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Abstract—Accurate beam alignment is essential for beam-
based millimeter wave communications. Conventional beam
sweeping solutions often have large overhead, which is unaccept-
able for mobile applications like vehicle-to-everything. Learning-
based solutions that leverage sensor data like position to identify
good beam directions are one approach to reduce the overhead.
Most existing solutions, though, are supervised-learning where
the training data is collected beforehand. In this paper, we
use a multi-armed bandit framework to develop online learning
algorithms for beam pair selection and refinement. The beam
pair selection algorithm learns coarse beam directions in some
predefined beam codebook, e.g., in discrete angles separated
by the 3dB beamwidths. The beam refinement fine-tunes the
identified directions to match the peak of the power angular
spectrum at that position. The beam pair selection uses the
upper confidence bound (UCB) with a newly proposed risk-
aware feature, while the beam refinement uses a modified
optimistic optimization algorithm. The proposed algorithms learn
to recommend good beam pairs quickly. When using 16x16 arrays
at both the transmitter and receiver, it can achieve on average
1dB gain over the exhaustive search (over 271x271 beam pairs)
on the unrefined codebook within 100 time-steps with a training
budget of only 30 beam pairs.

Index Terms—Millimeter wave, beam alignment, beam refine-
ment, position-aided, online learning

I. INTRODUCTION

Position information may be leveraged for fast beam align-
ment in millimeter wave (mmWave) systems [1]-[3]. Such
side information is widely available in vehicular applications
of mmWave [4]. Inverse fingerprinting is one approach to
exploit position information [1], which works in non-line-of-
sight (NLOS) channels. The key idea is that machine learning
(ML) is used to make recommendations of promising beam
pairs based on the location of the target vehicle relative to the
base station (BS) and past beam measurements. The intuition
here is drawn from the recommender system analogy where
the user ID corresponds to the relative location and the past
user ratings correspond to past beam measurement results.
Given the location, past beam measurements can be input
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into a learning algorithm that learns to rank promising beam
directions. By prioritizing beam training in top-ranked direc-
tions, the training overhead can be reduced. In other words,
the location information is used to condition the environment,
and past beam measurements in the location are used to learn
which directions are promising in that environment.

Although efficient, the inverse fingerprinting method has

some limitations. First, the approach is offline, which means
its use is delayed until the database is collected. Second, also
due to being offline, its performance depends entirely on the
accuracy of the collected database, which may become stale
over time. Online approaches keep collecting new observations
during operation, making it possible to improve the database.
Third, without any knowledge of the power angular spectrum
(PAS), the codebook must uniformly cover the antenna array’s
field of view (e.g., beams are spaced by the 3dB beamwidths).
At a given location, depending on the scatterers in the envi-
ronment, the PAS will have peaks at some specific angles.
By adapting the beams such that their main beam directions
match those peaks, we expect gains beyond the generic good-
for-all-cases codebook. That is, position-based learning opens
up an opportunity to also adapt the beam codebook to the
environment. In this paper, we propose an online beam pair
selection and refinement algorithm to address the limitations
of a completely offline approach.

Our contributions are summarized as follows.

o We propose an online algorithm to learn to select beam
pairs with risk-awareness to reduce the probability of
severe beam misalignment during the learning. This is
done by designing the algorithm to select high-risk beam
pairs less often. The proposed solution balances the
learning burden on early-stage users and the learning
speed.

o We provide regret analyses of the proposed algorithms,
which provide insights into the cost of the learning due
to the introduction of risk-awareness.

o We formulate the beam pair refinement problem as a
continuum-armed bandit (CAB) problem. Our solution is
based on the hierarchical optimistic optimization (HOO)
[5] with modifications to suit the beam alignment context.

+ We integrate the two algorithms into a two-layer online
learning solution that learns to select and refine the beam
pairs at the same time. The beam pair selection part
learns coarse beam directions and the refinement part
learns to refine them. This hierarchy is more efficient
than learning the refined beam directions directly since
now the refinement learning focuses only in promising
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directions selected by the beam selection part.

Our numerical result in a vehicle-to-infrastructure (V2I) sce-
nario shows that the integrated solution learns quickly. Using
1616 arrays at both the transmitter and receiver and a training
budget of 30 beam pairs, it achieves an average gain of 1dB
over the exhaustive beam search over 2712 beam pairs in the
unrefined codebook within the first 100 time steps. The gain
can reach up to about 1.5dB over time. Unlike prior work
[6]-[8] that uses simplistic abstract models that match exactly
with the underlying statistical assumptions of the problem
formulation, we use realistic channels generated by ray-tracing
to evaluate our algorithms.

Beam alignment has been investigated intensively in the
literature. Several directions have been pursued such as ap-
proaches based on beam sweeping [9], [10], angle of ar-
rival and departure (AoA/AoD) estimation [11], [12], black-
box function optimization [13], [14], and the use of side-
information [1]-[3], [15]. We refer to [1] for a summary of
the differences of these approaches for beam alignment. The
last category is most related to our work, especially those that
use position information.

There are different approaches to position-aided beam align-
ment. One line of research assumes LOS channels and deter-
mines the pointing direction directly from the transmitter and
receiver position [16]-[19]. That approach does not require
beam training when the position information is accurate. Po-
sition error can be translated into uncertainty in the AoA/AoD.
A small amount of beam training covering the AoA/AoD
uncertainty range can counter the position error [17], [19].
While efficient, the LOS assumption is not always valid. For
example, in our ray-tracing simulations, the channel is NLOS
about 38% of the time.

In another line of research, a database of past beam mea-
surements indexed by location is used to identify both NLOS
and LOS beamforming directions [1]-[3]. The work in [2]
proposed to store the most recent successful antenna configu-
ration (having received power larger than some threshold) at
each location (defined as grid points). The objective here is to
find a direction that can support a link while our objective is to
find the beam pair that provides the strongest received power.
Also, omni-directional users are assumed in [2], which limits
the achievable communication range. A hierarchical search
was proposed in [3] assuming users are equipped with horn
antennas with different beamwidths. A hierarchical search
requires multiple feedbacks, which could be the bottleneck
as they are sent via a slow link in the control plane. Unlike
[2], [3], our prior work in [1] assumed directional users
and performs the beam training at the beam level without
hierarchical search requiring only one feedback. Also, the
method in [1] uses the probability of being optimal (i.e.,
alignment probability) as the selection metric. This method
can be shown to be optimal in maximizing the probability
of finding the strongest beam direction [1]. In this paper, we
propose an online version of this optimal selection method
from [1]. We also develop a new beam pair refinement method
to adapt the beam codebook to the environment to further
maximize the beamforming gain.

Another line of research uses position information of sur-
rounding scatterers to further increase the beam alignment
efficiency [20], [21]. In [20], a decision-tree algorithm was
proposed for a mmWave V2I beam alignment using positions
of neighboring vehicles as the features. The training dataset
consists of past beam measurement and feature pairs. In a
more traditional (i.e., not a data-driven approach leveraging
past beam measurements) and abstract setting, the positions
of dominant scatterers are assumed known with some error
in [21], and a distributed beam alignment framework was
proposed. While more information will be helpful, additional
sensors and/or procedures are required to obtain those posi-
tions and they may be sensitive to the level of knowledge.
Incorporating more side informaiton is an interesting direction
for future work. In this paper, we will limit to using only
the transmitter/receiver position, i.e., this work belongs in the
category described in the previous paragraph.

The recent progress in ML has revived interest in applying
ML techniques to communications [22]-[24]. Related work
that applies ML to beam alignment includes [20], [25], [26].
Position-aided beam prediction was proposed in [20], [25].
Decision tree learning was used in [20], and a learning-to-
rank method was used in [25]. A coordinated beamforming
solution using deep learning was proposed in [26]. Here,
the received training signals via omni reception at a set of
coordinating BSs are used as the input to a deep learning
model that predicts the beamforming vectors at those BSs
to serve a single user. The work in [20], [25], [26] shows
that machine learning is valuable for mmWave beam predic-
tion. Unfortunately, the proposed methods are all supervised
learning techniques, which assume an offline learning setting
and require a separate training data collection phase. In this
paper, we propose online learning algorithms using the multi-
armed bandit (MAB) framework, which is a special class of
reinforcement learning (RL).

Recent applications of RL/MAB for beam training include
[6], [7] which uses a partially observable Markov decision
process (POMDP) framework, and [8], [27] which uses an
MAB framework. The work in [6], [7] addresses tracking
problems where the POMDP with known state transition
models provides a means to predict the state of the chan-
nel enabling an informed choice of the probing beams for
good performance. The state transition models, however, are
not easily obtained in a practical setting. In [8], the beam
alignment problem is solved using an MAB framework with
the assumption that the success probability (the received power
is larger than some threshold) is a unimodal function of the
pointing direction. The efficiency of that solution depends on
this unimodal property, which cannot be guaranteed in our
setting with random blockage. The work in [27] implemented
the UCB1 algorithm and its variants from [28] for antenna
state selection for a 2.4GHz IEEE 802.11 system. Note that
both [27] and [8] proposed single-play MAB solution, while
this paper proposes a multiple-play MAB. The two types of
MAB will be described next.

MAB is a useful tool for solving online learning (also
called sequential decision-making) problems [29], [30]. The
most common form of MAB is the single-play MAB with
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a finite number of arms, where only one arm is selected in
each time step. The proposed method trains multiple beam
pairs (up to the training budget) in each beam alignment
attempt. Thus, our beam pair selection problem can be cast as
a multiple-play MAB problem (also known as combinatorial
bandit) [31], where multiple arms may be tried in each round
or time step. In an MAB setting, in each round, the player
must decide between using the knowledge obtained so far to
select the best arm or explore lesser-known arms, which is
called the explore-exploit dilemma. The optimism in the face
of uncertainty is a core design idea for balancing the explore-
exploit tradeoff, which results in a widely successful family of
algorithms known as the upper confidence bound (UCB). Our
solution employs the UCB in a multiple-play setting. Most
related to our solution is the cascading bandit [32], which
performs the same selection procedure as our Algorithm 1 but
with a different model to collect the reward measurements.
Another important difference is that the reduction to the greedy
selection is based on the independent arms assumption in [32],
while in our case it is based on the modularity property (i.e.,
additivity) of the reward signal as a function of the subset
of selected arms. Also, we extend beyond the greedy UCB
selection by introducing risk-awareness designed to avoid
severe beam misalignment during the learning.

We cast our beam pair refinement as a stochastic CAB
problem, which has infinitely many arms. CAB assumes the
reward function has some smoothness property (e.g., Lipschitz
continuous). There are different approaches to solve CAB such
as Bayesian optimization (BO) [33], the zooming algorithm
[34], and optimistic optimization (OO) [35]. BO does not
discretize the arm space but has high complexity. It is more
suitable when sampling is expensive or the learning horizon is
short. The zooming algorithm and OO rely on smart discretiza-
tion of the arm space. The zooming algorithm uses an adaptive
approach that applies finer discretization in promising regions.
This is done using an activation rule that is assumed given to
the algorithm, but this rule is a non-trivial problem itself. OO
approaches discretize the arm space using a tree and exploit
the hierarchy for an efficient search for the best arm. OO
approaches designed for stochastic settings include Stochastic
Simultaneous OO (StoSOO) and HOO [35]. StoSOO is an
explore-first algorithm where the task is to find the best arm
given an exploration budget. This does not fit our setting
where there is no separate explore and exploit phases. HOO
is designed for maximizing the cumulative reward and suits
our setting well. Applying HOO in its original form does not
work well. We propose three modifications to suit our beam
refinement problem.

The rest of the paper is structured as follows. Section II
describes our system model and how we generate the data.
Section IIT presents our beam alignment framework and re-
views offline beam pair selection methods from [1], which
are the basis for our online learning solution. Section IV
describes the proposed two-layer online learning algorithm
with the beam pair selection in the first layer and beam
pair refinement in the second. Section V and Section VI
provide the details of the two layers along with some analysis.
Numerical evaluations are given in Section VII followed by

the conclusions in Section VIII.

II. SYSTEM AND DATA MODEL

In this section, we describe our model of the communication
system and how we generate the data for evaluating the
learning algorithms.

A. System model

Our system model is comprised of the channel model,
the received signal model, and the codebook. We assume a
wideband geometric channel model that is widely used in
mmWave simulations [36]. We denote N; and N, the numbers
of transmit and receive antennas, L, the number of rays, T'
the symbol period, g(-) the combined response of matched
and lowpass filtering, a; and a, the normalized transmit and
receive array steering vectors, oy the complex channel gain,
7¢ the delay, gzﬁ‘? and ¢? the azimuth AoA and AoD, 9? and
0P the elevation AoA and AoD of the ¢-th path, and (-)* the
conjugate transpose operator. The channel at the delay tap m
is given by

Lp—1

Him] = /N:Ne Y oeg(mT — mo)as (67,67 )ai (07, 67).
£=0
(1

We parametrize this channel using ray-tracing assuming single
antennas at both the transmitter and receiver. This means ay
is the channel gain of a single antenna, and the factor /N, Vy
is needed to express the array gain (since a; and a, are
normalized).

We assume an analog beamforming architecture with
one RF chain. Denote L the channel length, P; the
transmit power, s[k| the known training signal, H, =
VN Nyaya (02, 67 )ai (0P, 4P) the channel matrix corre-
sponding to the ¢-th path, v;[k] the complex Gaussian noise
CN(0,02), and 7(i) and ¢(i) the mappings from the beam pair
index ¢ to the combiner w and beamformer f vector indices,
the received signal is given by

vilk] =
L—1 Lp_l

VP slk—m] Y g(mT + 1o — me)w i Hof ) +vilk].

2

The channel strength is defined as the squared norm of h; =
[hi[0], ..., hi[L —1]]%, ie.,

vi = [[hill. 3)

The effective channel h; can be estimated from noisy signals,
for example using a least-squared estimator [37]. The impact
of noise on the beam alignment has been studied in [1], [38],
where it is shown that the impact is small for a wideband
system. For a clear exposition of the learning algorithms, we
assume noise-free ~y; in this paper.

The beam codebook used in this paper is generated using
progressive phase-shift [39]. We note that this choice is not
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broadside direction

tier 1 beams

Fig. 1. Beam patterns in our codebook for an 8 x 8 array. The array is assumed
to face upward in the 4z direction. The codebook covers the directions in
the 4z half-space (i.e., assuming no radiation in the backplane).

important, and other codebooks such as the DFT codebook
could be used. Uniform planar arrays (UPA) are assumed at
both the transmitter and the receiver. With a UPA, each beam is
defined by its azimuth ¢ and elevation # main beam direction.
Let Gant(-) be the antenna element radiation pattern, Q, =
kdy sin(6) sin(¢), Qx = kdy sin(0) cos(¢), k = 27/ be the
wave number, ® denote the Kronecker product, N and IV, be
the numbers of elements along the x- and y-axis, and dyx and
dy be the element spacing in the x- and y-direction, a beam
pointing in (6, ¢) direction is given by [39]

1 1
iQ Jx
Gant(ovd)) eJ Y €
a(l,p) = ——— ) ® . . 4
(6,¢) NN, : : “4)
el (Ny —1)Qy I (Nx—1)0x
We assume dy = dy = A/2 in this work. We assume no
backplane radiation and set
1 it <90°
Gant(0,0) = . 5
(6, 9) {O otherwise ©)

We use (5) for simplicity, but we can replace it with a more
sophisticated pattern like that of a patch antenna.

The beams are generated such that they are separated by
their 3dB beamwidth in the azimuth and elevation. Fig. 1
shows the beams for an 8 x 8 array. The procedure starts
from the broadside direction. First, fixing the azimuth angle
at 0°, the elevation beam direction that crosses the broadside
beam at the 3dB point is determined numerically. We then do
the same procedure in the azimuth while fixing the elevation
angle until all 360° are covered (call these the tier 1 beams).
Next, we compute the elevation beam direction that crosses
the tier 1 beam at the 3dB beamwidth and determine all the
azimuth directions until all 360° are covered. This is repeated
until the main beam direction in elevation exceeds 90°, i.e.,
reaching the backplane direction.

Base station (7 m)

Truck
(2.5 mx12 mx1.8 m)

Car
(1.8 mx5mx1.5m)

Target-mobite™
“user (1.5 m)

Fig. 2. A snapshot of the ray-tracing simulation in an urban street. The street
has two lanes, and two types of vehicles (cars and trucks) are simulated. The
BS’s antenna is at 7m and the MU’s antenna is at 1.5m from the ground.

B. Data model

To generate the data, we parametrize the channel model
(1) using a commercial ray-tracing simulator, called Wireless
InSite [40]. Ray-tracing ensures spatial consistency in the
channels, which is essential to our location-based learning
problems. The ray-tracing simulation is shown in Fig. 2. We
assume a V2I setting in an urban street canyon. The street
has two lanes, and there are two types of vehicles repre-
sented by metal boxes: cars (1.8m x 5m X 1.5m) and trucks
(2.5m x 12m x 3.8m). The mobile user (MU) is a car on the far
side lane from the BS. Because it is larger, a truck can cause
blockage to the MU. We assume roof-mounted MU antenna at
1.5m and BS antenna at 7m. We generate the channel in a per
snapshot basis. In each snapshot, the MU is placed uniformly
at random within a location bin [dy — o4, dy + 04] in the far
side lane, and all other vehicles are placed randomly with
their gaps following an Erlang distribution. We refer to [1] for
a detailed description including the material properties used
for the ray-tracing. We set the carrier frequency to 60GHz,
dy = 30m, and o4 = 2.5m, which corresponds to a location
bin of 5m length. Note that our method only requires that
the position be accurate enough to identify the location bin.
The system bandwidth is set to 1.76GHz, which is used in
IEEE 802.11ad. The system bandwidth is used to compute
the symbol period used in the channel model (1). Using these
parameters, we generate 10,000 channel samples. We assume
16 x 16 UPA at both the MU and the BS when computing the
channel strengths. The codebook described in Section II-A has
271 beams.

III. POSITION-AIDED BEAM ALIGNMENT

Our beam alignment method relies on the premise that
context information (e.g., position) can be used to reduce the
training overhead. Using context, the method only needs to
train the most promising beam directions. Fig. 3 illustrates
the intuition behind the proposed method. Consider the vehicle
at position A. In this case, the geometry of the environment
allows only two pointing directions: the LOS path and the
building reflection path. If the system can learn from past beam
alignment experience to identify these two directions, the beam
alignment overhead can be reduced to training only these two
directions. Now, in practice there will be position error. The
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Bin size

“Position A

Position B

Different set of good beam
directions from those at B

Base station

Fig. 3. [Illustration of the intuition of the proposed position-aided beam
alignment. Consider a vehicle at position A. The geometry of the environment
only allows two possible pointing directions: the LOS and the building-
reflection path. If the system can learn from past beam measurement results
at position A to identify the two beam directions, then beam training can
be reduced to just train these two directions. In an actual setting there will
be position error. In our proposed solution, we use location bin that allows
position inaccuracy to be in the range of the bin size.

larger the error, the more uncertain the pointing directions,
and the required beam training overhead will increase. In our
simulations, we allow position inaccuracy to be within the Sm
location bin, and a training budget of only 30 beam pairs is
enough to achieve negligible performance loss compared to the
exhaustive search when using 16 x 16 arrays. (See [1, Section
VI.C] for a detailed evaluation of the effect of the location
bin size.) Note that the edge effect at bin boundaries can
be mitigated by defining overlapping bins. The small number
of possible pointing direction given a location has also been
observed in measurements. For example, [41, p. 19] reported
that in a 28GHz indoor measurement setting with moving
pedestrians the received powers were concentrated in no more
than three dominant directions.

In this section, we first describe the position-aided beam
alignment framework. Then, we explain the beam alignment
accuracy metric, based on which the core of the framework, the
beam pair selection method, is developed. Lastly, we review
the offline beam pair selection method from [1] which will be
used in our online solution.

A. Overview of the proposed position-aided beam alignment

The idea of our proposed approach is to learn from past
beam measurements experienced in a given discretized loca-
tion. The measurements themselves and/or learning parameters
are stored and maintained at the BS. In the offline learning
case as in our prior work [1], a sufficient number of beam
measurements are assumed collected before they are used to
recommend beam pairs. In the online learning case considered
in this paper, the learning parameters of a location bin are
updated every time a beam alignment attempt is made and
a new set of beam measurements becomes available at that
location bin.

Assuming the database is available for making recommen-
dation, we describe how the beam alignment procedure works.
Fig. 4 illustrates the position-aided beam alignment, which
consists of two phases. We start with the uplink. In Phase 1, the
MU sends a training request along with its context information
to the BS. In this work, we use position as the context. The BS

training request w/ position

(MU) [FeReT]

[ACK and list of beam pairs S]l

train each beam pair in §

X | [TX )]« « [TX )]

TX beam index

3 PRX (i)} i RXr(ip)i ¢ » » iRXr(ig)! [Feedback]

DB

RX beam index

[N —
Phase 1 (mmWave or low freq.)

BS selects promisng beams Phase 2 (mmWave directional beams)

Fig. 4. An illustration of position-aided beam alignment in the uplink. It
consists of two phases. Phase 1 is for the training request where the MU
position is sent to the BS. The BS uses the position and its learned database
to determine a list of promising beam pairs S. In Phase 2, the beam pairs in
the list are trained, and a feedback indicating the best beam index is sent at the
end. The database used for the beam pair selection is stored and maintained
at the BS without any burden on the MU.

uses the position and the database it maintains to determine a
subset of promising beam directions, denoted by S. The size of
the set S is a system parameter chosen to balance the training
overhead and the alignment accuracy. The BS then responds
with an acknowledgment and the beam pair subset S to the
MU. Since the beams are not aligned in this phase, a lower
frequency control channel or mmWave with a large spreading
factor can be used. In Phase 2, the beam pairs in S are trained
and the best beam index is fed back at the end. MmWave with
directional beams is used during this phase.

In the downlink, Phase 1 changes slightly. The process starts
with the BS sending a training request to the MU, which then
responds with an acknowledgment including its position. Next,
the BS sends the list of promising beam pairs S. The beam
training in Phase 2 is kept the same. This is possible because
of the reciprocity in the AoAs/AoDs, where the AoAs become
the AoDs and vice versa when reversing the transmitter and
receiver role. This AoA/AoD reciprocity only depends on the
reciprocity property of electromagnetic waves, which holds
when they propagate in passive medium like wireless channels
(excluding the device’s circuits) [39].

Finally, we emphasize that this beam alignment framework
is flexible and different beam pair selection methods can be
used for the “Beam pair selection” block. In particular, we
proposed an offline learning approach in [1] (briefly described
in Section III-C) that assumes the past beam measurements are
already collected. In this paper, we propose online algorithms
to select the beam pairs, which will be detailed in Section IV.

B. Quantifying beam alignment accuracy

There are many ways to quantify the accuracy of beam
alignment. Here, we use the power loss and the power loss
probability. The power loss can capture the severity of the
misalignment and differentiate whether the current alignment
is 3dB or 10dB away from the optimal alignment. This is
important because while both cases are misaligned, the former
likely still provides a good link while the latter likely cannot.

We start with the definition of the power loss. It is the ratio
of the channel strength between the selected beam pair indexed
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TABLE I
AN EXAMPLE OF THE DATABASE AT A LOCATION BIN. EACH ROW
CONSISTS OF THE MEASURED CHANNEL STRENGTHS OF ALL BEAM PAIR
COMBINATIONS FOR A GIVEN CHANNEL REALIZATION. HERE, WE DENOTE
1 THE BEAM PAIR INDEX AND ¥ THE CHANNEL STRENGTHS IN dB.

Best 2nd best |B]-th best
Obsv. No. 7 = 7 = T 7
1 5 -64.5 | 159 | -69.2 346 | -95.8
2 159 | -704 | 263 | -72.6 354 | -97.1
N 5 -66.4 | 258 | -68.1 | ... 2 -82.6
by s and the optimal channel strength given by
maxien vi
§=—T-"—", (6)
Vs

where B denotes the set of all possible beam pairs in the
codebook. The beam pair s is selected from the selection set
S, and with accurate beam training s = argmax;cs y;. If
the codebook is used without any modification, then S C B
and £ > 1 always holds. The proposed online learning method
also includes a component to refine the beam pairs to adapt the
codebook to the environment, in which case £ < 1 is possible.

We quantify the beam alignment accuracy by the power loss
probability defined by

Ppl(C,S):]P[f>C], @)

for some constant ¢ > 1. We call the case when ¢ = 1 the mis-
alignment probability. A related concept to the misalignment
probability is the probability of being optimal, given by

Ppi(S) =Pi* € S, (8)

where i* = argmax;cpy; denotes the index of the optimal
beam pair. We note that

Popt(S) = P[f = 1} &)
=1-P[¢>1] (10)
:1—Pp1(1,8)7 (11

where (10) follows because & > 1 (without refinement).
Popi(S) is used in the optimal beam selection method de-
scribed in the next subsection.

C. Offline inverse fingerprinting beam pair selection

In this subsection, we review two offline beam pair selection
methods from [1] which form the basis for our online solution.
We begin by describing the offline database. It is assumed
that this database has already been collected before it is used
for beam pair selection. The database has N observations,
where each observation consists of the channel strengths of
all beam pairs combinations in 55 measured in a location
bin. It is assumed that each observation is measured within a
beam coherence time so that the spatial channel has negligible
change [42]. An example of the database is shown in Table I.
We note that some tradeoff between the performance and the
cost for collecting and storing the database is possible (see [1]
for details).

We now describe the two beam pair selection methods from
[1], namely AvgPow and MinMisProb. AvgPow is a heuristic

that selects the beam pairs by their average channel strengths.
Denote 7; the sample average of the channel strength of the

i-th beam pair and argmax{-} the operator that returns the
i€B;M

top-M indices, the selection set of size |Sap| = M can be

written as

Sap = argmax {7;} . (12)

i€B;M
MinMisProb is an optimal selection method that minimizes
the misalignment probability. It can be shown that this optimal
selection reduces to a greedy selection using the probability
of being optimal [1]. Let |Symp| = M and denote popt(i)
the probability of being optimal of the beam pair ¢ estimated
from the database, then

SMMp = arg max {Popt (Z)} .
eB;M

13)

In this paper, we develop a risk-aware online learning version
of MinMisProb, where beam pairs selected by the UCB
indices are rejected with a probability reflecting their risk of
low received powers. When rejected, the replacement pair is
selected using both MinMisProb and AvgPow.

IV. PROPOSED TWO-LAYER ONLINE LEARNING

Our aim in this paper is to develop an online learning
algorithm for fast and efficient beam alignment. We propose
a two-layer online solution to achieve this goal. The idea
here is to learn coarse beam directions (quantized by the 3dB
beamwidths) that are promising in the first layer and conduct
a refinement of those promising directions in the second layer.
This kind of hierarchy is efficient because the refinement is
only done in promising directions.

An overview of the proposed online learning solution is
illustrated in Fig. 5. Note that this is a solution for the “Beam
pair selection” block in Fig. 4. The learning happens at the
BS as explained earlier. The algorithm runs in an infinite loop,
where in each iteration, it recommends a list of beam pairs and
updates the learning parameters recorded in the database upon
receiving the beam measurements of those pairs. As mentioned
in Section III-C, by having the MU transmit, there is no extra
feedback overhead to collect the beam measurements. We
highlight the groups of blocks that correspond to the learning
agent and the environment in Fig. 5. This shows a typical
RL setting where the agent optimizes its action through direct
interaction with the environment [43]. In our problem, the
action is the subset of beam pairs selected for the training,
and the environmental response is the beam measurement
results. The algorithm starts by running a detection loop for
a request for beam training from the user. If a request is
detected, the position (other context can also be used, but
we focus on position) is extracted from the training request
packet and input to the beam pair selection procedure. Then,
the procedure produces a list of beam pairs using the learning
parameters corresponding to the location bin stored in the
database. If the beam pair refinement is enabled, the refinement
parameters of the selected beam pairs are picked by the beam
pair refinement procedure. The resulting subset of beam pairs
is then sent to the user with an acknowledgment to allow the
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Detect user request?

——> read from memory

<—> read/write to memory

Fig. 5. A flowchart of the two-layer online learning. The algorithm starts with
a training request detection loop. When it detects a request, the algorithm
decodes the user’s position and input to the beam selection procedure,
which then reads the learning parameters corresponding to the position and
determines a subset of promising beam pairs. If beam refinement is enabled,
the refinement parameters of those selected pairs are selected. The beam subset
is then sent to the user and the subset of beam pairs are trained. The beam
measurements are used to update the learning parameters and the algorithm
returns to the training request detection loop.

beam training. After beam training, the measurements of the
selected beam pairs are used to update the learning parameters
in the database. Then, the algorithm goes back to the detection
loop to wait for the next training request.

V. ONLINE BEAM PAIR SELECTION

In this section, we describe the first layer of the two-layer
solution. We start with the problem statement. Then, we de-
velop online beam pair selection algorithms, first without and
then with risk-awareness. We conclude the section with regret
analyses of the proposed algorithms and some discussion.

A. Problem statement

Our goal here is to develop an online version of the optimal
beam pair selection method, MinMisProb. Specifically, the
algorithm needs to solve the following optimization problem
in an online setting:

minimize
S

Pu(1,S)

, (14)
subject to S C B, |S| < By,

where By, is the desired subset size (the training budget). In an
online learning setting, P, (1, S) is not known, and it has to be
estimated on the fly. To gain accurate knowledge of the beam
pairs, each of them must be sampled multiple times, which
means the learning can be very slow when 5 is a large set (i.e.,
when using large arrays with narrow beams). To remedy this
problem, we propose to apply a heuristic to screen the beam
pairs using a small offline database (of size V) to obtain a
smaller set B to apply the learning algorithm on. B is obtained
as the set of the unique beam pairs among the NC' entries of

the first C' columns of Table I. In our simulations, the offline
database size NV = 5 and C' = 200 seem to be good enough
for this purpose.

B. Greedy UCB algorithm

We first propose a solution to (14) without risk-awareness.
A subset S can be treated as a super-arm, and a single-
play MAB algorithm can be used. Such an approach is not
efficient because it treats each super-arm as independent and
the number of super-arms is large due to the combinatorial
nature of the number of all possible subsets.

A more efficient approach to solve (14) is to leverage the
structure of Py,(1,S) to take advantage of the dependence be-
tween the subsets. Specifically, we make use of the modularity
property of the probability of being optimal [1]. We note that
by the relationship in (11), the problem (14) is equivalent to

a maximization of P, (S) with the same constraints, i.e.,
maximize Pyt (S)

'S PR (15)

subject to S C B, |S| < By,

where we also replace B by B as explained earlier. Since
Pypt(S) is modular [1], it can be decomposed as

Popt(8) =Y Popu(i)-

i€ES

(16)

This property is due to the exclusive nature of the events that
the ¢-th beam pair is optimal (i.e., having the highest channel
strength). Recall that the probability of a union of exclusive
events is the sum of the probability of each individual event
[44]. The main implication of (16) is that the reward of &
can be computed from the individual rewards of each of the
beam pairs in S. This means the optimal beam pair subset
can be obtained by a greedy approach, where one beam pair is
selected at a time. Observing this property, we propose to use a
greedy UCB algorithm as shown in Algorithm 1, that selects
the beam pairs greedily using their UCB indices. The UCB
index of an arm is a high confidence bound of the expected
reward, which consists of the expected reward seen so far and
the uncertainty (the confidence margin) [28].

An important component of Algorithm 1 is the reward
signal. Since the expected reward is the probability of being
optimal, an ideal choice for the reward signal is

1 if i was best in B ’ (17

Tit =

0 otherwise

which takes the value 1 if the pair 7 is best and O otherwise. In
an actual setting, it is not known if a pair is the best in B since
only the beam measurements for the beam pairs in the subset
S C B are available. The best guess would be the strongest
pair among the beam pairs trained. Considering this limitation,
we propose to use an alternative and practical reward signal,

1 if 4 was best in S
Tiy = e (18)
0 all other pairs in &

which takes the value 1 for the pair with the strongest beam
measurement in S and O for all other pairs in S. Denoting



FOR SUBMISSION TO IEEE ACCESS: JANUARY 10, 2019

Algorithm 1 Greedy UCB
1: // initialize arms’ parameters using a small offline database
Xiot[i] 0, for Vi € B
Xy farg max s 317) 1
T; < 1, for Vie B
forn=1,2,... do
/I Compute UCB values
UCB; « Xl 4 /21800 for vi € B
/I Greedy selection using UCB values
S+ 10
for k=1,2,...,B; do
S + SUargmax UCB;
i€B\S

R A A

—_—
- O

12:  end for

13:  Train the selected By, beam pairs to get y; ,, for Vi € S
14:  // Update the learning parameters

15 T+ T;+1,forVieS

16:  Xiot[arg maxges Vi,n] < Xtot[arg maxges ya,n] + 1
17: end for

Xiot[i] = Y1, @iy, the expected reward of beam pair ¢ at
time n is estimated by popt(i) = Xiot[t]/T;, where T; is the
number of times that the pair ¢ was selected up to time n.

An intuitive understanding of this alternative reward defini-
tion can be drawn from an analogy to a sport tournament. In
each round, the winners from each subgroup from the previous
round play against each other to decide who will proceed to the
next round, which eventually will reach the championship. We,
thus, expect that over time only strong beam pairs will receive
rewards of 1. We believe that under certain assumption on the
underlying reward statistics of the beam pairs, it is possible to
provide some guarantee that Popt(i) will converge to the true
Popi(i) as T; — oo. This is outside the focus of this paper
and is left for future work.

As will be seen in Section VII-A, Algorithm 1 does not
perform well. The main reason for this is because it only
tries to minimize the cumulative regret and is oblivious to
the multiple-play setting in the beam alignment problem.
Since multiple beam pairs are trained, the subset S can be
divided into two parts. One part is for exploitation that uses
the knowledge obtained so far to select the beam pairs and
the other part is for exploration that aims at improving the
accuracy of the learning parameters. By balancing these two
parts, it is possible to reduce the risk (large power loss events)
at any given round. In other words, in the multiple-play setting,
the risk of large losses can be traded off with the speed of
learning (time to get accurate statistics of the arms). Another
point for improvement in Algorithm 1 is that it throws away
the magnitude information because the reward signal is binary.
Recall that the binary reward signal is needed because we
make use of the modularity of P,y (S) that allows the greedy
selection using the UCB indices. To remedy these weaknesses,
we propose a risk-aware version of Algorithm 1.

C. Risk-aware greedy UCB algorithm

We first start with the definition of risk. A possible choice
for the risk is the power loss, which measures the misalignment

severity. Since only the beam pairs in S are trained, the
channel strength of the optimal beam pair is not necessarily
known (especially, during the early stage of the learning) and
the power loss cannot be computed directly. Another important
point is that this risk needs to be estimated. Therefore, it is
crucial to quantify the uncertainty of the risk estimate for it to
be useful for the beam pair selection. For these two reasons,
we propose to use a binary risk signal defined in terms of the
ratio of the channel strength of the beam pair and the best
beam pair in S, i.e., the risk signal of the beam pair ¢ at time
t is given by

Yi,t , (19)

Zit = .
0 otherwise

{1 if mAXkES Vhot Trick
where I';;q 1s a risk threshold. The choice of I'j;q will be
discussed in Section VII-B.

A way to capture the uncertainty is to put a prior distribution
on the risk based on the observations seen so far (i.e., a
Bayesian approach). By the definition (19), z;; is Bernoulli
distributed with some unknown parameter (. It is well-known
that the Beta distribution is the conjugate prior to the Bernoulli
distribution [45]. This means that the belief on the risk of the
beam pair ¢ upon seeing the measurements up to time n can
be updated conveniently by updating the parameters of the
Beta distribution. Specifically, denoting Ziot[i] = Z?Zl Zit
the prior is updated as

Zn ~ Beta (1 + Zioi[i], 1+ Tj — Zioi[i]) . (20)

Here, we assume that at time 0 without any observation, ZO ~
Beta(1, 1), which is the uniform distribution over [0, 1]. This
is a reasonable assumption since no information on the beam
pair ¢ is available at time O.

We next explain how the risk estimate along with the prior
are used in the rejection mechanism to reduce the probability
of large power loss events during the learning. The new
algorithm is shown in Algorithm 2, which we call the risk-
aware greedy UCB algorithm. The new addition to Algorithm
1 is the risk-aware feature that rejects a beam pair selected
by the greedy UCB with a probability reflecting its risk. The
rejection probability is determined using the risk drawn from
the prior distribution given in (20) and the confidence margin
in two steps. First, a random variable Zn is drawn from this
prior (line 13). Then, it is multiplied by the confidence margin
for those beam pairs with X;ot[¢] > 0. The obtained Z, is
the rejection probability. The second step is needed because
any beam pair is subject to blockage and their risks are not
zero. This means that if Z,, is used directly as the rejection
probability, even good beam pairs will be rejected with non-
zero probability even when n — oo. The second step ensures
the algorithm accepts the UCB selection for “good” beam pairs
with increasing probability over time.

The proposed rejection mechanism is a random method that
rejects the beam pair with a probability Z,,. First, the algorithm
draws a Bernoulli random variable Rej with parameter Z,,. If
Rej = 0, the algorithm accepts the beam pair, otherwise it
rejects the pair. In that case, the replacement beam pair is
selected using popt(i) when there are pairs with Xy4[i] > 0,
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Algorithm 2 Risk-Aware Greedy UCB
1: // initialize arms’ parameters using a small offline database

2 Xiotli] < 0, for Vi € B
3 Xyotarg max; ;3 7101 1
4: Ztot[]FO fOI'VZGB
5. T; < 1, for Vi € B
6: forn=1,2,... do
7. // Compute UCB values
8 UCB; « Xedd 4 /210800 for v € B
9:  // Greedy selectlon usmg UCB values
10: S« 0
11: for k=1,2,..., B do
12: { + argmax UCB;
1€B\S

13: Zn ~ Beta (1 + Ztot [E], 1+ Tg — Ztot [E])
14: Zyy 4 Zn x| HEN f X[0] > 0, else Z,, < Z,,
15: Rej ~ Ber(Z,)
16: if Rej=0 then
17: S+ Su{s}
18: else
19: if 3i € B\ S with X;[i] >0 then
20 S + SUargmax P,y (4)

i€B\S
21: else
22: S +— SUargmax7;

i€B\S
23: end if
24: end if

25:  end for

26:  Train the selected By, beam pairs to get ; ,, for Vi € S

27:  // Update the learning parameters

288 T;+T;+1,forVieS

29:  Xiot[arg maxpes Yi,n] = Xtot[arg maxgpes vi,n) + 1

30: Ztot[i] — Ztot[i] +1if (maneS ’yk,n)/'yi,n > Trisks
VieS

31: end for

and using the average channel strength 7; when all remaining
pairs have Xi4[i] = 0. Unlike Algorithm 1, which does not
use the amplitudes of the beam measurements -; ,,, here they
are used to update the risk parameters and also used for the
replacement selection. This new algorithm makes a fuller use
of the measurement information as compared to Algorithm 1.

D. Regret analysis

In this subsection, we derive regret bounds of the two
algorithms that will provide insights on the effect of the
rejection mechanism we introduced in Algorithm 2. We make a
few simplifications to the problems to allow tractable analysis
which we will describe in detail when presenting the results.
Proofs are provided in Appendix A and B.

Before stating the results, we first describe the metric used
for the evaluation. For this type of online learning problem, a
widely used metric is the cumulative regret. It is defined as the
cumulative performance loss as compared to the performance
of an oracle that always plays the best arm [29]. Translating
this to the beam alignment problem, the regret incurred in

a time step is non-zero when the algorithm does not select
the best subset of beam pairs S*. Assuming |S*| = B,, the
optimal selection in (13) tells us that S* contains the top-
By, beam pairs with the highest probability of being optimal
Popi(-). Now, we call the beam pairs with the Bi,-highest
P,pt(-) as optimal and the rest of beam pairs as suboptimal.
Then, the cumulative regret increases whenever one or more
suboptimal beam pairs are selected in the selection set S.

In the following, we present what is called a problem-
dependent bound on cumulative regret (we drop ‘cumulative’
from now on for convenience), which quantifies the regret in
terms of the optimality gap. The optimality gap is defined
as the difference in the probability of being optimal for an
optimal pair ¢* and a suboptimal pair /, i.e.,

AZ i*r = opt(Z ) - Popt(g)- (21)

By definition, 0 < Ay ;« < 1 if Py, (4*) > 0. Note that Ay ;»
measures the difficulty in discriminating the suboptimal pair
¢ from the optimal pair ¢* for the particular problem at hand;
thus, the name problem-dependent when the regret bound is
expressed using optimality gaps.

For Algorithm 1, we assume the reward signal during the
learning is the ideal reward and not the alternative one, i.e., we
assume the reward signal is given by (17) instead of (18). We
make this assumption because it is intractable to deal directly
with the dynamics of the alternative reward signal in (18).
The main step in deriving the regret bound is the application
of the Chernoff-Hoeffding inequality to bound the probability
that the sample average of the reward is within the UCB value.
To apply the Chernoff-Hoeffding inequality, it is required that
the sample rewards are IID, which cannot be guaranteed when
using the alternative reward definition because its distribution
depends on the history of the selection done so far. This,
however, is a reasonable assumption, since we expect that (18)
will approach (17) for large n, which is the domain where the
regret bound is meaningful.

Theorem 1: Assuming that the ideal reward signal (17) is
accessible, the expected regret at time n of the greedy UCB
algorithm is upper bounded by

) 2. 2 &

(eB\S* i*€S*

+(1+7§) Z ZA“*'

LEB\S* i*E€S*

R1[n] <8log(n

Zz*

(22)

Theorem 1 shows a regret bound for Algorithm 1. The
first term, which increases with n, dominates the bound. It
increases as Ay ;« decreases. This makes sense because a
small Ay ;« means more samples are needed to differentiate
the suboptimal pair £ from the optimal pair ¢* with confidence.
The regret bound is O(log(n)), which is known to be optimal
up to the constant coefficient in front of log(n) [29]. This
confirms that the algorithm is a reasonable solution.

For Algorithm 2, we make two additional assumptions
besides the accessibility of the ideal reward signal. The first
assumption is that the rejection probability of any beam pair
¢ is constant, denoted by 1 — (,. This is used because the
rejection probability of the algorithm is dynamic (depending
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on the observation so far) and is not tractable. With a large
enough n, we expect the risk estimate to stabilize, and thus this
is not an unreasonable assumption. The second assumption is
that when rejected the replacement selection has an optimality
gap Ay ;x.

Theorem 2: Assuming that the ideal reward signal is avail-
able, the rejection probability of beam pair ¢ is 1 —(, and that
when rejected the optimality gap of the replacement selection
is AM*’ then the expected regret at time n of the risk-aware
greedy UCB algorithm is bounded by

'Y Y

(EB\S* i*eS*

Z Z 1—1Cz VA i-

(EB\S* i*eS*

+< ) D G+

(EB\S* i*€8*

8 log

Roln] < A

8 1og

(1—C)Apir), (23)

where ¢ = (v/5 —1)/2.

Theorem 2 shows a regret bound for Algorithm 2. The
algorithm still has O(log(n)) regret but with a larger con-
stant. This shows that introducing risk-awareness increases
the learning time in the sense that Ry[n] > Rp[n]. This is
because by rejecting a high-risk beam pair, the algorithm loses
the chance to get information on that beam pair. The idea
of Algorithm 2 is to distribute the learning of these high-
risk beam pairs (which has high cost) more evenly among the
users by rejecting them with some probability. In other words,
Algorithm 2 tradeoffs the learning speed to balance the risk of
severe misalignment endured by each user at different stages
of the learning.

VI. ONLINE BEAM PAIR REFINEMENT

In this section, we describe our beam refinement solution,
which is the second layer of the two-layer online learning
algorithm. We start with the problem formulation and then
describe our modified HOO solution.

A. Problem statement

We formulate our beam pair refinement as a stochastic CAB
problem. The beams are generated by progressive phase-shift
and are defined by their main beam directions. The goal is
to find the pointing direction of a beam pair to maximize
the average channel strength of that beam pair in an online
setting. Specifically, denoting ¢!, 6%, ¢%, and 6} the transmit
and receive main beam directions in the azimuth and elevation
of the beam pair ¢ defined in the codebook, and !, Of, &,
and ©} the corresponding 3dB beamwidths, the problem of
refining the beam pair ¢ can be written as

Eh/i(gﬁtaet,qsrver)}

D}/2, ¢; + /2],

‘e [0; —©7/2,0; + 6;/2],
[0; — ©}/2,0; + ©;/2].

maxumze

¢t ot ¢r

subject to @' € [¢f —
r 24)

Any pointing direction (¢°, 0%, ¢*, ") satisfying the constraints
is an arm in this problem. The space to search for the best
arm is the hyperrectangle defined by the constraints, which is
a continuous space. This means the directions are fine-tuned
within the 3dB beamwidths of the original beam pair ¢ defined
by the pointing direction (¢!, 6%, %, 0%). The coarse search to
within the 3dB beamwidth is supposed to be done by the beam
pair selection algorithm.

B. Modified HOO for beam pair refinement

HOO is a CAB algorithm that runs on a tree. We start by
describing the search tree. Then, we describe the flow of HOO.
Finally, we explain the modifications made to the original
algorithm to fit the beam refinement task. We describe the
algorithm for refining a beam pair <. Since all the description
is in the context of this beam pair ¢, we drop explicit references
to beam pair ¢ here to avoid notational clutter.

We now define the search tree 7 which HOO runs on. Each
node in the tree is a pair of transmit and receive pointing
directions (¢°, 0%, ¢*, ") satisfying the constraints in (24). The
root of the tree is the original pointing direction of the beam
pair i (¢}, 0%, %, 0) defined in the codebook. Each node in the
tree at depth ¢ < ¢y, has 16 children which correspond to all
possible combinations of transmit and receive beam directions
perturbed by 1/2¢ of the beamwidths in the four variables.
Denote (¢} 1., 05 > & 10} 1) the parameters of the k-th node
at depth £ in 7T, its set of 16 children nodes can be written
using a Cartesian product as

[ + /25, 05 ,]7,
M’Z,k - (1)5/227 eg,k]T’
(6 1> 005 +O5/27,
[$0ks 00s —O5/2]"

[0, + ®1/25 0 ,]7,
[0 — ®5/2%, 05,7,
[0 1> O +©5/2°7,
[0 s 075 — ©7/2"
(25)

Using this node expansion rule, a node at depth ¢ + 1
deviates from its parent node in the pointing direction by
beamwidth/2¢ and depends only on ¢. Each depth in the
tree can be thought of as a grid partitioning the search space
defined by the constraints in (24). The grid becomes finer
deeper in the tree (i.e., as £ increases).

We now describe how the modified HOO works. A pseudo-
code is shown in Algorithm 3. It runs on a finite tree with a
maximum depth of /.. The nodes in the tree are activated
on the fly, and only the root node and its children are active at
time n = 0. Thus, the initial tree is 7 = {(1,1)}UCy 1, where
Cy,1. denotes the set of the indices of the children of the node
(¢, k). In each iteration, there are three main parts. First, a
node is selected by traversing the active tree starting from the
root following the path through nodes that have the largest
B-values (line 6-13), which is the best optimistic estimate
of the average rewards of the nodes. The second part is the
beam measurement for the selected node (line 14). Lastly,
after obtaining the measurement, the learning parameters are
updated. If the condition is met, a node in the tree is expanded,
i.e., activating its 16 children nodes. Note that to lower the risk
of expanding a suboptimal node, it is enforced that a node can
be expanded only after it is sampled Ko.q times. The last part
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Algorithm 3 Modified HOO for Beam Pair Refinement

1: // Initialization

2. T «+ {(0, 1)} U Cl,l

3: (Bgﬁj, Tg’j, ﬂg’% qu}j) — (OQ7 0,0, 0) for Vj € Cl,l

4: forn=1,2,... do

5: // Select a node in the tree to sample

6: (L, k)« (1,1) /I Start from the root node
7. P+ {(k)}
3
9

for /=1,... , min{depth(7),lmax — 1} do
k* < argmax Byy1 5
J€CH K

10: (k) (£+1,k)
11: P+—PU{(k)}
12:  end for
13: (U, ks) < (0, k)
14:  Obtain the beam measurement for node (¢, ks) denoted

by v
15:  // Update the learning parameters
16: for (¢,k) € P do /I Update sample averages

17: Top <~ Top+1

18: fg < (1= 70k + 7/ T
19: S <+ S + 77

20: Uz?,k < (Sagy, — ﬂ%,kTE,k)/TE,k

21:  end for

22: for all (¢,k)e T do  // Update U-values

23: Ug i <+ (ﬂg,k + 4/ 1662191(;%(7:)) V(f)
24: Ug’k — oo if Tg,;~C < [anorm log(nﬂ or T&k < Kmin

/I Forced exploration
25:  end for
26:  // Expand a node if conditions are met
27 i by < lmax A To k. > Kexa N (€s, ks) is a leaf then
28: T« TUCZSJ@S

29: (Be+1,55 Toot1,55 flea+1,5: S 41,5) < (00,0,0,0)
for Vj € Cy, ;
30:  end if

31:  // Update B-values
3. for {=1Vs,0;,—1,...,2 do

33: B&k — min{Ug,k,manech Bg.;,_Lj},V nodes at
depth £ in T

34:  end for

35: end for

of the parameter update is the B-values. They are computed by
back calculation from the sampled node back to the root (line
33). The B-value of node (¢, k) is the minimum between its
own U-value and the maximum B-value of its children nodes,
ie.,

ng < min {Ug7k, max Bg+1.j} . (26)
J€ECLk '

The U-value is similar to the UCB value, but it also accounts
for the smoothness property (line 23). The U-value provides an
optimistic estimate of its average reward using the parameter
of the node, and the maximum B-value among its children
nodes provides another optimistic estimate of its reward. By
taking the minimum between the two, the obtained B-value

provides a refined optimistic estimate of the average reward
of the node.

We introduce three main modifications to the original HOO
tailored to the beam refinement setting. The first one is the use
of a finite tree. The original HOO assumes an infinite tree to
represent the arm space. Since small adjustments (e.g., 1/8 of
the beamwidth) have a small impact on the gain, a finite tree
of maximum depth £, is used instead to save computation
and storage for the learning parameters. The second one is the
smoothness bound. The original HOO assumes an additive
offset. Due to the multiplicative nature of the antenna gains, a
multiplicative smoothness coefficient v(€) as shown in line 23
is more suitable. The coefficient is computed using Lemma 1
which will be detailed in the last part of this subsection.

The third modification is the confidence margin. Because the

original margin /2 log(n)/Ty i is too loose in our setting, we
propose to use that of the norm-UCB (line 23) [28]. The mar-

gin \/2log(n)/Ty is derived from the Chernoff-Hoeffding
inequality, which is applicable to any distribution with the
support in [0, 1]. While normalizing the channel strengths by
a large enough number will approximately guarantee that the
support is within [0, 1], the average typically takes a value
much less than 1 and the margin \/2log(n)/Ty i is too loose
for reasonable learning horizons. The reason that the average
is much smaller than 1 is the small scale fading nature of the
wireless channel. Fading is due to the multipath effect and
can cause the maximum instantaneous channel strength to be
much larger than the average [37]. A good property of the
new margin is that the sample variance is also used. Note that
to enable regret analysis, the norm-UCB algorithm requires
each arm be sampled at least [cyorm log(n)] at time n with
Qnorm = 8 [28]. This is enforced by setting the U-values of the
nodes that need to be explored to infinity (see line 24). Note
that we also introduce the condition Ty < Ky, which is
used to ensure that there are at least /i, samples of the node
for computing the sample variance. This is needed when using
a small ayorm.-

We next state a lemma defining the smoothness property
of the objective function in (24). The lemma is useful for
computing the smoothness coefficient v/(¥).

Lemma 1: Assume a single-path azimuth PAS with the
optimal beam direction ¢* with isotropic transmit antenna,
G(+; ¢0) the normalized gain of the beam pattern pointing at
¢o assumed to be decreasing and concave in [¢g, ¢ + /2]
with ® denoting the 3 dB beamwidth (e.g., true for a uniform
planar array), for a receive pointing direction ¢g such that
6" — g0l < A < D)2,

Y(¢0)/G(do + Ad; do) > 7(¢").
Moreover, for a general PAS with the support within [¢g —
WU, o + V] with ¥ < /2,

V(d0)/G(do + Ag; ¢o) = 7(¢*) — Err,

where Err > 0 is a residual term that depends on the shape of
the PAS and Err — 0 as A¢ — 0.

We now explain how to determine the smoothness co-
efficient v(¢) based on Lemma 1. While we state Lemma
1 assuming an isotropic transmit antenna to avoid tedious

27
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notations, the same argument applies when we also include
the transmit beam pattern. In particular, denoting ¢™, ¢** the
optimal receive and transmit beam direction,

(65, $6)

Err.
(@) + A5 65)Ga(0h + Aot 85) "

(29)

> :Y(er*a (bt*) -

When steering the elevation only, we get the same relation
as (29). If we assume square UPAs, the beam pattern in the
azimuth and elevation will be the same. Since we only change
the azimuth or elevation but not both per (25), the smoothness
coefficient is given by

v(0) = a/(Gi(¢; + ©/2 6))Gi(} + /2% 61)
~ a/¢*(beamwidth/2%),

(30)
€Y

where a > 1 is a correction coefficient to account for Err
if deemed necessary. For convenience, we approximate the
gain by g¢(-) the beam pattern at broadside as a function of
the deviation from the broadside direction. Note that we will
need a only for large A¢. Deeper in the tree, the change in
the angle is small and thus Err will become negligible. Also,
for the sake of clear argument, we restrict ¥ < &/2, but
with a more elaborate choice of the coefficient of Err in the
proof, we can allow ¥ to be larger. This, however, is not a big
concern in our setting because A¢ will be ®/4 or less and
Err is restricted to a small value already.

VII. NUMERICAL RESULTS

We start with the general setting of our numerical evalua-
tions. As described in Section II-B, our codebook for 16 x 16
UPA has 271 beams and thus there are 2712 beam pairs. Using
the heuristic screening to get B as explained in Section V-A
with the initial database size of N = 5 and C' = 200, the size
of the set of beam pairs to be learned |l§ | is typically between
400 and 600 depending on the simulation run. As mentioned in
Section II-B, we generated 10,000 channel samples using ray-
tracing. To eliminate the effect of the ordering of the channel
samples on the learning performance, the evaluation metrics
are averaged over 100 simulation runs, where in each run we
randomly permute these 10,000 channel samples. We apply a
moving average with a window size of 50 time steps to better
show the trends.

As an evaluation metric, we use the 3 dB power loss
probability and the gain defined as the inverse of the power
loss in (6). The 3 dB power loss probability (i.e., ¢ = 2
in (7)) measures how often the selected beam pair has a
loss larger than 3 dB as compared to the best beam pair
selected by exhaustive search, and thus capturing the beam
alignment accuracy. This metric, however, is not suitable for
evaluating the beam pair refinement because it cannot capture
the improvement over the exhaustive search in the original
codebook. Allowing the refinement, a beam pair better than
the best in the original codebook can be selected resulting
in power loss taking a value less than one, or equivalently, a
positive gain in dB.

The rest of the section is divided into three parts. Section
VII-A evaluates the beam pair selection alone without the

o
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Fig. 6. Average 3dB power loss probability using the proposed risk-aware
greedy UCB algorithm with different training budgets By, and risk thresholds
I'}isk. For both Bty = 10 and 30, the plots show similar learning behavior.
A smaller training budget By, = 10 provides less accuracy beam alignment.
The plots using different I'ig show that the performance is not sensitive to
I'lisk as long as it is not too large.

refinement option. Section VII-B assesses the performance of
the beam pair refinement assuming an offline learning for the
beam pair selection. Section VII-C provides evaluations of the
integrated solution incorporating both components.

A. Online Beam Pair Selection

This subsection evaluates the performance of the proposed
risk-aware greedy UCB algorithm without the beam refinement
option. There are two parameters to be decided when running
Algorithm 2: the training budget By, and the risk threshold
T'yisk in (19). We note that our solution does not require that
By, be fixed, but for simplicity, we assume that the same By,
is used during the entire learning horizon. Fig. 6 shows the
average 3dB power loss probability versus time for B, = 10
and 30 with different I';jsx. We can confirm from the figure
that using a larger training budget B, leads to lower 3dB
power loss probability, i.e., more accurate beam alignment.
The learning seems to have two phases: the fast improvement
phase in the early time steps and the slower improvement
phase after that. For By, = 30 and I'jsx = 5dB, this phase
change happens at around time index 500. The slower learning
phase starts when the algorithm has identified high-risk beam
pairs (with some certainty) and learns those beam pairs at a
slow pace due to the rejection mechanism. Regarding the risk
threshold, the results show that the algorithm is not sensitive to
the choice of I'};x. As long as 'y is not too large (e.g., less
than 40dB), it performs well. The main reason for this behavior
is due to the effect of the replacement selection method (line
19-23 in Algorithm 2) that selects beam pairs to replace those
rejected; even if a good beam pair gets rejected due to risk
overestimation (when using a small I';g), it will likely be
picked up by the replacement selection.

Fig. 7 shows a performance comparison of the greedy
UCB algorithm with and without the risk-awareness. The
performance without risk-awareness is an order of magnitude
worse than that with risk-aware. This might seem a bit
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Fig. 7. Performance comparison of greedy UCB with and without risk-
awareness. The performance is an order of magnitude worse without risk-
awareness. This is because the risk-aware greedy UCB uses the risk estimates
to control the number of high-risk beam pairs selected in the subset S reducing
the probability of severe misalignment.

counterintuitive because the regret bound of the risk-aware
algorithm is higher. One way to understand this behavior is
this. The goal of the UCB selection is to reach a state where
we can ensure that a suboptimal arm is not selected with high
probability (call this the optimal state). To reach the optimal
state, each arm has to be sampled enough times (TZ(SZ in the
derivation in Appendix A). Algorithm 1 samples the arms to
reach this state fast, but it will expose early stage users to
select more high-risk arms. Algorithm 2 balances the number
of high-risk arms at any round by the rejection mechanism
which results in a slower speed to reach the optimal state, i.e.,
a slower learning speed. By not exposing a user to too many
high-risk arms, Algorithm 2 can ensure that the regret each
user has to endure is not too large. In other words, although
the cumulative regret is smaller (at a large enough time), users
in early stages of Algorithm 1 have to sacrifice. Algorithm 2
distributes the regret more evenly among the users at different
learning stages. We note that because of the large number
of arms (400 to 600 as noted earlier), the time to reach the
optimal state is large and Algorithm 1 is not practical as an
online solution as shown in Fig. 7.

The last part of this subsection shows the effectiveness
of our choice of the reward signal in (18). Specifically, we
compare the accuracy of the beam selection using the average
sample rewards (Popt(i)) versus the more intuitive choice of
average channel strength 7;. We also compare it with the case
where we assume that the ideal reward defined in (17) is
available to the algorithm during the learning. To evaluate this,
we let the online learning run for 2000 time steps. We, then,
use Popt(i) and 7; estimated at time step 2000 to get two
sets of beam selections and evaluate the two sets over 500
channel samples. We use By, = 30 and T’} = 5dB for the
online learning. Fig. 8 shows the 3dB power loss probability
against the number of beam pairs trained. We can see that
the beam pair selection using Popt(i) is more accurate than
using the average channel strengths. Also, the plots show that
the degradation due to the use of the proposed alternative and

10°

—w»— Average sample reward (using (16) during learning)
—O— Average sample reward (using (17) during learning)
—&— Average channel strength

Average 3 dB power loss probability

‘ ‘ ‘ ‘ D
0 5 10 15 20 25 30 35 40

Number of beam pairs trained

Fig. 8. A comparison of the accuracy of the selection set produced by
the average of the proposed reward signal (Popt (7)) and the more intuitive
choice of average channel strength. The performance when using ]sopt (2) is
consistently better for all training budgets. The comparison when using the
proposed practical reward signal (18) as opposed to the ideal reward signal
(17) shows negligible performance loss.

practical reward signal in (18) during the learning results in
negligible loss. These results confirm the effectiveness of our
choice of the reward signal in (18).

Before moving on to the beam refinement part, we provide
some comments regarding the overhead and the requirement
on the position accuracy. Regarding the accuracy of the
alignment, as reported in [1], there is negligible loss in the data
rate as compared to the exhaustive search when the average
3dB power loss probability is less than 1%. We can see in
Fig. 6 that the average 3dB power loss falls below 2% quickly
and reaches 1% within about 300 time steps with By, = 30
and I'};qx = bdB. The overhead per beam alignment attempt,
which affects the instantaneous performance, is the same as
the offline method, and the detailed study has been reported
in our prior work [1]. We thus only provide a summary of the
main results here for completeness.

The overhead per beam alignment attempt of the proposed
method is determined by the training budget Bi,. When
using 16 x 16 arrays at both the transmitter and receiver,
B, = 30 was shown in [1] to provide negligible performance
loss compared to the exhaustive search. This is the reason
we chose By, = 30 to run our online beam pair selection
algorithm so that the overhead in each beam training attempt
is kept the same as in the offline approach from [1]. In [1],
we compared the performance of the offline approach with
two existing methods: IEEE 802.11ad and the method that
uses the position only without the past beam measurements.
The training overhead of our approach is less than a few
percents of that of the IEEE 802.11ad method (the larger
the array the smaller the percentage). Detailed comparison in
the mobility context shows that our proposed beam alignment
can support large arrays at high vehicular speed, while the
IEEE 802.11ad struggles and its beam training time can eat
up all the communication time before realignment is needed.
It was also shown that using only the position results in
severe performance loss when the blockage probability is not
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negligible (e.g., in a dense traffic). In other words, the value
of past beam measurements increases with the LOS blockage
probability.

Regarding the position accuracy, our method only requires
that the position is accurate enough to identify the location
bin. To investigate the sensitivity to position error, in [1] we
evaluated the performance for bin sizes ranging from 2m to
5m. The results show that for 16 x 16 arrays, there was no
performance difference. Thus, we use the Sm location bin in
our evaluation in this paper. When using a larger array such as
32 x 32, the position accuracy requirement increases and the
results show that a smaller bin size such as 2m yields better
performance. While the results show that larger arrays require
more accurate position information, even for the large 16 x 16
array considered in this paper, only a few meters of accuracy
is required.

B. Online beam pair refinement

To evaluate the performance of the beam refinement on
its own, we perform an offline beam pair selection using
the MinMisProb method from [1] before running the beam
refinement. In each simulation run, we use the first 300 channel
samples to determine the selection set S, and then we run
the beam pair refinement on each of the beam pairs in S
where we set the training budget to By, = 30. For a baseline
comparison, we implement an MAB solution using the norm-
UCB algorithm from [28]. The MAB solution is run on the
leaves of the search tree, and thus the number of arms is
16fmax—1 Besides By, we also need to specify the maximum
tree depth ¢,,,x and the forced exploration parameter cvorm,-
We use Knin = 3 and Kqq = 10.

We start by comparing the performance of MAB and our
modified HOO solution in Fig. 9a. We can see that HOO learns
much faster by leveraging the tree structure. We can see the
cost of exploration of MAB in the initial stage, where each arm
has to be tried Ky, times. Using the search tree, starting from
the root, HOO will first explore the nodes at depth 2. At depth
3, it explores only the children nodes of promising nodes at
depth 2, and this goes on until reaching /,,,,,. This way, HOO
does not have to sample all the leaves uniformly to explore
the whole arm space leading to more efficient exploration than
MAB.

We next show the effect of ayorm and £p,.x on the perfor-
mance. We noted earlier that oo, = 8 is required to derive a
regret bound in [28]. Forcing exploration this way with ayorm
turns out to result in bad performance for our applications as
shown in Fig. 9a. The dips in the gains are due to this forced
exploration, and the intervals between dips decrease as ayorm
increases. Note that even with a0, = 0, both MAB and
HOO still explore because of the confidence margin of the
norm-UCB /1667 , log(n)/ T i Fig. 9a shows that for both
MAB and HOO, ayom = 0 provides the best performance.
Fig. 9b compares the performance of HOO for ¢,,,,x = 2,3 and
4 with aporm = 0. We can see that a larger £y, improves the
gains, which is expected since it allows a more refined search.
Remarkably, thanks to the structure of the search tree, a larger
{max does not require more cost in the exploration. Since the
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Fig. 9. A comparison of HOO and MAB with different anorm and £max.
Fig. (a) compares the performance when {max = 3. MAB does not use
the hierarchical structure of the search tree as HOO and suffers a larger
exploration penalty. The penalty is even more severe as anorm increases. The
results show that the forced exploration is not needed and anorm = O should
be used. Fig. (b) compares the performance of HOO when using different
max. There is negligible gain for setting £max beyond 3. We also see that
HOO does not have extra degradation due to exploration when we increase

gmax-

performance improvement is quite small and the number of
nodes in the tree increases quickly, we use f.x = 3 from
now on.

Fig. 10 compares the HOO beam refinement with and
without the smoothness coefficient v(¢). The performance
difference is negligible. This is likely because the search region
in our problem is already confined to a small local region
(within the 3dB beamwidths of the selected beam pair) so
that the constraint derived from the smoothness property does
not have much value. This has a welcoming implication. The
algorithm can be expected to be robust to small irregularity
in the detailed shape of the beam patterns (thus affecting the
exact smoothness property), which can be expected with real
hardware.



FOR SUBMISSION TO IEEE ACCESS: JANUARY 10, 2019

Average gain [dB]

0 = = =HOO with smoothness bound
———HOO without smoothness bound
I I I I I

-0.2
0 1000 2000 3000 4000 5000 6000 7000 8000
Time index

Fig. 10. A comparison of HOO with and without the smoothness coefficient
v(£) (for computing the U-values). The smoothness coefficient shows negli-
gible effect. This is likely because the refinement problem searches locally
within the 3dB beamwidth. Since this is in the vicinity of the optimal point,
it is not possible to eliminate search regions using the smoothness bound.

C. Integrated online learning solution

This subsection evaluates the performance when combining
the beam pair selection and refinement together. One thing
that needs to be specified when combining the two is when to
start the refinement for a selected beam pair. We consider the
following three variations to start the beam refinement:

1) Refine all: The beam pair refinement is started for any
beam pair from the first time it is selected by the
online beam pair selection algorithm. This is the most
straightforward way to combine the two components.

2) Refine after Xiot[i] > 0: The refinement of the beam
pair ¢ starts from the time step that the beam pair ¢
receives a reward, i.e., when Xi.t[i] becomes positive.
The point for this option is that the algorithm only
refines those beam pairs deemed to be most promising.

3) Refine after ng time steps: The beam refinement of all
selected beam pairs starts after running the online beam
pair selection for ng time steps. The rationale for this
option is to prevent the beam pair refinement algorithm
from affecting the learning of the beam pair selection
algorithm. This option allows the beam pair selection to
run for a while so that it stabilizes to some extent before
starting the beam pair refinement.

While it seems more efficient to focus the refinement on
promising beam pairs only as in Option 2, refining suboptimal
beam pairs as well will maximize their average received signal
and could reduce the risk of large power loss. Thus, it is not
obvious which option provides the best performance.

Fig. 11 compares the average gains over the exhaustive
search (on the original codebook) of the three options. Here,
By, = 30, I'iisk = 5dB, lhax = 3, anorm = 0, and no
smoothness coefficient is used (i.e., v¥(¢) = 1). We can see that
the first option, which is also the most straightforward one,
provides the best performance. Focusing just on promising
beam directions as in the second option performs quite well
but is slightly worse than the first option. The results show that

0.4
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- = = Refine after Xiq[i]>0
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1500 2000 2500 3000
Time index

-0.4 ! !
0 500 1000

Fig. 11. A comparison of average gain of the integrated solution with the three
options for when to start the beam refinement. The plots show no negative
impact of the beam pair refinement on the online learning for beam pair
selection. It is best to start the refinement simultaneously with the online
beam pair selection.

there is no benefit in waiting for some time before enabling
the beam refinement as in the third option.

VIII. CONCLUSIONS

In this paper, we proposed position-based online learning
algorithms for beam pair selection and refinement. We used
the MAB framework to develop a risk-aware greedy UCB
algorithm for beam pair selection and a modified HOO for the
beam pair refinement. Combining the two solutions together,
we can gain up to about 1.5dB over the received power
obtained by exhaustive search over the original beam codebook
before refinement. The learning is fast and it achieves an av-
erage gain of about 1dB within the first 100 time steps. While
we only use position in this paper, more side information from
sensors on devices or the BS about the environment will help
further reduce the beam training overhead. As shown in this
work, even efficient learning algorithms can be impractical
without risk-awareness because the focus is on cumulative
rather than instantaneous performance. Therefore, we believe
risk-awareness is a key to developing practical online learning
solutions to take full advantage of these sensors to enable fast
and efficient mmWave communications.

APPENDIX A
PROOF OF THEOREM 1

The regret is non-zero when one or more suboptimal beam
pairs are selected. Thus, the total expected regret can be
bounded by the average number of times suboptimal pairs are
selected. We note that this derivation follows the steps of the
UCBI1 derivation from [28, Theorem 1] with the exception
of the multiple-play setting. We provide the full details for
completeness and readability. Denote ¢ and i* the indices of
a suboptimal and optimal pair. Denote 7T} ;+ [n] the number of
times ¢ is selected instead of ¢* up to time n, the expected
regret is

Ry ix[n) = E [Ty [n]] Agix, (32)
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where Ap;« is the optimality gap defined in (21). This is
because whether ¢ is selected or not at time n depends on
the rewards up to time n — 1 and the loss depends only on the
rewards at n. Thus, the two are independent by the assumption
of independent reward signals across time.

We will now compute a bound for E [Ty ;«[n]]. A necessary
condition for the pair £ to be selected instead of the pair ¢* is
that UCB, > UCB;. After the pair £ has been selected T}fj{
times, the number of times ¢ is selected instead of i* up to
time n can be bounded by

T[] < T.9) +Z {chgz UCB;-, Ty[t — 1] zTgfjl}

t=to

(33)

O+ cro11-1] =

fT“*JrZ { Pont

t=to

Popt (%) + ¢, 1,7 t—1]s Telt —1] > T;‘?} (34)

STZ((Z)*—FZI{ max

(0)
=t Ty e <ue<t

{Popi(O) + 11,0, } =

min

i, { P i) + 1.0}

n—1t-1 t—1

<O+ Y 1{150pt(£

t=1 u=1 e

(35)

=7,
(36)

where to > T( 2 and ¢;,, = +/2log(t)/u is the confidence
margin. For {Popt (0) + cru, > Popt( *) 4 ¢} to be true, at

least one of the followings must hold

Popi(i*) < Popt (i) = 1 (37)
Popt(g) Z Popt (f) + Ct uy (38)
Popt(i*) < Popt (6) + 2Ct,u14' (39)

Note that (37) means the UCB value underestimates the true
reward of pair ¢*, and (38) means the UCB value overestimates
the true reward of pair ¢ by larger than the corresponding
confidence margins. Setting Té(g)* = [8log(n)/A7 .1, it can
be shown that (39) is impossible [28, p. 243], and we can
bound E[T} ;[n]] by

i 7 n-1t-1 t—-1
81 .
E[Ty,+[n]] < :f( n) + Z Z Z P[(37) is true]
L t=1u=1l,,_70,
+ P[(38) is true] (40)
-SIOg(n)_ oo t—1 t—1
< | a7 +3 3 > @t
4i* t=1u=l,,_7()
(4D
1o (n)_ SR
< Af +2) Y > (42)
4ir t=1 u=1ue=1
8log(n) 2
< 2. 4
o N R (43)

) + Ct,u[ Z popt(i*) + Ct,u} .

The second line in (41) follows because the probability terms
can be shown to be bounded by ¢~* using the Chernoff-
Hoeffding inequality [28].

The total regret bound follows by summing all pairs of
optimal and suboptimal beam pairs:

< > > ETun

eB\S* iFES*

AV (44)

Substituting (43) in and after some algebra, we obtain (22).

APPENDIX B
PROOF OF THEOREM 2

The derivation follows similarly to that of Theorem 1, but
we need to be careful about the rejection mechanism. Even if
a pair is selected by the greedy UCB selection, it will not be
used for the training if it is rejected. Let TM* and Ty ;+ be
the number of times the pair ¢ is selected instead of the pair
+* and the number of times it is accepted for beam training,
respectively. We proceed similarly to obtain a bound similar
to (36) given by

n—1t—1 t—1
7(0)
TZ 7'* T@z* + Z 1{P0pt + ¢t g Z
R )

Popt( )+Ct u} (45)

To compute the bound on E [Tg’p [n]} , we again use (37)-(39).
The probability bounds on (37) and (38) are still applicable.
Because of the rejection, we cannot guarantee that (39) is
impossible, but we can bound its probability. Note that u, is
the number of times the pair ¢ is selected, and u, is the number
of times it is accepted for beam training. It can be shown
that (39) is impossible if u, > Slog(t) [28, p. 243]. Thus, we

can bound the probability that (39) holds by P [W < 8log®)

With the acceptance probability (,, we have E[u,] = [W]Cg
Setting Tz(,(;)* = [8log(n)/(Ced*A7 ;. )], we get the following
bound

8log(t) | - 8log(t)| - ~(0)
P [W < Az, =t <Plu < A, =Ty
(46)
1 -
ngg“€m~—ﬁ% @)
A“* ’
<n* (48)

Here, (46) follows because ¢ > tg > TZO)*, (47) holds because
t < n, and (48) is the application of the lower tail of the
Chernoff bound with § = (v/5 — 1)/2 for the Bernoulli
distribution [46, Theorem 4]. Taking the expectation of (45)
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and substitute the probability bounds for (37)-(39) to hold, we
get

E [Tg - [n]} <79+ @440 @)
t=1 u=1 - _+(0)
ae=T,
~ e’} t t
<T 4333 N et (50)
t=1 u=1a,=1
=T, +7%/2 (51)

To obtain the regret, we note that when the pair ¢ is selected
the regret incurred is (pAg i+ + (1 — C@)A“* because when
rejected (with probability 1 — (), the regret is A“*. The total
expected regret is then

Ra[n] < Z Z E(Ty, - [n]](Celpir + (1 — CZ)AM*),
EEB\S* i*ES*
(52)

which after rearranging terms will result in (23).

APPENDIX C
PROOF OF LEMMA 1

Assuming a normalized PAS, then the single-path PAS can
be represented by the delta function §(¢ — ¢*). The average
received power can be written as

do+AP
(o) = /Lb 56— 0)G(d:do)de.  (53)

0o—A¢

Since the gain G(¢; @) is decreasing in [¢g, po + P/2] and
|¢p* — do| < Ap < ®/2 by the assumption of the Lemma,

G (5 po)

mZIZG(sﬁ;sﬂ,

Vo € [po — A, ¢o] U [¢o, do + Ag).  (54)
Multiply both sides by §(¢ — ¢*) and integrate to get
dot+AP
[ 0= G600 /Glon + Ao oo >
’ pot+AP
[ s0- 6@ 59
po—Ag
V(b0)/G(do + Ag; o) > 7(4"). (56)

Now, for a more general PAS P(¢) with a bounded support in
[0 — T, o+ V], the average received power can be written as

s
on) = [ POIGE: w0 67
3 Po+A¢

bpo—AP

- / P($)C(&: do)do + / P($)C(; do)ds
$o—T Po—A¢
bo+¥

T / P(6)G(65 do)dé. (58)
¢

o+Ad

By the same argument as in the single-path PAS case, we have

G .
PUOG(S: ) g oo = PIOIG(5: ")
6 € [do - A6, 60 + Ad]

P(6)G (6 o) Z0 T T~ B100) 5 g 0,

(59)

G(o + V5 do)
Vo € [po — VU, po — Ad] U [po + Ag, o + V.
(60)
Taking the integral of (59) and (60), we have
Y(d0)/G (o + Ag) > 7(¢*) — Err (61)
where
_— (G(¢o+‘I’—A¢;¢o) . 1 )X
G(¢o + Vs ¢p) G(po + Ag; po)
Po—Ag Po+V¥
[ P@cseor [ Po)G 0
Po—¥ Po+A¢
(62)

Because G(¢; ¢p) is decreasing and concave for ¢ € [¢g, P+
® /2] by the assumptions of the Lemma (e.g., true for a uni-
form planar array), the coefficient is positive and decreasing as
A¢ decreases. Since the integrands are positive by definition,
Err is positive. Further, because the sum of the integrals in
(62) is less than J(¢p) (thus, finite), we have Err — 0 as
A¢p — 0. Also, for small ¥ the integration intervals decrease
and when ¥ < A¢ they disappear, i.e., Err = 0.
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