

1 Recommendations for Next-Generation Ground Magnetic 2 Perturbation Validation

3 **D. T. Welling^{1,2}, C. M. Ngwira^{3,4}, H. Opgenoorth⁹, J. D. Haiducek¹, N. P. Savani^{4,5}, S. K.
4 Morley⁶, C. Cid⁷, R.S. Weigel⁸, H.J. Singer¹⁰, L. Rosenqvist¹¹, M.W. Liemohn¹**

5 ¹University of Michigan Department of Climate and Space Sciences and Engineering, Ann Arbor, Michigan, United States

6 ²University of Texas at Arlington Department of Physics, Arlington, Texas, United States

7 ³The Catholic University of America, Department of Physics, Washington, DC, United States

8 ⁴NASA Goddard Space Flight Center, Space Weather Laboratory, Greenbelt, MD, United States

9 ⁵University of Maryland Baltimore County, Goddard Planetary Heliophysics Institute, Baltimore, MD, USA

10 ⁶Space Science and Applications, Los Alamos National Laboratory, Los Alamos, NM, United States

11 ⁷Space Weather Research Group, Universidad de Alcala, Alcala de Henares, Madrid, Spain

12 ⁸Space Weather Lab at George Mason University, Department of Physics and Astronomy

13 ⁹Whatever Hermann's Affil is.

14 ¹⁰Space Weather Prediction Center, NOAA, Boulder, CO, United States

15 ¹¹Swedish Defence Research Agency, Stockholm, Sweden

16 Key Points:

17

- 18 We present a new validation suite for models of ground magnetic perturbations, dB/dt , of interest for geomagnetically induced currents.
- 19 The existing standard remains useful but provides limited information, so an expanded set of metrics is defined here.
- 20
- 21 This work is a result of the International Forum for Space Weather Capabilities Assessment and represents a new community consensus.
- 22

23 **Abstract**

24 = enter abstract here =

25 **1 Introduction**

26 An ongoing challenge of model validation, especially concerning inter-model comparisons
 27 and tracking of model progress over time, is creating a validation suite that achieves
 28 community-wide acceptance and use. The goal of the International Forum for Space Weather
 29 Capabilities Assessment (<https://ccmc.gsfc.nasa.gov/assessment/forum-topics.php>), orga-
 30 nized and led by NASA's Community Coordinated Modeling Center (CCMC), is to over-
 31 come this challenge by bringing the community together to achieve consensus on validation
 32 techniques. The Forum defined several focused evaluation topics, spanning space weather
 33 domains from the sun to the ionosphere. Working teams were then formed to begin work to-
 34 wards defining validation & metric suites that could be leveraged by the entire community.
 35 The effort of the Forum continues today to address community validation obstacles.

36 This work reports on the progress made by the *Ground Magnetic Perturbation* working
 37 team, whose goal is to advance validation approaches for predictions of values observed by
 38 ground-based magnetometer stations. The value of interest is dB/dt , or the rate of change
 39 of the magnetic field as measured on the Earth's surface. This value is especially relevant to
 40 geomagnetically induced currents (GIC), which are currents driven through long, ground-
 41 based conductors during geomagnetically active periods [Pirjola, 2000; Pulkkinen *et al.*,
 42 2017].

43 Unlike many other space weather subtopics, a contemporary, community-created dB/dt
 44 validation suite both exists and continues to be employed. This suite, detailed by Pulkki-
 45 nen *et al.* [2013], was created with community input via a partnership between CCMC and
 46 NOAA's Space Weather Prediction Center (SWPC). The goal of this suite was to help iden-
 47 tify an operationally viable predictive model of dB/dt . This study stands as a baseline suite
 48 on which to improve upon: while it indeed provides insight into model performance, the
 49 information it yields is quite limited. The goal of the Ground Magnetic Perturbation team
 50 was to therefore identify the logical next-steps to improve this validation suite without over-
 51 complicating its implementation.

52 This paper presents the recommendations of the team for a next-generation dB/dt val-
 53 idation suite. The contemporary *de facto* standard is first reviewed, with strengths and weak-
 54 nesses explored. The new approach is then introduced and explained in full. Outstanding
 55 issues not yet addressed by the Forum are also discussed. The recommendations are then
 56 briefly summarized in the final section.

57 **2 Current Validation Approach**

60 The contemporary *de facto* validation suite in use today is detailed by Pulkkinen *et al.*
 61 [2013]. This study evaluated five different models, both numerical and first-principles-based,
 62 using six ground-based magnetometers over six real-world events. The selected six events
 63 are listed in Table 1 and span very weak to extreme geomagnetic storms. The magnetome-
 64 ter data used began with the perturbation of the background field from a quiet reference,
 65 ΔB . For each event, data were collected from six real-world stations, whose positions are
 66 shown in Figure 1 as dark black stars. Station names and coordinates are given in Table 2
 67 in Pulkkinen *et al.* [2013]. Geomagnetic dipole coordinates were used: two components are
 68 tangent to the surface of the Earth (geomagnetically north-south and east-west), the third is
 69 the vertical component. A 60 s sampling frequency was used, yielding a data set that was not
 70 overly dense but is unlikely to degrade the data-model comparison significantly [Pulkkinen
 71 *et al.*, 2006]. The precise definition of dB/dt used is given by,

$$|dB/dt|_H = \sqrt{(dB_{North}/dt)^2 + (dB_{East}/dt)^2} \quad (1)$$

58 **Figure 1.** Locations of magnetometer stations used in the original validation suite (black stars), stations
 59 with 10 s data available (red dots), and other stations (grey dots).

72 This definition was chosen to investigate the horizontal field fluctuations (i.e., components
 73 tangent to the Earth's surface), which are associated with GIC hazards [Viljanen *et al.*, 2001;
 74 Pulkkinen *et al.*, 2017]. A simple forward-difference method was used to obtain derivatives;
 75 this simple approximation is adequate for the given time resolution [Tóth *et al.*, 2014].

76 To quantify the data-model comparisons, binary event analysis was employed [Jolliffe
 77 and Stephenson, 2012]. This approach first divides a time series into non-overlapping time
 78 windows; 20 minute windows were used in the existing validation suite. Each window is then
 79 categorized based on whether or not the observed and/or modeled dB/dt value crossed a
 80 given threshold. A "hit" signifies that both crossed the threshold; a "miss" indicates that the
 81 observation crossed but the model did not; a "false positive" occurs when the model predicts
 82 a threshold crossing that was not observed, and a "true negative" is when neither observa-
 83 tion nor model crosses within the time window. Four thresholds were leveraged: 0.3, 0.7,
 84 1.1 and 1.5 nT/s . Metrics can be constructed from the number of events in each category.
 85 Three are used presently: the *probability of detection* (POD) which is the fraction of ob-
 86 served threshold crossings predicted by the model, also called hit rate; *probability of false*
 87 *detection* (POFD) which is the fraction of non-event periods when a crossing was forecast,
 88 also called false alarm rate; and finally the *Heidke Skill Score* (HSS).

89 The probability of detection is defined as

$$90 \text{POD} = \frac{a}{a + c} \quad (2)$$

91 where a is the number of hits, b is the number of false positives, c is the number of misses
 92 and d is the number of true negatives. POD gives the probability of an event being correctly
 93 predicted given that an event occurred. The probability of false detection is defined as

$$94 \text{POFD} = \frac{b}{b + d} \quad (3)$$

122 **Table 1.** List of events in the current dB/dt test suite (1-6), new events recommended for inclusion by the
 123 working group (7-8), and other events considered by the working group (9-13). For each, the start time, duration
 124 over which data-model comparisons should be made, maximum F10.7 solar flux, Kp, AE, and minimum
 125 Sym-H values are shown in each column from left to right, respectively.

#	Event Start	Extent (hours)	F10.7 (sfu)	Kp	AE (nT)	Sym-H (nT)
1	29 Oct 2003 06:00 UT	24	275.4	9 ^o	4056.0	-391.0
2	14 Dec 2006 12:00 UT	36	90.5	8 ⁺	2284.0	-211.0
3	31 Aug 2001 00:00 UT	24	203.0	4 ^o	959.0	-46.0
4	31 Aug 2005 10:00 UT	26	86.0	7 ^o	2063.0	-119.0
5	05 Apr 2010 00:00 UT	24	79.0	8 ⁻	2565.0	-67.0
6	05 Aug 2011 09:00 UT	24	113.0	8 ⁻	2611.0	-126.0
7	17 Mar 2015 02:00 UT	34	116.0	8 ⁻	2298.0	-234.0
8	22 Jul 2004 06:00 UT	162	178.4	9 ⁻	3632.0	-208.0
9	07 Nov 2004 00:00 UT	60	138.1	9 ⁻	3360.0	-394.0
10	30 Mar 2001 12:00 UT	48	257.2	9 ⁻	2407.0	-437.0
11	17 Mar 2013 00:00 UT	48	124.5	7 ⁻	2689.0	-132.0
12	06 Apr 2000 12:00 UT	48	178.1	9 ⁻	2481.0	-320.0
13	15 May 2005 00:00 UT	24	105.2	8 ⁺	2051.0	-305.0

95 and considers the number of intervals in which a threshold crossing was predicted but did not
 96 occur. POFD gives the probability of an event being incorrectly predicted given that an event
 97 did not occur. Smaller values of POFD indicate a better model performance.

98 Skill scores are measures of accuracy relative to a reference model [Wilks, 2011]. The
 99 Heidke Skill Score (HSS) uses the proportion correct (PC) as the accuracy measure, which is
 100 defined as

$$101 \quad PC = \frac{a + d}{a + b + c + d} \quad (4)$$

102 and measures the fraction of predictions that obtained the correct result. The reference model
 103 used in calculating the HSS is the PC that would be obtained for random predictions that are
 104 statistically independent of the observations [Wilks, 2011]. The Heidke Skill Score is then
 105 defined as

$$106 \quad HSS = \frac{PC - PC_{ref}}{1 - PC_{ref}} = \frac{2(ad - bc)}{(a + c)(c + d) + (a + b)(b + d)} \quad (5)$$

107 For random predictions and constant predictions HSS is zero indicating that the prediction is
 108 unskilled. Predictions that outperform random chance have a positive HSS, while a perfect
 109 prediction has an HSS of 1. These metrics are frequently employed in space weather appli-
 110 cations [e.g., Lopez *et al.*, 2007; Yu and Ridley, 2008; Welling and Ridley, 2010; Pulkkinen
 111 *et al.*, 2013; Ganushkina *et al.*, 2015; Austin and Savani, 2018].

112 Although relatively simple, the SWPC-CCMC test suite is both important and useful
 113 today. Because of the community involvement in defining the suite, it stands as an agreed-
 114 upon approach for inter-model comparison for ground magnetic perturbations. By focusing
 115 on dB/dt , the suite is highly relevant to operations. Though limited in number, the metrics
 116 yield a good description of overall performance by showing the user the balance between
 117 hits, false positives, and overall skill. The use of binary event analysis with 20 minute win-
 118 dows provides a built-in way to account for slight discrepancies in timing between the mod-
 119 els and data. More broadly, the validation suite was a critical step in selecting a model to
 120 transition to operations at NOAA SWPC. The suite continues to be used today to track the
 121 progress of the operational model as it is further developed.

126 3 Recommendations for Improvement

127 Despite the strengths of the SWPC-CCMC suite, it remains limited in the amount of
 128 information that it provides to the user. Only a handful of events are tested with a limited
 129 number of stations. This limits the statistical power of the study. Values are combined to give
 130 metrics that very broadly describe performance across a variety of locations and types of ac-
 131 tivity. Large spatial gaps exist between the six stations, meaning much dB/dt activity can be
 132 missed. Results from the validation suite are used to tell a developer if a model is deficient,
 133 but where and how it is deficient remain unanswered.

134 There are many possible ways to improve the original validation suite to increase its
 135 utility. Rather than seek complicated and labor intensive solutions, the Ground Magnetic
 136 Perturbation team sought improvements that are powerful, relatively simple to employ, and
 137 widely agreed upon by team members. Another aspect of model performance that can be
 138 captured with a trivial expansion of the metrics suite is the tendency of the model to either
 139 over- or under-predict. This is captured by the frequency bias, which is calculated as

$$140 \quad \text{Bias} = \frac{a + b}{a + c} \quad (6)$$

141 and gives the ratio of event forecasts to event observations. A bias of 1 indicates that the
 142 same number of events were forecast as were observed. If the model predicts too many events
 143 then the bias will be greater than one.

144 Four additional areas of focus were selected by the working team: increasing the num-
 145 ber of validation events; increasing the number and fidelity of observations; implementing a
 146 regional analysis scheme; and segregating results by type of activity. Each of these are de-
 147 scribed briefly below.

148 3.1 New Validation Events

149 An immediate concern of the Ground Magnetic Perturbation Working Team was to
 150 expand the number of events included in the validation suite. While the currently included
 151 events (Table 1, events 1-6) all occur during periods of high K_P index, four of the six events
 152 have middling SYM-H signatures that are less than 150 nT in magnitude (Table 1, rightmost
 153 column). The only true "super storm" is Event 1, which is the well-known Halloween Storm
 154 of 2003. Expanding the event list will also help improve the number of threshold crossings,
 155 improving the statistical significance of overall test. It is clear that one of the easiest ways to
 156 improve this validation suite would be to expand the event list and, therefore, the amount of
 157 time over which the models were tested.

158 Many events were suggested, and a short list of seven potential new events was con-
 159 structed. The short list is shown in Table 1 as items 7-13. For comparison to the existing
 160 events, peak F10.7 radio flux, K_P index, and Auroral Electrojet index (AE) are shown as is
 161 minimum SYM-H (fourth through seventh columns, respectively). A preference was given
 162 to strong and extreme storms; contemporary storms were also sought to yield events with ex-
 163 cellent coverage from modern missions and data campaigns. Members of the working group
 164 voted and narrowed the list to two new events.

165 The first event that should be added to the validation suite is summarized in Figure
 166 2. This is the well-known St. Patrick's Day storm of March, 2015. The top three frames of
 167 Figure 2 show the solar drivers in terms of GSM Y and Z components of the interplanetary
 168 magnetic field (IMF), solar wind density, and Earthward velocity. The bottom two frames
 169 summarize the magnetospheric response via the SYM-H and Auroral Electrojet (AE) geo-
 170 magnetic indexes. As this storm is widely studied [e.g., *Carter et al.*, 2016; *Lotz et al.*, 2017;
 171 *Ngwira et al.*, 2018; *Divett et al.*, 2018], it provides ample opportunity for further validation
 172 outside of ground magnetic perturbations. **THIS STORM HAS BEEN STUDIED A TON.**
 173 **WE NEED SOME REFERENCES HERE FOR THIS STORM.** With a SYM-H minimum at
 174 -234 nT, it would become the second strongest storm in the validation suite.

178 The second storm selected is actually a triple-CME event occurring in late July, 2004.
 179 The solar wind conditions for this event and the corresponding geomagnetic indexes are
 180 shown in Figure 3. Each of the sub-events drives a stronger response from the magneto-
 181 sphere, both in terms of SYM-H and AE. The final sub-event drives the third strongest SYM-
 182 H and second strongest AE signature amongst all events in the validation suite. Inclusion of
 183 this event will test models in very unique ways. Because there are three distinct storm in-
 184 tensifications and recoveries, the ability of the models to properly capture the hysteresis of
 185 the system will be tested. At 162 hours (6 days), it is four times longer than any other event.
 186 Models will need to robustly simulate this extended period in order to obtain positive skill
 187 scores. These challenges increase the operational relevance of the validation suite overall.

189 **3.2 Increased Coverage and Resolution in Observations**

190 The original validation suite compared model results against only six magnetometers,
 191 each reporting ΔB with a 60s sampling rate. This made the initial study straightforward to
 192 perform because only a small number of stations were included and because most magne-
 193 tometer stations release 1-minute data. These choices are limitations of the study. The spatial
 194 coverage is poor, leaving large gaps uncovered (e.g., Figure 1). The data-model statistics are
 195 thin; a problem that intensifies as comparisons are segregated by latitude. While a 60 s sam-
 196 pling rate captures most GIC-pertinent fluctuations, a 1 s resolution is optimal [Pulkkinen
 197 *et al.*, 2006]. The lower time resolution observations also limit the quality of the numerical
 198 derivative of ΔB [e.g., Tóth *et al.*, 2014] More stations and with higher sampling rates are
 199 simple ways to improve the fidelity of the validation suite.

200 For the improved validation suite, the observational comparison set will be expanded
 201 both by the number of stations and in terms of the sampling frequency. A 10 s frequency
 202 will be adopted for both observations and model output. While 1 s is desirable, 10 s out-
 203 put will improve the comparisons without reducing the available real world observatories or
 204 greatly slowing model execution. Rather than just six stations, all magnetometer observa-
 205 tories that report 10 s ΔB data will be included. **WE NEED TO KNOW HOW MANY 10s**
 206 **TIME RESOLUTION MAGS ARE AVAILABLE. DTW WILL ADD THIS TO TABLE 1**
 207 **AND FIGURE 1.** Table 1 reports on the number of magnetometers available for each event
 208 given this criterion. Stations with 10 s data available are indicated on Figure 1, illustrating
 209 the expanded spatial coverage. Expanding the suite in this way will both improve the quality
 210 of the dB/dt comparisons and while growing the statistical strength of the reported metrics.

211 **An example of 60s vs. 10s ΔB and the approximate derivative would be powerful to**
 212 **demonstrate the need here.**

213 **3.3 Regional Analysis**

214 Another limitation of the current validation approach is one of location and proximity.
 215 The results provided by the Pulkkinen *et al.* [2013] study segregated results into two latitude
 216 groups, but did not provide information about model performance as a function of magnetic
 217 local time (MLT). Further, if a dB/dt peak is predicted correctly temporally but at the wrong
 218 location, the model will be penalized. Temporal near-misses are already accounted for via
 219 the 20-minute windows employed by the binary event analysis. **We could use some refer-**
 220 **ences discussing how spatial scales for dB/dt can be small, demonstrating the need to com-**
 221 **pensate for spatial near-misses.** To improve the validation suite without over-complicating its
 222 implementation, a simple MLT binning method is recommended. First, a set of virtual mag-
 223 netometers is included as part of the model results that do not correspond to real world obser-
 224 vatories. Rather, these are regularly spaced at 5° latitude and longitude intervals across the
 225 entire globe. Such output is currently produced by the operational SWPC Geospace model
 226 at present. An alternate version of the binary event study will then be used. For each MLT
 227 quadrant, the question will be asked, “do *any* real observatories or *any* virtual magnetome-

ters report a dB/dt threshold crossing?" This will create contingency tables and metrics as a function of MLT quadrants instead of on a per-station basis.

The results of this additional metric calculation will be used to provide more information than the per-station metrics alone. Regional analysis will help modelers understand where their codes perform the best and where they perform the worst (e.g., day side vs. night side). Further, discrepancies between the per-station and regional analysis will help inform users of spatial near-misses. For example, if the regional analysis' Heidke Skill Score is considerably higher than the traditional per-station results, it is likely that the model is frequently predicting threshold crossings that correspond to real crossings but at the wrong location. Adding this portion to the validation suite grows its utility.

3.4 Segregation by Activity Type

The SWPC-CCMC validation suite is activity agnostic, meaning that skill scores are calculated across all time periods. Geomagnetic storms are the net effect of many sub-events, including substorms, sudden commencements, and many other categories of processes. The question naturally arises, "under what types of activity does a certain model do best or worst?" The current validation suite is incapable of answering such inquiries.

To address this, the recommendation of the Working Team is to calculate additional values corresponding to periods of certain types of activity. To make this immediately feasible, three activity types are recommended: storm sudden commencements, substorm expansions, and ring current intensifications. There are many more types of activity, and becoming more granular in definitions may be beneficial for future work. These initial three classifications are enough to expand the informative power of the validation suite without making implementation exceedingly difficult to accomplish.

Defining sub-event time windows is challenging, as there many ways to define classes of activity based on different observations and different criteria. The goal for this revised validation suite is to use definitions that are easy to implement, have a reasonable level of community agreement, and are likely to create a meaningful signal in the chosen metrics. For the three activity classes selected, the following criteria are used:

- Storm Sudden Commencements (SSCs) are well defined in literature and easily identified via a sharp increase in the SYM-H index corresponding to the arrival of a solar wind dynamic pressure pulse. The epoch of the event is defined as the start of the Sym-H rise. For each SSI, a broad time window is defined starting ten minutes before the event epoch and lasting twenty minutes after. The time window range allows the metrics to capture SSI-driven activity while compensating for small timing discrepancies between the model and real system.
- Ring current intensifications can be identified as periods of decreasing SYM-H index. For the revised validation suite, all times where both SYM-H and the time derivative of SYM-H are less than zero. To remove small time scale features and deviations not likely related to the ring current, a median filter is applied to SYM-H and only windows of at least an hour in length are considered.
- Auroral substorm expansions are a critical source of dB/dt but also the most challenging to quickly identify in a reliable manner. Use of auroral electrojet indexes, specifically, AL, are a popular, simple, but imperfect way to identify substorms. Several automated methods exist. For this study, the methodology of *Borovsky and Yakhnenko* [2017] is employed. This is chosen over the more well established Supermag AL index algorithm [*Newell and Liou*, 2011] because it is far less sensitive to weaker auroral activity. The focus is therefore on moderate to strong substorms that are more relevant to GIC applications.

276 Figure 4 illustrates the above criteria as applied to Validation Event 7 (row 7 in Table
 277 1). The top frame shows AU and AL indices for the entire event; the bottom frame shows
 278 SYM-H. Yellow, red, and blue windows show the SSC, ring current intensification, and sub-
 279 storm validation windows. Binary-event based metrics would be made using each color re-
 280 gion separately in order to best characterize model performance as a function of the type of
 281 activity. With the expanded observational set and new events added to the validation suite,
 282 there will be enough data-model comparisons to produce meaningful activity-dependent met-
 283 rics.

287 4 Future Considerations

288 Consistent with the approach taken in *Pulkkinen et al. [2013]*, the current recommen-
 289 dation defines time intervals on the order of days during which significant geomagnetic events
 290 occur and to test model performance during these time intervals.

291 This approach has the advantage of limiting the amount of model run time and the
 292 amount of data that needs to be processed. In addition, the performance results apply only
 293 to active periods, which are of most interest to the end-user.

294 The ultimate objective of forecast model development is to have predictions available
 295 in real-time or near-real-time and to have the models run continuously. Therefore, future time
 296 intervals will include a long and continuous time interval (on the order of a year). In addition
 297 to allowing the estimation of prediction performance under realistic use conditions, such a
 298 long interval will allow additional features of model performance to be considered, including
 299 magnetic local time and day-of-year.

300 A second consideration is the scaling of the number of events to allow error bars to
 301 be generated for the model performance metrics. With 13 events, we will have the ability to
 302 calculate meaningful error bars on the aggregate model performance; additional events will
 303 allow a better characterization of the error and will allow the end-user to determine if the
 304 reliability of the model performance is sufficient to allow decisions to be made based on a
 305 forecast (*Thomson [2000]; Weigel et al. [2006]*).

306 5 Summary and Conclusions

307 Acknowledgments

308 F10.7 data was obtained from the LASP Interactive Solar Irradiance Data Center (<http://lasp.colorado.edu/lisird>).
 309 Geomagnetic index data was obtained from the World Data Center for Geomagnetism, Kyoto
 310 (<http://wdc.kugi.kyoto-u.ac.jp>). The authors thank the WDC and their many data providers
 311 (<http://wdc.kugi.kyoto-u.ac.jp/wdc/obslink.html>) who make this data publicly available.

312 References

313 Austin, H. J., and N. P. Savani (2018), Skills for forecasting space weather, *Weather*, 0(0),
 314 doi:10.1002/wea.3076.

315 Borovsky, J. E., and K. YAKYmenko (2017), Substorm occurrence rates, substorm recurrence
 316 times, and solar wind structure, *Journal of Geophysical Research: Space Physics*, 122(3),
 317 2973–2998, doi:10.1002/2016JA023625.

318 Carter, J. A., S. E. Milan, J. C. Coxon, M.-T. Walach, and B. J. Anderson (2016), Average
 319 field-aligned current configuration parameterized by solar wind conditions, *J. Geophys.
 320 Res. Sp. Phys.*, 121(2), 1294–1307, doi:10.1002/2015JA021567.

321 Divett, T., G. S. Richardson, C. D. Beggan, C. J. Rodger, D. H. Boteler, M. Ingham, D. H.
 322 Mac Manus, A. P. Thomson, and M. Dalzell (2018), Transformer-Level Modeling of Ge-
 323 omagnetically Induced Currents in New ZealandâŽs South Island, *Space Weather*, 16,

324 718–735, doi:10.1029/2018SW001814.

325 Ganushkina, N. Y., O. A. Amariutei, D. Welling, and D. Heynderickx (2015), Nowcast

326 model for low-energy electrons in the inner magnetosphere, *Sp. Weather*, 13(1), 16–34,

327 doi:10.1002/2014SW001098.

328 Jolliffe, I. T., and D. B. Stephenson (2012), *Forecast Verification: A Practitioner's Guide in*

329 *Atmospheric Science*, 288 pp., John Wiley & Sons.

330 Lopez, R. E., S. Hernandez, M. Wiltberger, C. L. Huang, E. L. Kepko, H. Spence,

331 C. C. Goodrich, and J. G. Lyon (2007), Predicting magnetopause crossings at

332 geosynchronous orbit during the Halloween storms, *Sp. Weather*, 5(1), n/a–n/a, doi:

333 10.1029/2006SW000222.

334 Lotz, S. I., M. J. Heyns, and P. J. Cilliers (2017), Regression-based forecast model of induced

335 geo-electric field, *Space Weather*, 15, 180–191, doi:10.1002/2016SW001518.

336 Newell, P. T., and K. Liou (2011), Solar wind driving and substorm triggering, *J. Geophys.*

337 *Res.*, 116(A3), A03,229, doi:10.1029/2010JA016139.

338 Ngwira, C. M., D. Sibeck, M. V. D. Silveria, M. Georgiou, J. M. Weygand, Y. Nishimura,

339 and D. Hampton (2018), A study of intense local dB/dt variations during two geomagnetic

340 storms, *Space Weather*, 16, doi:10.1029/2018SW001911.

341 Pirjola, R. (2000), Geomagnetically induced currents during magnetic storms, *IEEE Trans.*

342 *Plasma Sci.*, 28(6), 1867–1873.

343 Pulkkinen, A., A. Viljanen, and R. Pirjola (2006), Estimation of geomagnetically

344 induced current levels from different input data, *Sp. Weather*, 4(8), n/a–n/a, doi:

345 10.1029/2006SW000229.

346 Pulkkinen, A., L. Rastätter, M. Kuznetsova, H. Singer, C. Balch, D. Weimer, G. Toth, A. Ri-

347 dley, T. Gombosi, M. Wiltberger, J. Raeder, and R. Weigel (2013), Community-wide vali-

348 dation of geospace model ground magnetic field perturbation predictions to support model

349 transition to operations, *Sp. Weather*, 11(6), 369–385, doi:10.1002/swe.20056.

350 Pulkkinen, A., E. Bernabeu, A. Thomson, A. Viljanen, R. Pirjola, D. Boteler, J. Eichner,

351 P. J. Cilliers, D. T. Welling, N. P. Savani, R. S. Weigel, J. J. Love, C. Balch, C. M. Ng-

352 wira, G. Crowley, A. Schultz, R. Kataoka, B. Anderson, D. Fugate, J. J. Simpson, and

353 M. MacAlester (2017), Geomagnetically induced currents: Science, engineering, and ap-

354 plications readiness, doi:10.1002/2016SW001501.

355 Thomson, A. W. P. (2000), Evaluating space weather forecasts of geomagnetic activity from

356 a user perspective, *Geophys. Res. Lett.*, 27, 4049–4052, doi:10.1029/2000GL011908.

357 Tóth, G., X. Meng, T. I. Gombosi, and L. Rastätter (2014), Predicting the time deriva-

358 tive of local magnetic perturbations, *J. Geophys. Res. Sp. Phys.*, 119(1), 310–321, doi:

359 10.1002/2013JA019456.

360 Viljanen, A., H. Nevanlinna, K. Pajunpää, and A. Pulkkinen (2001), Time derivative of the

361 horizontal geomagnetic field as an activity indicator, *Ann. Geophys.*, 19(9), 1107–1118.

362 Weigel, R. S., T. Detman, E. J. Rigler, and D. N. Baker (2006), Decision theory and

363 the analysis of rare event space weather forecasts, *Space Weather*, 4(5), n/a–n/a, doi:

364 10.1029/2005sw000157.

365 Welling, D. T., and A. J. Ridley (2010), Validation of SWMF magnetic field and plasma, *Sp.*

366 *Weather*, 8(3), n/a–n/a, doi:10.1029/2009SW000494.

367 Wilks, D. S. (2011), *Statistical methods in the atmospheric sciences*, 3rd ed., 676 pp., Aca-

368 demic Press.

369 Yu, Y., and A. J. Ridley (2008), Validation of the space weather modeling framework using

370 ground-based magnetometers, *Sp. Weather*, 6(5), S05,002, doi:10.1029/2007SW000345.

175 **Figure 2.** Summary of Event 7 in terms of IMF (top frame), solar wind density and Earthward velocity
 176 (2nd and 3rd frames from the top, and the geomagnetic response in terms of Sym-H and AE indexes (bottom
 177 two frames).

Figure 3. Summary of Event 8; same format as Figure 2

284 **Figure 4.** AU/AL (top frame) and SYM-H (bottom frame) indexes for validation event 7. Storm sudden
285 commencements, ring current intensifications, and substorm periods are marked by yellow, red, and cyan
286 boxes, respectively.