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Abstract

With the recent increase in ultra-low power applications,
researchers are investigating alternative architectures that
can operate on streaming input data. These target use cases
require complex algorithms that must be evaluated under a
real-time deadline, but also satisfy the strict available power
budget. Stochastic computing (SC) is an example of an alter-
native paradigm where the data is represented as single bit-
streams, allowing designers to implement operations such
as multiplication using a simple AND gate. Consequently,
the resulting design is both low area and low power. Simi-
larly, traditional digital filters can take advantage of stream-
ing inputs to effectively choose coefficients, resulting in a
low cost implementation. In this work, we construct six key
algorithms to characterize bitstream computing. We present
these algorithms as a new benchmark suite: BitBench.
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Metrics; « Computer systems organization — Real-time
systems.
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1 Introduction

Embedded systems that require high performance hardware

for signal processing, optimization, and control have histor-
ically relied on optimized fixed-point algorithms deployed

on low-power microprocessors, digital signal processors, or

FPGAs. However, the sensing and actuation interfaces in

such systems increasingly rely on bitstreams: oversampled,

single-bit, sigma-delta-modulated (SDM) representations of

data inputs and control outputs. Conventional computing

substrates require conversion both on the input side and on

the output side in order to effectively interface with phys-
ical systems that utilize bitstream representations. Alterna-
tively, the data can be processed efficiently using approaches

from stochastic computing (SC), which enables extremely

inexpensive arithmetic operations (e.g. a single AND-gate

for multiplication). Similarly, the oversampled nature of the

data can be leveraged to produce binary-friendly constants

with fixed point data processing. We divide these two regimes
into stochastic bitstream and deterministic bitstream

computing. In this paper, we present several algorithms (6

kernel benchmarks and 2 end-to-end applications) that are

characteristic in typical bitstream processing applications.

Additionally, we highlight several interesting features of the

bitstream paradigm such as fault tolerance and approximate

computing.

Recent advancements in control systems and MEMS fab-
rication has enabled new power constrained applications
such as pico aerial vehicles (PAVs) [1] (e.g. RoboBee [2] [3]).
Due to the limited power budget in PAV applications (<
350 mW for the full robot [3]), microcontrollers are not an
option for the control system, and current work uses ASICs
instead [4]. Prior works [5] and [6] have considered a spik-
ing neural network based controller for stabilizing the flap-
ping insect-scale robot. Similarly, other works such as [3]
and [7] have proposed an ASIC that can perform optical
flow based control, while keeping the computations in the
acceptable power budget for RoboBee. Unfortunately, these
ASICs can only perform a limited set of algorithms (e.g. op-
tical flow) that are required to keep the robotic bee in flight.
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Figure 1. This figure shows how data is represented and computations are performed using stochastic computing. (a) The val-
ues 0.4 is represented using a stochastic data representation scheme. The probability of occurrence of a bit at a particular time
tick is directly proportional to its value. To represent the value 0.4 over 20 time ticks, there should be 8 random occurrences of
a high bit. (b) Since the numbers can be represented as independent streams of bits, multiplication can be performed using just
an AND gate. Because the value is represented over a window of time ticks, the longer the time window, the more accurate
multiplication results would be. (c) An example of scaled addition using an OR gate. Notice that the output bitstream does
not exactly match the expected result. This occurs due to the randomness of each bit. To produce accurate results, bitstreams
should be highly uncorrelated, and the bitstream should be sufficiently long.

Initial work indicates that a RoboBee should be able to per-
form the duties of biological bees, perform aerial surveil-
lance of crops, collect weather data, and assist search and
rescue teams [2], but current implementations do not sup-
port these functions, because they lack a computing plat-
form capable of performing these complex algorithms while
consuming less than 10% of the available power budget [2].
Stochastic bitstream computing provides an intuitive trade-
off between approximation and energy consumption which
allows SC algorithms to be easily tuned dynamically to the
constraints of these ultra-low power systems. To address this
application space, we present 2 kernels: a least-squares solver
and singular value decomposition.

Similar to stochastic bitstreams, deterministic bitstreams
occur naturally in low power signal processing applications.
Such bitstreams are prevalent in raw sensor data formats
such as PDM audio. Typically, these raw streams are en-
coded into binary, processed in binary, then re-encoded into
a bitstream to drive actuators. By using bitstream process-
ing, we can eliminate the need for energy-hungry data con-
version [8]. Furthermore, we show that a bitstream based de-
sign can be more storage and resource efficient. To address
this application space, we present 4 kernels: state-variable fil-
ter, bi-quad filter, moving average filter (width of 4), and mov-
ing average filter (width of 32).

With these 6 kernels, we present BitBench, a bench-
mark suite that provides area/power/energy breakdown
for end-to-end applications in the bitstream domain. In Sec.
2, we provide background on stochastic computing (SC) and
pulse density modulation (PDM), then we introduce two ap-
plications that benefits from bitstream computing in Sec. 3.
Finally, we provide details about the 6 kernels in Sec. 4, fol-
lowed by evaluation and results in Sec. 5.
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2 Background

In this section, we introduce the key principles such as sto-
chastic computing and pulse-density modulation, which en-
able much of the work in this paper.

2.1 Stochastic Computing and Algorithms

Stochastic computing is a technique that represents values
as continuous streams of random bits [9]. Fig. 1a shows how
a unipolar value € [0, 1] is represented using a stochastic
data representation scheme. Prior work that has considered
robotics tasks such as optical flow and inverse kinematics
use SNNs [10] [11] [12] or approximate computing using
neural processing engines [13]. These implementations have
relied on offline training of low-precision networks with
prior knowledge about the possible set of output values. Sto-
chastic computing provides a distinct advantage over these
systems, since we can perform the same inverse kinematics
task without any prior knowledge about the possible set of
output values.

Even though the digital circuitry to perform stochastic
computing is simple [14], these computation techniques ex-
pose an energy-efficiency and accuracy trade-off.

2.2 Pulse Density Modulation

In modern audio recording applications, audio is sensed in
an oversampled bitstream format called pulse density mod-
ulation (PDM). In this bitstream, a larger density of “1” bits
is used to represent a larger amplitude. Note that these bit-
streams are deterministic. Currently, PDM data is converted
to binary samples pulse code modulation (PCM) for process-
ing, then re-encoded as a PDM stream to drive an amplifier
circuit. The conversion operations can introduce loss and
waste energy.
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By keeping audio in PDM format through the entire pro-
cessing pipeline, we can effectively tune filter coefficients
to maximize storage efficiency and reduce required bit pre-
cision.

3 End-to-End Applications

Now, we present two end-to-end applications that utilize the
kernels discussed later in Sec. 4.

3.1 Drone Stabilization

While many possible applications can be composed from
the presented kernels, we will focus on the most critical ap-
plication for PAVs — stable flight. Given an on-board front-
facing camera, the robot must compensate for noise or exter-
nal force along three axes. Though there are many sensors
available on commercial drones that assist stabilization, the
weight and power requirements of PAVs implicitly require
that only the fewest number of sensors are included in the
system. Since a camera is included by default, it would be
ideal if the drone could stabilize the PAV with no additional
Sensors.

A common visual mechanism to detect motion is optical
flow. If we can detect minor, unexpected motion, then we
can compensate for this motion to keep the drone stable.
Fig. 2 provides a system block diagram of this pipeline. In
this work, we specifically focus on Lucas-Kanade algorithm
for optical flow [15]. Suppose we are given an start frame, I,
and some external force or noise moves the drone, resulting
in a final frame, Ir. We start by computing the spatial (I, I))
and temporal (I;) derivatives of I; and Ir. These are given by

I, :KX*IS (1)
I =K, *1, @)
I[:Kt*lf—K[*Is (3)

where K, Ky, and K; are convolution kernels defined as:
-1 1 -1 -1 1 1
From these, we can define the least-squares problem in Lucas-
Kanade optical flow:
A= [ix iy]
where iy, iy, and i; denote vectorized representations of I,
Iy, and I;.

Performing optical flow means solving AX = B for the
flow vector, X. We can translate this flow vector, X, into
the corresponding deflection in pitch or roll, then drive the
motors/actuators to control for the deflection.

In Sec. 4.1, we demonstrate how a least-squares problem
(written as AX = B) can be solved using stochastic bit-
streams. Thus, the pipeline in Fig. 2 is converted completely
to the bitstream domain. Our results show a power improve-
ment of 8X for optical flow when compared to the ASIC used
in the RoboBee [4].

B =-i;
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3.2 Hearing Aid

Digital audio filtering has a wide range of uses. Many of the
filter kernels in this work are broadly applicable; however,
we chose to focus on a case study where low energy con-
sumption is critical:: a hearing aid. A digital hearing aid con-
tains many signal processing steps including noise filtering,
frequency shaping, and amplification. The kernels described
in Sec. 4.3 are used to address the latter two stages. Fig. 3 il-
lustrates an overview of this system.

Our system is designed with four bandpass filter banks
centered at 500 Hz, 1250 Hz, 2875 Hz, and 6000 Hz. These
cover the typical range of human auditory deficiencies that
need to be amplified [16]. Additionally, most hearing aid
users have trouble discerning higher frequencies, so these
channels have greater amplification added to them [17]. Thus,
our system separates input audio into filter banks, applies
selective gain to shape the frequency bins, and sums all the
banks back together to generate the output audio.

4 Kernels
4.1 Least Squares Solver

In Sec. 3.1, we already presented one variant of the least-
squares (LS) solver kernel (optical flow). Now, we discuss the
kernel in more detail, and we present two other variations.

In any least-squares problem, matrices A and B store data
about the system (e.g. in optical flow, the spatial and tempo-
ral derivatives). Our goal is to estimate the transformation
matrix, X, that maps A to B. This relationship is describe in
Eq. 4. Many problems in addition to the ones we present are
described in this way.

AX =B (4)

We can calculate X from the following linear least squares
problem:

1
in —||AX — B||?, 5
H}}HQII I 5)

where A € R™" (m > n), B € R™? X € R"™? is the
transformation matrix, and || - ||r is the Frobenius norm.

This system can be solved by the following iterative pro-
cess:

Xk+1 =Xk + a(—ATAXk + ATB) (6)
=(I-aATA)Xy +aA"B
where X, := aA"B,

and « is a positive step length. See [18] for a proof of con-
vergence.

The iterative equation, Eq. 6, can be written in terms of a
Hopfield neural network [19] [20]. The matrix AT would
form the feedforward path weights of Hopfield neural net-
work and (I—aAT A) would form the feedback path weights.
We refer the reader to [21] for details on how Eq. 6 is imple-
mented as a Hopfield network via SC.
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Figure 2. A block diagram of the drone stabilization pipeline. The optical flow block encapsulates the bulk of the compute. A

and B are inputs to the optical flow problem as describe Sec. 3.1.
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Figure 3. A block diagram of the hearing aid pipeline. Each
of the bandpass filters (BPFs) is a kernel in our benchmark
suite, and the higher frequencies have larger gain. The X
indicates a sigma-delta modulator.

Our benchmark suite contains several variations of the
least-squares solver described above, with details below.

4.1.1 Object Tracking

In particular, object tracking can be framed as a least squares
problem. Consider a set of feature points in an image, p; =
(x1.y1.1), po = (x2,42.1), and p3 = (x3,y3.1) (note the
z-dimension is normalized to 1, since we cannot get depth
information from an image alone). Similarly, we have an-
other set of paired feature points in a second frame, p1, pj,
and p;. We arrange these features in matrices

x1 yp 1 xpoyp 1
A=|x2 y2 1 B=|x; vy, 1
x3 yz 1 xi yi 1

We solve for a transformation matrix X such that AX = B.
X identifies the 2D-affine transformation (translation and
rotation) that was applied to point in image A to get image B.
By applying this algorithm to subsequent frames of a video
stream, we can identify and track a given object. Alg. 1 gives
a detailed overview of this process.

4.1.2 Optical Flow

The process of setting up the optical flow problem is de-
scribed in detail in Sec. 3.1. Alg. 2 provides a step-by-step
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Algorithm 1 Object detection using Harris corner detector
for feature extraction

1: Extract coordinates of feature points [22] from initial
image into matrix A

2: Extract coordinates of feature points from final image
into matrix B

3: Solve for X to to get transformation matrix: AX = B

overview of this process. Yet, in practice, optical flow can-
not be applied to entire image at once. A typical approach
(which we use) is to divide the image into a grid of “tiles” and
process each tile at a time. We do this to provide a more accu-
rate optical flow solution, to reduce the dimension of A and
B in the LS problem, and to allow for pipelining. There are
other approaches for partitioning the optical flow problem,
but we do not cover those here. Instead, we note that these
subtleties highlight the potential for future work based on
this benchmark suite.

Algorithm 2 Lucas-Kanade Optical Flow (for one tile)

1: Compute x and y spatial derivatives of frame at time ¢
and store them in matrix A

2: Compute temporal derivatives between frame at time ¢
and frame at time (¢ + T) and store them in matrix B

3: Solve for X to get velocity: AX = B

4.1.3 Inverse Kinematics

Inverse kinematics is common in robotics applications where
precise control of appendages is required. Consider a robotic
arm with two pivot points. The robot is able to estimate the
angle at a pivot point of each appendage with respect to a
fixed axis. These angles are given as in a vector ©. From the
angles, we can calculate x and y coordinates of each pivot
point. These are stored in the matrix A. Similarly, we have
(x,y) coordinates for the final desired position of the pivot
points. We calculate the difference between the current and
final coordinates and store them in B. Solving AX = B pro-
vides the transformation, X, that will take the current coor-
dinates and transform them into the final coordinates. We
update our angles according to O = O + yX where
Y is a rate of convergence. Smaller y allows from more pre-
cise movement, but it will take the robot longer to reach the
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final arm position. Once O 1 is calculated, the robot can
drive the motors at each pivot point to achieve the required
change in angle. Alg. 3 provides step-by-step explanation of
this process.

Algorithm 3 Inverse Kinematics

Require: Learning rate, y

1: fork=1,2,...do

2:  Store current value of angles of the arm w.r.t x-axis
in matrix O

3. Compute current x and y coordinates of arm posi-
tions and store in matrix A

4:  Compute the difference between the final and current
positions and store in matrix B

5. Solve for X to to get transformation matrix: AX = B

6:  Update: Op11 = O —yX

7: end for

4.1.4 Variations of LS

The algorithms presented in Sec. 4.1.1, 4.1.2, and 4.1.3 all use
a least-squares problem at their core. This is why we focus
on LS as a kernel in our suite, because many applications as-
sociated with PAVs can be formulated as LS problems. Table
1 lists the different input matrix sizes for LS variants in Sec.
. All the variants are solved using the same iterative process
described in Eq. 6.

Table 1. Input matrix sizes for variations of least-square
solver.

Variant Size of A | Size of B
Object Tracking 3x3 3x3
Optical Flow 4x2 4x1
Inverse Kinematics 2X%X2 2x1

4.2 Singular Value Decomposition

In order to navigate in an open space, a robot can make
use of computer vision algorithms known as homography
estimation and decomposition. These techniques are com-
monly used in vision-based control systems [23] [24]. The
algorithms utilize basic matrix operations as well as a linear
solver (i.e. least squares minimization) and singular value
decomposition (SVD). The former operations are already de-
scribed in Sec. 4.1.
The SVD of a m X n matrix, A, is defined as

A=UXV"T

where U € R™7, V € R™ and ¥ € R™ . Here r =
rank(A). U and V’s columns are orthogonal unit vectors,
and X is a diagonal matrix. The columns of U and V are re-
ferred to as the left and right singular vectors, respectively,

181

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

while the elements of the diagonal of ¥ are the singular val-
ues.

4.2.1 Homography Estimation and Decomposition

A robot with a visual stimulus can travel between two way-
points by observing its surroundings. For a given landmark,
the robot navigates between two different points using stor-
ed projections of the 3D landmark. Extracting the transla-
tion vector from these two projections is known as homog-
raphy estimation and decomposition. Alg. 4 provides a high
level overview of this process. For brevity, we omit discus-
sion of the theory behind homography decomposition. In-
stead, we simply note that many PAV applications involve
finding a transformation between data acquired at two dif-
ferent time steps. The SVD is a useful tool for decomposing
this transformation into meaningful components. Addition-
ally, as noted in Step 3 of Alg. 4, certain LS problems (e.g.
AX = 0) cannot easily be solved with a traditional solver.
Instead, an SVD can be used to find a solution quickly.

Algorithm 4 Homography Estimation and Decomposition
Overview (citations per step)

Require: Extracted pairs of feature points
1: Calculate normalization matrix, T [25]
2: Normalize feature points: x” = Tx
3: Find homography by solving linear system of equations
[26] [27] (can be done using SVD)
4: Reverse normalization: H = Ty TH'T,
5. Decompose homography by taking SVD of H [23] [24]

4.2.2 Iterative SVD

We will focus on the SVD in Step 5 of Alg. 4. Hisa 3 x 3
matrix, so we can quickly find its SVD by the power iteration
method (referred to as the iterative SVD).

Algorithm 5 Iterative SVD

Require: Input matrix A € R™*" and initial guess vy € R"

1: for k =1,2,... (until convergence) do
2: Wi = Avk_1
3 o = [lwlla = Jw]wk
4: U = wk/ak

Zp = ATuk

5:
6 ok = llzklle = J2] 2k

7: Uk = Zk/O'k

8: end for

9: return First left/right singular vectors, ux & vg, and
first singular value, o

Alg. 5 only computes the first left and right singular vec-
tors and first singular value. In order to compute the rest of
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the SVD, we remove the first component from by
A =A-ouv]f (7)

then apply Alg. 5 to A’. This process is repeated as many
times as the rank(A).

4.3 Audio Filters

Four kernels are included to demonstrate the filter applica-
tions, two infinite impulse response (IIR) filters and two fi-
nite impulse response (FIR) filters.

Both IIR filters are bandpass filters envisioned for separat-
ing audio into frequency banks such as in the hearing aid. A
more complex application that requires frequency banks is
speech recognition. In this scenario, human speech is typi-
cally separated into 13 banks. The last band in the bank is
typically centered at 8 kHz, so we use this as the center fre-
quency in our kernel experiments.

FIR filters are a more popular class of filters due to their
predictable effects on the phase of the output signals. Both
FIR filters in the benchmark suite are moving average fil-
ters, but any FIR filter can be implemented with the same
deterministic bitstream logic.

4.3.1 Digital State Variable Filter

The included digital state variable filter (SVF) [28] is a band-
pass filter with a center frequency of F, = 8 kHz. Fig. 4 illus-
trates the block diagram for this type of filter. Typical PCM
data operates at a sampling rate of F; = 44.1kHz. By Eq. 8,
we obtain a filter coefficient of f = 1.0791. The coefficient
q is chosen according to Eq. 9 for the desired Q-factor.

f =2sin (”FFC ) (8)
-5 ©)

This traditional implementation results in coefficients that
are cumbersome for binary arithmetic. Typically, hardware
designs would favor multiplication and division by powers
of 2.

Figure 4. A block diagram of a state-variable filter (SVF). f
and g are fixed point constants, and x and y are deterministic
bitstreams. ¥ indicates a sigma-delta modulator.

By utilizing PDM input, we receive oversampled one-bit
data at 3 MHz. Given the oversampled input, we can choose
a sampling frequency as some multiple of this base rate, ef-
fectively tuning the sampling frequency, Fs. This results in

Kyle Daruwalla, Heng Zhuo, Carly Schulz, and Mikko Lipasti

a new design equation described by Eq. 10 where f is cho-
sen ahead of time to be a power of 2, and F is determined
accordingly [8] [28]. We then downsample to achieve the
calculated F;.

nF,

- arcsin(f/2)
For example, in our designs, we choose f = 0.125 = 273
which results in F; = 40.186 kHz. To achieve this effective

sampling frequency, we determine the length of the delay
elements in Fig. 4 by Eq. 11.

d— ’VFPDM“
F

For the f and F; we discuss above, d = 8.

We choose ¢ so that it is also a simple combination of
powers of 2. For our design, g = 1.875. We can also itera-
tively tune f to minimize delay, since longer delay lengths
require more flip-flops. As a result, we get the following fi-
nal parameters

f=0.0125 q=1.875 F;=3x10°

(10)

(11)

d=1

4.3.2 Direct Form I Biquad Filter

The included biquad kernel shown in Fig. 5, is a direct form
I biquad filter [29] which is suitable for fixed point appli-
cations. The center frequency was also chosen to be 8 kHz
— essentially a biquad equivalent of the above SVF imple-
mentation. Eq. 12 and 13 contain the necessary coefficient
calculations for this filter.

by =« by =0 by = —«a (12)
ay=1+a a; = —2cos(w,) a=1-a
sin(w,) 27 F,
= = 13
a 0 T E (13)

As seen in Eq. 12, most of the constants are simple functions
of @, so to get a binary-friendly representation, we carefully
choose F,/F; in Eq. 13. Note that the length of the delay ele-
ments is still adjusted according to Eq. 11. Thus, this system
exposes a complex trade-off between arithmetically simple
operations and buffer cost (# of FFs). Note that the coeffi-
cient a; is harder to control, and in most cases, it cannot be
made to be a simple binary number.

4.3.3 Moving Average Filter

The moving average filter has two different variants included
— a simple 4-tap moving average filter and a more compli-
cated 32-tap moving average filter. The moving average fil-
ter takes each output from the taps and averages them. After
this operation, their average passes through a sigma-delta
modulator that transforms the decimal number back into
the bitstream domain. The only coeflicient in the moving
average filter is 1/n where n is the number of taps. If the
coefficient of interest is a power of two, the multiplication
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by / ao

Figure 5. A block diagram of a DF-I biquad filter. ag, a1, az,
bo, b1, and by are fixed point constants, and x and y are de-
terministic bitstreams. 3 indicates a sigma-delta modulator.

is merely a shift operation. Eq. 14 describes this system, and
Fig. 6 provides a block diagram.
B 1 k—(n-1)

n i=k

n — 1 delay elements

Figure 6. A block diagram of a n-tap moving average (MA)
filter. n is a fixed point constant, and x and y are determin-
istic bitstreams. ¥ indicates a sigma-delta modulator.

5 Evaluation & Results

We evaluate each design using Verilog implementations map-
ped to ultra-low power Lattice FPGAs. Floating point and

fixed point baselines are created using Vivado HLS. Below,

we will discuss the area, power, and energy results, as well

as highlight interesting characteristics of bitstream comput-
ing.

5.1 Kernel Area Results

We compare area against a floating point and fixed point
baseline when appropriate. As shown in Fig. 7, bitstream
implementations of each algorithm consume less area com-
pared to floating point or fixed point implementations. For
most FP/FXP implementations, the number of Lattice FP-
GAs required to partition the design is infeasible (see Ta-
ble 2); however, all recommended bitstream designs fit on
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a single Lattice FPGA. By using bitstreams, we are able to
take advantage of an FPGA platform well-suited for ultra-
low power applications. Still, in Sec. 5.2, we report power
and energy numbers for the FP/FXP designs with the large
partitioning overhead.

Table 2. Instance count for partitioning FP/FXP designs
across Lattice FPGAs. The high instance counts make these
designs impractical for mapping across Lattice FPGAs.

Application \ FPGA P/N | # of Chips
Iterative SVD (FP) LM4K 8
Iterative SVD (FXP) LM4K 15
Linear Solver (OF) (FP) LM4K 20
Linear Solver (OF) (FXP) LM4K 14
Linear Solver (IK) (FP) LM4K 11
Linear Solver (IK) (FXP) LM4K 3
Linear Solver (OT) (FP) LM4K 37
Linear Solver (OT) (FXP) LM4K 7

Area Breakdown
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Figure 7. Normalized area consumption relative to floating
point implementation. Area is computed as # of LUTs + # of
FFs.

5.2 Kernel Power and Energy Results

The energy and power results are shown in Fig. 8. As seen in
Fig. 8a, the bitstream designs consume orders of magnitude
less power than the FP/FXP alternatives. This gap should
be even wider, since we cannot account for the cost of data
movement when partitioning across many FPGAs (as is the
case for FP/FXP). Fig. 8a also illustrates that dynamic power
is a small fraction of the total power in all designs. This
is why the implementations enjoy a strong power savings
by being mapped to ultra-low power FPGAs which are de-
signed for low leakage current.
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Figure 8. Energy and power consumption for different implementations of the iterative SVD, linear solver, and filters on

FPGAs.

Still, the stochastic bitstream applications suffer in Fig. 8b
due to a long runtime. There have been proposal for reduc-
ing the runtime of stochastic systems [30], and our exper-
iments illustrate that creative latency reduction that does
not sacrifice significant accuracy is a fruitful opportunity
for designers.

Unlike stochastic bitstreams, deterministic bitstreams do
not suffer from a runtime increase, so they enjoy energy
savings over the FP/FXP alternatives. Yet, there is still room
for improvement. As illustrated in Sec. 4.3, bitstream digital
filters expose several tuning knobs to simplify the datapath.
Our work only explores some of these possibilities, and we
believe there is still much work to be done on the filter ker-
nels.

For reference, our optical flow implementation would con-
sume 375.3 uW of dynamic power and 1.14 uW of static
power at a 40 nm technology node (better than the prior
work’s ASIC [3] [2]); however, we do not suggest using an
ASIC for our applications, since an ASIC doesn’t allow for
flexibility (i.e. it can’t be reprogrammed as the PAV’s direc-
tives change).

5.3 End-to-End Application Analysis

Using the kernels, we can implement the two applications
described in Sec. 3. Fig. 9 illustrates the breakdown of dy-
namic power by application. As seen in the drone stabiliza-
tion subplot, the linear solver and compute weight blocks
occupy a significant percentage of the power consumption.
These are the blocks that make up the linear solver (OF) ker-
nel. In the case of the hearing aid, we see that filters with
lower center frequencies consume significantly more power
since the delay elements are longer. This power breakdown
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is not fixed; it is dependent on the many trade-off tuning
knobs associated with the kernels.

Drone Stabilization Power Breakdown
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Figure 9. Breakdown of dynamic power in each application.
Computing the weights consumes the most area since it in-
volves the largest matrix multiplies. Filters with lower cen-
ter frequencies consume more power due to longer delay

buffer lengths.

5.4 Fault Tolerance

We also evaluated the fault tolerance of bitstream comput-
ing systems in the case of the iterative SVD. Bitstreams are
naturally fault tolerant to bit flips, because a single bit does
not carry any more significance than other bits. On the other
hand, if a bit in the exponent of a floating point number flips,
then the error increases exponentially. Fig. 10 illustrates this
behavior. To generate the plot, we randomly flipped bits
in the input bitstream according to the specified error rate.
Similarly, we flipped bits in the floating point input at the
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same rate. Bits were uniformly distributed across all bit po-
sitions. The loss in the plot is the application loss for the
iterative SVD (i.e. || Av — oul|| which should be zero for a cor-
rect solution). Extremely low bit flip rates (e.g. 1% of bits)
results in order of magnitude larger error for floating point
designs. Beyond this low flip rate, the floating point design
performs so poorly that it would not be acceptable for the
PAV.

Average Loss of Iterative SVD Over Varying Error Rates

0.01 0.02
0 0.1 0.2 0.3 0.4 0.5

Bit Flip Error Rate
6Average Loss of Iterative SVD Over Varying Error Rates (SC Only)

0.4r 3

. . .
0 0.1 0.2 0.3
Bit Flip Error Rate

0.4 0.5

Figure 10. Fault tolerance of the iterative SVD against ran-
dom bit flips in floating point and stochastic bitstreams. As
seen in top subplot, the error rate of the FP implementation
quickly increases, but the SC implementation (zoomed in
the lower subplot) remains relatively stable.

5.5 Signal-to-Noise Ratio

We evaluated the signal to noise ratio (SNR) of the state vari-
able filter to demonstrate the advantage of intelligently cho-
sen coeflicients. In Fig. 11, the SNR of the smart coefficients
(by modifying sampling rate according to Eq. 10) remains
constant varying fractional width. The naive case, where the
coefficients are simply truncated to the desired precision,
has worse SNR as the fractional width decreases. The ability
to choose our coefficients intelligently was a result of using
an oversampled PDM input. With a PCM input, the sample
rate would not be tunable, and the filter performance would
need to suffer in order to accommodate a simpler datapath.

6 Conclusions

In this work, we demonstrated that bitstream implementa-
tions of least squares minimization and iterative SVD are
more efficient than their floating point and fixed point coun-
terparts. Furthermore, these algorithms are central to sev-
eral robotic applications where streaming data is natural.
Additionally, we demonstrated how filters on oversampled
bitstreams can be designed with efficient low precision co-
efficients without sacrificing SNR performance. Again, typ-
ical audio data begins as an oversampled bitstream, making
such filters attractive. We presented our kernels in a pack-
aged benchmark suite — BitBench — which we intend to
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SNR Over Varying Word Lengths
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Figure 11. SNR in dB graphed against the # of bits of preci-
sion. The smart case modifies the sampling rate to achieve
the desired bit precision. The naive case simply truncates
the coefficients.

release alongside this paper, including a complete source-
to-HDL automated toolchain. We demonstrate some of the
interesting trade-offs and behavior in the benchmark such
as fault tolerance and SNR robustness. We hope that the re-
lease of this suite will encourage further embedded systems
research that explores the opportunities available in the bit-
stream computing paradigm.

This work was funded in part by NSF awards CCF-1628384
and CCF-1813434 and AFRL award FA9550-18-1-0166.

A Artifact Appendix
A.1 Abstract

Our artifacts contain the necessary Verilog, TCL scripts, and
shell scripts to synthesize the results in the paper. We have
uploaded all these files as a compressed zip file to Zenodo
(DOI: 10.5281/zeno0do.2648959). Reviewers can download the
source from that permalink which contains a README.md
file explaining the procedure to run the experiments and ver-
ify the results.

A.2 Artifact Checklist (Meta-Information)

Program: Xilinx Vivado 2018.2 and Matlab R2017b

Compilation: Vivado synthesis tools

Output: CSV data and plots

How much disk space required (approximately)?: 1.8GB

How much time is needed to prepare workflow (ap-

proximately)?: None

e How much time is needed to complete experiments
(approximately)?: 6 hours

e Publicly available?: Yes

e Archived (provide DOI)?: 10.5281/zenodo.2648959
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A.3 Description
A.3.1 How Delivered
Our artifact is available on Zenodo (10.5281/zenodo.2648959).

A.3.2 Software Dependencies
Ubuntu 16.04 LTS, Bash, Xilinx Vivado 2018.2 and Matlab R2017b.

A.4 Installation

Download the zip archive from Zenodo and uncompress.

A.5 Experiment Workflow

We provide two scripts, run_all.sh and run_hls.sh, to synthesize
the SC results and baselines. We also provide Matlab scripts to plot
the generated data.

To run the HLS synthesis:
$ cd hls_runs
$ ./run_hls.sh

To run the SC synthesis:
$ ./run_all.sh

Detailed instructions in the README.md file in the zip archive.

A.6 Evaluation and Expected Results

Running the provided scripts will generate utilization and power
data which can be verified against the provided CSV (details in
README.md). The Matlab scripts can be used to reproduce the
plots.
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