

(N−↵+1
r−↵+1)

↵−1. Inequality (11) is true when
↵m− ↵+ 1

m
> (

N − ↵+ 1
r − ↵+ 1

)↵−1

, r > ↵−1

r
m

↵m− ↵+ 1
(N − ↵+ 1) + ↵− 1

Thus µs(↵) > µs(1) when r 2
⇣

↵−1

q
m

↵m−↵+1 (N − ↵+

1) + ↵− 1, N
i
.

In the proof above, we find two regions of r which
can show when µs(1) reaches the maximum. Here we give
some examples to analyze these two regions. Let’s give the
parameter set as (N,m, µ,↵). When the parameter set is
(30,2,1,4), we can get two regions [4,6.5] for µs(↵) < µs(1),
and [22.9,30] for µs(↵) > µs(1), and both regions are exist.
But there is a gap between the two regions, which means
when r is in (6.5,22.9), we can not decide whether µs(1) is
maximum or not. The big gap appears because of the bounds
we used in proof are not tight enough. When the parameter
set is (30,3,1,5), we can get another two regions [4,4.4] for
µs(↵) < µs(1) and [22.7,30] for µs(↵) > µs(1), and the
first region is not exist for r ≥ ↵.

Although these two regions can not help us to make
a decision under any parameter set, they can still tell us
something more about the system model in Conjecture 1.

Conjecture 1: When r is small, µs(1) is more likely to
be the maximum; When r is large, the maximum µs(↵) is
not at 1, and the optimal ↵ is increasing with r.

B. Probabilistic Access and Scaled Exponential Service

Claim 2: Under the probabilistic access model,

µs(↵) =
↵mX

'=↵

µ↵

H' −H'−↵

✓
↵m

'

◆
(1− p)'p↵m−'

The claim also follows from the assertions in Sec. II. We
see that finding ↵ that maximizes the µs(↵) is still hard.
Therefore, we prove below that ↵ = 1 is not always optimal.

Theorem 2: For the probabilistic access model, when the
waiting time of each node follows scaled exponential dis-
tribution, the optimal µs(↵) isn’t always reached at ↵ = 1.

Proof: To prove ↵ = 1 is not the optimal choice for
all p, we will show that 1) there is a region of p values
s.t. µs(↵) < µs(1) and 2) there is a region of p values s.t.
µs(↵) > µs(1) for ↵ > 1.
1) We consider µs(↵) < µs(1) as follows: According to (5),

µs(↵) < µ

↵mX

'=↵

'

↵m

'

!
(1− p)'p↵m−'

= µ↵m

↵mX

'=↵

↵m− 1
'− 1

!
(1− p)'p↵m−'

= µ↵m

↵mX

'=↵

(
↵−2Y

i=0

↵m− 1− i

'− 1− i
)

↵m− ↵

'− ↵

!
(1− p)'p↵m−'

Since ' goes from ↵ to ↵m, we have

µs(↵) < µ↵m

↵m− 1
↵− 1

!
(1− p)↵

↵m−↵X

'=0

↵m− ↵

'

!

(1− p)'p↵m−↵−'

By using binomial expansion ,

= µ↵m

↵m− 1
↵− 1

!
(1− p)↵

As we know,

µs(1) =
mX

'=1

µs(1|')

m

'

!
(1− p)'pm−'

= µ

mX

'=1

'

m

'

!
(1− p)'pm−' = µm(1− p)

Then to satisfy µs(↵) < µs(1), we need

µ↵m

↵m− 1
↵− 1

!
(1− p)↵ < µm(1− p)

, (1− p)↵−1
<

1

↵
!
↵m−1
↵−1

" , p > 1− 1

↵−1

q
↵
!
↵m−1
↵−1

"

Thus µs(↵) < µs(1) for p 2
⇣
1− 1

↵−1
q

↵(↵m−1
↵−1)

, 1
i
.

2) We consider µs(↵) > µs(1) as follows:
According to (5),

µs(↵) > µ

↵mX

'=↵

('− ↵+ 1)

↵m

'

!
(1− p)'p↵m−'

= µ

↵mX

'=↵

('− ↵+ 1)(
↵−2Y

i=0

↵m− i

'− i
)

↵m− ↵+ 1
'− ↵+ 1

!

(1− p)'p↵m−'

Since ' goes from ↵ to ↵m, we have

µs(↵) > µ

↵mX

'=↵

('− ↵+ 1)

↵m− ↵+ 1
'− ↵+ 1

!
(1− p)'p↵m−'

= µ(↵m− ↵+ 1)(1− p)↵
↵m−↵X

'=0

↵m− ↵

'

!

(1− p)'p↵m−↵−' = µ(↵m− ↵+ 1)(1− p)↵

As we know µs(1) = µm(1− p) Then to satisfy µs(↵) >

787

µs(1), we need
µ(↵m− ↵+ 1)(1− p)↵ > µm(1− p)

, (1− p)↵−1
>

m

↵m− ↵+ 1
, p < 1− ↵−1

r
m

↵m− ↵+ 1

Thus µs(↵) > µs(1) for p 2
h
0, 1− ↵−1

q
m

↵m−↵+1

⌘
.

In the proof above, we find two regions of p which can
show when µs(1) reaches the maximum. It is easy to see
that both regions are exist for any parameter set. Here we
can also give a parameter set as (m,µ,↵) to show an example
of the two regions in the proof. When the parameter set is
(2,1,4), we can get two regions [0.81,1] for µs(↵) < µs(1),
and [0,0.26] for µs(↵) > µs(1). There is also a gap between
two regions which shows the undecided region.

Here we give the Conjecture 2 according to the p’s regions.
Conjecture 2: When p is large, µs(1) is more likely to be

the maximum; When p is small, the maximum µs(↵) is not
at 1, and the optimal ↵ is decreasing with p.

C. Fixed-size Access and Shifted Exponential Service

Claim 3: For fixed-size access model under shifted expo-
nential distribution, the DSS servise rate µs(↵) is given by

µ↵#N
r

$
min(r,↵m)X

'=↵

1

∆µ+ ↵(H' −H'−↵)

✓
↵m

'

◆✓
N − ↵m

r − '

◆

The claim follows from the assertions in Sec. II. Similarly,
finding ↵ that maximizes the µs(↵) is hard. Instead, we prove
below that ↵ = 1 is not always optimal.

Theorem 3: For the fixed-size access model, when the
waiting time of each node follows shifted exponential dis-
tribution, the optimal µs(↵) isn’t always reached at ↵ = 1.

Proof: This proof is similar as which for the Theorem
1. Therefore we only keep some key steps.

1) We consider µs(↵) < µs(1) as follows: According to
(8),

µs(↵) <
µ

(∆µ+ ↵)
!
N
r

"
min(r,↵m)X

'=↵

'

↵m

'

!
N − ↵m

r − '

!

<
µ↵m

!
↵m−1
↵−1

"!
N−↵
r−↵

"

(∆µ+ ↵)
!
N
r

"

As we know,

µs(1) >
µ

(∆µm+ 1)
!
N
r

"
mX

'=1

'

m

'

!
N −m

r − '

!
=

µm
!
N−1
r−1

"

(∆µm+ 1)
!
N
r

"

Then to satisfy µs(↵) < µs(1), we need

µ↵m
#↵m−1

↵−1

$#N−↵
r−↵

$

(∆µ+ ↵)
#N
r

$ <
µm

#N−1
r−1

$

(∆µm+ 1)
#N
r

$

,
↵(∆µm+ 1)

#↵m−1
↵−1

$

∆µ+ ↵
<

↵−2Y

i=0

N − 1− i

r − 1− i

(12)

As N−1−i
r−1−i <

N−2−i
r−2−i for N > r, we have

Q↵−2
i=0

N−1−i
r−1−i >

(N−1
r−1)

↵−1. Inequality (12) is true when

↵(∆µm+ 1)
!
↵m−1
↵−1

"

∆µ+ ↵
< (

N − 1
r − 1

)↵−1

, r < 1 + ↵−1

s
∆µ+ ↵

↵(∆µm+ 1)
!
↵m−1
↵−1

" (N − 1)

Therefore, for r 2
h
↵, 1 + ↵−1

r
∆µ+↵

↵(∆µm+1)(↵m−1
↵−1)

(N − 1)
⌘

,

µs(↵) < µs(1) is true.
2) We consider µs(↵) > µs(1) as follows:
According to (8),

µs(↵) >
µ↵

(∆µ(↵m− ↵+ 1) + ↵2)
!
N
r

"
min(r,↵m)X

'=↵

('− ↵+ 1)

↵m

'

!
N − ↵m

r − '

!

>
µ↵(↵m− ↵+ 1)

!
N−↵
r−↵

"

(∆µ(↵m− ↵+ 1) + ↵2)
!
N
r

"

As we know,

µs(1) <
µ

(∆µ+ 1)
!
N
r

"
mX

'=1

'

m

'

!
N −m

r − '

!
=

µm
!
N−1
r−1

"

(∆µ+ 1)
!
N
r

"

Then to satisfy µs(↵) > µs(1), we need

µ↵(↵m− ↵+ 1)
#N−↵
r−↵

$

(∆µ(↵m− ↵+ 1) + ↵2)
#N
r

$ >
µm

#N−1
r−1

$

(∆µ+ 1)
#N
r

$

, ↵(∆µ+ 1)(↵m− ↵+ 1)

m(∆µ(↵m− ↵+ 1) + ↵2)
>

↵−2Y

i=0

N − 1− i

r − 1− i

(13)

As N−1−i
r−1−i <

N−2−i
r−2−i for N > r, we have

Q↵−2
i=0

N−1−i
r−1−i <

(N−↵+1
r−↵+1)

↵−1. Inequality (13) is true when

↵(∆µ+ 1)(↵m− ↵+ 1)
m(∆µ(↵m− ↵+ 1) + ↵2)

> (
N − ↵+ 1
r − ↵+ 1

)↵−1

, r >
↵−1

s
∆µm(↵m− ↵+ 1) + ↵2m

↵(∆µ+ 1)(↵m− ↵+ 1)

(N − ↵+ 1) + ↵− 1

Therefore, for r 2
⇣

↵−1

q
∆µm(↵m−↵+1)+↵2m
↵(∆µ+1)(↵m−↵+1) (N−↵+1)+

↵− 1, N
i
, µs(↵) > µs(1) is true.

In the proof above, we find two regions of r, which are
similar as what we find in Theorem 1, can show when µs(1)
is the maximum . Here we can give a parameter set as
(N,m, µ,∆,↵) to show an example of the two regions in
the proof. When the parameter set is (30,2,1,10,4), we can
get two regions [4,5.8] for µs(↵) < µs(1), and [25.7,30]
for µs(↵) > µs(1), and both regions are exist. When the
parameter set is (30,3,1,10,6), we can get another two regions
[6,4.1] for µs(↵) < µs(1) and [27.4,30] for µs(↵) > µs(1),
and the first region is not exist. When the parameter set
is (30,2,1,1,4), we can get another two regions [4,7.6] for
µs(↵) < µs(1) and [30.4,30] for µs(↵) > µs(1), and the
second region is not exist. Here the Conjecture 1 holds.

788

D. Probabilistic Access and Shifted Exponential Service

Claim 4: Under the probabilistic access model,

µs(↵)=
↵mX

'=↵

µ↵

∆µ+ ↵(H' −H'−↵)

✓
↵m

'

◆
(1− p)'p↵m−'

The claim follows from the assertions in Sec. II, and finding
↵ that maximizes the µs(↵) remains hard. Therefore, we
prove below that ↵ = 1 is not always optimal.

Theorem 4: For the fixed-size access model, when the
waiting time of each node follows shifted exponential dis-
tribution, the optimal µs(↵) isn’t always reached at ↵ = 1.

Proof: This proof is similar as which for the Theorem
2. Therefore we only keep some key steps.

1) We consider µs(↵) < µs(1) as follows: According to
(8),

µs(↵) <
µ

∆µ+ ↵

↵mX

'=↵

'

↵m

'

!
(1− p)'p↵m−'

<
µ↵m

!
↵m−1
↵−1

"
(1− p)↵

∆µ+ ↵

As we know,

µs(1) >
µ

∆µm+ 1

mX

'=1

'

m

'

!
(1− p)'pm−' =

µm(1− p)
∆µm+ 1

Then to satisfy µs(↵) < µs(1), we need
µ↵m

!
↵m−1
↵−1

"
(1− p)↵

∆µ+ ↵
<

µm(1− p)
∆µm+ 1

, p > 1− ↵−1

s
∆µ+ ↵

↵(∆µm+ 1)
!
↵m−1
↵−1

"

p 2
⇣
1− ↵−1

r
∆µ+↵

↵(∆µm+1)(↵m−1
↵−1)

, 1
i
, µs(↵) < µs(1) is true.

2) We consider µs(↵) > µs(1) as follows: According to (8),

µs(↵) >
↵µ

∆µ(↵m− ↵+ 1) + ↵2

↵mX

'=↵

('− ↵+ 1)

↵m

'

!

(1− p)'p↵m−'

>
↵µ(↵m− ↵+ 1)(1− p)↵

∆µ(↵m− ↵+ 1) + ↵2

As we know,

µs(1) <
µ

∆µ+ 1

mX

'=1

'

m

'

!
(1− p)'pm−' =

µm(1− p)
∆µ+ 1

Then to satisfy µs(↵) > µs(1), we need
↵µ(↵m− ↵+ 1)(1− p)↵

∆µ(↵m− ↵+ 1) + ↵2
>

µm(1− p)
∆µ+ 1

, p < 1− ↵−1

s
m(∆µ(↵m− ↵+ 1) + ↵2)
↵(∆µ+ 1)(↵m− ↵+ 1)

Therefore, for p 2
h
0, 1 − ↵−1

q
m(∆µ(↵m−↵+1)+↵2)
↵(∆µ+1)(↵m−↵+1)

⌘
,

µs(↵) > µs(1) is true.
From the proof above, we find two regions of p, similar

as what we found in Theorem 2, and can see when µs(1) is
the maximum. Here we give some examples to analyze these

two regions. We also give a parameter set as (m,µ,∆,↵) to
show an example of the two regions in the proof. When the
parameter set is (2,1,10,4), we can get two regions [0.83,1]
for µs(↵) < µs(1),and [0,0.15] for µs(↵) > µs(1), and both
regions are exist. When the parameter set is (2,1,10,4), we
can get another two regions [0,-0.016] for µs(↵) < µs(1)
and [0.77,1] for µs(↵) > µs(1), and the first region is not
exist. Here the Conjecture 2 holds.

From Theorems 1, 2, 3 and 4, we see that the optimal
allocation varies in accordance with different system param-
eters. Recall that ↵ = 1 was found to be universally optimal
in [5] where it was assumed that the download time does not
scale with the size of data.

IV. OPTIMAL STORAGE ALLOCATION ANALYSIS

We next numerically analyze the optimal storage allo-
cation. We compute the service rate and probability of
successful recovery with the allocation parameter ↵. Since
the accessed nodes number r, coded file size ratio m and
failure probability p are the key parameters for the the storage
system, we also vary these values to see how the optimal
allocation changes.

According to the formulas in Claim 1 and 2, we know
that the rate parameter µ in scaled exponential distribution
doesn’t affect the numerical analysis results. But from Claim
3 and 4, we can see both rate parameter µ and shift
parameter ∆ affect the numerical analysis results. When
∆µ ⌧ 1, the shifted exponential distribution is equivalent
to an exponential distribution, then the minimum spreading
allocation is universally optimal; When ∆µ ’ 1, the shifted
exponential distribution is equivalent to a constant, then
the µs(↵) is changing with the probability of successful
recovery. Therefore, we select the µ = 1 and ∆ = 3 in
the simulations below as appropriate values.

A. Fixed-size Access

For fixed-sized access model, we present two figures to an-
alyze the optimal storage allocation in the interval ↵ 2 [1, 5]
or [1, 6]. In Fig. 2, we have three subfigures, the left is the
average service rate for the scaled exponential distribution,
the middle is for the shifted exponential distribution, and the
right is the probability of successful recovery. Firstly, let’s
analyze the left and right subfigures. When m = 3 and 4,
µs(↵) and Ps(↵) are decreasing with ↵, and the optimal
allocation is ↵ = 1. When m = 5, the largest µs(↵) is
reached at ↵ = 3, but the Ps(↵) is decreasing, then it is better
to select ↵ between 1 to 3 based on the weight of µs(↵) and
Ps(↵); When m = 6, µs(↵) is increasing and Ps(↵) reaches
maximum at ↵ = 5, then the optimal allocation is ↵ = 5.
Secondly, the middle subfigure has a similar pattern as the
left one. And the only different is when m = 4, the largest
µs(↵) is reached at ↵ = 2.

Fig. 3 shows similar results. Firstly,let’s analyze the left
and right subfigures. When r = 6, both µs(↵) and Ps(↵) are
decreasing, the optimal allocation is ↵ = 1. When r = 7 and
8, Ps(↵) is still decreasing, but µs(↵) reaches maximum at
↵ = 2 and 3, then the optimal allocation ↵ is between 1 to

789

Fig. 2. The average service rate and probability of successful recovery
of fixed-size access model are changing with the allocation parameter ↵
under different m when N = 30, r = 5. Left: the distribution is scaled
exponential with µ = 1; Middle: the distribution is shifted exponential with
µ = 1 and ∆ = 3; Right: the probability of successful recovery.

Fig. 3. The average service rate and probability of successful recovery
of fixed-size access model are changing with the allocation parameter ↵
under different r when N = 30, m = 3. Left: the distribution is scaled
exponential with µ = 1; Middle: the distribution is shifted exponential with
µ = 1 and ∆ = 3; Right: the probability of successful recovery.

2 or 1 to 3. When r = 9, µs(↵) is increasing, but Ps(↵) is
decreasing, then optimal allocation is selected based on the
weight of µs(↵) and Ps(↵). Secondly, the middle subfigure
shows similar results as left subfigure except when r = 9,
the largest µs(↵) is reached at ↵ = 3.

We can conclude that the optimal allocation is not fixed
at ↵ = 1 as we proved in the previous section, and here we
can see that the optimal ↵ is changing with different system
parameters. The following claim helps to understand why the
optimal ↵ varies.

Claim 5: For fixed-size access model with r = N , if we
use scaled exponential distribution, we have µs(↵)<µs(↵+
1); If we use shifted exponential distribution, the result varies

based on different parameters’ values.
Proof: 1) We consider scaled exponential distribution:

Note that under ↵-allocation, exactly ↵m nodes contain data
and under (↵+1)-allocation, exactly (↵+1)m nodes contain
data. We will show that µs(↵)<µs(↵ + 1) by showing that
Ts(↵|↵m) > Ts(↵+ 1|(↵+ 1)m):

Ts(↵|↵m) =
1
↵µ

(H↵m −H↵m−↵) cf. (3)

=
1

(1 + ↵)µ

⇣
1 +

1
↵

⌘ ↵X

i=1

1
↵m− ↵+ i

>
1

(1 + ↵)µ

↵X

i=1

1
↵m− ↵+ i

+
1

↵m

!

>
1

(1 + ↵)µ

↵X

i=0

1
↵m+m− ↵+ i

!

=
1

(1 + ↵)µ

!
H↵m+m −H(↵+1)(m−1)

"

= Ts(↵+ 1|(↵+ 1)m)

2) We consider shifted exponential distribution:
Similarly, we can get Ts(↵|↵m):

Ts(↵|↵m) =
∆
↵

+
1
µ
(H↵m −H↵m−↵)

If ∆ ’ 1/µ, we can say Ts(↵|↵m) = ∆
↵ , then Ts(↵|↵m) >

Ts(↵ + 1|(↵ + 1)m) is obvious. If ∆ ⌧ 1/µ, we can say
Ts(↵|↵m) = 1

µ (H↵m−H↵m−↵), when m = 1, Ts(↵|↵m) <
Ts(↵+ 1|(↵+ 1)m) is obvious.

From Claim 5, if we use scaled exponential distribution,
the average service rate µs(↵) is increasing with ↵ when
the probability of successful recovery is 1. Meanwhile from
Figs. 2 and 3, we know the probability of success access
Ps(↵) is decreasing under some setups of storage system.
Then the pattern of µs(↵) is decided by the impact of Ps(↵).
If Ps(↵) has a higher impact, e.g., m = 3 and 4 or r = 6
and 7, µs(↵) is changing with the pattern of Ps(↵); If Ps(↵)
has a lower impact, e.g. m = 6 or r = 9, µs(↵) is increasing
with ↵; If the impact of Ps(↵) is in between, e.g. m = 5 or
r = 8, µs(↵) is like a parabola.

If we use shifted exponential, the average service rate
µs(↵) is changing according to different parameter values.
From Figs. 2 and 3, we know when µ = 1 and ∆ =
3, the pattern of µs(↵) is similar as scaled exponential
distribution’s results.

B. Probabilistic Access

For probabilistic access model, we present three figures
to analyze the optimal storage allocation in the interval ↵ 2
[1, 10]. In Fig. 4, we have three subfigures, the left is the
average service rate for the scaled exponential service, the
middle is for the shifted exponential service, and the right
is the probability of successful recovery. When m = 1, both
µs(↵) and Ps(↵) are decreasing, then the optimal allocation
is ↵ = 1; When m = 2, 3 and 4, both µs(↵) and Ps(↵) are
increasing, then the optimal allocation is ↵ = 10.

In Fig. 5, the pattern of µs(↵) is changing from increasing
to decreasing as p is changing from 0.51 to 0.71. Ps(↵) is
always decreasing in these three cases.

790

Fig. 4. The average service rate and probability of successful recovery
of probabilistic access model are changing with the allocation parameter ↵
under different m when p = 0.3. Left: the service is scaled exponential
with µ = 1; Middle: the service is shifted exponential with µ = 1 and
∆ = 3; Right: the probability of successful recovery.

Fig. 5. The average service rate and probability of successful recovery
of probabilistic access model are changing with the allocation parameter ↵
under different p when m = 2 and the distribution is scaled exponential
with µ = 1.

In Fig. 6, the slope of µs(↵) and Ps(↵) switches from
increasing to decreasing as p is changing from 0.3 to 0.7.

Here we come to the same conclusion as in the fixed-size
access model. The following claim helps understand why the
optimal ↵ varies (for proof see the proof of Claim 5):

Claim 6: For the probabilistic access model with failure
probability for each node p = 0, if we use scaled exponential
distribution, we have µs(↵)<µs(↵ + 1); If we use shifted
exponential distribution, the result varies based on different
parameters’ values.

We can see that patterns described by the Conjecture 1
and 2 hold in all the figures. And we can find another pattern
according to the coded file size ratio m in Conjecture 3.

Conjecture 3: For both fixed-size access and probabilistic
access models, when m is increasing, the optimal ↵ for

Fig. 6. The average service rate and probability of successful recovery
of probabilistic access model are changing with the allocation parameter ↵
under different p when m = 2 and the distribution is scaled exponential
with µ = 1 and ∆ = 3.

µs(↵) is also increasing.

ACKNOWLEDGMENTS
Part of this research is based upon work supported by the

National Science Foundation under Grant No. CIF-1717314.

REFERENCES

[1] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Communication, Control, and Computing (Allerton), 2012 50th

Annual Allerton Conference on, 2012, pp. 326–333.
[2] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu,

and N. B. Shroff, “When queueing meets coding: Optimal-latency
data retrieving scheme in storage clouds,” in IEEE Conf. on Computer

Communications (INFOCOM), 2014, pp. 1042–1050.
[3] R. Tandon and S. Mohajer, “New bounds for distributed storage

systems with secure repair,” in Allerton Conf. on Communication,

Control, and Computing, 2014, pp. 431–436.
[4] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing download time

for availability codes,” in Information Theory Proceedings (ISIT), 2015

IEEE International Symposium on, July 2015.
[5] M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for

maximum service rate in distributed storage systems,” in 2016 IEEE

Internat. Symp. on Inform. Theory (ISIT), 2016, pp. 240–244.
[6] M. Aktas, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L.

Matthews, C. Mayer, and E. Soljanin, “On the service capacity region
of accessing erasure coded content,” Allerton Conf. on Communica-

tion, Control, and Computing, 2017.
[7] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations

for optimal delay,” in IEEE Intl. Symp. on Information Theory (ISIT),
2011, pp. 1447–1451.

[8] ——, “Distributed storage allocations,” IEEE Trans. Information The-

ory, vol. 58, no. 7, pp. 4733–4752, 2012.
[9] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allocation

in distributed storage networks,” in IEEE Intl. Symp. on Information

Theory (ISIT), June 2010, pp. 1958–1962.
[10] B. Hong and W. Choi, “Asymptotic analysis of failed recovery

probability in a distributed wireless storage system with limited sum
storage capacity,” in IEEE Intl. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), 2014, pp. 6459–6463.
[11] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Rucinski, and B. Sudakov,

“Large matchings in uniform hypergraphs and the conjectures of erdős
and samuels,” J. Comb. Theory, Ser. A, vol. 119, pp. 1200–1215, 2012.

791

