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Abstract—We consider storage systems in which K files are
stored over N nodes. A node may be systematic for a particular
file in the sense that access to it gives access to the file.
Alternatively, a node may be coded, meaning that it gives access
to a particular file only when combined with other nodes (which
may be coded or systematic). Requests for file fi. arrive at rate
Ak, and we are interested in the rate that can be served by a
particular system. In this paper, we determine the set of request
arrival rates for the a 3-file coded storage system. We also provide
an algorithm to maximize the rate of requests served for file K
given \i,..., A\x_1 in a general K-file case.

I. INTRODUCTION

The explosive growth in the amount of data stored in the
cloud calls for new techniques to make cloud infrastructure
fast, reliable, and efficient. Moreover, applications that access
this data from the cloud are becoming increasingly interactive.
Thus, in addition to providing reliability against node failures,
service providers must be able to serve a large number of users
simultaneously.

Content files are typically replicated at multiple nodes to
cope with node failures. These replicas can also be used
to serve a larger volume of users. To adapt to changes in
popularity of content files, service providers can increase or
decrease the number of replicates for each file, a strategy
that has been widely used in content delivery networks [1].
The use of erasure coding, instead of replication, to improve
the availability of content is not yet fully understood. Using
erasure codes has been shown to be effective in reducing the
delay in accessing a file stored on multiple servers [2]-[4].
However, only a few works have studied their use to store
multiple files. Some recent works [5] have proposed new
classes of erasure codes to store multiple files that allow a
file to be read from from disjoint sets of nodes. Other works
[6], [7] study the delay reduction achieved using these codes.

Besides download latency, it has recently been recognized
that another important metric for the availability of stored data
is the service rate [8]-[10]. Maximizing the service rate (or
the throughput) of a distributed system helps support a large
number of simultaneous system users. Rate-optimal strategies
are also latency-optimal in high traffic. Thus, maximizing the

service rate also reduces the latency experienced by users,
particularly in highly contending scenarios.

This paper is one of the first to analyze the service rate
region of a coded storage system. We consider distributed
storage systems in which data for K files is to be stored across
N nodes. A request for one of the files can be either sent to
a systematic node or to one of the repair groups. We seek to
maximize such systems’ service rate region, that is, the set of
request arrival rates for the K files that can be supported by
a coded storage system.

The problem addressed in this paper should not be confused
with the related problem of caching and pre-fetching of
popular content at edge devices [11]. Caching benefits for the
network are measured in reduction in the backhaul traffic it
enables. Quality of service to the user measures include cache
hit ratio and cache hit distance. Rather than with the backhaul,
this paper is concerned with the access part of the network,
namely, with potential service rate increase through work pro-
vided, jointly and possibly redundantly, by multiple network
edge devices. Consequently, instead of measuring e.g., content
download performance by the likelihood of an individual cache
hit or cache memory and bandwidth usage, we strive to ensure
that multiple caches are jointly in possession of content and
can deliver it fast to multiple simultaneous users.

In [9], the achievable service rate region was found for
some common classes of codes, such as maximum-distance-
separable (MDS) codes and simplex codes. That paper also
determined the service rate region when K = 2, with arbitrary
numbers of systematic and coded nodes. We generalize this
service rate region result from K = 2 files to K = 3 files and
provide an algorithm to maximize the requests served for a
given file with general K. The paper begins with preliminary
notions given in Sec. II. Sec. III addresses the general K case
where all nodes are coded, and Sec. IV addresses the K = 3
case. We return to the general case in Sec. V.

II. PRELIMINARIES

Suppose files fi,...,fx are stored across a system
that consists of N nodes labeled 1,...,N. For k €
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Fig. 1. A possible way to store two files on N = 4 nodes.

[K] = {1,...,K}, there is a collection of minimal sets
Ry, ..., Ry, C [N] that each correspond to a set of nodes
that gives access to file fi. Each such minimal set of nodes
is called an fi—repair group.

Example 1. Fig. I shows one possible way to store two files,
a and b, across four nodes. In this system, the a-repair groups
are {1},{2}, and {3,4}. The b-repair groups are {4},{1,3},
and {2,3}.

For (7,7) € [yk] x [N], define the function

.. 1, if node j is in the fr-repair group Ry,
00 7) = {O else. M

Suppose that when a request for file fj is received, that
request is sent at random to an fx-repair group according
to a splitting strategy with «y; > 0 denoting the fraction of
requests sent to repair group Ry;, so that for each k € [K],

Z api = 1. )

1€ [vi]

Let the demand for file fi be A, so the arrival of requests for
file fi to the storage system queue is Poisson with rate \j, and
let A = (\1,..., k) record the demand for files f1,..., fx.

The average rate that file requests arrive at a storage system
node depends both on the splitting strategy for file requests
and on the demand A. More precisely, the average rate that
file requests are received at node j € [N] is

Z Z @0k (4, 7) Ak 3)

ke[K] i€[vk]

Let p; denote the average rate of resolving received file
requests at node j. Whenever demand is such that at least one
node j of the storage system receives requests at an average
rate in excess of its i, the storage system queue will have a
tendency to grow. With this in mind, it is appropriate to call
the service rate of node j. We will consider uniform systems
for which p; = 1 for j = 1,..., N. If, at demand A, there
exists a splitting strategy under which no storage system node
receives requests at a rate in excess of its service rate, then A
is said to be in the achievable service rate region of the storage
system. More formally, the storage system’s achievable service
rate region S is the set of all A € RE; such that there exists a
splitting strategy with

> onidnling) M < py, forall j € [N]. (4
ke[K] i€ [vi]
For any A = (A1,..., k) € RE,, denote by A; the (K — 1)-
tuple (A1,..., Ak—1, Ak+1,--- Ak ), and for z € R>¢ let Az x
{z} := (A1, .. k). If X € S, then the same
splitting strategy whose existence is guaranteed by (4) is also

S Ak—1, T, Ak, - -

sufficient to give X’ € S for every X’ satisfying for all k € [K],
A < Ag. Thus, given any pair Az x {0} € S and A; x {\} €
S, the entire interval Az x [0, \¢] is in S. Moreover, for any
storage system (regardless of its coding), if A is such that the
demand for any file fi is in excess of N - max;cn{/;},
then under all possible assignment strategies (4) is violated
for at least one node j, and so A; x {z} is not in S for any
x> N -max;en{p;} and A; € REE In this way, S is
a non-empty, closed, and bounded subset of Rgo. Therefore,
given any A; x {0} € S, there exists a maximal value of )\,
such that A; x [0, ;] C S and A; x {\,,} € S for any ). > Ag.
When k£ = K, we call this maximal value L(Az). In this
notation, the service rate region of any storage system can be
described as:

S:{)\f(x [O,L()\f()] (A, Ak21,0) €S9

Example 2. Three examples of how two files, a and b may be
stored across three nodes are shown on the below on the left.
The resulting service service rate regions for each system are
shown below on the right.

Coding schemes that use a mixture of replication and MDS
coding are not conventional. However, if the service rate region
is used as a performance metric, then a combination of coded
and systematic nodes has been shown to be beneficial [6], [9].
In this paper, we consider storage systems for K files whose
coded nodes satisfy the following three conditions:

1) Each K-subset of coded nodes forms an fy—repair group

for every k € [K].

2) No subset of k& < K coded nodes forms an fj—repair
group, for any k € [K].

3) With addition of systematic nodes for any n distinct files
(naturally, n < K) every (K —n)-subset of coded nodes
from the core completes these systematic nodes to form
an fp—repair group for every k € [K].

We say that such a system has an MDS core. We consider
situations with uniform node capacities = 1 = -+ = un.

For convenience, we use C to denote the number of coded
nodes in such a core. When systematic nodes are also present,
we use N to denote the number of systematic nodes for file
fx. In this way, the total number of nodes in a storage system
for K files that has an MDS core is N = C' + Y1, Ny.

III. ALL CODED NODES

We begin by considering an MDS K-file core where there
are no systematic nodes in the system. In this situation, all
nodes form a repair group for each file, and K nodes are
required to recover any file.



Theorem 1. Assume N1 = --- = Ng = 0. If there are
C > K — 1 coded nodes, then the achievable service rate
region S is the set of all X with ZK Ai < Ku, and so
L(A1,. .. A1) = Ku Zl 1 "\ If there are C < K — 1
coded nodes, then S is the point (0, ...,0).

Proof. If C < K — 1, then no file can be recovered and the
service rate region is the point (0, ...,0).

Assume C' > K — 1. Note that since every repair group
requires K nodes, the total demand that can be served is
bounded above by C“ For each file, there are a total of
(C) repair groups, and each node is in (16;:11) repair groups.
By sending demand -2 to each repair group, requests to

K—1
each node occur at the service rate and the system can serve
C

demand

(;C:;)D w = %u . Since this demand can be for any

file, the service rate region is Zfil A < % . Therefore, the
maximum achievable Ag is
~Cu-Son

/\K:L(/\l,.. /\K 1

O

The two file case is considered in [9]. The situation becomes

increasingly complex depending on the number of files K in
the system. In the next section, we consider K = 3.

IV. THREE FILES

In this section, we consider the service rate region of storage
systems for 3 files with MDS cores. As a corollary to Theorem
1, we obtain the service rate region for the case when there
are no systematic nodes, which is represented in Fig. 2. Note
that when the demand for one file is zero, then this may be
considered a system with only two files. For example, if A3 =
0, then the maximum achievable Ay is Ay = %u — A1, which
is the region shaded in Fig. 2.
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Fig. 2. Achievable service rate regions of all-coded-node systems with 2 files
(left) or 3 files (right).

We now consider storage systems that have both coded
nodes and systematic nodes. Suppose that a coded storage
system has C' coded nodes and [V; systematic file f; nodes,
1 = 1,2,3. Note that a systematic repair node may be in a
repair group with a single node (serving requests for the file
it stores) or three nodes (serving requests for any other file).
Any repair group using a coded node contains three nodes.
For ¢ = 1,2, if r; < N;u requests for file f; are served using
systematic f; nodes (and any other demand for file f; is served
using a repair group of three nodes), then the total demand that
can be served is bounded above by

(Nip—71) + (Napp — 12) + Cpe
3

D:=r+rs+ + Nap.

Given demand A; for file fi; and Ao for file f,, the rate of
requests that may be served for file f3 is bounded above
by max{D — A\ — A9,0}. This is maximized when r; =
min{\;, N;u} for i = 1,2. The splitting strategy in the proof
of the following theorem meets this bound.

Theorem 2. Assume there are Ny, No, and N3 systematic
nodes for files f1, fo, and f3, respectively, and C coded
nodes. Assume \i + )\2 < puNy + puNsy + Q,u and C >

max( - ’\1 , Ny — . Then S has L(A1, \2) =
@+#+%+MM—%—%JS%SMJ=M
(§+MN+ 22+ No)u—M— 2, Mi<ZE <N+ N+,
0< 22 <N,
(§+ 5+ N+ NoJu— 3 — A2, 0< 2L <N,
Np <22 < Ni+No+§
(§ 4 N1+ Na+ N3 — A1 — Ao, N1<%<N1+NQ+%7
N2<Q<N1+N2+%

Proof. Consider a system with N7, Ny, and N3 systematic
nodes for files fi, f2, and f3 and C coded nodes.

Step 1: Send requests to systematic nodes at the service
rate to serve demand for files f; and f,, as possible. If any
fi @ =1,2) systematic nodes remain available, distribute
remaining file f; demand uniformly across those nodes.

Example 3. Consider a 3-file system with N1 = 3, Ny = 1,
N3 =1, and C = 3.

ChO T T U D Ce D Ce e

If 1 = %,u and Ao = 2y then y requests for f1 will be
served by one of the f1 systematic nodes, and the remaining
% W requests for f1 will be split between the other 2 systematic
nodes. Also, | requests for fo will be served by the fo
systematic node. After Step 1, the remaining demand for fi is
0 and the remaining demand for file fo is p. In the system,
there are now two systematic f, nodes that can handle an
additional % u requests as well as one systematic fs node and
three coded nodes each with available service rate .

@ > G D U C DT OCeD

At the end of Step 1, if \; < uN; for ¢ = 1 or 2, then there
will be N/ = N; — L%J systematic nodes remaining available

. . Ai—[ 2]
for f;, each with service rate reduced to u; = 1 — %

Since A; < NN, the remaining demand for file f; is A =0.
If \; > uN; for i =1 or 2, we exhaust every f; systematic
node. The remaining demand for file f; is then X, = \; — uN;,
and N/ = 0 systematic f; nodes remain.
Step 2: Serve any remaining demand for files f; and f5.
Finally, serve demand for file f5.

Example 4. Consider the system in Example 3. In Step 2
we want to serve the remaining requests for file fo in a way
that maximizes the requests that can be handled for fs. In
particular, we will reserve the use of systematic fs nodes for



accessing file fs. Note that there are 2 - (g) = 6 repair groups
for file fo that involve one systematic f, node and two coded
nodes. If we send % requests for file fo to each of these repair
groups, then all the requests for file fo are served, each fi
systematic node can serve % more requests (as each fi node
is in 3 repair groups) and each coded node can serve & more

requests (as each coded node is in 4 repair groups).

@ G @G> D U T O

Finally, requests for f3 may be served. Sending {5 requests
to each of the 6 repair groups with one f1 node and two coded
nodes exhausts each f, node and each coded node. The full
service rate of the systematic f3 node may also be used to
serve requests for f3. Thus a total of 6 - 454 = %u requests
for f3 may be served.

@ G G U U T T

How requests are served in Step 2 depends on the demand
and number of systematic nodes for files f; and f5. Let A be
the total demand for files f; and f5 that remains after Step 1;
that is, A = A + 5.

Case 1 (0 < A1 < ulNyg, 0 < Ay < ulNy): In this case,
A =0, so all available system resources may be used to serve
f3 demand. The full service rate of file f3 systematic nodes

may be used, serving demand [LNg for ﬁle fs. Let 0 be a
“am < “cf(z)

No = Nowy'

There are N{ N4C' fs—repair groups with a systematic node
for each of f1 and f2, and one coded node. Recall, C >

permutation on {1,2} such that

max (3,N1 AN, ) Since C' > N1y — /\";” ,
Ao(1)
HoyNo) = (fo(l) -
I
demand for f3 can be served by sending ”"“) demand to

each of these repair groups. The service rate of each f5(1)
is reduced to 0, while f, () systematic nodes have u! 2 =

Mo (o) = N, s NI yC =ty 9y — f\bﬁ“) N (1 and coded nodes

/ _ /'l’o'(l) / / _ /'l’o'(l) /

have ue =1 = w7, e Na@No@) = 1 Ny
There are N (’7(2) (C) fs—repair groups with one of the
remaining systematic file f,(2) nodes and 2 coded nodes. Since

A ..
C > N,y — =22 similarly to before, we can serve
o(2) ”w

Ag@)) ( Aa(l)))
Ma - /J ND’ - - Na -
@No(2) <( @~ S

demand for file f3 by sending demand equally to each of these
f3—repair groups. Each coded node has remaining service rate
e = o= "ER(C =N
remain available.

Since C' > 3, as in the case in Theorem 1 with C' coded
nodes and no systematic nodes, the service rate ug, of these

coded nodes can be used to serve g p¢> demand for file fs.

(2)7 and no systematic f1, fo nodes

Thus, the maximum achievable Az is L(A1, A2)

_C

3 1é + iy )N, Ny 1y + N3

o(2) T Ho(1)

:g (Cu+ pNy2)y = Ao(2) + NG (1) — Ao(1)) + N3,

Similar arguments can be used for Case 2: uN; < A\ <
,U,N1+MN2+ 3,U,, 0 < )\2 < /JNQ and Case 3: 0 < )\1 < /JNl,
uNo < Ao < uNy + uNo + 5 ,u (see Example 4).

Case 4 (,uNl <A < ,uNl +}LN2 + 3,lL, }LNQ < Ay <
puN1 + uNe + 5 €11): In this case, all available repair groups
consist entirely of coded nodes. Since demand u/V; for file f;
(z = 1, 2) was satisfied in Step 1, the remaining total demand
for files f1 and f5 is A < u Since C' > 3, this can be served
by sending demand equally to every coded repair group. The
coded nodes’ remaining ability to service can be used for file
f3. Thus, the maximum achievable A3 is

C
L()\l, )\2) = §,u — A+ uNs
C
=gh- (A1 — N1 + Ao — uNa) + puN3.

O

Note that L(A1, A2) can be found for systems with C' < 3
coded nodes in a similar way. When C' < 3, all repair groups
must contain systematic nodes for at least 3 — C' distinct files.

V. MDS K-FILE CORES

Theorem 2 may be generalized to provide an algorithm for
maximizing A\ for the general K-file case. Assume we have
an MDS K-file core with Ny, Na, ..., N systematic nodes
for files f1, fo, ..., fK, respectively, and C' coded nodes, with
demand A1, Ao, ..., Ag_1 for files fi, fo,..., fKk—1. As in
Theorem 2, we again assume A\ + ... + Ag—1 < uN; +

o+ puNg_1+ % w. Our goal is to identify the maximal file
fKx request rate that can be served.

We can first serve file f1, fo,..., fx—1 demand using their
respective systematic nodes. This process is analogous to Step
1 in Theorem 2. Note, in this algorithm, the same demand is
sent to every file f; systematic node, and also to every coded
node, so we can let u; and pc represent the updated service
rate of systematic file f; nodes and coded nodes, respectively.

We can then serve any remaining total demand A =
A1 + ...+ Ag—1 using K-tuples of coded and systematic
nodes. This is analogous to Step 2 in Theorem 2. Let K’ :=
Zfi_ll sgn(N;) denote the number of files (excluding file fx)
for which the system contains systematic nodes. There are
(H{l 1] Ny>0} N) (KfK,) repair groups with K’ systematic
nodes and K — K’ coded nodes. Letting m be the index
minimizing N;u; for positive N;pu;, we can serve demand
tm N by sending t =— demand to

{1 1 | N;>0and i#m} )(K—K’) .
each of these repair groups. This exhausts file fm systematic




nodes, while file f; systematic nodes (j # m, N; > 0,
1 <7 < K —1) have reduced service rate

Algorithm 1 Maximize Ay
INPUT: )\1,)\2, e ,)\K_l, Nl,NQ, e 7JVI(,C’,‘LL

C .
Hm (H{z—l | N;>0 and i#£5} N) (K—K/) 6 OUTPUT: Ak
s - (H ) ( C ) ) ( ) )\K —0
{i=1] Ni>0 and iz£m} K-K' 1o, pi < for i from 1 to K
which is p;— ”m ™ The remaining coded nodes have reduced Step 1:
service rate for ¢ from 1 to K — 1 do
C-1 if A\; < uN; then
o (H{z_l | N:>0} N) (k1) @ = R
ne - ——, ™ Ai 0
Ai
(H{z_l | N;>0 and izm} N) (xSx) N; < N; — {*J
c pm (K—K') . . . . o
which is = We can continue in this way until the i < — ]L[u J
systematic node service rate is met for all but file fx. Then, else
we can use repair groups that consist entirely of coded nodes, Ai — N\i — uN;
applying Theorem 1. Once all demand for files fi,..., frx—1 N, p; + 0
has been satisfied, we can follow a similar process to utilize end if
any remaining system resources to serve demand for file fj. end for
Note, once the coded nodes have been exhausted, or if there Step 2:
are too few coded nodes to form a K-tuple, no demand may be
satisfied using only coded nodes. We may then serve demand A f_ Zz é 1
for file fx using systematic file fx nodes. K' ) iy sgn(N i)
A whileC>0and02K—K’do
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