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Connectivity and Blockage Effects in Millimeter-Wave
Air-To-Everything Networks

Kaifeng Han, Kaibin Huang and Robert W. Heath Jr.

Abstract—Millimeter-wave (mmWave) offers high data rate and
bandwidth for air-to-everything (A2X) communications including
air-to-air, air-to-ground, and air-to-tower. MmWave communi-
cation in the A2X network is sensitive to buildings blockage
effects. In this paper, we propose an analytical framework to
define and characterise the connectivity for an aerial access point
(AAP) by jointly using stochastic geometry and random shape
theory. The buildings are modelled as a Boolean line-segment
process with fixed height. The blocking area for an arbitrary
building is derived and minimized by optimizing the altitude of
AAP. A lower bound on the connectivity probability is derived
as a function of the altitude of AAP and different parameters of
users and buildings including their densities, sizes, and heights.
Our study yields guidelines on practical mmWave A2X networks
deployment.

Index Terms—A2X communications, mmWave networks,
blockage effects, network connectivity, stochastic geometry, ran-
dom shape theory.

I. INTRODUCTION

Air-to-everything (A2X) communications can leverage
aerial access points (AAPs) mounted on unmanned aerial
vehicles (UAVs) to provide seamless wireless connectivity
to various types of users [1] (see Fig. 1). Millimeter-wave
(MmWave) communication is one way to provide high data
rate for aerial platforms [2]. Unfortunately, mmWave com-
munication is sensitive to building blockages [3], which are
widely expected in urban deployments of AAPs. In this paper,
we define and characterize the connectivity for an AAP, using
tools from stochastic geometry and random shape theory.

Leveraging UAVs as AAPs has been studied in recent
literature [4]–[10]. A single-UAV network was proposed in
[4], where the network coverage was maximized by optimizing
the UAVs’ altitudes. The coverage performance can also be
maximized via optimizing the placement of UAVs [5]. In [6],
the coverage probability of a finite 3D multi-UAV network was
calculated via a stochastic geometric approach. Both network
coverage and the sum-rate of a hybrid A2G-D2D network were
investigated in [7]. An analytical framework that UAV uses
ground-BS for wireless backhaul was proposed in [8] with
providing the analysis for success probability of establishing
a backhaul link as well as backhaul data rate. In [9], the
multiple-input multiple-output (MIMO) non-orthogonal mul-
tiple access (NOMA) techniques were used in UAV network
and the outage probability and ergodic rate of network were
studied based on a stochastic geometry model. In [4], [7],
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Figure 1: An illustration of the A2X communications network. A
typical (central) AAP provides wireless connectivity to different types
of users, including AAP connects with ground-users (e.g., mobile) via
air-to-ground (A2G), tower-users (e.g., base station, BS) via air-to-
tower (A2T), and airborne-users (e.g., UAV) via air-to-air (A2A)
communications. The altitude of AAP is denoted by Ha, and the
height of users are denoted by Hu. The 3D buildings are modelled
as a Boolean line-segment process with fixed height Hb.

[8], the blockage effects were characterized by a statistical
model where the link-level line-of-sight (LOS) probability is
approximated as a simple sigmoid function. The parameters
of sigmoid function are determined by the buildings’ density,
sizes, and heights’ distribution. The model is unsuitable for
mmWave A2X networks since it fails to capture the fact that
multiple nearby links could be simultaneously blocked by the
same building and does not consider the diversity in user types
(e.g., their different heights). In [10], a mathematical frame-
work was proposed for studying mmWave A2A networks, in
which multiple aerial-users are equipped with antenna arrays.
Blocking effects were not included since A2A scenario was
assumed to be well above the blockages.

In this paper, we develop an analytical framework for
characterizing the blockage effects and connectivity of a
mmWave A2X network covered by a single AAP. The 3D
buildings are modelled as a Boolean line-segment process with
fixed height. Given an arbitrary building, the corresponding
blocking area is derived as a function of altitude of AAP,
users and buildings’ parameters including their density, sizes,
and heights. Based on the model, the AAP coverage area is
maximized (or equivalently the blocking area is minimized) by
optimizing the altitude of AAP. Furthermore, both upper and
lower bounds on the blocking area and a suboptimal result of
AAP’s altitude are derived in closed-form. The spatial average
connectivity probability of a typical A2X network is obtained,
which is maximized by optimizing the AAP’s altitude.

II. SYSTEM MODEL AND PERFORMANCE METRIC

Consider a mmWave A2X network as illustrated in Fig. 1.
In this letter, we focus on the downlink communication from
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a typical low-altitude AAP to users with different heights.

A. Channel Model between AAP and Users

The mmWave channel between the AAP and the different
types of users is assumed to be LOS or blocked by a build-
ing. For simplicity, we assume the non-LOS (NLOS) signals
are completely blocked due to severe propagation loss from
penetration and limited reflection, diffraction, or scattering [3].
For the LOS case, the channel is assumed to have path-loss
without small-scale fading [11]. We assume perfect 3D beam
alignment between AAP and users for maximal directivity
gain [10]. For the path-loss model, we assume the reference
distance is 1m. The AAP transmission with power P and
propagation distance r is attenuated modelled as r−α where
α is the path-loss exponent [11]. Let σ2 be the thermal noise
power normalized by the transmit power P . The corresponding
signal-to-noise ratio (SNR) received at user is defined as
Pr = Gr−α

σ2 where G denotes the beamforming gain. We
assume that the user is connected to the AAP if the receive
SNR exceeds a given threshold γ. We say that the AAP has

a maximal coverage sphere with the radius Rmax =
(

G
σ2γ

) 1
α

.
The 2D projection of the coverage sphere of the AAP into
the plane with user’s height Hu forms a disk with the radius

ΛH =

√
R2

max − (Ha −Hu)
2, called the efficient coverage

disk and denoted by O(ΛH). The user is connected to the AAP
if its 2D location is inside the efficient coverage disk and the
link between the user and the AAP is LOS. For higher users
heights, i.e., larger Hu, the efficient coverage disk is larger. Let
the center of efficient coverage disk, i.e., the 2D projection of
AAP’s location, be the origin denoted by o ∈ R2.

B. 3D Building Model

A 3D building model is adopted to characterize blockage
effects where buildings are modelled as a Boolean line-
segment process with the same fixed height Hb for tractability
[12]–[14]. Adding randomness to the buildings height is left
to future work. The blocking effects of randomly distributed
buildings are approximated as line segments with random
length and orientation on the 2D plane. Although the buildings
have polygon shapes in practice, we are interested in their
1D intersections with the communication links. Therefore,
assuming that the buildings’ shape are lines is a reasonable
approximation. The effectiveness of the Boolean line-segment
model has been validated with real building data in [12] to
ensure the derived insight is not changed for practical building
deployment. The center locations of the line-segments are
modelled as a homogeneous PPP Φ = {x} on R2 plane with
density λb. The lengths {ℓ} and orientations {ω} of blockage
line-segments are independent identically distributed random
variables. Let fL(ℓ) be the distribution of ℓ and let fΘ(ω) be
that of ω. The Boolean line-segment model can be extended
to other models as discussed in Remark 2.

C. Connectivity and Performance Metric

We assume that all the users can be simultaneously con-
nected to the A2X network if they are in AAP’s coverage
sphere and the link between user and AAP is LOS without
being blocked by any building. Consider an arbitrary building
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Figure 2: 2D projection of an arbitrary building modelled by a line-
segment pq. Some geometrical relations are described as follows.
dS = ∥o− q∥, dL = ∥o− p∥, ΛH = ∥o−u∥ = ∥o− s∥, ω = ∠qxh,
θ = ∠qop, and ∠hxo = π/2. The grey area covered by qpsvt is the
blocking area Sb(x) and the area covered by qop (blue area) and tvu
(green area) is the coverage area. Specifically, the blue area covered
by tvu denotes the coverage gain Sgain due to the fact that higher
altitude of AAP can cover more LOS area.

whose 2D line-segment center is located at x ∈ R2. The
building results in a blocking area Sb(x) where the links
between users and AAP are fully blocked by the building (see
Fig. 2). To measure the network performance, we define the
spatial average connectivity probability, denoted by pc, as the
spatial average fraction of the A2X network that is connectable
at any time [15]. The pc is mathematically expressed as

pc = 1− E


∣∣∣∪x∈{Φ∩O(ΛH)} Sb(x)

∣∣∣
|O(ΛH)|

 , (1)

where |O(ΛH)| = πΛH denotes the size of O(ΛH).

III. ANALYSIS FOR NETWORK CONNECTIVITY
A. Size of Blocking Area

We begin by calculating the size of blocking area Sb(x) for
an arbitrary building whose 2D line-segment center located at
x. We first fix the length ℓ and ω of the typical building.
Let dx be the distance between x and o. Let dS be the
minimal (shortest) distance between o and line-segment (2D
projection of building) and dL be the maximal (longest)
distance (see the lines oq and op in Fig. 2). If the AAP’s
altitude does not exceed building’s height, i.e., Ha ≤ Hb, the
size of blocking area Sb(x) (see the gray area covered by
qpsvt in Fig. 2) is calculated by 1

2

[
θΛ2

H − dSdL sin θ
]
, where

θ = arccos
(

d2
x− 1

4 ℓ
2

dSdL

)
anddS =

√
1
4ℓ

2 + d2x − dxℓ sinω,

dL = min
[
ΛH ,

√
1
4ℓ

2 + d2x + dxℓ sinω
]
.

(2)

If Ha > Hb, the blocking area Sb(x) could be further reduced
since the AAP covers more area via LOS links due to the
benefit of higher altitude. Compared with the coverage area
of AAP when Ha ≤ Hb, we define this additional coverage
area due to Ha > Hb as the coverage gain, denoted by Sgain(x)
(see the area covered by tvu (green area) in Fig. 2). Based on
geometric calculations, Sgain(x) is calculated as

Sgain(x) =
1

2

 θ
′∫

0

(dS cosβ)
2

cos2 (φ+ β)
dφ+ θ

′
Λ2
H

 , (3)
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where θ
′

= arccos

(
dS cos β(

1−Hb−Hu
Ha−Hu

ΛH

)) and β =

arctan

(
cos θ− dS

dL
sin θ

)
. Then, Sb(x) is calculated as follows.

Lemma 1 (Size of Sb(x)). The blocking area is

Sb(x) =
1

2

(
θΛ2

H − dSdL sin θ
)
− 1 (Ha > Hb)Sgain(x), (4)

where 1(·) denotes the indicator function and Sgain(x) is given
in (3).

The calculations follow from geometry, the detailed proof
is omitted due to limited space. To simplify the result in
Lemma 1 and obtain more insights therein, both upper and
lower bounds of Sgain(x) are derived. By assuming the distance
between any point on building’s line-segment and o has the
same value dL or dS given in (2), the lower and upper bounds
of Sgain(x), denoted by S(−)

gain (x) and S(+)
gain (x), are derived as

S(−)
gain (x) =

θ

2

Λ2
H −

(
dL

1− Hb−Hu

Ha−Hu

)2
+

, (5)

and S(+)
gain (x) is obtained by replacing dL in S(−)

gain (x) with dS.
The result for the bounds of Sgain(x) is summarized as follows.
Lemma 2 (Bounds of Sgain(x)). The coverage gain Sgain(x)
can be upper or lower bounded as follows.

S(−)
gain (x) ≤ Sgain(x) ≤ S(+)

gain (x), (6)

where ΛH is specified in Lemma 1 and [A]+ = max[0, A].
The bounds for Sgain can be treated as the bounds for Sb via

substituting (6) into (4): S(−)
b (x) ≤ Sb(x) ≤ S(+)

b (x), where
S(−)

b (x) = 1
2

(
θΛ2

H − dSdL sin θ
)
−1 (Ha > Hb)S(+)

gain (x) and
S(+)

b (x) is obtained via replacing S(+)
gain (x) in S(−)

b (x) with
S(−)

gain (x).
Remark 1 (Optimal Altitude of AAP). A larger AAP’s
altitude Ha can effectively increase the coverage (LOS)
area, while shrinking the radius of effective coverage disk.
So there exists an optimal H∗

a to maximize the size of
coverage gain Sgain, which can be calculated by solving
H∗

a = argmaxHa Sgain(x). To obtain a simple result with
closed-form, we characterize this behavior by optimizing in-
stead S(−)

gain (x) to obtain a suboptimal solution for Ha. When(
dL

1−Hb−Hu
Ha−Hu

)2

< Λ2
H , we have H̃∗

a = argmaxHa S
(−)
gain (x) =(

d2L (Hb −Hu)
) 1

3 + Hb. Substituting H̃∗
a into (3) gives the

suboptimal solution of Sb(x). It will be shown in Fig. 3 that
the derived suboptimal AAP altitude H̃∗

a is close to the optimal
one H∗

a via numerical calculation.
Remark 2. Extending the current building model to any model
that each building has a random size in 2D projection, such as
rectangle [3] or disk, follows a similar analytical structure.
The main difference is that the area of buildings should
be included into blocking area Sb. Also, Sgain needs to be
recalculated based on different building’s shape. For instance,
if the 2D projection of a building is modelled as a disk with
radius diameter ℓ (i.e., a cylinder in 3D), the blockaging
area is recalculated as Sb = θ

2Λ
2
H −

(
dxℓ+

1
8ℓ

2(θ + π)
)
−

1 (Ha > Hb)Sgain(x), where Sgain(x) is lower bounded by

S(−)
gain (x) = θ

2

[
Λ2
H −

(
1

1−Hb−Hu
Ha−Hu

(
dx + 1

2ℓ
))2

]+
. The case

that building has a rectangular shape in 2D can be analyzed
similarly (e.g., [14]).

B. Network Connectivity Probability

In this section, we calculate the connectivity probability
defined in (1). Notice that the spatial correlation between
different buildings exsits such as the blocking areas of mul-
tiple buildings may overlap with each other. For analytical
tractablility, we ignore the spatial correlation of buildings due
to overlap in the blockaging area of multiple buildings. This
assumption is accurate when density of buildings is not very
high, which has been validated in [3]. We derive a lower
bound of pc by jointly using Campbell’s theorem, random
shape theory, with the results given in Lemmas 1 and 2.
Theorem 1 (Connectivity Probability of AAP). The connec-
tivity probability pc is lower bounded by p

(−)
c as

p(−)
c = 1− πλbθ

Λ2
H

∫
L

∫
Θ

Λ2
H∫

0

F(r, ℓ, ω)rdrfΘ(ω)dωfL(ℓ)dℓ,

(7)

where

F(r, ℓ, ω) =
θ

2

[
Λ2
H − 1 (Ha > Hb)

[
Λ2
H − (dL +ΩH)

2
]+]

− 1

2
d2L sin θ, (8)

ΩH =
(
1− Hb−Hu

Ha−Hu

)−1

, and Λ2
H is specified in Lemma 1.

Proof: See Appendix A. �
Remark 3. The lower bound p

(−)
c becomes tighter when

density of buildings, i.e., λb, becomes smaller. This is because
sparsely deployed buildings result in less spatial correlation.
Remark 4. Based on the discussion in Remark 1 and expres-
sion of F(r, ℓ, ω), the connectivity probability pc can also be
maximizing by optimizing the APP’s altitude Hu.

IV. SIMULATION RESULTS

In this section, we validate the analytical results via Monte
Carlo simulation. The radius of maximal coverage sphere is
Rmax = 100m. The height of building is Hb = 30m and
that of user is Hu = 2m. The density of buildings is λb =
2×10−4m2. The length ℓ and orientation ω of building’s line-
segments follow independently and uniformly distributions.
Specifically, ℓ is uniformly distributed in (0, 15m] and ω is
uniformly distributed in (0, π].

Fig. 3 shows the coverage gain Sgain calculated via (3) and
its bounds S(+)

gain, S(−)
gain calculated via Lemma 2 versus the

altitude of AAP Ha. It is observed that Sgain is well bounded
by S(+)

gain and S(−)
gain. The lower bound becomes tighter when

Ha is small and the upper bound becomes tighter when Ha is
large. This agrees with the intuition because larger or smaller
altitude of AAP results in larger or smaller coverage gain,
respectively, which makes the bound tighter. Moreover, the
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Figure 3: The effect of the AAP’s altitude on coverage gain Sgain. The
coverage gain is shown to be a concave function of AAP’s altitude.
The parameters of building are set as {dx, ℓ, ω} = {25m, 6m, π/4}.
The upper and lower bounds are plotted based on (6). It is observed
that Sgain is well bounded and the lower bound becomes tighter when
AAP’s altitude is small and upper bound becomes tighter when AAP’s
altitude is large. Moreover, both optima and suboptimal altitudes of
APP, H∗

a and H̃∗
a given in Remark 1, are highlighted.
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Figure 4: The effect of building density on connectivity probability
pc. The exact value of pc is plotted via Monte Carlo simulation.
The lower bound p

(−)
c is plotted based on (7). It is observed that

connectivity probability decreases with building density and the
lowered bound becomes tighter when building density is small.

AAP’s altitude that maximizes Sgain given by H∗
a and the

suboptimal H̃∗
a are close, which confirms the discussion given

in Remark 1.
In Fig. 4, we validate the lower bound of connectivity

probability pc, i.e., p(−)
c , given in Theorem 1 by comparing it

with the exact value via Monte Carlo simulation. It is observed
that both pc and p

(−)
c decrease with building density λb. More

importantly, p(−)
c becomes tighter when buildings are sparsely

deployed, which aligns with the discussion in Remark 3.

V. CONCLUSIONS AND FUTURE WORK

In this letter, we propose an analytical framework to define
and characterize the connectivity in a mmWave A2X network.
Based on the blockage model that buildings are modelled
by the Boolean line-segment process with fixed height, we
calculate the blocking area due to an arbitrary building and
the connectivity probability of an AAP. Moreover, the AAP’s
altitude can be optimized to maximize the coverage area as
well as the network connectivity. Future work will focus on
studying the effects of spatial correlation of buildings on

network connectivity and modelling a A2X network including
multi-AAP’s connections.

APPENDIX

A. Proof of Theorem 1

By omitting the spatial correlations between {Sb(x)}, con-
nectivity probability pc defined in (1) is lowered bounded as
follows.

pc ≥ 1− E


∣∣∣∑x∈{Φ∩O(ΛH)} Sb(x)

∣∣∣
|O(ΛH)|

 (9)

(a)
= 1− πλbθ

Λ2
H

∫
L

∫
Θ

Λ2
H∫

0

Sb(r)rdrfΘ(ω)dωfL(ℓ)dℓ.

where (a) follows the Campbell’s theorem and ramdom shape
theory [12]. Based on (4), the blocking area Sb(r) can be
upper bounded by 1

2

[
θΛ2

H − d2S sin θ
]
−1 (Ha > Hb)S(−)

gain (r).
Substituting the result above into (9) gives p

(−)
c .
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