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Abstract—In 2017, four hurricanes made U.S. landfalls, lead-
ing to millions of customer outages. Our previous work shows that
weather forecast can be used to estimate the failure of transmission
lines during hurricanes; these failure estimations can be effectively
used in stochastic optimizations and guide preventive operation to
reduce outages. However, the large number of possible contin-
gency scenarios, caused by hurricanes, makes preventive opera-
tion extremely computationally burdensome. The problem can be
practically solved with only a small number of representative sce-
narios. Thus, the effectiveness of preventive operation would di-
rectly depend on the scenario selection process. This paper exam-
ines two scenario selection methods, which eliminate (a) the un-
likely and (b) the inconsequential scenarios. Simulation studies
were carried out on IEEE 118-bus system, mapped to the Texas
transmission network, using Hurricane Harvey wind data. The pa-
per sheds light on the effective selection of an appropriate number
of scenarios with acceptable computational complexity.

Keywords—Extreme events, hurricanes, power system reliability,
Dpreventive operation, stochastic optimization, unit commitment

I. NOMENCLATURE

Indices

/ Coefficient compared with limit state.

k Transmission line.

g Generator.

n Node.

m Indices of tower locations in the transmission line.

s Scenario.

seg Segment of linearized generator cost function.

Sets

ot (n) Transmission lines with their “to” bus connected
to node n.

o~ (n) Transmission lines with their “from” bus con-
nected to node n.

gmn) Generators connected to node n.

Variables

Frse Real power flow through transmission line kin
scenarios s at time t.

Fr(V) Structural wind fragility at wind speed V.

L st Load loss at node nin scenarios at time t.

Pyst Real power generation of generator g in scenarios
at time t.

P; st Over-generation of generator g in scenarios at
time t.
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Real power generation of generator g in scenarios
in segment seg at time t.

Damage and failure probability.

Failure probability of transmission linek.

Survival probability of transmission linek.

Startup variable (1: generator g starts up at time ¢;
0: generator g does not start up at time ¢.)

Mean wind speed at the m‘"tower location.
Shutdown variable (1: generator g shuts downat
time t; 0: generator g does not shut down at time
t.)

Voltage angle at bus n in scenarios at time t.
Voltage angle at the “from” node of line kin sce-
narios at time t.

Voltage angle at the “to” node of line kin sce-
narios at time t.

Susceptance of transmission line k.

Linear cost of generator g in segment seg.
Cost of load loss ($/MWh).

No load cost of generator g.

Cost of over generation ($/MWh).

Shutdown cost of generator g.

Startup cost of generator g.

Thermal/stability limit of transmission line k.
Load at bus nin scenario s at time t.

Limit state of structure.

Number of buses in s system.

Total number of generators.

Number of scenarios.

Number of segments for the linearized generator
cost function.

Number of towers in one transmission line.
Probability of line k to fail at time ty.
Probability of scenario s.

Upper generation limit of generator g.
Lower generation limit of generator g.

Upper generation limit of generator g in segment
seg.

Hourly ramp-rate for generator g.

The time that hurricane starts.

The time that line k fails.

Length of the investigated time period.



Tr Number of time periods with different probabili-
ties of transmission line failure.

Tgown Minimum down time for generator g.

T Minimum up time fi

s p time for generator g.

%4 Given wind speed.

Vio Mean wind speed at height10m.

Zist Transmission line k’s status at time t in scenario
s (1: line is closed; O: line is open).

A Maximum value of bus voltage angle difference
to maintain stability for line k.

Agn Minimum value of bus voltage angle difference to

maintain stability for line k.

IL INTRODUCTION

Severe weather is the leading cause of power outages in the
United States [1]. In 2017, four major hurricanes affected U.S.
territories — Harvey, Irma, Maria, and Nate, affecting Puerto
Rico and at least eight states, including Florida, Georgia, South
Carolina, North Carolina, Alabama, Texas, Tennessee, Louisi-
ana and Mississippi [2]-[4]. Due to the damages of Hurricane
Maria, nearly all the customers in Puerto Rico lost power by
September 20, 2017, affecting more than 1.5 million people [5].
Hurricane Irma also led to millions of customer outages, affect-
ing 48% of the customers in Florida and 22% of the customers
in Georgia [3]. The negative impact of hurricanes on power sys-
tem operation is not only severe, but also long-lasting. An update
from the U.S. Department of Energy shows that still about 40%
of customers in Puerto Rico are without electricity as of January
10, 2018, almost four months after Hurricane Maria [6]. Thus, it
is extremely important to improve the resiliency of power sys-
tems in face of extreme weather.

Different strategies have been studied to reduce the adverse
impacts of natural disasters on power system reliability. After
the extreme event, if the system is islanded, microgrids can be
optimally scheduled to locally supply the demand and reduce
power outages [7]-[9]. After the damage, power system re-
sources and human resources, performing the restoration tasks
can both be optimized to restore the system at the lowest cost or
fastest time [10], [11]. Preventive measures can also be taken;
the system can be hardened in the planning phase, e.g., installa-
tion of underground power lines or reinforcement of transmis-
sion towers [12]. Risks of adverse events can also be taken into
consideration in the optimization problem in the planning phase,
such as transmission expansion, so that a relatively robust future
plan under extreme events is chosen [13]. In the operation phase,
preventive actions can also be taken, since meteorological data
is available to the power system operators. These preventive
measures include maintenance scheduling [ 14] and unit commit-
ment scheduling [15], [16]. Such preventive actions, if properly
integrated into the operational models, can drastically reduce the
power outages. However, the challenge in finding and imple-
menting these preventive operation measures is that they require
solving computationally intensive stochastic optimization mod-
els. These models can have a large number of possible scenarios,
which further adds to the computational burden of the problem.
This is especially important for the day—ahead unit commitment
scheduling, which involves binary variables and is computation-
ally burdensome even without preventive operation. Reducing

the number of considered scenarios can greatly reduce the com-
putation time; however, the scenarios have to be selected in a
way that they represent an appropriately large portion of the un-
certain possibilities.

This paper compares two scenario selection methods for pre-
ventive power system operation during hurricanes. The first
technique is a probability-based selection method, in which only
the scenarios with the highest likelihood are chosen. The second
method is importance sampling [17], in which the likelihood of
selecting a scenario is proportional to its contribution to the ex-
pected outage. The two methods are compared in a preventive
unit commitment scheduling framework. Simulation studies
were carried out on the IEEE 118-bus test system, which was
mapped to the Texas transmission network. Transmission com-
ponent failure scenarios were generated using meteorological
data of Hurricane Harvey. In order to generate the scenarios,
first, a fragility analysis was carried out, which examines the
structural stability of the transmission towers under dynamic
wind loading. The analysis takes the system layout and Hurri-
cane Harvey data as input to determine the failure probability of
all transmission towers in the system. Then, the probabilities of
transmission line failures were calculated based on the transmis-
sion tower failure probabilities, and possible contingency sce-
narios were generated. Each scenario includes information on
the transmission lines that fail and the time they fail, along with
the probability of the scenario. The total number of scenarios,
generated through fragility analysis, turns out to be very large.

We apply the two above-mentioned scenario selection meth-
ods to construct a smaller set of representative scenarios. Pre-
ventive unit commitment models were solved on these smaller
scenario sets, and the solutions, obtained under different sce-
nario sets, were compared. The computational complexity was
also analyzed with respect to the number of scenarios and the
convergence of the dispatch costs. Results show that the ex-
pected dispatch cost, including the value of lost load, converges
to a certain level as the number of included scenarios increases.
Moreover, the importance sampling technique functions more
effectively compared to the probability-based selection method
most of the time before the cost converges. It is very important
to find the convergence point, so that an effective number of sce-
narios can be used in the preventive operation without extra
computational burden. It is also important to use an appropriate
method to select scenarios based on the available computational
time in a way that is still representative of the uncertainties.

The rest of the paper is organized as follows. Section III de-
scribes the preventive unit commitment model, and Section IV
presents the procedure that generates and selects scenarios. Sim-
ulation results are presented and discussed in Section V, and
conclusions are drawn in Section VI.

I11. THE PREVENTIVE STOCHASTIC OPTIMIZATION MODEL

The preventive stochastic optimization model is based on a
DC power flow unit commitment (UC) formulation, considering
different contingency scenarios caused by transmission line out-
ages. The model solves for a uniform unit commitment for all
scenarios, while dispatching generation of each unit under each
scenario. Over generation and load loss are allowed under each
scenario, but are penalized a with a high cost in the objective



function. Thus, load will not be shed unless its prevention is im-
possible or extremely costly.

The formulation of the problem is shown in (1) — (14). The
objective function is expressed by (1), which minimizes the ex-
pected dispatch cost of the system considering generation dis-
patch, over generation and load loss under all scenarios. Gener-
ation limits are expressed by (2) — (4); generation costs were cal-
culated using a piece-wise linear cost function. DC power flow
constraints are expressed by (5) and (6); when a transmission
line is out, both its susceptance and thermal limit are set to 0
using the binary integer parameter z ; .. (7) is the voltage angle
stability constraint for each transmission line, and (8) sets the
voltage angle of the reference bus to 0. (9) is the node power
balance constraint, in which over generation and load loss are
included. (10) and (11) calculates the start-up and shut-down
variables; (12) is the hourly ramping limit for each generator;
and (13) and (14) are the minimum up and down time constraints
for each generator. Since contingencies are modelled explicitly,
reserves are not modeled in this formulation.
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1V. CONTINGENCY SCENARIO SELECTION

A. Transmission Line Fragility Analysis Under Hurricane

Fragility analysis of transmission line combines three steps.
First, the fragility analysis of transmission tower under extreme
wind is conducted. A finite element model of the transmission
tower is built in ANSY'S. By adding a series of wind speed based

on Monte-Carlo simulation, the damage and failure probability
of a transmission tower can be obtained via equation (15).

Fr(V) = P[> LS | Vi = V] (15)

The limit state (LS) of a transmission tower is defined as the
transmission tower’s top displacement exceeding 1.5%, 2%,
2.5% and 3% of the transmission tower’s height. The fragility
curves of transmission tower are calculated according to differ-
ent limit states. In this paper, the limit state of a transmission
tower’s failure is defined when the top displacement is over 2.5
percent of the tower’s height.

Secondly, a horizontal wind profile is modeled to simulate
the wind speed distribution. This paper simplifies the gradient
wind speed as a function of radius distance. Wind speed in-
creases linearly in a 100 km range to the hurricane center. When
it is away from the hurricane center over 100km, it decreases
like a parabola.

Finally, the model calculates the transmission line’s failure
probability. The m®* transmission tower’s failure probability
for each transmission line is expressed as P, = Fg,,(V;,). The
k" transmission line’s failure and survival probability are de-
noted as P[FL, k] and P[SL, k] separately. If a transmission line
can survive under some wind load, all the transmission towers
for this line must survive. Therefore, P[FL, k] is calculated in
equation (16).

P[FL,k] = 1= P[SL, k] = 1 = TINZ 1 Fam(Vin)
B.  Generating All Possible Contingency Scenarios

(16)

Based on the likelihood of each transmission line to fail,
transmission contingency scenarios can be generated and their
probabilities can be calculated. Since different lines may fail at
different time during the hurricane, each scenario should con-
sider both the locations and time of the lines that fail. The sce-
nario generation procedure is illustrated in Fig. 1.
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Fig. 1. Illustration of the scenario generation procedure

The total number of scenarios can be calculated as
Ng = (Tp + D)Ner (17)

Each scenario is a 2-dimensional matrix, including infor-
mation about the status of each transmission line during each



hour in the studied period. Given transmission line k fails at ¢},
in scenario s, the probability for each scenario can be calculated
as shown in (18).

Ps = 2 (Presy T, (1 = Pre))- (18)
C. Probability-based Scenario Selection

The probability-based scenario selection is a deterministic
selection method; it selects the scenarios with the highest prob-
abilities. In order to implement this scenario selection method,
all the possible scenarios are ranked according to their likeli-
hood, and a desired number of scenarios with the highest proba-
bilities are selected. This method is easy to implement, but ig-
nores the scenarios with a low probability but high impact.

D. Importance-sampling-based Scenario Selection

The importance sampling method is a stochastic scenario se-
lection method. In this method, the likelihood of selecting a sce-
nario is proportional to its contribution to the expected genera-
tion dispatch cost. In order to implement this method, first, de-
terministic unit commitment is solved for each possible sce-
nario, and the dispatch cost is obtained from each deterministic
unit commitment case. It should be noted that the dispatch cost
is dominated by its penalty component, when over generation
and load shedding occurs. Thus, a high cost scenario should be
interpreted as a scenario with high violations, i.e., load shedding
and over generation. Then, considering the probability of each
scenario, an expected dispatch cost can be calculated. Finally,
scenarios are selected with a likelihood in proportion to their ex-
pected cost [17]. This method is more complicated than the prob-
ability-based selection method, and it adds randomness to the
selection method. This method is not guaranteed to select the
most representative scenarios; however, it makes it possible to
consider scenarios that has a low probability but significant im-
pact on the system.

V. SIMULATION RESULTS AND ANALYSIS
A. Test System Layout and Scenario Generation

Simulations in this study were carried out on the IEEE 118-
bus test system [18], which was mapped to the transmission sys-
tem of Texas, under Hurricane Harvey. Hurricane Harvey made
landfall around 4:00 am and wind speed were collected every
three hours according to data from the National Hurricane Cen-
ter [19]. The wind speed is shown in Fig. 2.

Since the IEEE 118 test system is mapped to the Texas trans-
mission system, using the horizontal wind profile of Hurricane
Harvey, the displacement of every transmission tower can be
calculated, from which the failure probability for transmission
towers can be obtained. Consequently, probability of transmis-
sion line failures during each three-hour period can be calculated
[15]. Results show that the hurricane was able to cause transmis-
sion line failures only in the first three-hour period. During this
period, 22 lines may fail with different probabilities; the 22 lines
and their “from” and “to” buses are shown in Fig. 3 and their
failure probabilities are shown in TABLE I. In this table, the
lines are denoted with their “from” and “to” buses. With 22 lines
possible to fail in one period, according Equation (17), a total
number of 4,194,304 scenarios can be generated.

50

45

40

35

30

25

Wind Speed (m/s)

20

1 1 1 1

4AM 7AM

Fig.

10AM 1PM

3. Test system layout

4PM 7PM 10PM 1AM 4AM

Time

Fig. 2. Wind speed of Hurricane Harvey
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TABLE 1
LINES THAT MAY FAIL DURING THE FIRST THREE-HOUR PERIOD

Line Probability Line Probability
10-9 0.9493 114-115 0.9888
9-8 0.9583 114-32 0.9775
8-30 0.4877 27-32 0.9858
30-17 0.7417 27-25 0.9995
17-18 0.9552 26-25 0.5973
17-113 0.5535 23-25 0.4235
32-31 0.9596 23-32 0.1364
29-31 0.9982 23-22 0.8777
28-29 0.9953 21-22 0.9355
27-28 0.9923 20-21 0.8873
27-115 0.9867 26-30 0.5106




B.  Scenario Selection Using the Two Methods

In order to run the stochastic optimization problem effi-
ciently, a scenario set which includes a small number of scenar-
10s, selected from the total 4,194,304 scenarios should be used
for each stochastic optimization problem. 42 scenario sets were
obtained in this study, including 7 obtained using the probabil-
ity-based methods and 35 obtained using the importance sam-
pling method.

With the probability-based selection method, a desired num-
ber of scenarios can be selected quickly. In this study, seven sce-
nario sets were selected, each of which containing 1, 4, 7, 10, 20,
30 and 40 scenarios, respectively.

The large number of scenarios makes employment of im-
portance sampling extremely computationally demanding. This
is because, if importance sampling is used, a unit commitment
problem needs to be solved under each scenario. Although each
unit commitment problem just takes a few seconds to solve,
solving more than 4 million scenarios will take months. In order
to reduce computational burden, scenarios with probabilities of
less than 0.005% were removed first. This way, the number of
scenarios was reduced to 1,492. Then deterministic unit commit-
ment problems were solved under each of the 1,492 scenarios
using the model described in [20]. Using the individual dispatch
costs and the scenario probabilities, the expected dispatch cost
was calculated, and contribution of each scenario to the expected
cost was obtained. Due to the stochastic nature of this selection
method, 5 scenario sets were obtained using importance sam-
pling for each of the seven numbers of scenarios mentioned
above, so that the stochastic optimization can be carried out un-
der different scenario sets with the same number of scenarios to
make the results more credible.

C. Economic Benefit Comparison

In order to compare the effectiveness of scenario selection,
the preventive unit commitment model described in Section III
was solved under the 42 scenario sets, respectively and the solu-
tions were obtained. Then, each of the 42 unit commitment so-
lutions was adopted for economic dispatches under the 1,492
scenarios mentioned in Section IV-A, and an expected dispatch
cost considering probabilities of the 1,492 scenarios was ob-
tained for each unit commitment solution. The lower the ex-
pected dispatch cost, the more economical the unit commitment
solution is in face of the hurricane. Again, note that the value of
lost load is included in the dispatch cost, with lost load and over
generation penalized at a high price. As the dispatch cost is dom-
inated by this penalty component, a cheaper solution really re-
flects a more reliable solution.

The expected dispatch costs of the 42 cases are shown in Fig.
4. The expected dispatch costs decreased with the increase in the
number of scenarios, and they converged to about $33.3 million
with 20 or more scenarios, no matter which scenario selection
method was used. When only one scenario was selected, the
number of scenarios was so small that no method could guaran-
tee selecting a representative scenario, although the probability-
based method showed slight advantage in this case. However,
when 4 or 7 scenarios were selected, the importance sampling

method showed an obvious advantage, and the expected dis-
patch costs from the importance sampling method were much
lower than those from the probability-based method. The results
suggest that the importance sampling method is generally more
effective before the expected cost converges, but they are very
close in effectiveness once the number of scenarios is large
enough so that the expected dispatch cost converges.
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Fig. 5. Solution time comparison under different numbers of scenarios

D. Computational Complexity Comparison

The computational complexity of the preventive stochastic
optimization model is highly correlated with the number of sce-
narios considered. The solution times of the 42 cases are shown
in Fig. 5, with a light-blue-colored area. Since 6 cases were
solved under each number of scenarios, an average solution time
was calculated for each of the 7 numbers of scenarios. It can be
seen that the solution time increases significantly with the in-
creasing number of scenarios, although randomness in solution



time existed with the same number of scenarios. Thus, it is very
important to find the number of scenarios at which the expected
dispatch cost converges, so that a cost-effective unit commit-
ment solution can be found without taking unnecessarily long
computation time.

VL CONCLUSION

This paper compared two contingency scenario selection
methods, namely, probability-based and importance sampling
methods, for stochastic preventive operation in face of hurri-
canes. Results show that the expected dispatch cost, including
high penalty costs for lost load and over generation, obtained
under each unit commitment solution, decreases with the in-
creasing number of scenarios. The expected dispatch cost con-
verges to a certain level as the number of scenarios increase.
With an extremely small number of scenarios, such as one sce-
nario, neither of the two methods is guaranteed to select a repre-
sentative scenario set. With a relatively small number of scenar-
ios, the importance sampling method is more effective; but when
the number of scenarios is large enough for expected dispatch
cost to converge, both scenario selection methods are similar in
effectiveness. With similar effectiveness, the probability-based
selection method is preferred, because it is much easier to im-
plement compared to the importance sampling method. The
computational complexity is highly correlated to the number of
scenarios considered; thus, it is ideal to use the number of sce-
narios right at the convergence of expected dispatch costs. How-
ever, in case that only a relatively small number of scenarios can
be chosen due to the limitation of computational resources, the
importance sampling method is more effective than the proba-
bility-based method in general.
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