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Abstract—One issue in the design of modern communication
systems is how to benefit from the increasing variety of sensor sig-
nals and sophisticated machine learning algorithms. We recently
described how LIDAR (light detection and ranging) on a vehicle
can be used for line-of-sight detection and to reduce the overhead
associated with link configuration in millimeter wave communi-
cation systems. LIDAR is widely used in autonomous driving
for high resolution mapping and positioning. In this paper, we
present new LIDAR-based features for machine learning and
compare the previously proposed distributed architecture with
two centralized schemes: using a single LIDAR located at the base
station (BS) and fusing LIDAR data from neighboring vehicles
at the BS. We also quantify the advantages of LIDAR-based
solutions over solutions based on connected vehicles informing
their positions. We use deep convolutional neural networks
to process images composed of LIDAR data and/or positions.
Using co-simulation of communications and LIDAR in a vehicle-
to-infrastructure (V2I) scenario, we find that the distributed
LIDAR-based architecture provides robust performance irrespec-
tive of car penetration rate, outperforming the single LIDAR
at BS and position-based solutions. We noted that, under the
simulated conditions, the benefits of a centralized data fusion over
distributed processing are not significant, meaning that machine
learning for line-of-sight detection and beam selection can be
conveniently executed at vehicles equipped with LIDAR.

I. INTRODUCTION

Connected and automated vehicles generate a large amount
of sensor data. Sharing this data requires high rate wireless
links, which can be provided by millimeter wave (mmWave)
systems [1]. The sensor data may be used for an additional
application: improving mmWave communication. Given the
lack of models that relate sensor data to communication
channels, it is sensible to try a data-driven approach such
as deep neural networks [2]. In this paper, we propose and
evaluate a framework for reducing overheads in establishing
mmWave communication links in vehicular networks.

The LIDAR (light detection and ranging) is one of the most
sophisticated sensors used in automated driving. A LIDAR
uses a laser to scan an area and measure the time delay from
the backscattered signal. This data is then converted into points
in space and interpreted as three-dimensional (3D) images with
pixels indicating relative positions from the sensor. LIDAR
data can be exploited without additional cost for improved
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communications when it is already used on a automated
vehicle for mapping, positioning, or obstacle detection.

Most prior work in machine learning-based beam selection
has used the position information obtained from vehicles [1],
[3]-[9]. That work demonstrates that position information
can be used by a centralized machine learning (ML) agent,
executed for example at the base station (BS), to reduce
the overhead required to establish mmWave links. The per-
formance of such centralized architectures is limited by the
penetration rate, which is the fraction of connected with
respect to all circulating vehicles [9]. We proposed a new
approach in [10]: having a decentralized architecture based
on LIDAR. This distributed architecture is advantageous given
that fully connected is a long term scenario.

In this paper, we develop centralized LIDAR architectures,
which may also include position information provided by
satellite-based navigation. A single LIDAR at the BS is
attractive for automated driving in that all the vehicles in
the cell may share the data from the infrastructure-based
LIDAR, reducing the need for expensive LIDARs on each car.
We evaluate centralized and distributed architectures applied
to beam selection, which more specifically consists here in
choosing the set of best beam pairs. We also discuss the
distinction between line-of-sight (LOS) and non-LOS (NLOS)
situations. LOS detection is useful because beam selection is
easier in the LOS setting. Our main conclusions are that, in
spite of the lower cost of the single LIDAR at BS and position-
based solutions, they are outperformed by distributed LIDAR-
based architecture in the two investigated problems. We also
noted that a centralized data fusion did not bring significant
improvements over the distributed processing.

The rest of this paper is organized as follows. Section II
describes the system model. Section III summarizes the simu-
lation methodology, describing the machine learning modeling
and how we obtained paired simulations of LIDAR and com-
munication systems. The machine learning techniques used in
this paper are described in Section IV. Section V describes the
simulations results and Section VI presents the conclusions.

II. SYSTEM MODEL

We consider a downlink orthogonal frequency-division mul-
tiplexing (OFDM) mmWave system with analog beamform-
ing [11]. Both transmitter and receivers have antenna arrays
with only one radio frequency (RF) chain and fixed beam
codebooks. We use ray-tracing (RT) to simulate the channel



and combine the RT output data with a wideband mmWave
geometric channel model [8]. Assuming R, rays (or multipath
components, MPC) per transmitter / receiver pair, the informa-
tion collected from the RT outputs for the r-th ray of a given
pair is: complex path gain o, time delay 7,., angles ¢, 07,

A, 04, corresponding respectively to azimuth and elevation
for departure and arrival, and whether it is a LOS or NLOS
situation. The channel model at the time instant corresponding
to the n-th symbol vector is [11]:
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where kK = \/N;N,., N; and N,. are the numbers of antennas at
the transmitter and receiver, respectively, g(7) is the shaping
pulse (a raised cosine with roll-off of 0.1), T = 1/B is
the symbol period and B the bandwidth, a,.( f, 64) and
a; (¢, 0P) are the steering vectors at the receiver and trans-
mitter for the r-th MPC, respectively.

To simplify notation, when using uniform planar arrays
(UPAs), we adopt the corresponding Kronecker products of
steering, precoding and combining vectors to represent the 2D
arrays as 1D vectors [8]. Assuming OFDM with K subcarriers
and that H[n| can be fairly represented by its first L taps, the

frequency-domain channel at subcarrier & is
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We assume beam codebooks C, {f1,--- ,fic,|} and
Cr = {wi,---, W, |} at the transmitter and the receiver
sides, where |C;| and |C,| are their corresponding cardinalities.
For a given pair (p,q) of vectors, representing precoder f,
and combiner w,, the received signal at subcarrier £ is
s[k] = w/ H[k]f,, where H denotes conjugate transpose. The
beam selection is guided by the normalized signal power
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and the optimum beam pair is (p, q) = arg max, q) ¥(p,q)- In
this paper, the goal of beam selection is to recommend a set

B = {(pi,q:)}}; of pairs such that (p7 q) € B.
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III. SIMULATION METHODOLOGY

We executed paired simulations that used the same 3D en-
vironment to gather data from LIDAR and mmWave channels
via ray-tracing. For that we adopted a simulation methodology
as proposed in [12] using traffic, ray-tracing and LIDAR
simulators: Blender Sensor Simulation (BlenSor) [13], Sim-
ulation of Urban MObility (SUMO) traffic simulator [14]
and Remcom’s Wireless InSite for ray-tracing, respectively.
The first two are open-source softwares. A Python software
(orchestrator) invokes SUMO and save its outputs (vehicles
positions, orientations, etc.), to be utilized by the others
simulators. Then, the orchestrator invokes the ray-tracing and
the LIDAR simulators to obtain paired results.

The LIDAR uses a laser to scan an area and measure the
time delay from the backscattered signal. This data is then
converted into points in space, known as point cloud data. The
LIDAR sensor has been mainly used for obstacle detection,
navigation of autonomous ground vehicles, 3D mobile data
collection and mapping applications. But the BlenSor software
can be adapted to be used in the context of communication
systems.

Fig. 1 illustrates examples of the generated LIDAR point
clouds for LOS and NLOS, respectively. The line between
transmitter and receiver is also shown and its proximity to
LIDAR points indicate a NLOS condition. The circles centered
at the receiver correspond to ground reflections, which are
filtered out in this work. In the ML simulations, the actual
LOS or NLOS class “label” is assigned by the result of the
RT simulator.

Fig. 1. Two examples of point clouds from a LIDAR located on vehicle,
which also carries a mmWave radio close to the LIDAR. The line between
the LIDAR and the mmWave radio at the BS is also shown. In a) this line
does not encounter any LIDAR point. This suggests a mmWave LOS link,
which may be checked using a ray-tracing simulation. In b) the line traversing
points detected by the LIDAR indicates a NLOS condition.

The realism of the RT simulation depends on the details
of the scenario, which include geometric aspects (number of
object faces, etc.) and materials (electromagnetic parameters,
etc.). In this paper we used an improved version of the dataset
adopted in [10]. Instead of representing vehicles with boxes,
the simulations used models of vehicles (cars, buses and
trucks) that were created using the open source 3D creation
suite Blender [15]. After a model is constructed with Blender,
it is exported to the DXF format, which is supported by both
Wireless InSite and Blensor. In their corresponding InSite’s
configuration, multiple materials were associated to the new
models. For example, glass was used for the vehicle windows
and metal to the rest of the vehicle, as shown in Fig. 2. It
should be noted that the new (more realistic) models increase
RT simulation time due to the larger number of 3D faces per
object. We placed receivers and LIDARSs on top of a maximum
of 10 vehicles in each scene snapshot. Fig. 2 shows an example
with three “connected” vehicles.

Fig. 3 depicts the adopted urban canyon 3D scenario, which
is part of Wireless InSite’s examples and represents a region
of Rosslyn, Virginia, which was also used e.g. in [5], [16].



Fig. 2. This paper uses more realistic 3D models of vehicles composed with
different materials (metal and glass) than the ones used in [12]. In this figure
three vehicles are “connected” (indicated as Rx #) and equipped with mmWave
receivers and LIDAR.

The chosen study area is a street corresponding to a rectangle
of approximately 23 x 250 m?.

Fig. 3. 3D urban canyon scenario used for the InSite ray-tracing simulations.

Properly positioning the LIDAR at the BS and vehicles is
important. Fig. 4 depicts the results considering a LIDAR at
a pole with three distinct heights (1, 2 or 4 m). As expected,
the LIDAR position significantly impacts the resulting scans
and the number of points (obstacles) obtained. It is out of the
scope of this paper to optimize this height and we assumed
that the LIDAR at the BS is located at the same height of the
antenna array, at z = 4 m. The LIDAR on a vehicle is on the
top of its roof.

To collect the paired data for a given scene, we execute a
single RT simulation and several LIDAR simulations. More
specifically, to enable simulations of the distributed, central-
ized architectures, we run Blensor to obtain a LIDAR scan for
each connected car in a scene, as depicted in Fig. 5. We have
the same number of RT and LIDAR simulations, only for the
case of the architecture with a single LIDAR at the BS. Table I
summarizes the most important simulation parameters.

IV. DEEP LEARNING MODEL

We evaluate LOS detection and beam selection using the
following ML architectures:
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Fig. 4. Scans for a LIDAR at a BS assuming the LIDAR is located (in the
center of the circles) at different heights z: a) 1 m, b) 2 m and ¢) 4 m.

Fig. 5. Example of a Blensor LIDAR scan (right) performed in one of the
scenarios of the simulation (left).

e LIDAR distributed [10]: each connected vehicle runs a
ML algorithm and makes its decision based on its own
LIDAR data and position information broadcasted by BS;

e LIDAR centralized: the BS runs the ML algorithm with
data sent by connected vehicles and makes its decision
based on the fused data;

e LIDAR@BS: there is a single LIDAR at the BS, and the
BS runs a ML algorithm to makes decision based on its
own LIDAR data;

e Position: the BS receives the positions of connected
vehicles, executes the ML algorithm and decision.

The DNN architecture utilized in both problems (LOS de-
tection and beam selection), is composed of 13 layers trained
with Keras’ Adadelta optimizer, in which 7 of them are 2D
convolutional layers with decreasing kernel sizes, from 13x 13
to 1 x 1. We utilized regularization and dropout to decrease
the effects of overfitting. For top-M classification, the output
layer had a softmax activation function and a categorical cross-
entropy as loss function [17]. For binary classification, the
output layer and loss were sigmoid and binary cross-entropy,
respectively [17].

In this paper, all architectures use ML input features that
consist of a binary 3D array of dimension G = 20 x 200 x 10
points. Fig. 6 depicts the extraction of features for the LIDAR
and Position architectures. In the case of the LIDAR architec-
tures, the elements of this arrays are derived from the point
cloud C collected by the LIDAR. For the Position architecture,
the array with features is created based on the positions and
dimensions reported by the vehicles. We first describe the
creation of features to the LIDAR architectures.



TABLE I
SIMULATION PARAMETERS.

Ray-tracing parameters

Carrier frequency 60 GHz
RSU transmitted power 0 dBm
RSU antenna height 4 m
Antenna (Tx and Rx) Isotropic
Propagation model X3D

ITU concrete 60 GHz
Metal and glass

Terrain and city material
Vehicle material

Ray spacing (degrees) 1
Num. L of strongest rays 100
Diffuse scattering model Lambertian

DS max. reflections (NDS) 2

DS coefficients (S) 0.4 (concrete), 0.2 (metal)
Traffic parameters

Number of lanes 4
Vehicles car, truck, bus
Lengths, respectively (m) 4.645, 12.5, 9.0
Heights, respectively (m) 1.59, 4.3, 3.2
Probabilities, respectively 0.45, 0.3, 0.25
Average speed (m/s) 8.2
Sampling period Tsam (S) 3

LIDAR parameters
Model Velodyne HDL-64E2
Scan distance (m) 120
Scan angle resolution 0.17
Angle of vision 360 degrees

Position &
Dimension

Features.

G (3D histogram) G (3D binary)

XuYyuZy
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Fig. 6. Feature extraction for the Position and LIDAR architectures. The n
3D points correspond to a point-cloud (LIDAR architectures) or were created
from information about vehicles (position, size and orientation). The features
are represented by a 3D array G.

The point cloud C provides obstacle distances with respect
to the LIDAR position P,. For both the distributed and
centralized architecture P, is the vehicle position P,, and for
the LIDAR@BS architecture it is the base station position P,
which is provided by GPS. The absolute positions A = C+ P,
are quantized into a grid representing the BS coverage zone
Z [10]. In summary, the absolute positions are mapped to
a grid G using the provided absolute coordinates. Instead
of using G as a 3D histogram as proposed in [10], we
alternatively convert the histogram elements into binary values,
using 1 whenever the histogram counter was larger than O or,
otherwise, keeping the O value. This binary and 3D histogram
representations provided similar results and we use the former
in this paper due to its lower requirement of memory for
storage.

For the Position architecture, given the positions and dimen-

sions of the connected vehicles, the corresponding elements of
G are represented with 1, and O elsewhere.

V. NUMERICAL RESULTS

The mmWave data [18] is composed by 3582 snapshots,
each with several receivers. From this data we selected Ny, =
11,691 LOS and Ny = 4,048 NLOS channel examples.
For the beam selection experiments, as in [10], were chosen
kept only the codevectors that were chosen as (p,q) more
than 100 times in the training set. This procedure led to
IC:| = 24 and |C,| = 11, respectively. Hence, the number
of classes for top-M classification is 264. Also, the beam
selection experiments used Ny, and Ny examples in the LOS
and NLOS evaluations, respectively, while LOS detection used
all N+ Ny examples. For all experiments we created disjoint
test and training sets with 20% and 80% of the examples,
respectively. The following paragraphs present results for the
two LIDAR architectures, distributed and centralized, and for
Position using 100% penetration.

Table II shows the accuracy of the ML systems for LOS
detection. The distributed architecture outperformed the other
methods. These results will be discussed after the presentation
of beam selection results.

TABLE 11
SIMULATION RESULTS FOR LOS vs NLOS BINARY CLASSIFICATION.
Architecture Accuracy
LIDAR distributed 0.912
LIDAR centralized 0.799
Position (penetration=100%) 0.797
LIDAR@BS 0.702

Fig. 7 and Fig. 8 show the beam selection top-M accuracy
for LOS and NLOS, respectively. In LOS cases, all archi-
tectures other than LIDAR@BS perform equivalently, given
that the best beam primarily depends on the position of the
receiver with respect to the BS. However, in NLOS and LOS
detection in Table II, even considering a 100% penetration rate,
the distributed outperformed the Position architecture. This
may be related to the fact that the Position takes in account
only the (connected) vehicles while a LIDAR is capable of
incorporating information about the surroundings (buildings,
etc.). For the LIDAR@BS architecture, the BS only collects
information about the environment close to it. Vehicles far
from the BS may be poorly represented or even invisible to
the system.

Fig. 9 and Fig. 10 depict the corresponding achieved
throughput ratio (RT)

N
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where N is the number of test examples and (p, q) is the best
beam pair in B. The overhead from beam selection for M =
10, decreases by a factor of 26.4, however the RT indicates a
reduction to 64% of the achievable throughput for NLOS in the
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Fig. 7. LOS top-M classification for beam selection with 264 beam-pairs,
for M =1,...,120.
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Fig. 8. LOS top-M classification for beam selection with 264 beam-pairs.

LIDAR centralized architecture. For NLOS and the Position
architecture, RT reaches e.g. 92% for M = 75.
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Fig. 9. LOS throughput RT for beam selection with 264 beam pairs.

VI. CONCLUSIONS

This paper expanded the work in [10] and compared the dis-
tributed LIDAR-based architecture and centralized ones. We
also assessed the results obtained with LIDAR or the vehicles
position provided by their GPS. The results indicated that
for the NLOS case, the distributed LIDAR-based architecture
outperforms the centralized and position-based alternatives.
The performance of the centralized data fusion may had been
limited by the adopted ML technique and coarse resolution
used for the 3D grid. Future work includes developing and
testing alternative feature representations and neural network
models for fusing LIDAR, position and other information
sources.
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Fig. 10. NLOS throughput RT for beam selection with 264 beam pairs.
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