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ABSTRACT
The perturbation of a transcription factor should affect the expression levels of its direct targets. However,
not all genes showing changes in expression are direct targets. To increase the chance of detecting direct
targets, we propose amodified two-groupmodel where the null group corresponds to geneswhich are not
direct targets, but can have small nonzero effects. We model the behavior of genes from the null set by a
Gaussian distributionwith unknown variance τ2. To estimate τ2, we focus on a simple estimation approach,
the iterated empirical Bayes estimation. We conduct a detailed analysis of the properties of the iterated EB
estimate and provide theoretical guarantee of its good performance under mild conditions. We provide
simulations comparing the new modeling approach with existing methods, and the new approach shows
more stable and better performance under different situations. We also apply it to a real dataset from gene
knock-down experiments and obtained better results comparedwith the original two-groupmodel testing
for nonzero effects.
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1. Introduction

The transcriptional regulatory networks, formed by transcrip-
tion factors (TFs) and their targets, are believed to play an
important role regulating embryonic stem (ES) cell pluripotency
(Niwa et al. 1998, 2000; Chambers and Smith 2004; Loh et al.
2006; Kim et al. 2008; Chen et al. 2008). Amultitude of inference
methods exist in the literature for the identification of such
networks using observational gene expression data (Friedman
et al. 2000;Murphy et al. 1999; Kim et al. 2004; Lebre et al. 2010).
On the other hand, there is also intense interest in using pertur-
bation experiments in the study of gene regulation. For example,
the TF knock-down experiment is expected to very informative
identifying potential targets of a TF because it depicts a less com-
plex picture and can provide evidence for causal relationships
(Geier et al. 2007; Werhli et al. 2006).

Traditionally, potential targets of the TF are usually identi-
fied as the subset of differentially expressed genes between the
control and experiment group. However, when an important TF
has been knocked down, it is almost always the case that the
proportion of significantly changed genes is much larger than
expected (Ivanova et al. 2006; Zhou et al. 2007). As a concrete
example, consider the dataset analyzed in this study, which is
from the knock-down experiment for two TFs which play an
important role regulating ES cell pluripotency (see Section 6 for
details). In this dataset, the number of differentially expressed
genes is very large, while the number of likely direct targets
(from external CHIP-seq data assessing TF binding) is signifi-
cantly smaller.

There are two popular explanations for this phenomenon:
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1. The theoretic null distribution of the test statistics(often
z-score and other analogous quantities) for zero effect is
not accurate.

2. There are a large number of genes showing nonzero but
small changes of gene expression level, as effects of the
perturbation.

Proposed solutions include modifying the null distribution of
z-score empirically(Efron (2007, 2008)) and applying a cutoff to
fold-change as a second-layer filter; the latter has been extremely
popular in practice (Nichols et al. 1998; Zhou et al. 2007; Vaes
et al. 2014). While both of these approaches can narrow down
the selected, the former tackles the problemmainly based on the
first explanation while the latter adopts the second implicitly,
and results can be different in general (Witten and Tibshi-
rani (2007)). For the knock-down experiment, the latter seems
preferable because it considers both the change magnitude and
the nonzero significant level, which is more related to what
scientists care about; however, this approach lacks a natural
quantitative justification.

Here, we propose a simple model to combine these two
perspectives. By using a Gaussian distribution with unknown
variance to describe the underlying behavior of genes in the
null group, our model assumes that there can be relatively
small nonzero effects even for the null genes. Assuming that
the number of genes with large effect size is small, we test for
the presence of such large effects relative to the background
null variance. Although this model is motivated by the knock-
down experiment, it can be applied to more general multiple-
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testing setting where both the significance and the effect size
matter.

Our approach is related to themethod ofmaximal agreement
cut by Henderson and Newton (2015). They similarly pointed
out that testing approaches which measure evidence against the
null hypothesis tend to over-populate the candidate list with
those associated with small variance, while approaches that
consider only the magnitude will overlook the noise. While
sharing the same spirit, our method does not aim to find the
top α% subset of genes maximizing the expected overlap with
the truth, with some assumed prior for all genes. Instead, we are
interested in identifying the subset of genes which could not be
described well by the prior describing the majority.

In the setting of knock-down experiment, our model
describes a scenario different from the one assumed in
approaches testing for differentially expressed genes. In our
model, it is assumed that, perhaps due to propagation through
the gene regulatory network, when we collect the data, a lot and
even all genes may have been influenced once a TF has been
knocked down, and we take this possibility into consideration.
We show that in this scenario, it is still possible to test for strong
effect if (1) the direct target tends to have larger effect size, and
(2) there are enough null hypotheses to estimate the variance
under the null.

The article is organized as follows: We describe our model
in Section 2.1 and the procedure to estimate the null variance
in Section 2.2. In Section 3, we study the properties of the
estimating procedure of τ 2; in Section 4, we extended themodel
to the noncentered case and the case of two sample testing with
unequal variance. We provide simulations in Section 5 and real
data examples in Section 6.

2. Statistical Model and Estimation Procedure

2.1. Statistical Model

We assume there is a control group with m0 replicates and an
experiment group with m1 replicates after knocking down one
TF of interest. The expression levels for N genes are measured
for each replicate. Let xi,j be themeasurement for gene i in repli-
cate j from the experiment group, and zi,j be the measurement
for gene i in replicate j from the control group. Without loss of
generality, assume the mean level of zi,j is 0 and the mean level
of xi,j is μi

xi,j ∼ N(μi, σ 2
i ), ∀i = 1, 2, . . . ,N, j = 1, 2, . . . ,m1,

zi,j ∼ N(0, σ 2
i ), ∀i = 1, 2, . . . ,N, j = 1, 2, . . . ,m0.

To do inference on μi, we can look at the two-sample test
statistics

x̄i − z̄i =
∑m1

j=1 xi,j
m1

−
∑m0

j=1 zi,j
m0

∼ N(μi, σ 2
i (

1
m1

+ 1
m0

)),

∀i = 1, 2, . . . ,N.
Or the paired sample test statistics to remove the batch effect
(m0 = m1)

xi − zi =
∑m1

j=1(xi,j − zi,j)
m1

∼ N(μi, σ 2
i

1
m1

), ∀i = 1, 2, . . . ,N.

As there is no fundamental difference between these two tests
in our later analysis, we will omit the notation zi and use the
following common notations for simplicity

x̄i ∼ N(μi, σ 2
x̄i),∀i = 1, 2, . . . ,N,

σ̂ 2
x̄i ∼ σ 2

x̄i
χ2
m−k

m − k
,∀i = 1, 2, . . . ,N,

where σ 2
x̄i = σ 2

i
n , with n being the effective sample size and σ̂ 2

x̄i
is the usual unbiased variance estimate of x̄i. In the two-sample
case, n = m1m0

m ,m = m1 + m2, k = 2 and in the paired sample
case, n = m = m1, k = 1.

Following the widely used two groupmodel (Efron 2008), let
A0, A1 denote the sets of nulls and nonnulls, respectively, and
γ = |A1|

N denote the proportion of nonnulls. We assume that
the μi’s in A0 and A1 are generated from different distributions

μi ∼
{

N(0, τ 2) ∀i ∈ A0,
gi(.) ∀i ∈ A1.

For each gene i ∈ A1, gi is some unknown density function.
The parameter τ can be viewed as describing the range of
normal behavior.

In contrast to the original two-group model, which corre-
sponds to τ = 0, we allow τ to take positive values. By relaxing
this assumption on τ , we are able to detect relatively abnormal
behavior compared with the background signal. If we know τ ,
the p-value for the new null hypothesis for gene i can be derived.
Let ui = x̄i√

τ 2+σ̂ 2
x̄i

, x̄i ∼ N(0, τ 2+σ 2
x̄i), under the null hypothesis,

ui is a Welch statistics (Welch 1947) in the limit case with the
degree of freedom for the first “variance estimate” τ 2 being ∞.
Usual analysis controlling False discovery rate (FDR) or family-
wise error rate (FWER) carries through under our extended
model in this case.

We emphasize that the parameter τ itself is informative
because it characterizes how influential a stimulus is—in our
case, how dramatically the whole system changes after we have
knocked down a TF. The value of τ reflects the importance of
the TF: it can be set according to either prior knowledge or
estimated from the data. The second approach is usually more
feasible, as we lack a quantitative characterization of this kind of
importance, and it can vary under different environments even
for the same TF.

2.2. Estimation Procedure

For i ∈ A0, x̄i ∼ N(0, σ 2
x̄i + τ 2) marginalizing out μi. If A0

is known, the empirical Bayes estimate of τ 2 with estimated
variance σ̂ 2

x̄i for σ 2
x̄i is given by τ̂ 2A0

= 1
|A0|

∑
i∈A0(x̄

2
i − σ̂ 2

x̄i).
Let δ be a predetermined small value, the adjusted form τ̂ 2A0

=
[ 1
|A0|

∑
i∈A0 x̄

2
i − (1 + δ)σ̂ 2

x̄i ]+, is often preferred to reduce the
error for small τ 2 and to ensure nonnegativity. Similar form of
estimate is analyzed by Johnstone (2001b,a) in the context of
estimating noncentrality of χ2-distribution with known vari-
ance.

Let Fi(.) denote the distribution of x̄2i
τ 2+σ̂ 2

x̄i
when i ∈ A0,

which is the distribution of the square of a Welch’s statistic as
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mentioned before, and F̃i(x) = 1−Fi(x). The Iterated empirical
Bayes estimation (ITEB) procedure is given below, which starts
from the whole set (as A0 ∪ A1) and then iteratively remove
potential outliers on the tail based on the current estimate of
τ 2. It stops when no point needs to be further removed.

Iterated empirical Bayes estimation (ITEB) of τ 2

Input: {(x̄i, σ̂ 2
x̄i),∀i = 1, 2, . . . ,N}, significance level α1, α2 and

δ. By default, α1 = 0.1, α2 = 0.01 and δ =
√

8
N .

Output: τ̂ 2, the estimated τ 2.
Initialization: S0 = {1, 2, . . . ,N} be the initial estimate of the

null set, and τ̂ 2S0 = [∑N
i=1 x̄2i −(1+δ)

∑N
i=1 σ̂ 2

x̄i
]+

N .
For k = 1, 2, . . . , do

1. Update the p-value for each gene pi = F̃i(
x̄2i

τ̂ 2Sk−1
+σ̂ 2

x̄i
). The

ordered p values from small to large are p(1), p(2), . . . , p(N).
Let i∗ be the largest index, such that p(i∗) ≤ i∗

Nα1.

2. Let J1k = {i ∈ A : pi ≤ p(i∗)}, and J2k = {i ∈ A : pi ≤ α2}
and remove Jk := J1k ∩ J2k . Update Sk = Sk−1 \ Jk and

τ̂ 2Sk = [∑i∈Sk x̄
2
i −(1+δ)

∑
i∈Sk σ̂ 2

x̄i
]+

|Sk| .

3. If Sk = Sk−1, return τ̂ 2 = τ̂ 2Sk

Wehave also described two other estimationmethods and com-
pared them with ITEB in the supplement: the truncated MLE
method and the central matching (CM) method. The detailed
descriptions of the truncated MLE and the CM estimator are
given in Appendix C. These twomethods have also been applied
to estimating the empirical null distribution in the traditional
two group test problem (Efron et al. 2001; Efron 2012), and
we have adapted them to our problem here. In Appendix D,
we compare performance of the three estimators in different
scenarios and discuss their strengths and weaknesses. ITEB
is most computationally efficient and is found to have better
performance overall when the nonnull proportion γ is small.
Thus, we will focus on ITEB and we provide detailed analysis of
its properties.

3. Properties of ITEB

We study the estimation quality of ITEB as the number of
hypotheses N → ∞. For simplicity, we analyze the algorithm
under following mild conditions and notations with δ = 0. Let
λ(α) := maxi F̃−1

i (α). The degree of freedom for the variance
estimate ism for all i, and K := the number of iterations needed
for the algorithm to stop. Since in this section we only use the
mean level x̄i and its estimated variance σ̂ 2

x̄i , with slight abuse of
notation, let xi := x̄i, σ̂ 2

i := σ̂ 2
x̄i , σ

2
i := σ 2

x̄i . For the two levels
α1 and α2 in the ITEB algorithm, we let 0 < α1 < 1

2e be a fixed
value, and let α2 → 0 at a slow rate to simplify the notations in
the proof (we always let Nα2

log2 N bounded away from 0).

Assumption 3.1. The degree of freedom for variance estimates
m ≥ 5 is a constant and the nonnull proportion γ < 1 − c
for some positive constant c. The ratio of variances of different

genes is bounded: there exists a positive constant C such that
maxi σ 2

i
mini σ 2

i
≤ C.

Without loss of generality, we rescale mini σ 2
i = 1, then C =

maxi σ 2
i . We do not require τ 2 to be positive or a constant. It can

be 0 or decay to 0 as N → ∞.

Assumption 3.2. There exist constants L and ε, such that

∀i ∈ A1, E[x2i − (1 + ε)σ̂ 2
i | x2i − (1 + ε)σ̂ 2

i ≤ L(τ 2 + 1)]
≥ (1 + ε)τ 2.

Remark 3.1. If i ∈ A0, we have E[x2i −σ̂ 2
i ] = τ 2. Assumption 3.2

states that, for i ∈ A1, x2i − σ̂ 2
i has expectation nonnegligibly

bigger than τ 2, and it is not purely driven by observations from
its tail.

Assumption 3.3. The nonnull proportion γ → 0 as N → ∞.

Theorem 3.1. (Lower bound of the variance estimate) Let RK :=
|JK ∩A1|, where JK is the rejected set at the last step k = K from

ITEB. Let
1 =
√

logN
N (τ 2+C), tl = max( log

2 N
N , min( l

N , 2α2)),

2,l = 3(τ 2 + C)tl log 1

tl and τ 2l = [τ 2 − 
1 − 
2,l]+. Under
Assumptions 3.1 and 3.2, we have P(∪Nγ

l=0{RK = l, τ̂ 2 ≥ τ 2l }) →
1.

As 
1+
2,l
τ 2+C → 0 for all l, Corollary 3.1 is a direct result of

Theorem 3.1.

Corollary 3.1. Under Assumptions 3.1 and 3.2, for any δ > 0,
limN→∞P(τ̂ 2 ≥ [τ 2 − δ(τ 2 + C)]+) = 1.

Theorem 3.2. (Upper bound of the variance estimate) Under
Assumptions 3.1 and 3.3, suppose α1 > 0 is fixed and α2 → 0 at
a rate slow enough: γ λ(α2) → 0. Then, for any δ > 0, we have
limN→∞ P(τ̂ 2 ≤ τ 2 + δ(τ 2 + C)) = 1.

We next show that these results can usually lead to good
performance in the follow-up analysis in practice. Theorem 3.3
states that our estimate of τ 2 can successfully control the FDR if
we reject the hypotheses in the set JK .

Theorem 3.3. (FDR control) Under Assumptions 3.1 and 3.2, if
we reject all hypothesis in JK , we have limN→∞ FDR ≤ α1.

Remark 3.2. Note that at the given level α1, α2 in the ITEB algo-
rithm, J1K will correspond to the set of rejections using the BH
(Benjamini–Hochberg procedure) (Benjamini and Hochberg
1995) and JK will correspond to the set of rejections which are
both rejected by the BH procedure and with p-values no greater
than α2. The extra requirement that the p-value is no greater
than a reasonable small value α2 is desirable in many large-
scale hypotheses testing settings, including the knock-down
experiment.

Theorem 3.4. (Power analysis) Let φi,α = 1pi≤α and let φ∗
i,α

be the oracle decision rule knowing τ 2: for any level α, φ∗
i,α =

1x2i >F̃−1
i (α)(σ̂ 2

i +τ 2). Let z
2
i = x2i

τ 2i +σ 2
i
where τ 2i = E[μ2

i ] for
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i ∈ A1. Under Assumptions 3.1 and 3.3, if we further assume
that the density of z2i is upper bounded by a constant, and the
tail probability for z2i decays sufficiently fast

lim
w→∞ sup

δ>0
sup
i∈A1

P(z2i ≤ w(1 + δ))

P(z2i ≤ w)(1 + δ)
≤ 1.

Then we have limN→∞ inf i∈A1 infα≥0(P(φi,α = 1) − P(φ∗
i,α =

1)) ≥ 0.

Remark 3.3. Recall that the follow-up p-value pi for hypothesis
i is F̃i(

x2i
τ̂ 2+σ̂ 2

i
). Thus, Theorem 3.4 says that the test φi based on

the estimated variance τ̂ 2 is asymptotically as powerful as the
optimal test based on the (unknown) true variance τ 2.

Proofs of Theorems 3.1, 3.2, 3.3, and 3.4 are given in
Appendix A.

4. Extensions

4.1. Noncentered Null Distribution

We have been assuming that μi in the null set is generated
according to N(0, τ 2). The ITEB estimation approach is easily
extended to the setting where the null distribution might not
be centered and μi ∼ N(ε, τ 2) with a small noncentrality ε for
i ∈ A0. In ITEB, ε can be approximated by

ε̂ =
∑N

i=1 x̄iI[x̄i∈(−δ0,δ0)]∑N
i=1 I[x̄i∈(−δ0,δ0)]

,

where δ0 > 0 is a reasonable cutoff and we treat xi ∈ (−δ0, δ0)
to be fromA0. We can form an ITEB estimation for the noncen-
tered case by replacing x̄i with x̄i − ε in the ITEB algorithm.

4.2. Two-Sample TestWith Unequal Variance

For hypothesis i, the observations from the experiment and
control groups, xi,j and zi,j, can have different variances. It is
straightforward to generalize ITEB to this situation if we want to
perform a two-sample test. We know that ITEB takes in {x̄i− z̄i}
and {σ̂ 2

x̄i−z̄i}. In the unequal variance setting, we can estimate
σ 2
x̄i−z̄i by

σ̂ 2
x̄i−z̄i =

∑m1
j=1(xi,j − x̄i)2

m1(m1 − 1)
+

∑m0
j=1(zi,j − z̄i)2

m0(m0 − 1)
,

whose degree of freedom is approximated by

dfσ = (

∑m1
j=1(xi,j−x̄i)2

m1
+

∑m0
j=1(zi,j−z̄i)2

m0
)2

1
(m1−1) (

∑m1
j=1(xi,j−x̄i)2

m1
)2 + 1

(m0−1) (

∑m0
j=1(zi,j−z̄i)2

m0
)2

We approximate Fi(.), the distribution of the test statistics
(x̄i−z̄i)2

τ 2+σ 2
x̄i−z̄i

, by F1,df (.), the F distribution with degree of free-

doms (1, df ), where df is approximated by df = ( τ 2

σ̂ 2
x̄i−z̄i

+
1)2dfσ (Satterthwaite 1946).

5. Simulation: Detection of Large Signal

We consider the two-sample setting with equal-variance and
generate data under various values of τ and nonnull proportion
γ = |A1|

N . Specifically, we fix N = 15,000, m = 5 for both
the control and experiment group, for any given τ and γ , where
γ = 1%, 5% and τ = 0, 0.1, . . . , 1, 1.5, 2, 2.5, 3, we generate the
true mean and variance as below.

1. Let μi = 0 in the control group, and in the experiment
group, we generate them as follows:

μi ∼
{

N(0, τ 2) ∀i ∈ A0,
±U[1,max(3, 10τ)] ∀i ∈ A1,

where U[1,max(3, 10τ)] is the uniform distribution
between 1 and max(3, 10τ), and the signs of μis will be
half positive and half negative.

2. We sample the variances σ 2
i from its empirical distribu-

tion from the real dataset, andwe scale them to havemean
level 1.

We compare the following approaches:

• ITEB estimate of τ 2, followed Welch’s t-test.
• t-test with the null hypothesis testing for nonzero effect.
• EBarray (Kendziorski et al. 2003; Yuan and Kendziorski

2006), which is a two-group empirical Bayes method
providing a posterior probability for having nonzero effect.
We choose the “LNNMV”method to fit the data as suggested
by the authors.

• Fold-change rankings with a threshold for t-test p-values
being 10−5 (referred to as “fchange”). For hypotheses that do
not pass this cutoff, we rank them based on p values from the
t-test, after those who have passed the cutoff.

• Rvalue ranking, which finds the α% of genes maximizing the
overlap between this gene list and gene list with differential
change above the upper α% quantile of a prior normal distri-
bution (Henderson and Newton 2015).

The proposed model, the rvalue ranking and the fchange
all consider the magnitude and significance explicitly. If the p-
value cutoff is correctly set for the fchange, we expect these three
methods to sharemore in common in terms of their ROC curves
(average sensitivity versus FDP), while only the proposedmodel
allows you to set a cutoff based the significance level of whether
a hypothesis is different from the background. LNNMV mod-
els observations from the control and the experiment directly
instead of modeling their differences, also, although it smoothes
the variance estimations with an inverse chi-square prior, the
prior is not related to the effect sizes across hypotheses.

Figures 1 and 2 provide ROC curves across 20 repetitions
as the significance level in the testing step is varied. We see
that the new approach performs the best or one of the best
across different experiments. When τ = 0, ITEB procedure
and t-test behave similarly, and ITEB becomes almost identical
as the fchange when τ is large. ITEB and rvalue result in very
similar results across different settings (ITEB is slightly better
in the more sparse case with γ = 1%), however, besides that
ITEB provides information about where to set a cutoff, the ITEB
approach is much faster considering the run time. All methods
except for the t-test are stable across a wide range of τ .
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Figure 1. ROC curve for γ = 1%.

6. Real Data Examples

In this section, we apply our approach to data from two knock-
down experiments described below. The quality of the results
is evaluated by the enrichment of ChIP-seq peaks (for the per-
turbedTF) in active enhancers/promoters for the selected genes.
Note that the ChIP-seq data for ES cells are external to the
data used to select the genes, and it provides an orthogonal
information to access how likely the selected genes are direct
targets of the TFs.

We perform gene knock-down experiments on 2 TFs on
the mouse ES cell line R1. For each TF, RNA interference
(RNAi) delivered using nucleofection was used to knock down
its expression. Puromycin selection was introduced 18 h later
at 1 μ g/ml, and the medium was changed daily. 30, 48, and 72
h after puromycin selection, the cells were collected for RNA

isolation. After the experiments, Microarray hybridizations
were performed on the MouseRef-8 v2.0 expression beadchip
arrays (Illumina, CA). More details of the experiments can be
found in Appendix E. Quantile normalization is performed in
the first step to reduce the batch effect, and for the same reason,
for each sample in the experiment group, we consider the
paired test statistics with each pair being a pair of independent
experiment and control samples from the same batch and time
point. We have eight-paired observations for both POU5F1
and NANOG, and we take the log difference between the gene
expression levels in a knock-down sample and its corresponding
control sample to further reduce the batch effect. Table 1
summarizes the data we have at different time points. Figure 3
shows results from nine random realizations of the t-SNE
(Maaten and Hinton 2008) plot using the top 1000 genes with
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Figure 2. ROC curve for γ = 5%.

Table 1. Information of the knock-down datasets.

30 h 48 h 72 h

POU5F1 4 pairs 4 pairs –
NANOG 2 pairs 4 pairs 2 pairs

largest variance across experiments. Each data point in the t-
SNE plot represents one sample (paired) in the experiment.
We use the colors black, red and green to represent data at time
points 30, 48, and 72 h, respectively. From the results, we see that
differences between time points within the same knock-down
experiment is comparable to the differences across batches, and
they are very small compared with the differences between two
knock-down experiments. To compare the targets of two TFs,
we will regard different times points in the same knock-down
experiment as replicates of each other.

ChIP-seq data and enhancer-gene association data: To evaluate
the quality of the selected gene set, we use two external
datasets: the ChIP-seq data are from Chen et al. (2008) and
the enhancer-gene association data are from Mumbach et al.
(2017). The ChIP-seq data contain results using chromatin
immunoprecipitation coupled with ultra-high-throughput
DNA sequencing (ChIP-seq) to map the binding locations of
13 sequence-specific TFs, including POU5F1 and NANOG.
The enhancer-gene association data are generated by using
the HiChIP method where the authors performed H3K27ac
HiChIP in mouse ES cells. H3K27ac is a histone modification
mark characteristic of active enhancers and promoters in
the cell. HiChIP using H3K27ac mark as bait will provide
enhancer–gene interaction information. We can evaluate the
quality of the selected gene set by examining whether the
binding sites of POU5F1 and NANOG are enriched near the
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Figure 3. Clustering with t-SNE algorithm.The nine plots here are 9 different random tsne-plot realizations.Black, red, and green colors represent experiments from 30 hr,
48 hr and 72 hr, respectively. Note that there are two replicates from the same batch in a single experiment (same day, same TF, same batch) that are almost identical to
each other.

active enhancers/promoters of the selected genes in the ES
cell.

Let us call the approach based on p-value using a simple t-
test S0, the approach based on EBarray S1, and the approach
based on p-value using ITEB S2. We will focus on those
genes with significant decrease in their expression levels after
POU5F1/NANOG knock-down. For each method, we set the
cutoff using the BH procedure with targeted FDR level at 0.01.
Accordingly, we set the cut-off level α1 = 0.01 and we select
87 genes after knocking down POU5F1 and 43 genes after
knocking down NANOG using S2. These numbers are 2274
and 1267 using S0, 2362 and 886 using S1. Neither S0 nor S1
provides informative candidate lists with this criterion. To have
a meaningful comparison, we also consider the case where we

control FWER at 0.01, which is quite a stringent criterion and
under which, S0 selects 144 genes for POU5F1 and 49 genes for
NANOG, S1 selects 1091 genes for POU5F1 and 254 genes for
NANOG.

We say that there is supporting evidence of a gene being
a direct target of a TF if this TF has at least one ChIP-
seq peak within x kilobase(kb) away from the gene’s active
enhancers/promoter. As we change x in a large range of value,
Figure 4 gives the percentages of genes with this supporting
evidence in the selected gene sets using S0, S1 with FWER
control and S2 with FDR control. Figure 4 also shows the
percentages of all genes with this supporting evidence (referred
to as “all” in the figure), and the percentages of bottom 2000
genes with this supporting evidence (referred to as “bottom”).
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Figure 4. Percent of genes with ChIP-seq nearby versus x for the selected gene sets (S0/S1: genes selected using t-test/EBarray with FWER control, S2: genes selected
based on ITEB with FDR control, bottom: the bottom 2000 genes which show the smallest changes, all: all genes). The x-axis is the threshold we use to define whether a
gene has a ChIP-seq peak near its enhancer/promoter and the y-axis is the percentage of selected genes with ChIP-seq nearby.
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Figure 5. Percent of genes with ChIP-seq nearby versus selected gene size. The x-axis is the threshold of the ranking, and we only consider the top k genes from each
ranking list.

Table 2. S0, S1, and S2 results with FDR/FWER level set at 0.01.

TF Percent (negative control) Size (S0) Percent (S0) Size (S1) Percent (S1) Size (S2) Percent (S2)

FDR POU5F1 0.21 2274 0.48 2362 0.48 87 0.73
NANOG 0.32 1267 0.62 886 0.61 43 0.81

FWER POU5F1 0.21 144 0.62 1091 0.53 31 0.74
NANOG 0.32 49 0.74 254 0.64 20 0.8

The third, fifth, seventh, and nineth columns are the percent of genes with Chip-seq+Hi-C support in the negative control set, the gene set selected by S0 (t-test), the gene
sets selected by S1 (EBarray) and S2 (ITEB t-test), respectively.

The bottom 2000 genes are those showing less significance after
the knock-down based on the ITEB p-value (we consider this
set to be the negative control). From Figure 4, we see that the
ChIP-seq enrichment is quite significant for the selected genes
comparing with both the negative controls and all genes. The
selected gene set using S2 is significantly better than the gene set
selected using S1 and S0. Table 2 shows the result with x = 20.

Figure 5 provides quality evaluation of the top K genes in
different ranking lists, respectively. The vertical gray line is
where the top 50 genes is. Besides S0, S1, and S2, we also include
the results using rvalues and fchange. Comparing S2 with S0 and
S1, not only S2 provides a candidate gene set with much smaller
size andhigher quality, it provides a gene ranking list with higher
quality. In terms of the gene ranking list, the rvalue provides a
similar list as that from ITEB (∼ 90% overlappings in the top
200 genes for both TFs).

7. Discussion

In this article, motivated by the problem of identifying TF
targets based ondata from the knock-down experiment, we have
proposed to test for large effect size instead of non-zero effect
size in the two-groupmodel where a Gaussian distribution with
nonzero variance is used for the effect in the null group.We have

considered three approaches (ITEB, truncated MLE and CM)
to estimate this nonzero variance adaptively, and recommend
ITBE for its computational efficiency, strong performance in
simulation and attractive theoretical properties. Although we
have focused on the Gaussian setting here, the idea of testing
for strong signal and the approaches to estimate the null distri-
bution can be applied to problems involving other data types.

The model itself is related to the “g-modeling” (Carroll and
Hall 1988; Efron 2014), the “ε-contamination” (Huber 1964;
Chen et al. 2016) and the “robust Bayesian analysis” (Berger
and Berliner 1986; Gaver and O’Muircheartaigh 1987; Berger
et al. 1994). However, it should be noted that our approach has
a different goal from the g-modelings. We only estimate the
shape of the null distribution of themean parameter while the g-
modeling models the marginal distribution of the mean param-
eter considering both the nulls and the non-nulls. Our purpose
for estimating the null effect distribution is to set a cutoff for
the strong signals adaptively, which is not the case for the g-
modeling. Although our model can be considered as a special
case of the ε-contamination model in the parameter space and
a special case of the robust empirical Bayesian analysis, the use
of these models for large effects have not been studied and, to
the best of our knowledge, methods with provable guarantees
on power and FDR have not been demonstrated previously.
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Online Supplementary Materials.pdf: This is the Appendix contains (1)
proofs to Theorems in the paper (Appendix A, B), (2) details of estimat-
ing τ 2 using the truncated MLE and the CM methods (Appendix C),
(3) simulations comparing ITEB, truncated MLE and the CMmethods
(Appendix D), and (4) details of how the knock-down experiment is
performed (Appendix E) (.pdf file)

Data and code: Inside the directory “data”, we have data files containing
gene expression levels from the knock-down experiments (*.csv files)
and a file containing experiment conditions for each column of the
previous files (*.xlsx). Inside the directory “code”, we provide R code
used to generate results in Section 6. (.zip file)
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