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Abstract Estimation of the covariance matrix of asset returns from high fre-
quency data is complicated by asynchronous returns, market microstructure
noise and jumps. One technique for addressing both asynchronous returns
and market microstructure is the Kalman-Expectation-Maximization (KEM)
algorithm. However the KEM approach assumes log-normal prices and does
not address jumps in the return process which can corrupt estimation of the
covariance matrix.

In this paper we extend the KEM algorithm to price models that include
jumps. We propose a sparse Kalman filtering approach to this problem. In par-
ticular we develop a Kalman Expectation Conditional Maximization (KECM)
algorithm to determine the unknown covariance as well as detecting the jumps.
In order to promote a sparse estimate of the jumps ,we consider both Laplace
and the spike and slab jump priors. Numerical results using simulated data
show that each of these approaches provide for improved covariance estimation
relative to the KEM method in a variety of settings where jumps occur.
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1 Introduction

The covariance matrix of asset returns is an integral element of many finan-
cial optimization problems such as portfolio design. For example, in minimum
variance portfolio optimization the criterion for selecting the portfolio weights
,w, can be written as

where I is the covariance matrix of the asset returns. Since the covariance
matrix is usually unknown, the above criterion cannot be implemented exactly.
Instead an estimate of the covariance matrix, I, is obtained and substituted
into the portfolio optimization criterion.

A simple and intuitive approach to estimating the covariance matrix is to
form a sample average of the covariance matrix using from past return data.
However when a finite number of samples are used, covariance estimation
errors will be present. These errors can result in portfolio performance that
departs significantly from the optimal performance under known statistics [16,
6,23]. Thus for portfolio optimization to be effective an accurate estimate of
the covariance matrix is paramount.

Appealing to the law of large numbers covariance estimation errors can be
reduced by using more data in the sample average estimate. One approach to
obtain more data is to simply increase the time window size when forming the
sample covariance (e.g. use 1 year of data vs 3 months of data). In order for
this approach to be effective the additional data used in covariance estimation
should be nearly identically distributed to future data. If the data statistics are
non-stationary then increasing the window’s size to obtain more data may not
improve portfolio performance as the additional data used in the covariance
estimation may not be relevant to future returns.

Another approach to obtaining more data is to sample at a higher fre-
quency [3] (e.g. 1 second update rate vs 1 day update rate) and maintain
the sampling window size. This approach is less vulnerable to non-stationary
statistics but presents additional challenges unique to high frequency data.
For example, high frequency data is subject to market microstructure noise
[12] such as bid-ask bounce which can corrupt volatility and covariance esti-
mates. At higher frequencies the variance of the market microstructure noise
can mask the true volatility of the asset returns if it is not accounted for [4,
3]. Asynchronous trading of assets observed at higher frequencies [26] further
complicates covariance estimation as the standard sample average estimate
assumes return data is available at each time instance.

Many approaches have been proposed for estimating covariance matrices
from high frequency data in the presence of asynchronous trading and mi-
crostructure noise. For example, the refresh-time approach proposed in [5]
addresses asynchronous trading by attempting to synchronize the return data
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by waiting for all assets to trade at least one time prior to forming a asset
price vector used in covariance estimation. One disadvantage of this approach
is that much of the data is ignored while waiting for all assets to trade. The
pairwise refresh approach [18] uses more data by refreshing the covariance ma-
trix element by element. This allows for more data to be used but the resulting
sample covariance matrix is not guaranteed to be positive semi-definite with-
out applying additional corrections such as a projection method [18]. Another
approach is the previous tick method employed in [38] where a fixed sampling
grid is defined and trade prices are approximated on that grid as the nearest
previous trade price.

To address both micro-structure noise and asynchronous returns, quasi-
maximum likelihood estimators were proposed in [2,25] that utilize pairwise
refresh. A two scale realized covariance (TSCV) approach was developed in
[38] where covariance estimates are obtained using both low frequency and
high frequency sampling. An approach based on Kalman filtering and the
Expectation Maximization (EM) algorithm [15], models the true unobserved
log-price process and observed prices as a discrete linear normal dynamical
system. Here the unobserved synchronous true price is treated as latent data
and the EM algorithm is used to determine a maximum-likelihood estimate
of the covariance. A Bayesian version of the Kalman-EM approach where the
posterior distribution of the covariance is approximated via an augmented
Gibbs sampler is proposed in [31]. This technique generates an estimate of the
posterior distribution of the covariance which can then be used to obtain to a
point estimate.

Each of the above techniques addressing micro-structure noise and asyn-
chronous returns utilize a log-normal price model. However, empirical return
data often exhibits heavy tails that are better explained by a jump diffusion
or stochastic volatility models. Under these conditions the approaches which
assume log-normal returns will yield sub-optimal results. Techniques for ad-
dressing jumps have been proposed in the literature. In [19] the authors pro-
pose wavelet techniques for detecting jumps with an application to volatility
estimation. The jumps estimated using this approach are then removed from
the observed data prior to volatility estimation. In [10] a jump detector is
employed to selectively remove data that contain jumps from the covariance
estimation samples prior to TSCV. Another technique proposed in [9] is also
robust to jumps but does not address market microstructure noise.

In this paper we extend the Kalman-EM approach in [15] to discretized
jump diffusion models by introducing two Kalman-ECM (KECM) approaches.
In our first KECM approach we model the jumps as Laplace distributed ran-
dom variables. Although the Laplace prior may seem to be an unnatural model
for a jump process, we will see that the prior promotes a sparse posterior mode
for the jumps by inducing an £; norm penalty on the jumps into the complete
log-likelihood function. Conditioned on other variables determining the pos-
terior mode for the jumps is a convex ¢; norm penalized quadratic program
which can be solved with a variety of fast techniques [22,11,7]. In our sec-
ond KECM approach we consider a more natural, but non-convex, spike and
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slab model for the jump process. The remainder of this paper is organized as
follows. In section 2 we introduce the models which form the basis for our co-
variance estimation approaches. In section 3 we describe numerical algorithms
for computing the covariance estimate with both the Laplace and spike and
slab prior. A performance evaluation of our proposed approaches are presented
in section 4 using simulated high frequency data. A summary and conclusion
are presented in section 5.

2 High Frequency Return Modeling

Suppose that we have N assets where the true (or efficient) log price of the
n'" asset at time t is X,,(¢). Let X (¢) denote the N x 1 vector of log prices
for each asset at time t and let T" denote the total number of time samples.
Here X,,(t) can be viewed as the fundamental value of the asset in an efficient
market without friction [32].

We model the dynamics of the log prices using a discrete time jump diffu-
sion model with a drift D

Xi(t) = Xi(t — 1) + Vi(t) + Ji(t) Zi(t) + D. (1)

This model is similar to the model proposed in [15] except we consider jumps
as an additional component of an asset’s return. In the above model the asset
return from time ¢ — 1 to ¢ consists of three components

— Vi(t) represents a random return which occurs at every time step

— D, is the mean return for a single time step

—J; (t)Z;(t) represents a rarely occurring jump in the asset prices which may
occur at any time.

In this paper we assume the following:

V (t) is multivariate normally distributed with mean 0 and covariance I’
— Ji(t) is normally distributed with zero mean and variance a7,(t)

Z;(t) is Bernoulli distributed, with Pr(Z;(t) =0) =
— T () AL T (), Zm(t) AL Z,,(s) ,m # n and all ¢, s

—J, Z,V are jointly independent.

To simplify notation we denote the jump component as
J(t) = J(t)Z(t). (2)

In many markets trading of distinct assets does not occur simultaneously.
When trades occur asynchronously, current pricing data for all assets will
not be observed. For prices that are observed, market microstructure noise
needs to be addressed. Here transaction costs due to order processing expenses,
inventory costs and adverse selection costs [12] add noise to the true efficient
price. Thus the true efficient price is not directly observed.
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Both asynchronous returns and microstructure noise can be captured in
the following observation model

Y(t) =It)X(t)+W(t) (3)
where

— I (t) is a“partial” identity matrix where the rows corresponding to missing
asset prices at time t are removed

— W(t) is normal distributed market microstructure noise with zero mean
and covariance X, (t) = I(t) X' I(t)T.

Here X’ is a diagonal matrix diag(c? Tots-- '7J§,N)' In this section we shall

assume that {W(t), X (¢)}_; are jointly independent. In section 4 we will test
our algorithms on simulated data where the microstructure noise and price
innovation are statistically dependent.

2.1 Conditional Distributions of Observations and Log-Prices

Now we examine the joint probability distribution of X(1:T),Y (1 :T),J(2
T). Here the notation X (m : n) refers to the set {X(m), X(m+1),...,X(n)}.
We consider the case of when the parameters D, I', o7 ;, ¢ and o7 ; are random
variables with known prior distributions. Details on our assumed priors are
given in section 2.2.

To determine the probability distribution we first note that the following
conditional independence properties hold

Y(t) L J(s)|X(t) V
Y(t) L X(s)|X (1) VS#t
X(t) AL X (s)|(X(t — 1), J(t)) Vs <t —1
X(t) AL J(s)[(X(t—1),J(t) Vs #t.

From the conditional independence we have that the probability distribution
conditioned on the parameter values may be fully characterized as follows

ply(@)|z(1: T), £2(t)) ~ NI (t)z(t), Zo(t))
plzt+D]z(1:t),52:t+1),d, ) ~N(xt)+j{t+1)+d, )
p(x(1)) ~ N(p, K)

FIOlerAGIE | FIFAC)E

—.

@
Il
_

Here f is the spike and slab prior

—_ i 2
L) = ol 0) + 5 e (—21;9@)) ’

7
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with §p being a point mass distribution at 0. The initial time parameters, u
and K can be chosen based on prior stock return data and will be treated as
known values. Note that since joint estimation of o;;, ¢ ,and j; is ill-posed
we impose regularization in the form of priors on both ¢;;, and (. Details are
given in Section 2.2.

2.2 Prior Distribution of Parameters

To allow for more flexible modeling we shall impose prior distributions on
the parameters D, I, og,i as well as the jump parameters ¢ and 0]24714. Here we
take a commonly used approach of using conjugate prior distributions which
facilitate calculation of conditional maximum a posteriori (MAP) parameter
estimates. These priors will play an essential part in the proofs of convergence
for the ECM algorithm presented in Section 3.

The drift parameter D is modeled as normally distributed with mean D
and covariance 0% 1

D~ N(D,o%1),

which is conjugate to the multivariate normal distribution given above. For
the covariance matrix prior we use an inverse Wishart prior (which is also
conjugate to the multivariate normal) with n > N — 1 degrees of freedom and
positive definite scale matrix W,

I ~W Y W,,n).

In the observation noise variance,o? ;, we impose a inverse gamma distribution
:

with shape parameter o, > 0 and scale 3, > 0
ag,i ~ IG(ay, Bo)-

Finally for the jump parameters ¢ and O'j2- we use the beta distribution and
inverse gamma distribution as priors

¢ ~ Beta(ac, f¢)
o7, (t) ~ IG(ay, B)).

J
We assume that ¢ and sz’i(t) are independent and that the parameters in each
of the prior distributions is known.

2.3 Laplace Prior Approximation

The jump model is equivalent to a switching state space model. Inference
in switching state space models becomes intractable as the number of states
increase [21]. In this section we approximate the distribution of J using a
Laplace distribution. We denote the Laplace distribution for J as g(j)
. . ) Ai(t) )
p(i) =9GN = 1] =5 exp (=A(0)l(0)])

it
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where A;(t) > 0.

There are two advantages to taking this approximation. First the log-
likelihood of a Laplace distribution is concave in its parameter. This aids in
conditional MAP estimation of J. Secondly, the Laplace distribution is desired
in that it promotes sparse MAP estimates of J [33,29,1] making it a good ap-
proximation to infrequent jumps. To make the model more robust we will not
assume that each A;(t) is known. Instead we will estimate \;(t) from the data.
Since the problem of estimating both J;(¢) and \;(¢) is ill-posed we regularize
it by introducing a prior distribution on each \;(¢) which we denote as g(X).

We wish to design the prior distribution ¢ such that it induces a similar
level of sparseness that is induced by the spike and slab prior f. To develop
a criterion for designing g we first define a notion of similarity between g(j|\)

and f(j|,C7(TJ2<).
2

Definition 1 Let V' be a zero-mean normal random variable with variance o
and let J; ~ Laplace(N') and Jo ~ SpikeSlab(C’,U?/) which are independent
of V.. Define

Yi=/+V
Yo=J+V.

Then Laplace()\') is o2-equivalent to Spik;eSlab(C’,o]z/) (denoted N ~g2
(¢ af) ) if

Ep(y2|J2:0)PT(J2 = 0|Y2) = ]Ep(y1|J1:O)PT(j1 = 0) (5)
where Jy is the mode of p(j1|Y1).

To interpret the above definition assume that a jump has not occurred. Then
N ~o2 (¢ ! sz ) if the probability of falsely declaring a jump under the Laplace
model (with MAP criterion) equals the average posterior probability of a jump
under the spike and slab prior with parameters ¢’ and 032- . Here o2 can be
interpreted as the squared volatility of the diffusion component of the asset
returns. Note that for each triplet (o2, (’, O'JQ» ) there is a unique A’ such that
X~z (¢ 0%).

Since (02, ¢, 032-/) are random and unobserved we cannot directly select a

A" such that A\ ~g2 (¢, U?/). However the distribution of (02, (’, 0'J2-,> induces
a distribution on A through the mapping ~,2. The resulting distribution can
then be used as a prior ¢(\). An example on how to construct an inverse

gamma approximation of distribution for A is shown in Appendix C.
3 KECM Approach to estimation of I"
Maximum a posteriori (MAP) estimation of I" with Kalman ECM (KECM)

techniques is investigated in this section. The first ECM approach is an ap-
proximate technique where the prior distribution on the jumps is modeled as
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a Laplace distribution. The advantage of this approximation is that the condi-
tional maximization steps in the ECM approach result in global (conditional)
optimal solutions can be obtained. The disadvantage is that we are approx-
imating the true spike and slab jump model. The second approach uses the
spike and slab model for jumps, which is a true representation of the model
presented in Section 2. However we will see that using the spike and slab jump
model results in a non-convex optimization problem in the conditional M-step
for J.

3.1 KECM algorithm for Laplace Distribution

First we consider a KECM approach to estimating I" when J; is approximated
by a Laplace distributed random variable. We define

6= [@17 @27@33 947 65]

where
6:=D
O, =T
O3=02;,1<i<N
@4:J(22T)

05 = {\i(t) h<icnas<e<r

as our vector of unknown parameters and X (1 :7T) as the latent variables.
The KECM approach is an iterative algorithm that can be applied to the
following problem

O* = arg max L(6)

where L(6) is the log posterior of ©. In the KECM algorithm we iterate over
E-steps and conditional M-steps to arrive at an estimate of ©.

The E-step in the KECM algorithm involves computing the expected value
of

log p(X(1:T),y(1: T)|0)p(6)
with respect to p(z(1 : T)|y, @)

g(ev Q(k)) = ]Ep(w\y,@(k)) logp(X(l : T)vy(]- : T)|9) =+ log(p(ﬁ))

where ©() is an estimate of © at the k" iteration and where p(#) is the prior
distribution of parameters

p(0) = p(01)p(02)p(03)g(a, [N qins (A1)
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Here the complete log-likelihood is

T
log p(z, y|¢) = —0. 5210g | Xt Z 1y(8) = IOz Ziag(5, (1)-1,8
23
_T log |I) — ;ZTIT ) + const
t=2
where
r(t) = x(t) —x(t = 1) —d—j(t)
and where

lq] |%762 = Z @‘%2-
i

It is well known that the function G(#,0®)) serves as a lower bound to
log p(6,y) and that logp(@™*),y) = G(O@F) 6F) [17].

The EM approach prescribes a joint maximization of G(#, ©*)) with re-
spect to #. This is difficult due to the coupling of variables and the non-
concavity of the problem. Conditional maximization of each parameter in turn
is more tractable. Thus we apply conditional maximization as in the ECM [30]
algorithm. The conditional M-steps involves a coordinate-wise maximization
of G. Here the conditional M-steps are

ek+h :argr%axg([ey“*” oD g, o®) . ,eg’ﬂ ,9““)) (6)

7

Each of these problems can be readily solved as we will show later.

3.1.1 E-step of KECM

The posterior p(z|y, @*)) needed to perform the E-step is normal and can be
computed using a Kalman smoother [35]. By normality and the Markov prop-
erty the posterior is completely defined by the following posterior moments
form=T

X(tm) = E(X(8)|y(1: m))
P(t[m) = cov(X(t), X (t)|y(1 : m))

P(t,t —1jm) = cov(X(t), X (t — 1)|y(1 : m))

where cov(:,:) refers to the covariance function. Equations for these quan-
tities are derived in [34] and given in Appendix A. The expected value of
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log-posterior distribution with respect to the posterior of X(1 : T') can be
shown to be

g(aa @(k)) = Ep(z\y,@(k)) Ing(X(l : T)ay(l : T)‘Q) + log(p(e))

_ T 2_ ! log(|I']) — %tr(F‘l(C’ - B- BT+ 4))

1 T

—3 > ly(t) = IOX Olliag(s, 01,0 + 0 PHTIOT Z6(0) 71 (2)
T
-0.5 Zlog(\Zo(t)D + log(p(6)) + const (7)

where

T
A=) (P(t—1T)+ X(t - 1T)X(t—1|T)")

t=2

T
B=Y" (P(t,t —1IT) + (X (HT) — D®) — J® ()X (¢ — 1|T)T)

t=2

C:

T
t=2

(PUT) + (X(T) = DY) — SR )(X(UT) = DP — JO (1)) .

For notational convenience the dependence of P(¢|m) and P(t,t — 1|m) on the
iteration number has been dropped.

3.1.2 Conditional M-steps of KECM

For the conditional M-step it can be shown using standard conjugate prior
relationships [20] that

T
DU+Y — (12[) + IO ST X(HT) - X (¢ - 1T) — J“%)) (8)
D t=2

and

1

1
et — = (g (k) _ k) _ g(&)T -
( +C ) * T—-14n

T—-14n ©)

where
1 -1
F= ((T — )y 0,321)

B® =% (P(t,t —1T) + (X(#T) — D*+D — J (1)) X (¢ — 1\T)T)
t=2
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and

c® =>"P@T)

t=2
T
+Z(X(t|T) _ pk+1) _ J(t)(k)>(X(t|T) _ ple+1) _ J(t)(k))T_

t=2
The conditional M-step for the observation noise variance is

(k) _ 28, + Yo (y(8) = IO X (HT))Z ;4 + (PEHT))is
0, o 20, + 2 + M; ’

(10)

Here 7; is the set of times where the price of asset ¢ is observed and M; is
the total number of prices observed for asset . The subscript 7(4,t) is the row
number of I(t) such that j(t)n(i,t),i =1

For each conditional M-step P(¢,T), P(t,t—1|T) and X (t|T") are evaluated
with respect to p(X(1: T)|Y,0®).

To compute the conditional M-step for J we denote

N . . — k
QU) = G, DEY {62 b cion, 5 AN () T H oy acy<r] OW).

Then up to a constant not depending on j
1 Z
Q) =—5 D i () i()
T
+ Y (X(UT) = DUV — X(t = T)" (D) (t)
t=2

T
- Z 17 ()l xt),e, + const.
t=2

. N .
where ||7(0)||xw).e, = 2on=1 A ()] (?)]-
Referring to equation (6) we see that J*+1)(¢) is the solution of the fol-
lowing ¢; penalized quadratic program
1
JED(t) = argmin o T (DE) g — T (EEF)TLAFED {1 (0)] 300,
J
(11)
where
AR () = X(#T) — D® — X (¢t — 1|T). (12)

This problem can be solved with a variety of fast algorithms such as ADMM
[11] and FISTA [7].
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Now we determine {\;(t) ™' }1<i<n 2<t<7 which depends only on g;n, (A™1)
and p(j|)\). Using conjugate prior relationships we have p(\;(t)~!|j;(¢)) is in-
verse gamma distributed with shape ay + 1 and scale 8y + [j;(¢)|. Thus the
conditional MAP estimate is

_ @)+ B

)\i(t)71 ay + 2

which implies that

ay + 2

AN(t) = —————.
v T (@)] + Ba

An outline of the KECM algorithm for Laplace jump models is given below.

Algorithm 1 KECM Algorithm for estimation of I" under Laplace Prior

Initialize: (9 k=0

while not converged do
Compute X (t|T), P(t|T), P(t,t—1|T) using Kalman smoothing equations for (%) using
equations (24)-(29)
Compute D*+1) (k+1) and U§7£k+1) using equations (8),(9), and (10) respectively
Compute J*+1) by solving (12)
Compute {A;(t)}1<i<n,2<¢t<T by solving (14)
k=k+1

end while

Here the convergence criterion could be set in a number of ways such
as reducing the £, norm of the difference in estimates, @ +1) — @) helow
a predefined threshold. Convergence results for this algorithm are given in
Appendix B.

Remark 1 Since the value of {\;(t)}1<i<n2<t<r changes with each iteration
we see that we effectively reweight the ¢; penalty in (11) after each iteration.
Reweighting of the ¢; norm has been proposed in several papers and has been
shown to have improved performance in compressive sensing problems versus
a fixed set of weights [13].

3.2 KECM approach for the Spike and Slab Jump Prior

Now we present a KECM for the spike and slab jump prior. As with the
Laplace prior we treat X as a latent variable. Let us denote the unknown
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parameters as ¢ where

&, =D

Oy =1

453:‘75,1‘

Oy =2Z(2:T),J(2:T)
D5 = ¢

P = {sz,i(t)}i:1,...,N,t:1,4..,T :

Here we allow for distinct 0]2 values for each time and asset.

The E-step as well as the conditional M-steps for @1, P,, P53 are identical
to the KECM algorithm for Laplace priors. The differences for this section are
in the conditional M-steps for J, ¢ and 012».

First we address the conditional M-step for J**1)_ Here we need to solve

- 1
[J(kJrl)(t)’Z(kJrl)(t)’ J(kJrl)(t)} _ 3rgmh} ,jT([‘(kJrl))*lj
J:%2,]

N
— ()T ARED N "log (f(ji, 21))
i=1

s.b. ji = Jizi (15)
where

~ 1 2
log £ (G, ) =1og (Cli—o + (1 — O)12,21) + log | ——— exp | —=2%
27“721 2075

N2

(16)
Here we dropped the notation for time dependence. When restricted to j; =
Jizi, —log(ji, z;) induces a penalty on j;. which is a weighted sum of an ¢y and
squared ¢2 norm. A plot of this penalty is shown in Figure 1.

Spike and Slab Penalty

afzw €-05 p=0.99

o
T
‘.

Se 2
~ - = - 0,=3e-06 p=0.9999 Jtd

o
/
\
\

IS
T

o
T

Penalty Value
- 5
——— e

IS
&
)
o
S

<

3 4
x10°

Fig. 1 Spike and slab penalty function for various parameter values. Here we see that the
penalty is a weighted sum of ¢y and squared ¢2 norms.



14 Michael Ho, Jack Xin

The term — log(j;, z;) is non-convex and complicates the conditional M-
step (15). Hence we seek an approximate maximization through coordinate
descent. Here we divide the problem into tractable 1-dimensional optimization
problems with respect to one asset at a time. The method and equations for
implementing coordinate descent are described below. For ease of notation we
drop the notation denoting dependence on k.

Let us define the following conditional mean and variance
a(i) = Ai(t) + Iy 5 (-i(t) — Ai(t)) (17)

and
V(i) = I} — Fz‘,—iF:l,,iF—i,z' (18)

where the subscript —i is to be interpreted as all indices except ¢. Then the
following rule determines the MAP optimal value of z;(t) conditioned on j_;(t)

i e a(t Qi a(t 27: 02.
Z”():{o RSN (0,a(0), (D) > N (0,00 B2(0) +03,0)) )

1 else

where N(0,a(i),b%()) is the normal PDF with mean a(i) and variance b*(i)
evaluated at 0. An optimal value of .J;_;(t) is then given as

~ —2— if Zil—i t 0
Jytty = { ez PO F0 (20)
0 else

The mapping defined by equations (19) and (20) is a combination of a
thresholding step followed by a shrinkage operation

Ji|-i(t) = SpikeSlabShrink(a,b®)

3 CN(O’a(i)be(i )
- 0 TN FO o, L .

1+b2(i)0';i2(t) else

(21)

This spike and slab shrinkage is illustrated in Figure 2. As the plots indicate
the shrinkage is discontinuous and large values are shrunk more than smaller
values.

Equation (21) is cycled through all i = 1... N. Multiple cycles may also be
performed to obtain an improved estimate of J. A summary of the algorithm
for the conditional M-step for J is given below in Algorithm 2.
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10 Spike and Slab Shrinkage function »* = le — 7
5

012=0.0001 p=0.8 -

--- 012=5e'07 p=0.9 Pid

Spike Slab Shrinkage Output
o

. . . . . . . . . .
5 4 3 2 A 0 1 2 3 4 5
a x10

Fig. 2 Spike and slab shrinkage function for various parameter values

Algorithm 2 Coordinate Descent for Determination of Z*+1(¢), J*+1)(¢),
and J*F (1)

Initialize: Set Jt1D (1) = J*)(¢), it=0, L > 0
while it < L do
it=1t+1
1 =0
while i < N do
i=14+1
Compute Zi< using equations (17), (18), and
Compute ji(k_H)(t) using equations (17), (18), and (20)
Set JETD (1) = ZFFD (1) JE D ()
end while

end while
return J<+1) (¢)

)

Although this method is not guaranteed to solve (15) it will not increase
the value of the objective function compared with J*(t).

Once J*+1) is obtained, values for ¢(*t1) and U?’(kﬂ) are easily computed
through conjugate prior relationships. First let N be number of zero values in
J(2 : T) 1D Then by conjugate prior relationships the conditional M-steps
for ¢ and o3 are

(k+1) _ Q¢ + NZ 29
¢ N(T—l)-l—ﬁc—i—ozg (22)
and
4+ 0.5(J;(¢))?
o2 (1) = B +0.5(Ji(1)) (23)

a; +1+0.5(Z;(t)

The KECM algorithm for spike and slab models is summarized in Algo-
rithm 3.
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Algorithm 3 KECM Algorithm for estimation of I" under Spike and Slab
Prior
Initialize: #(©) k=0
while not converged do
Compute X (t|T), P(t|T), P(t, t—1|T) using Kalman smoothing equations for @*) using
equations (24)-(29)
Compute D*+1) (k+1) and U§’£k+1) using equations (8), (9), and (10) respectively
For all ¢, compute j(k*l)(t)7 Z(k+1) () using Algorithm 2
Set JETD (1) = ZFFD (1) JFTD (1)
Compute ¢**1) using equation (22)
2,(k+1
Compute O'j!i( )
k=k+1
end while

(t) using equation (23) for all 4, ¢

Similar to Algorithm 1 the convergence criterion could be set in a number of
ways such as reducing the ¢, norm of the difference in estimates, ©++1) —Q(*)
below a predefined threshold.

Note that although J(¢) is only approximately maximized in each condi-
tional M-step this is still an ECM algorithm. To see this we can simply redefine
P as

(D, I,02,J1(2), ..., In(2),..., Ji(T),..., In(T),(,07] .

Then the above algorithm is an ECM algorithm for the redefined parameter
vector. The convergence of Algorithm 3 is similar to the proof of the conver-
gence of Algorithm 1 in Appendix B.

Remark 2 A comparison of the spike and slab shrinkage function with the
shrinkage function of the b? — equivalent Laplace prior is shown in Figure 3.
The Laplace shrinkage function (with parameter \) is defined as

a—A?  ifa > \b?
LaplaceShrink(a,b*) = a+ A\b?  if a < —\b? .

0 else

The graphs illustrate advantages and disadvantages of the Laplace prior. One
notable disadvantage is that for large 0]2 the Laplace prior has a large bias
relative to spike and slab priors. However for small 0]2- and large values of a we
see that the Laplace prior is less biased than the spike and slab. This can be
attributed to the quadratic penalty induced by the spike and slab prior which
penalizes large jumps more heavily than the Laplace prior.

Remark 8 The use of Laplace priors and ¢; penalties has been applied in
context of robust Kalman filtering and smoothing in [29,1]. Here the authors
considered the problem of non-gaussian heavy tailed observation noise rather
than process noise.
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%103 Shrinkage function b* = le — 7

Shrinkage Output
o

. af:o 0001, p=0.999
e - = - Laplace Equiv 17=0.0001, p=0999

s 4 s 2 1 o0 1 2 3 4 s

a x10%
Fig. 3 Shrinkage Functions of the spike and slab and the corresponding b2 — equivalent
Laplace prior

4 Numerical Results

In this section we evaluate the performance of the following algorithms

KEM [15]

KECM Laplace(section 3)

KECM Spike and Slab (section 3)

Pairwise refresh with TSCV [18,38]

Pairwise refresh with TSCV and jump correction [10]

CL o=

for determining a covariance matrix from high frequency data. The KEM and
pairwise refresh algorithms are included in the study to serve as benchmarks
for scenarios where jumps are not present, small, or infrequent. The pairwise
refresh with jump correction algorithm was included as a benchmark for cases
where jumps are present. The performance of each algorithm is evaluated using
a Monte Carlo approach with simulated high frequency return data.

4.1 Performance Assessment Methodology
We track two performance measures for the covariance estimate, f, in this
study. For the first performance measure we compute the minimum variance

portfolio

W = arg min w! Tw
w
i

The variance of this portfolio’s return is then computed as a figure of merit.
The variance of the portfolio return is given below

wT .
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For the second performance measure we compute the relative Frobenius
norm of the error between the true and estimated covariance

\/Zm- |Fi,j - ﬁi,j|2

Zi,j |Fi,j|2

4.2 Algorithm Initialization and other considerations

In each study we initialize the algorithms in the same way. The hyper-parameters
for the prior distribution are listed in Table 1. For the KEM and KECM al-
gorithms the initial covariance estimate is computed using the time refresh
method in [5]. The initialization of drift and jump estimate of each algorithm
is set to zero.

In the KECM algorithms we employ one additional initialization step to
avoid being trapped in an over-smoothed local solution. This step involves
using a forward Kalman filter rather than a smoother to approximate the
posterior distribution of X (¢) in the first 10 iteration of the KECM algorithms.
After 10 iterations we revert to the approaches described in Section 3 which
use the Kalman smoother.

The stability of the covariance estimate forms the basis for a stopping
criterion in the KECM algorithms. The KECM algorithms are terminated
at iteration m when the relative difference between the current and previous
covariance estimate is less than 0.001

n n—1
V10 - 15 VF
(n—1)
>y 1P

Since jumps cannot be predicted an ambiguity occurs if there is no obser-
vation of the price at the time the jump occurs. Thus to prevent ambiguity we
assume jumps in the i*" asset price can only occur if an observation of the it"
price is made. We believe that this is a mild assumption given that in many
markets jumps in the efficient price will be traded upon almost immediately.
This assumption is built into the KECM approach by setting A = ocoand ( =1
when an observation does not occur.

< 0.001.

4.3 Simulated Data Jump Model

For the data study we simulated 30 minutes of data from 20 assets according
to equations (1) and (3) at 1 second intervals. Here 50 data sets were generated
to test our algorithms. Taking motivation from factor models for U.S. stock
returns we set our covariance I according to the following 5 factor model

5
I'= Zﬂviviv;ﬁ +el.

i=1
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Table 1 Parameters used in KEM, and KECM algorithms

Value Comment
o 10 x 0.995
B¢ 10 — a¢ prior mean of ¢ is 0.995
a; 10
B; 0.012(a; + 1) prior mode of 0]2. is le-4
Qo 5
Bo (o + 1) x 0.00012 prior mode of o2 is le-8
n N+5
2
Wo %I Corresponds to 0.02% daily volatility
a) 5.6 Obtained using method in Section 2.3
B 5e-04 Obtained using method in Section 2.3

Here we compute a new covariance for each Monte Carlo data set. We draw
v1 from a multivariate normal distribution with mean % and covariance 0.51.
For i > 1, we draw v; from a multivariate normal distribution with zero mean
and covariance I. The factor variance f3,, is modeled as gamma distributed

: 0.7%0.022 . 0.3/4%0.022 .
with shape 2 and mean =375 for i = 1 and mean —=f5755=— for ¢ # 1. The

€ term is defined to be %. With these settings each simulated asset will
on average have a daily return volatility of approximately 2 percent.

For the D parameter we use a random number generator for each data
set. The value for D was drawn from a multi-variate normal distribution with
mean 0 and covariance (2%'2010)2 1. The observation noise variance of each asset
was set to a random number drawn from a gamma distribution with shape 2
and mean 0.00022. For a stock price of $25 this corresponds to a mean noise
standard deviation of about $0.005. The jump parameters ¢ and 0]2 were varied

parametrical over several values.

The KECM algorithm require hyperparameters to be specified for the prior
distributions. For these experiments we choose hyperparameters which would
result in diffuse priors in order to minimize bias. For the hyperparameters of
the Laplace prior in the KECM algorithm we used the technique described in
Appendix C. A listing of all the hyperparameters used in the algorithms are
shown in Table 1.

The probability that any given price is observed is set to be commensurate
with the price innovation. This is consistent with empirical observations that
trading volume can be positively correlated with volatility [24]. To model this
association the probability that the m!" asset price will be observed at time ¢
is simulated as

_ | Xw(t) = Xin-1(t) — Dni
‘Xm(t> - Xm—l(t) — Dm| +v

= (7
y = Vomm 1),
™ PoObs

pobs,m(t)

where




20 Michael Ho, Jack Xin

Table 2 Portfolio variance for jump model

KECM KECM | Pairwise | Pairwise

¢ 012- KEM Laplace Spike Refresh Refresh
& Slab (jump)
1 N/A 1.2e-10 1.3e-10 1.3e-10 1.8e-10 2.3e-10

0.9999 | 6.25e-06 | 1.5e-10 | 1.4e-10 1.4e-10 1.8e-10 3.3e-10
0.9999 | 0.0001 1.6e-10 | 1.4e-10 1.4e-10 2.6e-10 3.5e-10
0.9995 | 6.25e-06 | 1.6e-10 | 1.3e-10 1.3e-10 2.4e-10 3.5e-10
0.9995 | 0.0001 3e-10 1.3e-10 1.2e-10 7.9e-10 4.4e-10
0.999 6.25e-06 | 2.4e-10 | 1.6e-10 1.6e-10 4.7e-10 4.1e-10
0.999 2.5e-05 4.5e-10 | 1.7e-10 1.7e-10 9.8e-10 4.3e-10
0.999 0.0001 8.2e-10 | 1.6e-10 1.6e-10 1.7e-09 6.4e-10

Table 3 Average covariance error for jump model

KECM KECM | Pairwise | Pairwise

¢ 0]2 KEM | Laplace Spike Refresh Refresh

& Slab (jump)
1 N/A 0.2 0.2 0.2 0.48 0.51
0.9999 | 6.25e-06 0.22 0.22 0.22 0.47 0.52
0.9999 | 0.0001 0.73 0.21 0.21 0.89 0.56
0.9995 | 6.25e-06 0.29 0.21 0.21 0.55 0.58
0.9995 | 0.0001 3.5 0.18 0.18 2.9 0.57
0.999 6.25e-06 0.36 0.21 0.21 0.67 0.63
0.999 2.5e-05 1.1 0.21 0.21 1.5 0.68
0.999 0.0001 4.8 0.2 0.2 4.6 0.73

This choice of v ensures that when the innovation achieves its mean absolute
2T m
T b

value , the probability of an observation will be pops. We set pops =
0.3 in our numerical experiments.

The performance results for different values of the jump parameters are
shown Tables 2 and 3. For the majority of cases we see that the KECM ap-
proaches outperform the other methods when jumps are present. In Figure 4
we show the Kalman estimate of the true price for KEM and KECM-Laplace.
The figure highlights the disadvantage of the KEM algorithm in the presence

of jumps, namely that it over smoothes prices near jumps.

4.4 Simulated Data from GARCH(1,1)-jump model

In addition to the jump diffusion model we also evaluate the algorithms against
a multivariate GARCH(1,1)-jump pricing model [14,28,8], where the effect of
jumps persists in the price volatility. Using the GARCH(1,1)-jump model the
log- price data is generated as

Xi(t) = X;(t = 1) + VhiVi(t) + Ji(t) Zi(t) + D
hi(t + 1) = bzhl(t) + (li(Xi(t) — Xi(t — 1) — D)2 + C;
hi(0) = I3,
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Price Recovery Near Jump
T T T

35.68 T
35.66 - b L 1

35.64

35.58

35.56

35.54 4

950 960 970 980 990 1000 1010
Time-sec

Fig. 4 Price estimate example from the KEM and KECM-Laplace algorithms. This is an
example of the KEM algorithm over-smoothing near a small jump in price

Table 4 Portfolio variance for GARCH(1,1)-jump model.
KECM KECM | Pairwise | Pairwise

¢ 0']2- KEM Laplace Spike Refresh Refresh
& Slab (jump)
1 N/A 1.3e-10 1.3e-10 1.3e-10 2.5e-10 4e-10

0.9999 | 6.25e-06 | 1.6e-10 | 1.6e-10 1.5e-10 2.4e-10 3.1e-10
0.9999 | 0.0001 1.6e-10 | 1.3e-10 1.3e-10 4.4e-10 4.2e-10
0.9995 | 6.25e-06 2e-10 1.5e-10 1.5e-10 4.4e-10 4.6e-10
0.9995 | 0.0001 3.7e-10 | 1.3e-10 1.4e-10 1e-09 3.9e-10
0.999 6.25e-06 | 2.6e-10 | 1.4e-10 1.4e-10 5.8e-10 4.5e-10
0.999 2.5e-05 5.5e-10 | 1.5e-10 1.7e-10 1.4e-09 Te-10
0.999 0.0001 1.1e-09 | 1.6e-10 1.5e-10 2e-09 6.8e-10

where a;, b;, ¢; are non-negative with b; +a; < 1 and ¢; = I ;(1 — a; — b;).
Here V(t) is modeled as multivariate normal with

- ‘/;(t) ~ N(Oa 1)

- EVi(t)V;(t) = \/Frijip“
- EVi(tl)Vj(tQ) =0 for tl 75 tg.

The value of ¢ ensures that in the absence of jumps, the long term average
volatility for the i*" asset will be /T; ii- We also see that the correlation
coefficient between any two assets is constant [8].

In these experiments a; = 0.3 and b; = 0.5. This allows for volatility
clustering which has been observed in many empirical stock return data. All
other parameters such as the covariance matrix are identical to the previous
experiment.

The results for the GARCH(1,1)-jump model are shown in Tables 4 - 5.

From these tables we see that both KECM algorithms are robust to the volatil-
ity clustering exhibited in GARCH models.
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Table 5 Average covariance error for GARCH(1,1)-jump model.

KECM | KECM | Pairwise | Pairwise

¢ 0’]2- KEM | Laplace Spike Refresh Refresh

& Slab (jump)
1 N/A 0.37 0.37 0.38 0.5 0.52
0.9999 | 6.25e-06 0.43 0.37 0.38 0.58 0.55
0.9999 | 0.0001 3.3 0.39 0.4 1.7 0.55
0.9995 | 6.25e-06 0.88 0.42 0.43 0.81 0.62
0.9995 | 0.0001 18 0.65 0.49 8.5 0.61
0.999 6.25e-06 1.4 0.48 0.51 1.2 0.64
0.999 2.5e-05 7.7 0.64 0.62 4.5 0.69
0.999 0.0001 36 1.4 0.67 16 0.71

4.5 Simulated Data from GARCH(1,1)-jump Model and stochastic
microstructure variance

In this section we test our algorithms under a GARCH(1,1)-jump model with
stochastic microstructure variance. This microstructure noise model accounts
for a positive correlation between the bid-ask spread and the squared in-
novation. This models an empirical phenomena that has been observed in
many markets [39]. Here we assume the same efficient price innovation as the
GARCH(1,1)-jump model but now we allow for time-varying variance in the
microstructure noise. In this model the variance of the microstructure noise
at time ¢ for " asset is

(Xi(t) - X;(t—1) - D)? -
(0.1 e + 0.9) 52,

which is the sum of fixed variance and time varying term which is dependent
on the efficient price innovation. Here we see that when the squared innovation

equals the variance then the observation noise variance equals 62 ,. As in the

previous simulations, G2

random variable with shape 2 and mean 0.00022.

The results for this model are shown in Tables 6 and 7. From a compari-
son with prior tables we see that the covariance errors are larger for the non-
stationary microstructure noise model. Here the KECM-Laplace model is espe-
cially sensitive to the stochastic microstructure noise variance for 0‘? =le—4.
In some cases the covariance error increases by about a factor of 10. The
KECM-spike and slab approach is not as sensitive to the stochastic noise vari-
ance.

, is chosen to be a realization of a gamma distributed

4.6 Numerical Results Summary

The following are key observations from the numerical simulation results:

1. Both KECM approaches outperform KEM in the presence of jumps.
2. Laplace prior underperforms spike and slab models for large jumps.
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Table 6 Portfolio variance for GARCH(1,1)-jump model with stochastic microstructure
noise variance.

KECM KECM | Pairwise | Pairwise

¢ sz KEM Laplace Spike Refresh Refresh

& Slab (jump)
1 N/A 1.5e-10 1.6e-10 1.6e-10 2.2e-10 4.7e-10
0.9999 | 6.25e-06 | 1.6e-10 | 1.6e-10 | 1.6e-10 3e-10 2.8e-10
0.9999 | 0.0001 2e-10 1.6e-10 1.6e-10 5.1e-10 4.6e-10

0.9995 | 6.25e-06 | 2.6e-10 | 1.9e-10 | 1.9e-10 4.6e-10 5.1e-10
0.9995 | 0.0001 5.1e-10 | 1.8e-10 | 1.8e-10 1.5e-09 7.4e-10
0.999 6.25e-06 | 2.3e-10 | 1.5e-10 | 1.5e-10 5e-10 5.4e-10
0.999 2.5e-05 5.6e-10 | 1.7e-10 | 1.7e-10 1.4e-09 1le-09
0.999 0.0001 9e-10 2e-10 1.6e-10 2.3e-09 7.4e-10

Table 7 Average covariance error for GARCH(1,1)-jump model with stochastic microstruc-
ture noise variance.

KECM | KECM | Pairwise | Pairwise

¢ 0’]2. KEM Laplace Spike Refresh Refresh

& Slab (jump)
1 N/A 0.37 0.37 0.38 0.57 0.6
0.9999 | 6.25e-06 0.51 0.42 0.42 0.55 0.56
0.9999 | 0.0001 21 1.5 0.38 2.6 0.56
0.9995 6.25e-06 0.78 0.4 0.41 0.82 0.55
0.9995 | 0.0001 75 3.3 0.47 9.5 0.67
0.999 6.25e-06 1.2 0.41 0.44 1 0.6
0.999 2.5e-05 13 0.48 0.51 3.5 0.79
0.999 0.0001 1.3e+02 13 2.7 13 2.2

3. Spike and slab models are more robust to stochastic microstructure noise
variance than the Laplace prior model.

4. Pairwise refresh with jump correction performed worse than pairwise re-
fresh without jump correction for scenarios where jumps were infrequent
and small.

5. Both KECM methods perform similarly to the KEM approach when jumps
are not present,infrequent or small.

The first observation is not surprising since both KECM approaches explic-
itly account for jumps. The second and third observations may be the result
of a large jump estimation bias that can occur when using the Laplace prior
for large O'JQ-. Observation 4 could be due to overcompensation or incorrect de-
tection of jumps in the pairwise refresh with jump correction approach. This
is in contrast to the KECM approaches which performed well for small and
infrequent jumps as well as large and frequent jumps.

5 Conclusion

This work has introduced two jump robust KECM methods for estimating
asset return covariance from high-frequency data. The methods address 3 fea-
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tures found in high frequency data: 1) asynchronous returns, 2) market mi-
crostructure noise, and 3) jumps. Jumps were addressed using both Laplace
and spike and slab distributed models.

Both proposed techniques improve covariance estimation performance ver-
sus existing methods when jumps are present. When comparing the spike and
slab and Laplace jump models, the spike and slab approach demonstrated more
robustness especially to larger jumps and stochastic microstructure noise vari-
ance.

Many problems remain to be investigated. As future work other jump mod-
els besides spike and slab and Laplace can be considered. For example both
the spike and slab and Laplace priors create a bias in the jump estimates.
The use of other penalties which induce less penalty for large jumps may re-
duce this bias and improve estimation performance. Another area that can be
addressed is global convergence of the KECM algorithms. Since the KECM
does not necessarily converge to a globally optimal solution additional perfor-
mance gains may be achievable by attempting multiple initializations or other
approaches. Further questions to study include convergence rates of KECM
type algorithms, asymptotic/non-asymptotic properties of our estimators, and
applications to complex real-world financial data.
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Appendices

A Kalman Smoothing Equations

The Kalman smoother can be used to compute the posterior distribution of X (¢) given Y
and an estimate of © = [D, I', X/ J]|. From [35] the posterior distribution is normal and is
completely characterized by the following quantities for m =T

X(tlm) = E(X(t)|y(1 : m))

P(tlm) = cov(X (¢), X (¢)|y(1 : m))
P(t,t — 1lm) = cov(X (t), X (t — 1)|y(1 : m)).

These values can be computed efficiently using a set of well known forward and backward
recursions [34] known as the Rauch-Tung-Striebel (RTS) smoother. The forward recursions
are

X(@t—1)=X({t—1t—1)+ D+ J(t) (24)
Ptlt—1) = P(t—1ft— 1)+ T (25)
G(t) = P(t|t — D)I)T (I(t)P(t\t - I’ + Eg(t)) - (26)
X(tlt) = X(tt = 1) + G)(y(t) — I X (¢t - 1)) (27)
P(tlt) = P(t|t — 1) — GE)I()P(tt — 1) (28)
with X (0]0) = p and P(0/0) = K.
The backward equations are given by
H(t—1)=P{t—1t—1)P(tjt — 1) !
Xt—1T)=X(t—1t—1)+ H(t— 1)(XHT) — X(¢|t — 1))
Pt—1T) = P(t— 1t —1)
+H(t — 1) (P®T) — P(tlt — 1))H(t — 1)T.
A backward recursion for computing P(¢,t — 1|T)) is
Pt—1,t—2|T) = P(t— 1|t — 1)H(t —2)T
+H(t—1)(P(t,t—1|T) — P(t — 1]t — 1)) H(t — 2)T
where
P(T, T —1|T) = (I — G(T)I(T))P(T — 1|T — 1). (29)

B Convergence of KECM Algorithms

Convergence of the EM and ECM algorithms in general is considered in [36] and [30] re-
spectively. It is shown in [30] that the ECM algorithm converges to stationary point of the
log posterior under the following mild regularity conditions

1. Any sequence ©*) obtained using the ECM algorithm lies in a compact subset of the
parameter space, {2. For our case we need to restrict the parameter space such that
02 #0 and I is positive definite.

2. G(©,0’) is continuous in both © and ©'.

3. The log posterior L(©) is continuous in {2 and differentiable in the interior of 2.
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B.1 Algorithm 1

Since the Laplace prior on J is not differentiable condition 3 is not satisfied and the results in
[30] are not directly applicable. However the proofs and solution set in [30] can be modified
to handle this irregularity.

Before addressing condition 3 we first verify condition 1. We start by examining the
sequence of covariance estimates I"(F).

Lemma 1 Assume a noisy asset price is observed at least one time for each asset fort > 1
and that I(t) # 0 for all t. Let I'(F) be a sequence of solutions obtained with Algorithm 1,
1

where I'(0) s positive definite. Then sequences '™ and <y are bounded where s%) is the

2,(k)

o 18 bounded below and above

minimum eigenvalue of I'®)  In addition the sequence o
by positive values for all i.

Proof Since W, is positive definite we have from equation (9) that s() is bounded below
by a positive constant which implies s(%) is bounded. Similarly by equation (10) we have

ai’gk) is bounded below by a positive constant. To prove that I'(®) is bounded we note that

the posterior may be written as

p(0ly) = C1p(y|0)p(6)

T
= Cip(y(1)10)p(®) [ [ p(y(®)ly(1 : t —1),6)
t=2

T
< Cop(y(1)|0) [ py(®) w1 : t — 1),0)
t=2

where C is a constant not dependent on § and where Co = C supg p(6). Note that C2 < co.
For t > 1 each of the conditional distributions p(y(t)|y(1 : ¢ — 1),0) is a normal distri-
bution with covariance
Q@) = It)P(tlt — D)I)T + 621
where for notational simplicity we suppress the dependence of Q(t) and P(t|t — 1) on k.
Since o2 . is bounded below by a positive value, it follows that \Qi%t)l is bounded.

0,1

Now suppose that 1"*) is unbounded. Then since
Ptt—1)=Pt—-1t-1)+ T

P(t|t — 1) is unbounded as k goes to co. Since an observation of each asset’s price occurs at
least once for ¢t > 1 it follows that Q(7) is unbounded (as k — oo) for some 7 > 1. Then since
the smallest eigenvalue of Q(7) is bounded below by a positive constant, the determinant of
Q(7) is unbounded. Thus a subsequence of p(y(7)|y(1 : 7 — 1), ©)) will approach 0. Since

m is bounded, p(y(t)|y(1 : t — 1), ©)) will remain bounded above for all t. Then using

(30) we have

T
p(Oly) < Cop(y(1)|0) [ [ ply@®)ly(1: t —1),0)
t=2
T
= Cop(y()ly(1: 7 —1),0) [[ ply@®)ly(1: t —1),6)
t#£T

which implies a subsequence of p(G(k)|y) will converge to 0. This contradicts the mono-

tonicity of the ECM algorithm [30]. The proof that the sequence aijgk) is bounded above
for all 4 is similar.

Lemma 2 Assume the conditions of Lemma 1. Let )\(t)*l’(’c> be a sequence of solutions
obtained with Algorithm 1 where I'©) is positive definite. Then there ezist finite positive
numbers a,b where a < X;(t)*®) < b for all t,k and i.
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Proof By the update equation (14) we may set b = agi:ﬂ which is positive and finite. By way
of contradiction assume the lower bound does not hold. Then for some % and t there exists a
subsequence \;(t)*n) such that limy—s 0o A;(t) ™ 1(Fn) = co. Since each A;(t)~! is the mode
of an inverse gamma distribution it follows that the posterior scale parameter,(8y + |j(*n)])
goes to infinity . This implies that p(\;(t)~1:(*n) j;(£)(*n)) — 0. Since each prior density
function is bounded as X;(t) — O this implies that p(f) goes to zero, contradicting the
monotonicity of the ECM algorithm. Thus there exists an a > 0 such that \; (t)(k) > a for
all t,k and 7.

Now we prove that the sequences J(*) and D(¥) are also well behaved.

Lemma 3 Assume the conditions of Lemma 1. Let J*) and D) be sequences of solutions
obtained with Algorithm 1 where I'(©) is positive definite. Then sequences J*) and D)
are bounded.

Proof From Lemma 1 the likelihood p(y|f) is bounded above. Recall from the previous
lemma that there exists an a > 0 such that for all k, X;(t)*) > a. Since the prior density
function is bounded above for each parameter it follows that lim;_, o p(f) = 0. This implies

J*) is bounded by the monotonicity of the ECM algorithm. Since limg_, 0o p(0) = 0 it also
follows that D) is bounded.

The above lemmas imply the following corollary.

Corollary 1 The sequence O®) is bounded and all limit points are feasible ( e.g. variance
non-zero, positive definite covariance).

Now we derive some additional properties of the limit points of ©(k) To do this we shall
refer to Zangwill’s convergence theorem [37]. To use Zangwill’s theorem, we first define A
to be a point to set mapping defined by the ECM algorithm i.e. ©(*%+1) ¢ .A(@(k)). Let us
define a solution set, S, as the set of 6 such that

01 = argmvaxg ([v, 02,03,04,05],0)
0o = argm;?,xg ([01,v,03,04,05],0)
03 = argmﬁxg ([61,02,v,04,05],0)
04 = argmqe}xxg ([61, 02, 03,v,05],0)

05 = arg max g ([01, 62, 03,04,v],0).
v

By definition 6§ € A(6) for all € S. This along with the monotonicity of the ECM algorithm
implies that L(0) is an ascent function, i.e.

L(0") > L(9) for all ¢ S, 0" € A(0)
L(0") > L(9) for all € S, 0" € A(6).

Since G(6,0’) is continuous in both 6 and 6’ we have that A is a closed mapping. Thus we
have the following theorem.

Theorem 1 All limit points of @) belong to S.

Proof This is a direct consequence of Zangwill’s convergence theorem [37] (also known as
the Global convergence theorem [27]). To invoke the theorem we must meet the following
conditions

— ©®) belongs to a compact subset of the feasible solutions
— A is closed
— There exists a continuous ascent function
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All three of these conditions were shown above, thus the theorem follows from Zangwill’s
convergence theorem.

Now we show that if 6/ € S then 6’ is in some sense a “stationary” point of the log
posterior L(6) = logp(|y).

Theorem 2 Let ' € S. Then
VgiL(Q)‘gzgl =0fori€e1,2,3,5

and
0 S 894[/(9)‘9:9/ .

Proof To show this we first note that L(0) can be written as [30]
L(@‘y) = g(@, 0/) - H(97 9’)

where

H(ev 9/) = ]Ep(z|y,9’) Ing(X|y7 9)
From the information inequality we have that H(6’,0') > H(0,0’) for all feasible 6. Since
H(6,0") is differentiable with respect to 6 it follows that

VoH(6,6") 9= = 0.
Since Vg,G(8,0")j9=¢: =0 for i€ 1,2,3,5 it follows that
Vo, L(0)g—gr =0 for i € 1,2,3
Also since G(6,0’) and H(6,0’) are convex in j, and 0’ € S, it follows that
0 € 09,G(0,0"

which implies
0e 394L(9,9').

B.2 Algorithm 3
Analogous results to Corollary 1 and Theorem 1 may proven for Algorithm 3 using same
arguments as Algorithm 1. The following result is analogous to Theorem 2.

Theorem 3 Let 6’ € S where S is the set of fized points of the Algorithm 3. Then
VeiL(e)‘gzg/ =0forie1,2,3,5,6.

The proof of this result is the same as Theorem 2.

C Procedure for selecting g(\)

In this section we outline the method for selecting the distribution g(\) for a special case
of when the prior distribution of volatility of each asset is identical. Suppose the squared
volatility of each asset return is inverse gamma distributed with scale ¢ and shape 7. Let o2
be distributed as IG(c,n) and be statistically independent of ¢/ and 032..

To determine an appropriate prior distribution of A we first obtain samples of A,

/\1,~~~,5\M,\

by the performing the following steps
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1. Fork=1,..., M,

2. Draw independent samples from the distribution of (012,/,(’,0]2-,). This is relatively
straight forward using standard statistical functions due to the independence assump-
tions. )

3. Determine a A" such that A" ~ o/ ({/, 0]2- ). This can be done via Monte Carlo integration
as shown below.

— For a large number L draw a sample v1 ...vr from the distribution A/(O, 012)).
— Compute P; = Pr(J =0|J +V = v;), where J ~ SpikeSlab(C’,o?/). The value of
P; is

¢ exp(—v2/(202))

\/012//
’ ’ 1-¢’ ’ 4
\/% exp(—v7/(203")) + \/ﬁ exp(—v7/(2(03 +03')))

v

— Compute the simulated empirical mean P = + 3" p;.
— Choose X' such that (5) is satisfied with Ey(,,|7,—0)Pr(J2 = 0]Y2) approximated
as P. This value is given below

Vo erf~1(P)+/202’

27
0y

(Y2

where erfﬁl() is the inverse error function.
4. Set A\ = N
5. Goto step 1

Examples of histograms of samples obtained using the above procedures are shown in Figure
5. Once we obtain samples of A we fit a smooth distribution to the sampled data. Since the
gamma distribution is a conjugate prior to the Laplace distribution a gamma distribution is
a convenient choice for ¢(\). Furthermore examination of Figure 5 indicates that a gamma
distribution is a reasonable approximation. Thus we choose

V) = D2 st exp (<)
q Ff(Oé)\) p by

where I'f () is the gamma function. Here ) and 3 can be selected using maximum likelihood
or method of moments.

Since q(A) develops a singularity near zero for large values of 85 we shall impose a prior
of A~1 rather than A. We denote this prior as ;n,(A™1). Since ) is gamma distributed with
shape o and rate By it follows that gin, (A ™) is the inverse gamma distribution with shape

a) and scale 8y
_ B Cy—ay— Bx
oy = A—1y—aa-1 _ )
Ginv (A7) Tr(an) (A7) P\ Ty
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Fig. 5 Normalized histograms of A samples. In all experiments 0']2- ~ 1G(10,0.0011),¢ ~
Beta(5,1.0201), 02 ~ IG(5, By).



