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Abstract— The increasing complexity of configuring cellular
networks suggests that machine learning (ML) can effectively
improve 5G technologies. Deep learning has proven successful in
ML tasks such as speech processing and computational vision,
with a performance that scales with the amount of available data.
The lack of large datasets inhibits the flourish of deep learning
applications in wireless communications. This paper presents a
methodology that combines a vehicle traffic simulator with a ray-
tracing simulator, to generate channel realizations representing
5G scenarios with mobility of both transceivers and objects. The
paper then describes a specific dataset for investigating beam-
selection techniques on vehicle-to-infrastructure using millimeter
waves. Experiments using deep learning in classification, regres-
sion and reinforcement learning problems illustrate the use of
datasets generated with the proposed methodology.

I. INTRODUCTION

Machine learning (ML) has been applied to a large variety
of problems in telecommunications, which include network
management, self-organization, self-healing and physical layer
(PHY) optimizations [1], [2]. Deep learning (DL), a special
category of ML, has been responsible for several recent perfor-
mance breakthroughs in areas such as speech processing and
computational vision [3]. The success in other domains moti-
vates the application of DL to communication problems [4]-
[12]. While DL can be applied to any ML problem, its niche
has been applications with large amount of data. The reason
is that DL scales well with the amount of data and model
complexity [3].

In many DL application domains, the data is abundant or
has a relative low cost. For example, the DL-based text-to-
speech system presented in [13], which represents the state-
of-the-art, achieves quality close to natural human speech after
being trained with a reasonable amount of digitized speech. In
contrast, the research and development of 5G lower layers has
to deal with a relatively limited amount of data. For example,
mmWave measurements for 5G MIMO research demands
very expensive equipment and, eventually, elaborate outdoor
measurement campaigns [14]. The lack of freely available data
impairs the data-driven lines of investigation.

This paper presents a methodology for channel data gen-
eration in 5G millimeter wave (mmWave) multiple-input
multiple-output (MIMO) scenarios [15]. The goal is to facil-
itate the investigation of ML-based problems related to the
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PHY of mmWave MIMO in 5G. The presented methodology
simplifies creating data in complicated (and potentially real-
istic) mobility scenarios through repeatedly invoking a traffic
simulator and a ray-tracing simulator. In the current context,
generating propagation channel data is a reasonable way to
alleviate the data scarcity while benefiting from the accuracy
associated to ray-tracing (RT) [16], [17]. For instance, RT
can cope with 5G requirements such as spatial consistency,
which has been a challenge to traditional stochastic model-
ing [18], [19]. The simulated datasets do not substitute but
complement data from measurements, which can improve and
validate simulated data and statistical channel models, as they
become available. The paper also presents concrete examples
of usage for the generated datasets via experiments with DL
for beam-selection in vehicle-to-infrastructure (V2I) mmWave
communications. Given the current amount of data is limited,
it is out of the scope of this paper to investigate performance
of specific DL architectures. The goal is to illustrate instead
the flexibility provided by the data generation methodology.
This methodology can be used in applications other than V2I,
as well as to create datasets for ML problems concerning
classification, regression, clustering and time-based sequence
recognition [20].

Several ML techniques have been applied to the PHY
processing (see, e.g., [21] and references therein). The large
majority of previous work rely on simulations. For example,
simulations are used in [22], which present unsupervised
DL architectures based on autoencoders for MIMO schemes.
In [23], a classifier based on boosted trees was applied to the
optimization of handovers between sub-6 GHz and mmWave
radios using simulated channels. In such cases, in which
measurements are not available, our methodology can provide
reasonably accurate channel data and advanced tools for mod-
eling mobility. The generated datasets are especially useful
when spatial consistency and time evolution are important to
assess the ML technique.

The rest of the paper is organized as follows. The method-
ology for data generation is presented in Section II. Beam-
selection is the topic of Section III, in which a brief literature
review is included. We discuss experiments illustrating deep
learning using the V2I dataset in Section IV, which is followed
by the conclusions in Section V.



II. METHODOLOGY FOR DATA GENERATION

In this section we describe the proposed methodology
for data generation, which has to take in account the chal-
lenges of mmWave channel modeling such as the large signal
bandwidths and prominent impact of scattering [16]. Other
issues raise due to the intended application in 5G MIMO. In
scenarios of high mobility such as V2I, the channel evolution
over time is important to assess, for example, beam tracking
techniques [24]. For instance, mmWave communication when
the vehicle speed is 35 m/s may have to cope with a signal
fading rate of 44 dB/s [14]. In fact, difficult channel modeling
in complex scenarios is the first issue highlighted in [21] when
discussing challenges related to DL in wireless communica-
tions. The following paragraphs discuss how RT and traffic
simulators are used in our methodology for circumventing
issues when generating ML datasets that depend on mmWave
MIMO modeling.

A. Ray-tracing simulation for mmWave MIMO channels

RT is considered a promising simulation strategy for 5G
(see, e.g. [17]). RT can provide very accurate results [16],
[25] but its computational cost increases exponentially with the
maximum allowed number of reflections and diffractions [26].
Another issue of RT is that the generated channels are site
specific, depending on the specific propagation environment.
Besides, for improved RT accuracy, the scenario should be
reasonably detailed. For example, outdoor scenarios require
the detailed specification (including size, geometry, material,
etc.) of buildings, vehicles, people and objects of interest such
as a roadside unit (RSU) for V2I, as illustrated in Fig. 1.
The geometrical aspects of the environment must be informed
together with the corresponding electromagnetic parameters
such as the scattering coefficient (S) for each material [17].
Given the simulation scenario, a RT simulator projects rays in
the three-dimensional angular space with a predefined spacing.
Then, the paths are ranked according to the received power
of each ray. A detailed enough scenario description is the
first challenge for RT usage. Another one is an appropriate
modeling of the propagation channel, which has to take in
account, for example, the scattering of mmWave signals.

Diffuse scattering (DS) is an important feature of mmWave
channel simulators [17], [27], [28]. This feature can enrich
the channel realizations and minimize the chances of bias
due to a limited number of specular rays, as found when
materials are smooth. The computational cost increases though
with parameters such as the maximum allowed number of DS
reflections (NDS ). To illustrate DS, Fig. 2 shows an example'
of rays obtained in a simulation with a traffic jam (vehicles
with receivers are marked in red) using 60 GHz. In this
case, the simulation time increased by a factor of three when
enabling DS with NP5 = 2.

A RT simulator may support mobility, for example, allow-
ing the receiver to follow a trajectory with a given speed.
Supporting the changing position of scatterers and blockers,

IFor visualization, the camera in Fig. 2 is rotated with respect to Fig. 1.

Fig. 1. Urban canyon scenario in a 3-d ray-tracing simulator with vehicles
of distinct sizes randomly positioned. The building color indicates height and
corresponds to a range from O (blue) to 101 meters (red).

Y

Fig. 2. Rays obtained in a traffic jam situation. The left figure shows all
25 most significant rays reaching a vehicle while the right one shows the
subset (8 rays) corresponding to the “diffuse scattered” rays. The zoomed
figure indicates there are three clusters of diffused rays reaching this receiver.

though, complicates the required RT optimizations. Therefore,
it is more common for a RT simulator to allow receivers to
move, but not objects that can influence the rays. Simulating
mobility then requires repeatedly invoking the simulator with
the specification of a scene. This is the case of Remcom’s
Wireless InSite [28], which is the RT simulator used in this

paper.

B. Spatial consistency and time evolution requirements

While traditional drop-based stochastic models have been
extremely useful in the design of communication systems,
their application in the context of 5G has been criticized
with respect to spatial consistency [18], [29]. For example,



the results presented in [19] indicate that the 3GPP three-
dimensional (3-d) geometry-based stochastic channel model
underestimates the performance of massive MIMO systems in
line-of-sight (LOS) scenarios, while overestimating the perfor-
mance of multi-user MIMO in specific ultra-dense scenarios
with non-LOS (NLOS).

State-of-the-art stochastic and hybrid models for 5G have
been incorporating features that aim at improved spatial con-
sistency [30], [31]. Examples are the modeling techniques
in NYUSIM [32] and QuaDRiga [33], as well the three
techniques detailed in [34]. A classical alternative to stochastic
models is RT [17], [35], which is the simulation technique
adopted in this paper. RT is able to generate data with two
key requirements for ML datasets with simulated channel
realizations: spatial consistency and history of time evolution.

In our methodology, the outputs of the simulators are peri-
odically stored as “snapshots” (or scenes) over time t = n1g,y,
where Ty, is the sampling period and n € Z. A scene S(t) can
contain multiple transmitters and receivers, which facilitates
using the datasets to investigate multiuser and other MIMO
problems. In post-processing stages (an example is provided
in Section III-D), the information in S(¢) is used to model, for
example, MIMO channels H(t). A scene S(t) can potentially
contain all out-of-band information that the user gathered,
including the ones provided by the RT and traffic simulators,
such as position, vehicle dimension, angles of arrival, gains,
etc. Section IV will discuss concrete examples on how the
information in S(t) can be used in beamforming applications.

For improved scene diversity and given the relatively high
computational cost of a RT simulation, we extract observation
windows (or episodes) at distinct instants. Specifically, instead
of always consecutively extracting a scene along the whole
simulation, episodes of duration Tty are obtained, each with
Nyce = |Tepi/Tsam] scenes. For example, an episode starting at
time ¢, will be composed by a sequence of scenes {S(¢),t =
to, to + Tsam, - - - s to + (NVsce — 1) Tsam }- For facilitating parallel
processing, a dataset with N, episodes can be organized as
a TensorFlow TFRecord [20].

Keeping the channel variation over time enables investigat-
ing algorithms that take in account the channel dynamics. For
more realistic simulations, the mobility can be controlled by
a specialized software as described in the next subsection.

C. Integration of traffic and ray-tracing simulators

Vehicle and pedestrian traffic simulators provide flexibility
to investigate the impact of mobility in V2I and related appli-
cations. We describe the integration between the open source
Simulation of Urban MObility (SUMO) traffic simulator [36]
and Wireless InSite. There is extensive support to the use
of SUMO with network simulators such as OMNeT++, but
the novel integration with RT facilitates studies targeting the
mmWave PHY.

The main role of the traffic simulator is to facilitate model-
ing mobility, especially the motions of both transceivers and
potential scatters in the environment. It is possible to directly
get the necessary data only with the RT simulator but this

may require considerable effort if the scenario is complicated.
Traffic simulators are specialized tools with plenty of features
to describe vehicles with distinct characteristics, interaction
with pedestrians, etc. Adopting the right tool to model mobility
enables the user to depart from simplistic scenarios, such
as those in which all vehicles have constant speed. Using
a specialized traffic simulation tool to decouple the mobility
specification from the RT simulation, simplifies the experiment
configuration and grants to the user flexibility, for instance, to
impose trajectories to any object or person, use distinct speeds,
etc. Also, the orientation of objects such as antennas can be
automatically adjusted.

To support our methodology, we wrote a Python orchestra-
tor code to repeatedly invoke the traffic simulator, convert the
vehicles position to a format that can be interpreted by the RT
simulator, invoke the latter and post-processing the RT results
to create episodes, as depicted in Fig. 3.
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Fig. 3. Methodology that integrates ray-tracing and traffic simulators.

The main steps of the proposed methodology can be orga-
nized into configuration and simulation stages. In the config-
uration stage (upper blocks in Fig. 3), the user provides, e. g.,
information to enable conversion of coordinates between the
two main softwares. Fig. 4 illustrates how the streets of interest
in Fig. 1 are represented in the traffic simulator after having
the coordinates properly converted. To facilitate the interaction
with the traffic simulator, the orchestrator associates each
mobile transmitter or receiver to a mobile object (MOBJ). A
MOBJ can also simply play the role of a blocker or scatterer,
with no associated transceiver. In the configuration stage, for
each episode, the user specifies the base scenario files. The
base scenario files, together with positions for all MOBJs,
specified by the traffic simulator, compose all information
required for a complete RT simulation. For simplicity, it is
assumed in this paper that all episodes are generated with the
same base scenario.

In the simulation stage, the orchestrator invokes the traffic
simulator and then positions the MOBJs to compose a scene.
Based on the output of the traffic simulator, some files of
the base scenario are modified and stored in a unique folder.
For each scene, this folder path is stored in order to allow
reproducing the RT simulation of that scene. This enables
the user to later extract additional information through cus-
tomized software routines, as well as visualize results for a
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Fig. 4. Streets of interest for RT in Fig. 1 as represented in the traffic
simulator. The junction at the right corresponds to a zoom of the intersection
between Kent and 19th streets.

scene using the RT and traffic simulator’s GUIs. Similarly,
the corresponding information about the traffic simulation is
recorded. For instance, this allows to retrieve the positions
(z,y,2) and dimensions (I,w,h) of all MOBJs in a given
time instant.

The steps of our methodology are summarized as follows:
Configuration:

e Ray-tracing simulator

LEINNTS

— Define base scenario “city”, “terrain”, etc. importing
from geographic information systems (GIS) or using
computer-aided design (CAD) software

— Specify coordinates for RT “study area” and “mobil-
ity lanes” for cars, pedestrians, etc.

— Create 3-d MOBJIJs and specify their electromagnetic
properties

o Traffic simulator

— Import from ray-tracing configuration the lanes co-
ordinates and sizes of MOBJs

— Specify MOBJs distribution, routes, traffic statistics,
maximum speeds, accelerations, etc.

Simulation:
e Python orchestrator code, repeatedly:

— Randomly selects the start of an episode

— With sampling period Tg,n,, for each scene:

* Invoke the traffic simulator and get the positions
of all MOBIJs

* Create a full configuration for the ray-tracing
simulator and execute it

— Retrieve the ray-tracing outputs and organize them
as episodes.

Following the steps of our methodology lead to the cre-
ation of simulation data of 5G mmWave MIMO systems
involving mobility (or 5GMdata) that can be used in different
applications. In summary, the dataset stores for each episode:
base scenario folder and traffic simulator configuration file
paths, episode start time, sampling period Tg,my,, number of
transmitters, receivers and MOBJs, dimensions of all MOBJs,
mappings between transmitters / receivers and MOBIs, co-
ordinates of the RT study area and number L of rays per
transmitter / receiver pair. Besides, the episode contains infor-
mation for all its scenes. For a given scene, the information
collected from the outputs of the RT and traffic simulators
for each transmitter / receiver pair (m,n) are: average time
of arrival 7,,, (the subscripts mn will be omitted hereafter),
total transmitted I:’[X and received prx powers, and for the /-th
ray, { = 1,..., L, complex channel gain oy, time of arrival 7o,
angles ¢f, 0P, gf)g‘, Gf, corresponding respectively to azimuth
and elevation for departure and arrival. Besides, a string sg
stores all ray “interactions” (reflection, diffraction, DS) and
facilitates distinguishing LOS and NLOS situations.

After 5GMdata is obtained, additional post-processing
stages can generate the required data for specific target appli-
cations. For concreteness, the next section discusses possible
uses of SGMdata in the V2I context.

III. MACHINE LEARNING FOR BEAM-SELECTION IN V2I

In this section, we illustrate the application of our proposed
framework. Specifically, we generate data for the application
of ML to predict the best beam pairs in the context of mmWave
to cellular systems (the V2I setting).

A. Brief literature review of beam-selection

MmWave MIMO is a means to exchange sensor data in
vehicular systems [37]. A main challenge is that mmWave, as
initially envisioned for this application, requires the pointing of
narrow beams at both the transmitter and receiver. Taking into
account extra information such as out-of-band measurements
and vehicles positions can reduce the time needed to find the
best beam pair [37]-[39]. Beam training is part of standards
such as IEEE 802.11ad and 5G, and has also been extensively
studied in the context of wireless personal and local area
networks (see, e. g. [40], [41] and references therein). Among
the several problems related to beam training and tracking
in distinct scenarios [39], this paper focuses on a subset
collectively called beam-selection in V2I. The goal is to
choose the best pair of beams for analog beamforming, with
both transmitter and receiver having antenna arrays with only
one radio frequency (RF) chain and fixed beam codebooks.
The next subsection describes the information extracted for
V2I ML experiments.

B. Dataset for machine learning in V2I

Using our methodology, 5GMdata is organized with the
following characteristics. We generated all episodes with the
base scenario depicted in Fig. 1, which corresponds to a
3-d model that is part of Wireless InSite’s examples. The



scenario represents a region of Rosslyn,” Virginia, which was
studied e.g. in [42]. The RT area of study is a rectangle of
approximately 337 x 202 m2. A transmitter is located at the
RSU on Kent Street, as depicted in Fig. 1. We placed receivers
on top of 10 vehicles (some identified in red in Fig. 1) and
obtained 50 scenes per episode. The experiments reported in
this paper concern 116 episodes. Wireless InSite’s command-
line wibatch is adopted for its support to the X3D model,
which implements DS. Table I describes the most important
simulation parameters.

TABLE I
SIMULATION PARAMETERS.

Ray-tracing parameters

Carrier frequency 60 GHz
RSU transmitted power 0 dBm
RSU antenna height 5m
Antenna (Tx and Rx) Half-wave dipole
Propagation model X3D
Terrain and city material ITU concrete 60 GHz
Vehicle material Metal
Ray spacing (degrees) 1
Num. L of strongest rays 25
Diffuse scattering model Lambertian
DS max. reflections (ND5) 2

DS coefficients (5) 0.4 (concrete), 0.2 (metal)
Traffic parameters

Number of lanes 4
Vehicles car, truck, bus
Lengths, respectively (m) 4.645, 12.5, 9.0
Heights, respectively (m) 1.59, 4.3, 3.2
Probabilities, respectively 0.7, 0.1, 0.2
Average speed (m/s) 8.2
Sampling period Tiam (s) 0.1

After the 5GMdata is obtained, the following post-
processing is adopted.

C. Machine learning input features

The ML problems illustrated in this paper address beam-
selection based solely on vehicles positions and sizes. It is
assumed that the RSU receives through an error-free channel
the position and a unique index of all vehicles for each scene.
Based on the vehicle index, the RSU knows its dimension and
may incorporate it as extra out-of-band information provided
to the ML algorithm. The position and identity information
is then represented as a matrix. Based on this input, a ML
algorithm should estimate parameters of interest to beam-
selection.

The V2I study area, with 23 x 250 m?, is a subarea of the
RT study area consisting basically of the street in which the
RSU is located. A grid with resolution of 1 x 1 m? is adopted

2The lanes adopted in this paper follow the 3-d model geometry but do not
actually exist.

to represent the V2I study area, leading to a matrix Qg of
dimension 23 x 250 to represent each scene s. The RSU has
a fixed position, which is then not explicitly specified in Qj.
A negative element in Qg indicates that the corresponding
location is occupied (even partially) by a vehicle that is
not a receiver or transmitter. The magnitude of this negative
value indicates the vehicle’s height. For example, —1 and —2
represent a car and a truck, respectively. A positive integer
value 7 in Qg represents the location of the r-th receiver,
while 0 denotes the position is not occupied. Fig. 5 illustrates
an example where the receiver is blue and the surrounding
vehicles are yellow.

Fig. 5. Image corresponding to an example of an input features matrix
Qs representing 13 vehicles in four (vertical) lanes. The elements of Qs
corresponding to the pixels of the receiver (blue vehicle) are +1 while
elements with value —1 (yellow) identify the positions of the other vehicles.

The next subsection describes post-processing schemes to
extract information useful for generating the outputs of ML
problems.

D. Post-processing ray-tracing outputs

The definition of desired beam-selection outcomes requires
to model the composition of channels and beams based on
the RT outputs. The estimated beams allow, for instance, the
definition of optimal beam pair indices to be used as target
outputs (or labels) in supervised learning [20]. The beams are
assumed to have a beamwidth of [ radians. We consider two
different channel models in the next paragraphs, but others
can be adopted such as wideband models (see, e. g., [15] and
references therein). The first case is called mmWave massive
MIMO model and considers each ray as a beam. The other
case represents a more realistic situation that assumes fixed
beam codebooks at transmitter and receiver, and uses basic
signal processing techniques to obtain the received power for
beam pairs.

1) MmWave Massive MIMO: In the massive MIMO case,
the number N of antenna elements is large, and assuming
N — oo implies a small beamwidth 5 — 0. Therefore,
in this model, the departure [¢,67] and [¢7' 0] arrival
directions of the strongest ray /. indicate the target optimal
angles, which can be used in regression problems. In the case



of interest in classification problems, one can quantize the
angles [¢f , 0P, ¢;* , 0;'] using vector or scalar quantization. If
the latter is used, the angles can be quantized into four indices
[Daziy Dete, Aazi, Aete] according to their dynamic ranges in the
training set. These indices can be eventually converted to a
single label for traditional classification. Typically, due to the
scenario geometry, the number M of unique vectors that occur
in the dataset is smaller than the total number of Cartesian
products among [D,i, Dele, Aazi, Aele]. It is therefore useful
to pre-process the quantized values and map the vectors that
actually appeared in the data into the range {1,2,---, M},
where M is the number of class labels. When training
classifiers, one can then conveniently represent the labels with
one-hot encoding to facilitate training neural networks, for
example [20].

2) Codebook-based beams: In practical mmWave systems,
N is finite and influences the beamwidth gy > 0 for the
projected beam given the antenna arrays. To take this in
account, one can estimate the MIMO channel by combining
the RT output with the mmWave geometric channel model as
follows (see, e. g., [39] and references therein):

L
H,, = V NN, Zaga,,«(gbfﬂf)af(gbf,@f), (1
/=1

where N; and N, are the numbers of antennas at the n-
th transmitter and m-th receiver, oy is the complex channel
gain, a,(¢!,07') and a}(¢pP,0P) are the steering vectors at
the receiver and transmitter for the ¢-th path, respectively.
We also assume DFT codebooks C; = {W1,---,Wc, } and
C, = {f1,--- ,fic,|} at the transmitter and the receiver sides,
where |C;| and |C,| are the cardinalities of these codebooks
correspondingly. In specific, we have |C;| = Ny = |C,.| = N,
in our case. The beam pair [p, g| is converted into a unique
index ¢ € {1,2,---, M}, where M < |C;]|C,|. For the i-th
pair, the effective channel [39] is calculated as

y; = w; Hf; 2
and the optimal beam pair index ¢ is given by

i=arg max |y (3)

i€{1, M}
This post-processing and data representations allow the
formulation of several ML problems for beam-selection. Some
alternatives are discussed in the next section.

IV. EXAMPLES OF EXPERIMENTS WITH SGMDATA

Next we illustrate some ML experiments with the described
dataset. Three examples of machine learning problems are de-
scribed. Only the third example uses the time evolution while
the others are drop-based and depend only on data from a
given scene. In any ML problem, care must be exercised to use
an evaluation strategy that allows to estimate the generalization
capability of the classifiers. For example, when splitting the
dataset into disjoint training, validation and test sets, we shuffle
the episodes and not the scenes, given that scenes are similar
along an episode. There are many other details in elaborate

simulations and, to promote reproducibility, the dataset and
associated code will be made available at [43].

A. Conventional drop-based classification

We pose the beam-selection as a classification task in which
the target output is the best beam pair index i. The input
features correspond to the matrix described in Section III-C
with the following modification: we generate Qs ,, a modified
version of Q for each receiver r, assuming a value +1 for
all Q, elements corresponding to the target receiver r, while
all other receivers in the given scene s are represented with
—1 (instead of their original positive values in Q). The 116
episodes (with 50 scenes each) are split and 34 episodes used
for testing. For each receiver that is part of a given scene, a
classification example is obtained, leading to a total of 41,023
examples for training and test. In 16,977 cases, the receiver
is in the (larger) RT study area but not in the V2I study area.
Among the examples, there is LOS in 25,174 cases and NLOS
in 15,849. Transmitter and receivers had 4 x 4 uniform planar
antenna arrays (UPA), such that Ny = N, = 16. There are
M = 61 classes (optimum beam pairs) among the possible
|C:||C\-] = 256 pairs. Table II presents the accuracy using this
data for distinct learning algorithms. The hyperparameters and
other details can be obtained at [43].

TABLE II
CLASSIFICATION RESULTS.

Accuracy (%)

Classifier All data | Only NLOS
Linear SVM 33.2 12.4
AdaBoost 55.0 22.5
Decision tree 55.5 27.3
Random Forest 63.2 36.9
Deep neural network 63.8 38.1

The data used for the “All data” column in Table II had
approximately 60% of examples in LOS and this is comparable
to the maximum accuracy of 63%. The LOS case could be
addressed with simple geometry. Restricting attention only
to NLOS examples leads to the results in the right column
of Table II. In spite of not being our goal to investigate
performance levels with this relatively small amount of data,
the results indicate that deep learning has clear advantage over
the other tested methods. While deep neural networks are more
popular, random forest are also “deep” in the sense that consist
of an ensemble (obtained with bagging) of decision trees [20].

Some classifiers in Table II reach zero errors on the training
set while the errors in the test set are relatively large. Such
overfitting indicates that more data is needed to avoid evalu-
ating deep learning algorithms solely on small data regime.

B. Conventional drop-based multivariate regression

The SGMdata can also be used for regression tasks. For ex-
ample, estimating the angles of departure and arrival in beam-
selection can be cast as a multivariate regression problem in



which the desired output is [qﬁZ , 92 , (j)f* , 92 | and the input is
the matrix previously used. Table III presents the root mean-
squared error (RMSE) for estimations with neural networks in
this problem. The deep architecture outperforms the shallow
(with only one hidden layer), but in both cases, the deviations
from the target are relatively large, especially for the azimuth
angles.

TABLE III
REGRESSION RESULTS IN TERMS OF RMSE (ANGLES IN DEGREES).

Departure (Tx) | Arrival (Rx)

Regressor Ele. Azi. Ele. | Azi.
Shallow neural network | 6.5 137.4 7.9 | 180.6
Deep neural network 4.8 49.9 6.2 | 102.8

In some applications, it is not essential to find the optimum
beam direction, but grant an overall quality of service. The
next subsection presents an example that uses regression to
estimate the output powers of each beam within a reinforce-
ment learning setup.

C. Deep reinforcement learning

One of the requirements of our methodology is to provide
the history of the channel evolution over time. The time
evolution facilitates, for instance, taking into account the
interaction of the mmWave PHY with the media access control
(MAC) and upper layers. Designing the mmWave MAC is an
important issue for 5G [44] and ML can be useful in this
context. The next paragraphs aim at giving a concrete example
within the framework of deep reinforcement learning [20].
Again, the goal is not to outperform previously published
methods, but illustrate how 5GMdata can be effectively used.

In reinforcement learning [20], an agent is capable of
actions that influence the state of the environment to obtain a
reward. Deep reinforcement learning (DRL) is often associated
to having a deep neural network to choose the actions. Fig. 6
indicates how beam-selection can be cast as a DRL problem. In
this case, the analog beamforming architecture is assumed and
the action is to schedule a user in each time-slot of duration
Tum, together with its beam pair index ¢. The state at scene
s is represented by the matrix Q described in Section III-C,
which represents all receivers of interest. There is flexibility on
choosing the reward. For example, the reward can be based
on figures of merit such as throughput, fairness, energy or
their combination. Different from conventional regression or
classification problems, the agent does not seek to find the
optimum solution at each time instant, but properly allocate
resources among users to maximize the reward over time.

For simplicity, the rewards are based on the value z,,; =
20logq |ygm\ for scene s, receiver r and beam pair i, where
Ys,r,i 15 given by Eq. (2). To speed up convergence, the extreme
values zmin = min, ; 25 ,; and zmax = Max,; zs,r; for each
scene s are used to obtain Zs . ; = (Zs i —Zmin)/ (Zmax — Zmin)
in the range [0, 1]. Improved numerical stability is achieved by
using a floor value for znin, such as zmax — 200. Assuming
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Fig. 6. Deep reinforcement learning for multi-user beam-selection in V2I.

there are Ny, scenes per episode, the agent distributes Ny
time-slots among the receivers and chooses the beam pair for
each one. These decisions are represented by arrays r and i,
whose elements inform the chosen receiver r[s] and beam pair
i[s] at scene s, respectively. The reward is then 7y = Z (4] ifs]
unless there is an outage. The user r is in outage when the
agent does not allocate time-slots for r over Ny, or more
consecutive scenes. The reward is 75 = 7oy if there is any user
in outage at scene s. The value of 7y, is typically a negative
number to penalize the outage occurrence. The average reward
per scene for an episode e is then R. = (1/Ng) Ziv:‘“i re. If
there is no chance of an outage (N, — 00) and assuming
an agent capable of always choosing the receiver with the
strongest power z; ,;, the average reward would be R, =
1,Ve, given the way Z, ,; is defined.

To model this problem as DRL, we adopt a cascade of two
networks. The first is a convolutional deep neural network N}
that has Q; as its input and outputs estimates of Z; . ; for scene
s, organized as an array with N X |C;||C,| elements. The
peak value for each row of this array indicate the best beam
pair per receiver. This array is part of the input to the second
network N5, which is also composed by an array of binary
elements that indicate the time-slots allocated to receivers over
the previous Ny, scenes. The network N3 has N outputs,
for each scene s, the receiver that should be allocated to the
corresponding time-slot. The output of Nj is then used to
choose the beam pair for the chosen receiver.

Regarding the input to the first network N7, the matrix
Qs representing all receivers is converted into V.. matrices
Q;,», that inform where a given receiver r is located, while
treating all other receivers as regular vehicles (turning their
corresponding positive values in Qg into —1), similar to the
scheme used in Section IV-A. The input to N; is then the
concatenation of Ny matrices Q, ,. Conceptually, it would
be possible to build for each receiver r,, a sub-network with
input Qs ., that outputs estimates of Z, , ;. To decrease the
computational cost, instead, the layers are shared among the



distinct Qg , (sharing layers is a feature of DL packages such
as Keras [45]). Another speed up is obtained by training A7
using supervised regression to estimate the outputs Z ;.. 4, Vi,
given the corresponding inputs Qs ., 7« = 1,..., Nrec, A
third aspect is that after an action in RL, the environment
state needs to be updated accordingly. In our case, it would be
inconvenient to execute the RT and traffic simulators within the
DRL loop. In this experiment however, invoking the simulators
is not necessary given that their pre-calculated outputs suffice
to obtain Zy . ;.
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Fig. 7. Performance of DRL in the training set and comparison with the

optimum allocation obtained via dynamic programming.

The Deep Q Learning (DQN) algorithm is used, as imple-
mented in Keras-RL [46]. It is assumed 7oy = —3, Now = 3,
Niee = 2 and 4 x 4 UPAs for both transmitter and receivers.
Seventy episodes are used in experiments to illustrate the
learning process. The generalization capability is not evaluated
in this paper. Considering first the performance of A7 in
the (embedded) supervised regression task, it achieved an
average RMSE = 0.074 while estimating Z ,;. Still in a
supervised learning settings, an accuracy of 67.5% is obtained
when the strongest beam pair indicated by the estimates of
Zs,r,i 1s used as a classifier outputs. The performance of the
overall DRL model (cascade of N; and A3) is presented
in Fig. 7, which shows the average rewards in all episodes.
For comparison, assuming the regression values estimated by
N1, Fig. 7 also indicates the optimum time-slot allocation
obtained with dynamic programming. The average reward over
all episodes for dynamic programming in this case and DRL
are 0.879 and 0.874, respectively. If the actual values of Z, ;. ;
are passed to the dynamic programming routine (instead of
N1 estimates), the average reward increases to 0.891. These
results indicate that the DRL is able to learn the task of
simultaneously allocating receivers to time-slots and choosing
beam pairs.

V. CONCLUSION

This paper presented a methodology for generating 5G
propagation channel data that decouples the tasks of modeling
mobility and channel. This facilitates the use of advanced
features of traffic simulators. Given the current lack of freely
available large amount of data for benchmarking deep learning
algorithms in 5@, it is reasonable to use simulations especially
in complicated configurations. The generated data incorporates
the channel evolution over time and can be used, for example,
in machine learning problems involving aspects of the 5G PHY
with constraints from MAC and upper layers. The focus was
mmWave MIMO but the methodology can be used in other
scenarios. Future work includes simulating different sites and
scenarios, while validating some of them with measurements.
Currently, it is not clear how detailed must be the description
of ray-tracing scenarios to support broad conclusions such
as average performance on distinct sites. Measurements can
help tuning the methodology. Besides accurate modeling, it is
important to minimize the computational cost. An alternative
to speed up simulations is to combine ray-tracing outputs with
statistical models and eventually avoid the longer simulation
time caused by the diffuse-scattering feature. After escaping
the small data regime, deep learning in 5G can be investigated
using a systematic and reproducible experimental procedure.
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