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Abstract—Deep learning (DL) provides a framework for de-
signing new communication systems that embrace practical
impairments. In this paper, we present an exploration of DL
as applied to design the physical layer for MIMO systems with
low resolution analog-to-digital converters. The application of
DL is nontrivial thanks to the severe nonlinear distortion caused
by quantization and the large dimensional MIMO channel. We
investigate network architectures for channel estimation and de-
tection. The channel estimation results indicate that the adopted
DL architectures lead to good results in the large signal-to-noise
ratio (SNR) regime, but are outperformed by state-of-the-art
iterative message passing algorithms. For decoding, we adopted
a multilabel classification architecture with implicit equalization
and output size scaling linearly with the number of data symbols
to be estimated. While feasible for high MIMO dimensions,
the adopted DL architecture for decoding converged only for
relatively small MIMO dimensions. A main conclusion of our
paper is that DL still has potential but more efficient architectures
are required, given the convergence problems associated with
time-varying channels and 1-bit quantization.

I. INTRODUCTION

Deep learning (DL) provides means to design communica-
tion systems accounting for practical impairments which may
be difficult using standard digital communication theory [1]–
[3]. In this paper, we study the application of DL techniques to
MIMO systems with 1-bit analog to digital converters (ADCs).
Such MIMO systems offer a low power solution thanks to
power reductions that come from reducing ADCs resolution.
As a result, they find application to high bandwidth millimeter
wave communication and also massive MIMO systems, both
places where ADCs become a dominate source of power
consumption. Designing receiver algorithms including channel
estimation and detection is challenging due to the nonlinearity
imposed by quantization and the large dimensions involved.

State-of-the-art receiver algorithms for MIMO with low
resolution ADCs are based on message passing (MP) [4],
especially the generalized approximate MP (GAMP) algo-
rithm [5] and its variants. The bilinear (BiGAMP) [6] and
the parametric BiGAMP (PBiGAMP) [7] are particularly
suitable for joint channel and detection estimation (JCD).
The GAMP-based algorithms presented in [8], [9] provide a
good indication of the performance that can be obtained with
iterative MP for JCD in coarsely quantized massive MIMO.
In [10], GAMP variants are customized to OFDM systems,

tackling channel estimation of millimeter wideband channels.
The results (e. g. in [8]–[10]) indicate that MP can reach close
to optimal performance if the associated assumptions hold.
A recent trend in DL applied to the physical layer (PHY) is
to unfold iterative algorithms such as GAMP [11]–[15]. That
work is different from our proposed work in that we use DL to
do channel estimation and detection for MIMO systems with
1-bit ADCs.

DL has been used to solve other physical layer communi-
cation problems for both SISO and MIMO systems. In SISO
systems, DL was applied to: equalization and detection with
fixed channels in [16], detection in [17] and JCD for OFDM
in [18]. In MIMO systems, DL was used for: detection with
autoencoders using one-hot encoding [19] in full resolution
2 × 2 MIMO systems [20], channel estimation [15] and
detection over time-varying channels [13].

In this paper, we present a preliminary study of DL architec-
tures for channel estimation and detection in MIMO systems
with low resolution receivers, with focus on identifying issues
related to their scalability. This is a main issue in prior work
like [20], which does not scale well with, for example, the
number of antennas. While the unfolded algorithms in [11]–
[14] have the potential to scale, their drawback is to rely on the
assumptions of the underlying iterative algorithm. We choose
to not consider unfolding, aiming at scenarios impacted by,
e. g., nonlinearity at the transmitter and correlated noise, for
which assumptions required by variants of GAMP do not hold.
But we do use variants of GAMP for channel estimation as a
baseline [10], [21].

We make two main contributions in this paper. First, we re-
port the results of our investigation of convolutional and other
network architectures for channel estimation and (separately)
multilabel classification for detection. Second, we discuss
practical issues associated to DL applied to these problems
and the difficulties that make, for instance, detection with a
large number of antennas infeasible using one-hot encoding
DL architectures. We believe our paper is an important step
in the direction of further applications of DL to MIMO
communication systems.



II. COMMUNICATION SYSTEM MODEL

We model a coarsely quantized MIMO system as in Fig. 1
and assume 1-bit ADCs. The number of antennas at the
receiver and transmitter are Nr and Nt, respectively. Because
this paper is an initial study, we assume frequency-flat block
fading, with the channel remaining constant over a block
composed by T consecutive symbol intervals. We also assume
perfect synchronization such that the narrowband baseband
received signal Y ∈ CNr×T over the block interval can be
written as

Y = HX + W, (1)

where H ∈ CNr×Nt contains the channel coefficients, X ∈
CNt×T has the transmit symbols normalized to have unity
average total power per transmission, and W ∈ CNr×T

corresponds to additive white Gaussian noise (AWGN) with
zero mean and variance σ2 per complex-valued element. For
simplicity, the pilot and data symbols are from a QPSK con-
stellation. Investigation on how DL could eventually help the
design of good pilot constellations is left for future work.The
receiver implements 1-bit quantization after downconversion,
with quantization applied independently to real and imaginary
components. The resulting quantized signal is then

Ỹ = Q(Y). (2)

The quantization operation in Eq. (2) is the main reason for
the signal processing challenges associated with low resolution
MIMO communication.

Fig. 1. Adopted quantized MIMO system model.

To facilitate channel estimation, pilot sequences are trans-
mitted in the beginning of each block (training phase). The
first Tt symbols are known to the receiver and organized in a
matrix Xt ∈ CNt×Tt , while the data symbols are represented
by Xd ∈ CNt×Td , Td = T − Tt. A similar partitioning is
adopted for Ỹ. Hence, the information corresponding to the
training and data phases is represented by X = [Xt,Xd]
and Ỹ = [Ỹt, Ỹd]. We consider two problems. In pilot-only
channel estimation the receiver uses Ỹt and Xt to generate
the estimate Ĥ. In detection with implicit equalization, the
receiver estimates Xd from Ỹ.

We used the stochastic channel model adopted in [21],
which allows controlling the sparsity level and is appropriate
for applications to massive MIMO or millimeter wave MIMO.
The L multipath components (MPCs) in the virtual (or angle)
domain Hv are assumed to coincide with DFT bins (no
leakage). Then an inverse 2D DFT generates the corresponding
H [22].

III. CHANNEL ESTIMATION AND DETECTION WITH DL

We first discuss channel estimation and then the detection
problem. For simulations, an important detail in any DL
problem, our software setup is centered on customized Python
code using Keras with Tensorflow as backend. Keras and
Tensorflow are among the most widely DL tools and are
detailed, e. g, in [19].

A. Channel Estimation with DL

We pose the pilot-only channel estimation as a multivariate
regression problem. The input is the binary array Ỹt while
the output is the complex-valued Ĥ. Multivariate regression
is a hard problem and many times it is tackled by grouping
N multivariable regressors, which are trained independently
for simplicity. In this work we adopt a single neural network
(NN) to perform multivariate regression [19]. It should be
noted that the literature on NNs is very rich and precedes DL.
For example, NNs for channel equalization were used in [23]
and in many other communication problems. Besides, for non-
perceptual data or when data is scarce, there are algorithms
such as gradient boosting that are highly competitive with
DL [19].

The NN is trained with the mean-squared error (MSE) loss
and aims at providing the minimum MSE (MMSE) estimation

H† = min
Ĥ
E[‖H− Ĥ‖2]. (3)

The 1-bit quantization means that it is not possible to estimate
the norm of the channel with zero-threshold quantizers. As
in [10], we assume this information can be recovered from
the automatic gain control in the analog circuitry. Therefore,
we suppose that both training and test data have ‖H‖2 = NtNr
and normalize the channel after the MMSE estimate.

The training does not require knowledge of the distribution
p(H) over channels, but access to a reasonable number of
realizations (to compose a rich training set from e. g. measure-
ment data) or a software routine to draw samples from this
distribution on-the-fly. In contrast, state-of-art GAMP-based
algorithms consider the receiver knows the distribution p(H)
of channels but not its realizations. Knowing distributions for
AMP (even if not their parameters) and having large datasets
for DL, are similar in the sense that both are manifestations of
access to a potentially infinite amount of data. One distinction
is that GAMP variants leverage the analytical expression of
p(H) as a highly compact representation of knowledge about
the channels. When trained using Eq. (3), the NN is expected
to find its own way of representing all relevant information
contained in p(H). Similarly, we train a NN under different
noise conditions (multi-condition training) and expect it to
learn and generalize on the conditions of interest.

Both noise multi-condition training and the time-variant
channel are challenging for the stochastic gradient descent
(SGD) used in DL. The network training with SGD may not
converge even with advanced Keras’ optimizers such as Adam.
Most SGD routines obtain the gradient estimate by averaging
the individual gradients of a set of B examples called mini



batch. Having B > 1 often helps convergence by averaging
the noise out and may be essential when the SNR imposed
during training is low. But in the case of time-varying channels
(examples corresponding to eventually distinct channels H),
SGD may not find a reasonable average direction even if σ2

is small. For improved performance we do not change the
channel within a mini batch. The procedure can be interpreted
as keeping the channel constant not only over a block of T
consecutive symbol intervals, but B × T . Using this method,
we evaluated different NNs for DL-based channel estimation,
which are detailed in Section IV.

It is instructive to observe that for 1-bit MIMO there
are M = 22NrTt distinct received pilots Ỹt and channel
estimation could be implemented as a look-up table. The input
would be the index corresponding to Ỹt, and Ĥ the complex-
valued output with dimension NtNr. Such look-up tables are
not feasible when large dimensions are involved but inspire
machine learning algorithms (see, e. g., [24]). For instance,
Nr = 200 and Tt = 50 were adopted in [8], which leads to
more than 106000 possible binary arrays. We want to train NNs
that implement this mapping with reasonable complexity.

B. Detection with DL

In a machine learning framework, it is natural to pose
detection as a multiclass or multilabel classification problem.
On similar conditions, it is often the case that the level of
difficulty increases from multiclass classification, multilabel
classification, up to multivariate regression. One of the most
popular DL architectures for detection is the autoencoder,
which in previous work is applied as a multiclass problem
(see, e. g., [20]). This is often accomplished by encoding inputs
and outputs with integers 1, . . . , Q using one-hot encoding
or embeddings, and the categorical cross-entropy as the loss
function [19]. But this is not feasible when the involved
dimensions are large. For example, in 1-bit MIMO systems
the number of distinct data blocks is Q = 22NrTd .

An alternative to alleviate the dimensionality scaling is to
pose the problem as multilabel classification, adopting other
encoding schemes and, e. g, a binary cross-entropy as the loss
function. In this case the network output activation function
can be the sigmoid, instead of the softmax activation used for
multiclass classification. However, as mentioned, training a
multilabel classifier is often harder than a multiclass.

Besides the scaling problem, training a 1-bit MIMO system
as an autoencoder requires backpropagating gradients through
the quantization layer and channel. Examples of proposed
solutions in recent literature to the issue of gradient backprop-
agation through the channel in end-to-end learning are: not
optimizing the transmitter [25], iterating between supervised
learning of the receiver and reinforcement learning of trans-
mitter [26], calculating approximate gradients [27] and using
surrogate models such as generative adversarial networks
(GAN) [28], [29]. We wanted to focus on the quantization
layer and, in the end-to-end simulations, used a channel layer
that assumed knowledge of H and that could backpropagate
the gradient [20]. It remained to deal with the derivative of

a 1-bit quantizer (sign) function being undefined at the origin
and zero elsewhere. We implemented customized quantization
layers on Keras, using sigmoid-like functions with very steep
transitions and also passing the gradient unchanged. When as-
suming practical MIMO dimensions, however, the autoencoder
training did not converge. Even for small dimensions (e. g.,
2 × 2 MIMO), obtaining convergence required considerable
parameter tuning. As a result, we obtained our numerical
results using another architecture.

The adopted architecture (called multilabel) is based on
posing decoding as a multilabel classification problem. It is not
end-to-end and is trained to perform detection using implicit
channel equalization. The target output Xd is represented as an
array of bits with dimension 2Nt×Td. The input is composed
by the received symbols Ỹ organized as a Nr×T binary array.
The loss is the binary cross-entropy and the output activation
is the sigmoid.

A special case of the multilabel architecture corresponds to
restricting the network to process a single data vector together
with all pilots. The input and output dimensions are Nr ×
(Tt + 1) and 2Nt × 1, respectively. This does not change the
transmit block structure, which can have Td > 1. But for the
DL processing, a sliding window over Ỹd feeds the NN with
a single data vector of dimension Nr. This is motivated by the
fact that the channel is memoryless and the strategy allows to
decrease the computational cost. This special case is denoted
as multilabel Td1 given that it is equivalent to having Td = 1.

IV. SIMULATION RESULTS

The detection performance is assessed by the bit error rate
(BER) between Xd and X̂d, using Monte Carlo simulations
for various SNRs. The SNR is defined as 1/σ2. Channel
estimation is assessed by the normalized mean-squared error
NMSE = E

[
‖H− Ĥ‖22/‖H‖22

]
between the channel H and

its estimation Ĥ. We used a software routine to draw samples
from p(H) on-the-fly. More specifically, we implemented
channel generators as instances of Keras’ Sequence class for
the sparse channel model with the number of MPCs uniformly
distributed from 1 to NrNt. The NNs were trained with the
Adam optimizer.

A. Pilot-only MIMO channel estimation

We used the MSE as the loss function and a customized
Keras layer that normalizes the channel estimator output to
have a norm

√
NtNr. We tested with a set of 200 channels,

disjoint from training data. We used Nr = 64, Nt = 8 and
trained the networks with different noise conditions. More
specifically, for each training instance a SNR value was
randomly draw from a uniform distribution.

Dense, convolutional and residual networks were evalu-
ated [19] and the best results were obtained with no more
than five layers. The results did not improve with batch
normalization nor dropout. For convolutional layers, the kernel
dimensions were dependent on the dimensions of the input
vectors and we did not use max pooling. We also tested
conditional GANs. For GANs, the information from random



noise latent variables and received pilots Ỹt were inputs to
embedding layers, which had their outputs concatenated. We
also tested with only Ỹt as the generator’s input, but the GANs
did not converge and their results are not reported here.
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Fig. 2. Impact of the adopted SNR range during multi-condition training on
channel estimation for 8× 64 quantized MIMO.

Fig. 2 illustrates an aspect of multi-condition training using
four residual networks trained with Tt = 256, B = 5 and dis-
tinct supports for the SNR distribution: [0, 20], [−10, 0], [−1, 1]
and [−20,−15] dB. In the test stage the SNR is fixed, and
varied from −21 to 21 dB. The results in Fig. 2 indicate that
in this scenario, training with SNRs in the range [−1, 1] dB
leads to the best results, outperforming even the training with
[0, 20] dB in the high SNR regime. All these networks had
approximately 106 parameters, consisting of five layers with
a skip connection from the second to the fourth layer. The
training SNR range of [−1, 1] dB was adopted in all other
simulations in this work.
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Fig. 3. Impact of different mini batch sizes B on convergence of channel
estimation for 8× 64 quantized MIMO using test SNR within [−1, 1] dB.

Fig. 3 depicts the impact of mini batch size B on conver-
gence. The networks used the same architecture as those of
Fig. 2 and the test SNR used the same range as the training

SNR: [−1, 1] dB. Each training procedure used 3×104 channel
realizations. In this case B = 1 converged to a NMSE 0.7 dB
higher than the obtained with B = 5 or B = 10. In other
simulations we considered B an hyperparameter and tried to
find a reasonable value for each scenario.
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Fig. 4. Comparison of two DL architectures and EM-BG-GAMP for 4×64
quantized MIMO channel estimation.

Fig. 4 compares the results of convolutional and resid-
ual architectures with the EM-BG-GAMP, which uses the
expectation-maximization (EM) algorithm with a Bernoulli-
Gaussian prior [21]. In this case, Nr = 64, Nt = 4, Tt = 256.
The NNs were trained with B = 3 and had approximately 106

parameters. The adopted simulation setup matches the GAMP
assumptions and EM-BG-GAMP performs extremely well, as
expected from [21].

B. Low-dimension MIMO detection

Training the multilabel architecture has proved challenging.
The network is required to perform implicit equalization for
time-varying channels and learn under various SNR levels
using binary inputs. We were not able to obtain convergence
for larger systems and present results for 2× 2 MIMO.

Fig. 5 shows detection results for the multilabel architecture
and its special case multilabel Td1. Both used Nr = Nt = 2,
Tt = 3 pilot vectors and Td = 2 data vectors. Recall that multi-
label Td1 is equivalent to processing with Td = 1. In this case,
the multilabel networks observed, besides the pilots, Td = 2
data vectors and had to predict both. The multilabel Td1
networks had to predict a single data vector. The networks used
dense layers and B = 32. We varied the number of neurons,
leading to the approximate total number P of parameters in
the networks was 104, 2.5× 105 or 106. The results in Fig. 5
indicate that multilabel Td1 can achieve with 250 thousand
parameters a performance better than the one obtained with
multilabel using one million parameters. It can also be noted
that, while the data vectors are beneficial in JCD using GAMP
variants [8], in this scenario the multilabel networks were not
capable of benefiting from the extra information to internally
produce a better channel equalization and detection. It remains
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as future work to develop alternative architectures and training
methods, which would enable to check whether this behavior
is observed in systems with larger dimensions.

V. CONCLUSIONS

In this paper, we explored some of the challenges of ap-
plying DL techniques to 1-bit MIMO systems. We focused on
the issue of designing architectures that can cope with the rel-
atively large dimensions. For channel estimation, SGD is able
to converge even with varying-time channels if the mini batch
size is properly tuned. DL-based detection of 1-bit MIMO with
large numbers of receivers, without unfolding, requires further
research. End-to-end learning has issues with backpropagating
through the channel and quantization layer, and the proposed
multilabel architecture presented convergence problems. The
convergence can be improved with DL-based detection using
subnetworks specialized on channel equalization and SNR
estimation, as will be presented in an upcoming paper.
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