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Abstract—One issue in the design of modern communication
systems is how to benefit from the increasing variety of sensor sig-
nals and sophisticated machine learning algorithms. We recently
described how LIDAR (light detection and ranging) on a vehicle
can be used for line-of-sight detection and to reduce the overhead
associated with link configuration in millimeter wave communi-
cation systems. LIDAR is widely used in autonomous driving
for high resolution mapping and positioning. In this paper, we
present new LIDAR-based features for machine learning and
compare the previously proposed distributed architecture with
two centralized schemes: using a single LIDAR located at the base
station (BS) and fusing LIDAR data from neighboring vehicles
at the BS. We also quantify the advantages of LIDAR-based
solutions over solutions based on connected vehicles informing
their positions. We use deep convolutional neural networks
to process images composed of LIDAR data and/or positions.
Using co-simulation of communications and LIDAR in a vehicle-
to-infrastructure (V2I) scenario, we find that the distributed
LIDAR-based architecture provides robust performance irrespec-
tive of car penetration rate, outperforming the single LIDAR
at BS and position-based solutions. We noted that, under the
simulated conditions, the benefits of a centralized data fusion over
distributed processing are not significant, meaning that machine
learning for line-of-sight detection and beam selection can be
conveniently executed at vehicles equipped with LIDAR.

I. INTRODUCTION

Connected and automated vehicles generate a large amount

of sensor data. Sharing this data requires high rate wireless

links, which can be provided by millimeter wave (mmWave)

systems [1]. The sensor data may be used for an additional

application: improving mmWave communication. Given the

lack of models that relate sensor data to communication

channels, it is sensible to try a data-driven approach such

as deep neural networks [2]. In this paper, we propose and

evaluate a framework for reducing overheads in establishing

mmWave communication links in vehicular networks.

The LIDAR (light detection and ranging) is one of the most

sophisticated sensors used in automated driving. A LIDAR

uses a laser to scan an area and measure the time delay from

the backscattered signal. This data is then converted into points

in space and interpreted as three-dimensional (3D) images with

pixels indicating relative positions from the sensor. LIDAR

data can be exploited without additional cost for improved
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communications when it is already used on a automated

vehicle for mapping, positioning, or obstacle detection.

Most prior work in machine learning-based beam selection

has used the position information obtained from vehicles [1],

[3]–[9]. That work demonstrates that position information

can be used by a centralized machine learning (ML) agent,

executed for example at the base station (BS), to reduce

the overhead required to establish mmWave links. The per-

formance of such centralized architectures is limited by the

penetration rate, which is the fraction of connected with

respect to all circulating vehicles [9]. We proposed a new

approach in [10]: having a decentralized architecture based

on LIDAR. This distributed architecture is advantageous given

that fully connected is a long term scenario.

In this paper, we develop centralized LIDAR architectures,

which may also include position information provided by

satellite-based navigation. A single LIDAR at the BS is

attractive for automated driving in that all the vehicles in

the cell may share the data from the infrastructure-based

LIDAR, reducing the need for expensive LIDARs on each car.

We evaluate centralized and distributed architectures applied

to beam selection, which more specifically consists here in

choosing the set of best beam pairs. We also discuss the

distinction between line-of-sight (LOS) and non-LOS (NLOS)

situations. LOS detection is useful because beam selection is

easier in the LOS setting. Our main conclusions are that, in

spite of the lower cost of the single LIDAR at BS and position-

based solutions, they are outperformed by distributed LIDAR-

based architecture in the two investigated problems. We also

noted that a centralized data fusion did not bring significant

improvements over the distributed processing.

The rest of this paper is organized as follows. Section II

describes the system model. Section III summarizes the simu-

lation methodology, describing the machine learning modeling

and how we obtained paired simulations of LIDAR and com-

munication systems. The machine learning techniques used in

this paper are described in Section IV. Section V describes the

simulations results and Section VI presents the conclusions.

II. SYSTEM MODEL

We consider a downlink orthogonal frequency-division mul-

tiplexing (OFDM) mmWave system with analog beamform-

ing [11]. Both transmitter and receivers have antenna arrays

with only one radio frequency (RF) chain and fixed beam

codebooks. We use ray-tracing (RT) to simulate the channel



and combine the RT output data with a wideband mmWave

geometric channel model [8]. Assuming Rc rays (or multipath

components, MPC) per transmitter / receiver pair, the informa-

tion collected from the RT outputs for the r-th ray of a given

pair is: complex path gain αr, time delay τr, angles φD
r , θDr ,

φA
r , θAr , corresponding respectively to azimuth and elevation

for departure and arrival, and whether it is a LOS or NLOS

situation. The channel model at the time instant corresponding

to the n-th symbol vector is [11]:

H[n] = κ

Rc−1∑

r=0

αrg(nT − τr)ar(φ
A
r , θ

A
r )a

∗
t (φ

D
r , θDr ), (1)

where κ =
√
NtNr, Nt and Nr are the numbers of antennas at

the transmitter and receiver, respectively, g(τ) is the shaping

pulse (a raised cosine with roll-off of 0.1), T = 1/B is

the symbol period and B the bandwidth, ar(φ
A
r , θ

A
r ) and

a∗t (φ
D
r , θDr ) are the steering vectors at the receiver and trans-

mitter for the r-th MPC, respectively.

To simplify notation, when using uniform planar arrays

(UPAs), we adopt the corresponding Kronecker products of

steering, precoding and combining vectors to represent the 2D

arrays as 1D vectors [8]. Assuming OFDM with K subcarriers

and that H[n] can be fairly represented by its first L taps, the

frequency-domain channel at subcarrier k is

H[k] =

L−1∑

n=0

H[n]e−j 2πk

K
n. (2)

We assume beam codebooks Ct = {f1, · · · , f|Ct|} and

Cr = {w1, · · · ,w|Cr|} at the transmitter and the receiver

sides, where |Ct| and |Cr| are their corresponding cardinalities.

For a given pair (p, q) of vectors, representing precoder fp
and combiner wq , the received signal at subcarrier k is

s[k] = wH
q H[k]fp, where H denotes conjugate transpose. The

beam selection is guided by the normalized signal power

y(p,q) =

K−1∑

k=0

|wH
q H[k]fp|2 (3)

and the optimum beam pair is (̂p, q) = argmax(p,q) y(p,q). In

this paper, the goal of beam selection is to recommend a set

B = {(pi, qi)}Mi=1 of pairs such that (̂p, q) ∈ B.

III. SIMULATION METHODOLOGY

We executed paired simulations that used the same 3D en-

vironment to gather data from LIDAR and mmWave channels

via ray-tracing. For that we adopted a simulation methodology

as proposed in [12] using traffic, ray-tracing and LIDAR

simulators: Blender Sensor Simulation (BlenSor) [13], Sim-

ulation of Urban MObility (SUMO) traffic simulator [14]

and Remcom’s Wireless InSite for ray-tracing, respectively.

The first two are open-source softwares. A Python software

(orchestrator) invokes SUMO and save its outputs (vehicles

positions, orientations, etc.), to be utilized by the others

simulators. Then, the orchestrator invokes the ray-tracing and

the LIDAR simulators to obtain paired results.

The LIDAR uses a laser to scan an area and measure the

time delay from the backscattered signal. This data is then

converted into points in space, known as point cloud data. The

LIDAR sensor has been mainly used for obstacle detection,

navigation of autonomous ground vehicles, 3D mobile data

collection and mapping applications. But the BlenSor software

can be adapted to be used in the context of communication

systems.

Fig. 1 illustrates examples of the generated LIDAR point

clouds for LOS and NLOS, respectively. The line between

transmitter and receiver is also shown and its proximity to

LIDAR points indicate a NLOS condition. The circles centered

at the receiver correspond to ground reflections, which are

filtered out in this work. In the ML simulations, the actual

LOS or NLOS class “label” is assigned by the result of the

RT simulator.

Fig. 1. Two examples of point clouds from a LIDAR located on vehicle,
which also carries a mmWave radio close to the LIDAR. The line between
the LIDAR and the mmWave radio at the BS is also shown. In a) this line
does not encounter any LIDAR point. This suggests a mmWave LOS link,
which may be checked using a ray-tracing simulation. In b) the line traversing
points detected by the LIDAR indicates a NLOS condition.

The realism of the RT simulation depends on the details

of the scenario, which include geometric aspects (number of

object faces, etc.) and materials (electromagnetic parameters,

etc.). In this paper we used an improved version of the dataset

adopted in [10]. Instead of representing vehicles with boxes,

the simulations used models of vehicles (cars, buses and

trucks) that were created using the open source 3D creation

suite Blender [15]. After a model is constructed with Blender,

it is exported to the DXF format, which is supported by both

Wireless InSite and Blensor. In their corresponding InSite’s

configuration, multiple materials were associated to the new

models. For example, glass was used for the vehicle windows

and metal to the rest of the vehicle, as shown in Fig. 2. It

should be noted that the new (more realistic) models increase

RT simulation time due to the larger number of 3D faces per

object. We placed receivers and LIDARs on top of a maximum

of 10 vehicles in each scene snapshot. Fig. 2 shows an example

with three “connected” vehicles.

Fig. 3 depicts the adopted urban canyon 3D scenario, which

is part of Wireless InSite’s examples and represents a region

of Rosslyn, Virginia, which was also used e. g. in [5], [16].



Fig. 2. This paper uses more realistic 3D models of vehicles composed with
different materials (metal and glass) than the ones used in [12]. In this figure
three vehicles are “connected” (indicated as Rx #) and equipped with mmWave
receivers and LIDAR.

The chosen study area is a street corresponding to a rectangle

of approximately 23× 250 m2.

Fig. 3. 3D urban canyon scenario used for the InSite ray-tracing simulations.

Properly positioning the LIDAR at the BS and vehicles is

important. Fig. 4 depicts the results considering a LIDAR at

a pole with three distinct heights (1, 2 or 4 m). As expected,

the LIDAR position significantly impacts the resulting scans

and the number of points (obstacles) obtained. It is out of the

scope of this paper to optimize this height and we assumed

that the LIDAR at the BS is located at the same height of the

antenna array, at z = 4 m. The LIDAR on a vehicle is on the

top of its roof.

To collect the paired data for a given scene, we execute a

single RT simulation and several LIDAR simulations. More

specifically, to enable simulations of the distributed, central-

ized architectures, we run Blensor to obtain a LIDAR scan for

each connected car in a scene, as depicted in Fig. 5. We have

the same number of RT and LIDAR simulations, only for the

case of the architecture with a single LIDAR at the BS. Table I

summarizes the most important simulation parameters.

IV. DEEP LEARNING MODEL

We evaluate LOS detection and beam selection using the

following ML architectures:

Fig. 4. Scans for a LIDAR at a BS assuming the LIDAR is located (in the
center of the circles) at different heights z: a) 1 m, b) 2 m and c) 4 m.

Fig. 5. Example of a Blensor LIDAR scan (right) performed in one of the
scenarios of the simulation (left).

• LIDAR distributed [10]: each connected vehicle runs a

ML algorithm and makes its decision based on its own

LIDAR data and position information broadcasted by BS;

• LIDAR centralized: the BS runs the ML algorithm with

data sent by connected vehicles and makes its decision

based on the fused data;

• LIDAR@BS: there is a single LIDAR at the BS, and the

BS runs a ML algorithm to makes decision based on its

own LIDAR data;

• Position: the BS receives the positions of connected

vehicles, executes the ML algorithm and decision.

The DNN architecture utilized in both problems (LOS de-

tection and beam selection), is composed of 13 layers trained

with Keras’ Adadelta optimizer, in which 7 of them are 2D

convolutional layers with decreasing kernel sizes, from 13×13
to 1 × 1. We utilized regularization and dropout to decrease

the effects of overfitting. For top-M classification, the output

layer had a softmax activation function and a categorical cross-

entropy as loss function [17]. For binary classification, the

output layer and loss were sigmoid and binary cross-entropy,

respectively [17].

In this paper, all architectures use ML input features that

consist of a binary 3D array of dimension G = 20× 200× 10
points. Fig. 6 depicts the extraction of features for the LIDAR

and Position architectures. In the case of the LIDAR architec-

tures, the elements of this arrays are derived from the point

cloud C collected by the LIDAR. For the Position architecture,

the array with features is created based on the positions and

dimensions reported by the vehicles. We first describe the

creation of features to the LIDAR architectures.



TABLE I
SIMULATION PARAMETERS.

Ray-tracing parameters

Carrier frequency 60 GHz

RSU transmitted power 0 dBm

RSU antenna height 4 m

Antenna (Tx and Rx) Isotropic

Propagation model X3D

Terrain and city material ITU concrete 60 GHz

Vehicle material Metal and glass

Ray spacing (degrees) 1

Num. L of strongest rays 100

Diffuse scattering model Lambertian

DS max. reflections (NDS
max) 2

DS coefficients (S) 0.4 (concrete), 0.2 (metal)

Traffic parameters

Number of lanes 4

Vehicles car, truck, bus

Lengths, respectively (m) 4.645, 12.5, 9.0

Heights, respectively (m) 1.59, 4.3, 3.2

Probabilities, respectively 0.45, 0.3, 0.25

Average speed (m/s) 8.2

Sampling period Tsam (s) 3

LIDAR parameters

Model Velodyne HDL-64E2

Scan distance (m) 120

Scan angle resolution 0.17

Angle of vision 360 degrees

Fig. 6. Feature extraction for the Position and LIDAR architectures. The n

3D points correspond to a point-cloud (LIDAR architectures) or were created
from information about vehicles (position, size and orientation). The features
are represented by a 3D array G.

The point cloud C provides obstacle distances with respect

to the LIDAR position Pℓ. For both the distributed and

centralized architecture Pℓ is the vehicle position Pv , and for

the LIDAR@BS architecture it is the base station position Pb,

which is provided by GPS. The absolute positions A = C+Pℓ

are quantized into a grid representing the BS coverage zone

Z [10]. In summary, the absolute positions are mapped to

a grid G using the provided absolute coordinates. Instead

of using G as a 3D histogram as proposed in [10], we

alternatively convert the histogram elements into binary values,

using 1 whenever the histogram counter was larger than 0 or,

otherwise, keeping the 0 value. This binary and 3D histogram

representations provided similar results and we use the former

in this paper due to its lower requirement of memory for

storage.

For the Position architecture, given the positions and dimen-

sions of the connected vehicles, the corresponding elements of

G are represented with 1, and 0 elsewhere.

V. NUMERICAL RESULTS

The mmWave data [18] is composed by 3582 snapshots,

each with several receivers. From this data we selected NL =
11, 691 LOS and NN = 4, 048 NLOS channel examples.

For the beam selection experiments, as in [10], were chosen

kept only the codevectors that were chosen as (̂p, q) more

than 100 times in the training set. This procedure led to

|Ct| = 24 and |Cr| = 11, respectively. Hence, the number

of classes for top-M classification is 264. Also, the beam

selection experiments used NL and NN examples in the LOS

and NLOS evaluations, respectively, while LOS detection used

all NL+NN examples. For all experiments we created disjoint

test and training sets with 20% and 80% of the examples,

respectively. The following paragraphs present results for the

two LIDAR architectures, distributed and centralized, and for

Position using 100% penetration.

Table II shows the accuracy of the ML systems for LOS

detection. The distributed architecture outperformed the other

methods. These results will be discussed after the presentation

of beam selection results.

TABLE II
SIMULATION RESULTS FOR LOS VS NLOS BINARY CLASSIFICATION.

Architecture Accuracy

LIDAR distributed 0.912

LIDAR centralized 0.799

Position (penetration=100%) 0.797

LIDAR@BS 0.702

Fig. 7 and Fig. 8 show the beam selection top-M accuracy

for LOS and NLOS, respectively. In LOS cases, all archi-

tectures other than LIDAR@BS perform equivalently, given

that the best beam primarily depends on the position of the

receiver with respect to the BS. However, in NLOS and LOS

detection in Table II, even considering a 100% penetration rate,

the distributed outperformed the Position architecture. This

may be related to the fact that the Position takes in account

only the (connected) vehicles while a LIDAR is capable of

incorporating information about the surroundings (buildings,

etc.). For the LIDAR@BS architecture, the BS only collects

information about the environment close to it. Vehicles far

from the BS may be poorly represented or even invisible to

the system.

Fig. 9 and Fig. 10 depict the corresponding achieved

throughput ratio (RT)

RT =

∑N

i=1 log2(1 + y
(̃p,q)

)
∑N

i=1 log2(1 + y
(̂p,q)

)
, (4)

where N is the number of test examples and (̃p, q) is the best

beam pair in B. The overhead from beam selection for M =
10, decreases by a factor of 26.4, however the RT indicates a

reduction to 64% of the achievable throughput for NLOS in the
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Fig. 7. LOS top-M classification for beam selection with 264 beam-pairs,
for M = 1, . . . , 120.
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Fig. 8. LOS top-M classification for beam selection with 264 beam-pairs.

LIDAR centralized architecture. For NLOS and the Position

architecture, RT reaches e. g. 92% for M = 75.
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Fig. 9. LOS throughput RT for beam selection with 264 beam pairs.

VI. CONCLUSIONS

This paper expanded the work in [10] and compared the dis-

tributed LIDAR-based architecture and centralized ones. We

also assessed the results obtained with LIDAR or the vehicles

position provided by their GPS. The results indicated that

for the NLOS case, the distributed LIDAR-based architecture

outperforms the centralized and position-based alternatives.

The performance of the centralized data fusion may had been

limited by the adopted ML technique and coarse resolution

used for the 3D grid. Future work includes developing and

testing alternative feature representations and neural network

models for fusing LIDAR, position and other information

sources.
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Fig. 10. NLOS throughput RT for beam selection with 264 beam pairs.
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