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Melting is pervasive along the ice surrounding Antarctica. On the surface of the grounded ice sheet and floating ice shelves,
extensive networks of lakes, streams and rivers both store and transport water. As melting increases with a warming climate,
the surface hydrology of Antarctica in some regions could resemble Greenland's present-day ablation and percolation zones.
Drawing on observations of widespread surface water in Antarctica and decades of study in Greenland, we consider three
modes by which meltwater could impact Antarctic mass balance: increased runoff, meltwater injection to the bed and meltwa-
ter-induced ice-shelf fracture — all of which may contribute to future ice-sheet mass loss from Antarctica.

ously thought and its role in projections of future mass loss

are becoming increasingly important. As accurately projecting
future sea-level rise is essential for coastal communities around the
globe, understanding how surface melt may either trigger or buf-
fer rapid changes in ice flow into the ocean is critical. We provide
an overview of the current understanding of the major components
of the Antarctic surface hydrology system and the distribution of
melt. Using the framework of surface hydrology in Greenland, we
consider the different ways in which surface hydrology can impact
ice-sheet mass balance. Looking to the future, we discuss how the
hydrologic systems will evolve in Antarctica as well as their impact
on future changes in ice-sheet mass balance. Finally, we highlight
knowledge gaps that limit our understanding of the impact of
increased surface meltwater on future sea level rise.

E ; urface meltwater in Antarctica is more extensive than previ-

Current distribution of meltwater
Meltwater on the surface of Antarctica was observed by early explor-
ers, who noted the noise of running water and water seeping into
their tents'. Today the surface melt distribution in Antarctica (Fig. 1)
is determined using satellite observations’~ and reanalysis-forced
regional climate modeling’. The surface meltwater production esti-
mates derived from these two methods correspond well with in situ
observations’. At present, the most intense melt is observed across
ice shelves (Fig. 1), particularly along the Antarctic Peninsula,
including the Larsen C, Wilkins and George VI ice shelves, as well
as the relatively low-latitude East Antarctic ice shelves, including the
West and Shackleton ice shelves. More localized, but intense, melt
occurs on other East Antarctic ice shelves, including the Amery and
Roi Baudouin ice shelves’, where extensive surface hydrological
networks develop. The two largest ice shelves, Ross and Ronne-
Filchner, experience only minor surface melting. The upper eleva-
tion limit of surface melting today is generally ~1,400 m during
spatially extensive, but low-magnitude, West Antarctic melt epi-
sodes”’, compared to a 3,200 m elevation limit in Greenland during
the anomalous'® 2012 melt events.

Liquid water on the Antarctic Ice Sheet and the floating ice
shelves that buttress upstream grounded ice (Fig. 1) is found in
supraglacial lakes, subsurface lakes, surface streams and rivers"®!'-'%.

Through-ice fractures are interpreted as evidence of water having
drained through ice shelves (Figs 1a and 2)". Similar to terrestrial
hydrologic systems, these components of the Antarctic hydrologic
system store, transport and export water. In contrast to terrestrial
hydrology, on ice sheets and glaciers water can refreeze with conse-
quences for the temperature of the surrounding ice'*'%, firn or snow.
Storage occurs in lakes, crevasses, in buried lakes and possibly in
firn aquifers. Transport and export are less persistent and more dif-
ficult to observe than lakes'*'**. Antarctic surface and subsurface
hydrological systems have been studied using satellite and airborne
imagery"*!'-%, although field-based observations are limited**'-**.

Surface storage of meltwater. Meltwater is stored in surface lakes on
both grounded and floating ice. On grounded ice, lakes develop in
areas with local-scale melt enhancement and relatively low accumu-
lation rates; areas that are often close to rock outcrops and blue ice
(for example, Shackleton Glacier; Fig. 1j)'>'*. Similar to Greenland®,
on grounded Antarctic ice, lakes form in persistent surface depres-
sions. The formation of surface lakes in the same location each
year over decades is evidence of control by the interplay between
bedrock topography and ice flow*’. On the floating ice shelves sur-
rounding Antarctica®'*'***, water collects in surface depressions
that move with ice flow. These surface depressions in the ice shelf
are controlled by basal crevassing”, grounding zone flow-stripe
development”, suture-zone depressions' and basal channels pro-
duced by ocean melting”. Water will fill a depression if the ice sur-
face or near surface is impermeable. Impermeable surfaces are often
associated with high melt and low snow accumulation rates®. Once
water collects in an ice shelf depression, the basin will deepen due to
both enhanced lake-bottom ablation (due to the lower albedo of the
water compared to the surrounding ice/snow)***, and the flexural
response of the floating ice to the water load’>*. The largest supra-
glacial lake (~80 km long) is on the Amery Ice Shelf (Fig. 2e)**.,
On both grounded and floating ice, surface fractures (crevasses)
can accumulate water, serving as another storage site for meltwa-
ter and a mechanism by which water directly impacts ice dynam-
ics. Water-filled fractures may propagate vertically when sufficient
water is available, creating through-ice fractures on Antarctica’s ice
shelves*>*>** and Greenland’s floating tongues”. Fractures beneath
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Fig. 1| Examples of major components of surface hydrological systems located on a present-day Antarctic surface melt map. The central map shows
2000-2009 Antarctica surface melt from QuikSCAT satellite observation 7; the locations of the images in a-j are indicated. a, Meltwater lakes and dolines
(arrows), b, Foehn wind-enhanced meltwater ponding. ¢, Buried lake. d, Moulin draining surface stream. e, Elongate supraglacial lake. f, Fractures around

a drained lake. Scale unknown. g, Persistent waterfall draining water. h, Supraglacial streams transporting water across grounding line of the Darwin
Glacier onto the Ross Ice Shelf. i, High-elevation (1,830 m) meltwater stream. j, Meltwater stream crossing the grounding line. Images reproduced from:
US Geological Survey (a,b,e h); ref. &, Springer Nature Limited (¢); Sanne Bosteels (d); USGS/EROS and the Polar Geospatial Center (f); Won Sang Lee (g);

Mike Kaplan (i); John Stone ().

lakes on Greenland’s grounded ice drain meltwater to the ice-sheet
bed by hydrofracturing®*. There is no direct evidence of hydro-
fracture beneath lakes on grounded Antarctic ice.

Englacial storage of meltwater. Antarctic surface meltwater
is stored englacially when surface lakes freeze over and are bur-
ied by snowfall®’. In Antarctica, buried lakes tend to form on ice
shelves close to the grounding line®. Since at least 1947 on the Roi
Baudouin Ice Shelf, meltwater produced in areas of blue ice above
and below the grounding line fills surface lakes. These lakes are
buried as the ice moves towards the calving front'. Radar satel-
lites, such as C-Band Sentinel-1 A and B, are capable of penetrating
metres though dry snow, highlighting the promise of tracing buried
lakes and other subsurface liquid water’. When these grounding

line lakes refreeze, they form massive ice layers**. Over succes-
sive melt seasons, frozen surface lakes (now stacked ice lenses) may
accumulate in dense and thick ice horizons*. On the Larsen C Ice
Shelf, a massive ice facies >40 m thick, extending 16 km horizon-
tally, was interpreted as a stack of frozen lakes*. Temperature pro-
files through this refrozen ice are substantially warmer due to the
release of latent heat as the lakes froze, similar to the cryohydro-
logic warming described across Greenland'’.

In Greenland, perennial firn aquifers store water in environ-
ments similar to where buried supraglacial lakes form*. Water in
these firn aquifers is stored in a porous matrix of ice crystals. No
Antarctic firn aquifer has been sampled yet, but beneath massive
ice facies on Larsen C, a second ~45-m-thick ice unit has been
interpreted as a percolation-type facies of water-infiltrated firn*.
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Fig. 2 | Antarctic surface hydrology. The major components of the modern
Antarctic hydrologic system are shown. The possible future surface-to-
bed connection is included, illustrated as a lake-bottom fracture draining
meltwater to the base of the ice sheet, based on Greenland analogues.
Dolines are locally uplifted, empty depressions, interpreted as evidence

of surface lakes that have drained through ice shelves via ice fractures®™.
Nunataks are areas of exposed rock on the grounded ice.

In Antarctica, drainage systems often terminate where they deliver
water into snow-covered areas"*'>'*. Perennial firn aquifers could
develop at these sites if accumulation rates are sufficiently high to
insulate the downward-percolating liquid water from low winter-
time surface temperatures, or if the water is routed deep enough to
be thermally isolated from the surface. Perennial firn aquifers occur
in Greenland'”**~* in locations with both moderate and high melt
rates (>650 mm of water equivalent (w.e.) yr™')* and high snow
accumulation rates (~1-5 m w.e. yr™')*. Similar high snow accu-
mulation rates occur today on the western Antarctic Peninsula®,
as well as on the upwind flanks of coastal domes and the ice-sheet
margins of West Antarctica, but surface melt rates are currently low
in these regions.

Surface meltwater transport. Across broad sectors of Antarctica,
meltwater transport over the surface of the ice sheet and ice shelves
occursalongrelativelylow surface slopes through networks of streams
and rivers. In some cases, water moves tens to hundreds of kilome-
tres' and has persisted for decades. The Transantarctic Mountains
support some of the continent’s most high-latitude (~85° S)
and high-elevation (~1,800 m a.s.l.) meltwater drainage systems
(Fig. 1). It is currently unclear how melting in these extreme loca-
tions supports these persistent drainage systems, but it is presum-
ably related to the abundance of low-albedo bedrock and downslope
winds that emanate from the East Antarctic plateau. Streams and
rivers may affect ice-sheet mass balance by moving water onto ice
shelves where ponding water can contribute to ice-shelf collapse.
Meltwater streams feed lakes in high-albedo snow on the Riiser-
Larsen, Amery, Nivlisen and Roi Baudouin ice shelves®**. Ice
shelves receiving meltwater through this mechansim are more likey
to affect ice-sheet mass balance if they are both suspectible to frac-
turing and buttress large upstream catchments.

Streams and rivers can also transport meltwater off ice shelves in
the ocean via waterfalls’ at the calving ice front, or through moulins,
dolines and crevasses'>"”. On the Nansen Ice Shelf’, a waterfall fed by
a surface river has persisted since at least 1974. This river and water-
fall system drains a significant fraction of the meltwater formed on
the ice shelf into the Ross Sea. Similar water export was observed on
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the Larsen B Ice Shelf before its collapse' (T. A. Scambos, personal
communication). Simple routing calculations indicate that meltwa-
ter could be removed from other Antarctic ice shelves such as Ross,
Amery, Filchner Ronne and Larsen C1. Transport of meltwater off
floating ice shelves has the potential to buffer ice shelves from frac-
ture and collapse associated with surface lakes.

Drivers of meltwater distribution

Antarctic surface meltwater distribution is driven at present by
regional shifts in climate together with the influence of local-
scale process and microclimates. The predominance of melting
on Antarctic Peninsula ice shelves today reflects the rapid regional
atmospheric warming that began in the 1950s*. The resulting melt
intensification on ice shelves is thought to be directly responsible for
multiple ice-shelf collapses over recent decades™. These collapses,
together with the associated loss of buttressing, have triggered
Antarctic Peninsula outlet-glacier acceleration™. An ice core from
James Ross Island on the northeast Antarctic Peninsula indicates
that surface melting rapidly increased in the late twentieth century
relative to the past 1,000 years™. Observed warming and melt inten-
sification across the northeastern Antarctic Peninsula are associated
with a strengthening of the circumpolar westerly winds marked by
the positive phase shift in the Southern Annular Mode since the
1970s*°, which in turn is considered to be the result of coincident
anthropogenically induced depletion of stratospheric ozone”.
Broader-scale climate dynamics also impact Antarctic surface
melting, including oceanic-atmospheric variability in the tropical
Pacific’®”. Striking examples of this linkage are anomalous, exten-
sive melt events across the Ross Ice Shelf and the West Antarctic
Ice Sheet that have been linked to an El Nifio/Southern Oscillation
(ENSO) teleconnection pattern that favours warm, marine air
intrusions into West Antarctica>®. Antarctic climate and surface
melting are strongly coupled to broader climate system dynamics
and anthropogenic forcing.

Local-scale processes also drive the distribution of Antarctic
surface melt. Exposure of low-albedo blue ice and bedrock near
ice-shelf grounding zones can enhance melting through a positive
melt-albedo feedback®“. On the ice sheet, blue ice areas gener-
ally produce greater meltwater volumes than the adjacent snow-
covered regions. As blue ice? only covers 1.6% of the surface of
Antarctica®®, the overall volume of meltwater produced by local-
scale melt enhancement over blue ice areas is thought to be a small
fraction of the Antarctic surface melt. Observations and modelling
of meltwater production across ice-covered areas are particularly
lacking in Antarctica.

Winds play an important role in surface meltwater production
across Antarctica. Warming of descending katabatic winds that
persistently drain from the Antarctic interior, and associated wind
scouring and blue ice exposure are known to locally enhance surface
melting across ice-shelf grounding zones in Dronning Maud Land,
East Antarctica®. Analogous processes enhance melt on the Ross Ice
Shelf, as well on the innermost Amery Ice Shelf*". Foehn winds play
a similar role in melt generation. Although more episodic and less
directionally constant than katabatics, warm, dry and clear sky con-
ditions associated with foehn wind events enhance melting across
eastern Antarctic Peninsula ice shelves®**** and the McMurdo Dry
Valleys®>®°. Local melt enhancement produced by foehn winds
is linked to depletion of ice shelf firn pore space”” and meltwater
ponding on innermost Larsen C Ice Shelf*>*. As firn air depletion
results in an impermeable ice surface, this process is an important
precursor for meltwater-induced hydrofracture®®. Foehn winds
probably contributed to the collapse of the Larsen B Ice Shelf*”. A
result of the interplay of Antarctic topography and prevailing winds,
wind-enhanced melting will continue to be an important compo-
nent of Antarctic surface meltwater production and hydrology in
coming decades.
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Modes of meltwater impact
Surface meltwater on ice sheets and the adjacent floating ice shelves
has the potential to significantly impact ice-sheet mass balance. We
focus on three primary modes of meltwater influence on ice-sheet
mass balance: (1) surface melt leading to direct surface runoff and
thinning (Fig. 3a,b); (2) changing the basal thermal and hydrologi-
cal state by injection of surface meltwater into the subglacial envi-
ronment (Fig. 3¢,d); and (3) meltwater-induced ice-shelf collapse
(Fig. 3e,(f), producing an acceleration of mass loss from the
upstream outlet glaciers. Other influences of surface meltwater
include cryohydrologic warming and enhanced ocean melting’®”".
Cryohydrologic warming in a lake, a crevasse or a firn aquifer
can change the ice rheology both on grounded ice and ice shelves
through the release of latent heat*.

The widespread and intense surface melt in Greenland today is
a template for understanding surface hydrology in Antarctica in a
warmer world. To date, the first mode(direct surface melt) is wide-
spread in Greenland and on some Antarctic ice shelves'. The sec-
ond mode, injection of surface water to the bed, is also widespread
in Greenland™’>” but has not yet been observed in Antarctica. The
third mode, meltwater-induced ice-shelf collapse, has been impli-
cated in the widespread collapses of northeast Antarctic Peninsula
ice shelves, including Larsen A and Prince Gustav in 1995, Larsen B
in 2002 and Wilkins in 200875674,

Surface melt leading to direct surface runoff and thinning.
In Antarctica, the first mode (Mode 1 in Fig. 3a,b), is primarily
impacting ice shelves, whereas in Greenland, surface melt plays an
important role in mass balance of the entire ice sheet. Before 2006,
mass loss in Greenland was equally partitioned between losses from
surface melt and runoff and loss due to ice dynamics™. Beginning
in 2006, the surface melt mass loss increased, exceeding the mass
loss attributed to ice dynamics’>’°. In a recent study, up to 84% of
the annual mass loss from the Greenland Ice Sheet was attributed to
surface melt and runoff’®. Surface melting and runoff have contrib-
uted to the lowering of the ice sheet margin’ at rates of >1 m yr=.
Close to the ice-sheet margin, surface meltwater is exported directly
off the ice in supraglacial streams. Inland, the surface water can
refreeze, be stored near the surface*”® or be transported to the base
of the ice sheet’®”. As Antarctic melt rates increase in the future,
mass loss due to surface runoff will also increase.

Injection of surface meltwater into the subglacial environment.
The second mode of impact (Mode 2 in Fig. 3c,d) has not been
documented in Antarctica yet, but is widespread in Greenland. In
Greenland, the surface and basal hydrological systems are linked by
drainage of surface lakes into fractures””, and drainage of surface
rivers into moulins®. Meltwater stored in the englacial hydrological
system as subsurface lakes*"* and firn aquifers** may also move sur-
face water to the ice-sheet base*. For example, transient storage of
surface meltwater in a firn aquifer upslope of Helheim Glacier, east
Greenland, flows downslope until it disappears at an extensional
crevasse. Modelling suggests that this water reaches the ice-sheet
bed via hydrofracture”. Injection of surface water to the subglacial
hydrological system may increase ice mass loss through enhanced
basal sliding’ and enhanced ocean melting at calving fronts. Sudden
lake drainage events can produce both localized vertical and hori-
zontal ice displacements™***-%2, Together, the seasonal evolution of
surface meltwater, its transfer to the subglacial environment and the
efficiency of subglacial hydrological systems modulate the response
of ice dynamics to meltwater input®>**. In Greenland, research has
focused on both the short-term (hours to weeks)*** and the sea-
sonal response of the ice sheet to meltwater injections®* as an
analogue for understanding how the ice sheet will respond dynami-
cally to increased surface melt. There is currently no evidence for
coupling between Antarctic surface and basal hydrological systems.

As Antarctic climate warming results in the development on grounded
ice of more extensive surface lakes, aquifers and rivers, in some areas
the surface and basal systems may connect. We suggest that a switch
from an ice-sheet base that is isolated from surface melt to one that
receives seasonal injections of surface meltwater could trigger a fun-
damental shift in the dynamics and mass balance of Antarctica.

Meltwater-induced ice-shelf collapse. The third mode (Mode 3 in
Fig. 3e,f), is active today in Antarctica. Through-ice fractures on ice
shelves may develop via two mechanisms: the downward propaga-
tion of water-filled fractures®, referred to as hydrofracture®, and
fracturing resulting from the bending of an ice shelf as surface lakes
fill and drain®*>",

Hydrofracture can occur on both floating and grounded ice. The
process occurs when the hydrostatic pressure at the tip of a water-
filled crevasse exceeds the ambient pressure sufficiently to induce
stresses at the tip of the crevasse that overcome the fracture tough-
ness. If water fills the fracture as it grows vertically, it may fracture
the full ice thickness™ %% Water can be supplied from a lake,
stream or firn aquifer. Whether hydrofracture triggers ice-shelf col-
lapse will depend on the fracture spacing. Closely spaced through-
ice fractures are more likely to lead to an unstable ice shelf. When
the fractured ice-shelf fragments have aspect ratios of horizontal
length to ice thickness that are less than a critical value (~0.6)%,
iceberg capsizing can drive ice-shelf disintegration®*’. In contrast,
widely spaced fractures will not lead to iceberg capsize and instead
may provide conduits to remove the surface meltwater buffering the
ice shelf from collapse™".

Ponding of surface meltwater can also trigger ice-shelf col-
lapse through ice-shelf flexing, weakening and fracturing, as lakes
fill and drain”*. An ice shelf deflects downwards when a surface
lake fills, and hydrostatically rebounds upwards when a lake rap-
idly drains. This loading and unloading of surface lakes can pro-
duce flexurally induced ring and radial fractures around the lake™",
as observed around drained lakes on the Shackleton Ice Shelf
(Fig. 1d) and the Langhovde Ice Shelf, East Antarctica'?. A chain
reaction of lake drainage events could occur if these loading-induced
fractures intersect adjacent lakes. The adjacent lakes will drain into
and deepen the new fracture. This chain reaction process may have
triggered the drainage of over 2,000 meltwater lakes' in the weeks
before the collapse of the Larsen B Ice Shelf’*. Meltwater-induced
flexure and fracture may also have contributed to the 2008 break-
up events of the Wilkins Ice Shelf''. Chain-reaction lake drainages
will only occur if lakes are close enough that fractures formed by
one lake drainage event intersect an adjacent lake™. Stresses from
further afield, including back-stress from land-fast sea ice*” and
larger-scale ice flow, can mute the impact of loading and unloading
by preventing fracture initiation. Some surface lakes have persisted
on ice shelves, such as the George VI Ice Shelf, for decades without
triggering collapse'’. Although George VI Ice Shelf (Fig. 1a) is cov-
ered with widespread, closely spaced lakes every year, its compres-
sive flow regime” limits the formation of fractures — even with the
persistent loading from abundant surface meltwater.

Most of our understanding of ice-shelf collapse comes from
the Antarctic Peninsula. It is likely that more Antarctic ice shelves
will also be impacted by hydrofracture, as warming produces more
melting in tandem with sustained wind-enhanced melting, result-
ing in the reduced permeability of ice shelf firn and allowing the
formation of melt ponds in vulnerable areas.

Role of meltwater in future mass balance

In the future, surface melting will play an increasingly important
role in Antarctic Ice Sheet mass balance as the climate warms in
response to GHG emissions’ . The degree of influence will
depend critically on melt rates, which increase nonlinearly with
atmospheric temperatures — mainly as a result of the melt-albedo
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Fig. 3 | Schematic illustration of three primary modes of surface melt impact on ice-sheet mass balance. a,b, Mode 1. Direct surface ablation is enhanced
over lake bottoms owing to the albedo feedback®, resulting in incoming shortwave radiation reflecting less (small yellow arrow) from lakes than adjacent snow
or bare ice surfaces (larger arrow). ¢,d, Mode 2. Connectivity between the ice surface hydrology and ice-sheet base impacts ice dynamics by modifying basal
thermal and hydrologic conditions. Connections may occur through surface lakes draining into fractures, via rivers draining into moulins and via firn aquifers
draining into fractures. e,f, Mode 3. Meltwater-induced ice-shelf collapse due to presence of surface lakes. Surface lakes propagate pre-existing fractures
downwards by hydrofracture (light blue lake and fracture)®®®® and load (or unload) the ice shelf, creating new fractures (dark blue lake and fractures) that drain
adjacent lakes’. When an ice shelf collapses, mass loss will increase as the reduced buttressing force will trigger the outlet glaciers to accelerate.

positive feedback”™. This positive feedback heightens the sensitiv-
ity of warmer regions to future temperature increases, while also
enabling melt to shift from a relatively insignificant process to a
potentially dominant driver of ice-shelf change over this century.
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Evidence for melt-temperature nonlinearity and its impacts is pro-
vided by an ice core on the northeastern Antarctic Peninsula, docu-
menting rapid melt intensification since the mid-twentieth century
coincident with numerous ice shelf collapses™.
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Fig. 4 | Surface meltwater production in Greenland today and Antarctica at the end of the century. a, Mean annual surface melting in Greenland as
simulated over 2000-2009 in MARvV3.5.2 forced by ERA-Interim'®. b, Projected annual surface melting over 2091-2100 in Antarctica under RCP8.5 using
an ensemble of CMIP5-based models®. Note that the colour scale is different to that in Fig. 1. Contours indicate surface elevation at intervals of 500 m.

Simulations of future Antarctic surface melting vary widely,
with the dominant source of uncertainty in projections result-
ing from the uncertainty in the future evolution of GHG emis-
sions (that is, scenario uncertainty). Additional uncertainty
emerges from the biases inherent to various climate models, as
well as the configuration of modelling experiments and uncer-
tainty in the parameterization of meltwater transport, storage
and influence on ice-shelf fracture. Owing to the nonlinear sen-
sitivity of melt to temperature change, even small biases in the
simulation of present-day climate can translate to large biases in
the simulation of future meltwater production. Illustrating this
case, models that do not reproduce melt conditions today project
200-500% more melt by 2100° than a subset of climate models
that are able to reproduce present-day melt rates™. Nevertheless,
even under more conservative projections’, a near doubling of
the Antarctic-wide volume of melt is simulated by 2050, irrespec-
tive of the emissions scenario selected. Beyond mid-century, there
is a close coupling between CO, emissions and Antarctic melt.
Under a high-emissions scenario (Representative Concentration
Pathway (RCP) 8.5), melt on nearly all Antarctic Peninsula ice
shelves — and to a lesser degree on ice shelves further south in
West Antarctica — approaches or surpasses levels associated with
recent Antarctic Peninsula ice-shelf collapses’. Other projections
with more intense surface melt™ suggest that by 2100 surface melt
will trigger rapid and widespread Antarctic ice-sheet mass losses
through a progression of instability mechanisms including surface
melt-induced ice-shelf hydrofracture, marine ice-cliff instability
and marine ice-sheet instability®. Here we will focus on the more
conservative of these two model-based studies, albeit under a
high-emissions pathway.

Figure 4 compares melt rates projected for the end of the century
in Antarctica under RCP8.5 to present-day melt rates in Greenland.
This provides a framework for understanding the future impact
of melt in Antarctica. The region that will experience the great-
est increase in surface melt will be the Antarctic Peninsula. Melt
rates as high as in Greenland’s lower ablation zone, where surface
meltwater is connected to the bed, are projected for this region by
2100. Melt intensity is strongly dependent on elevation and latitude.
If not already at risk of collapse due intensified surface melting®™,
Antarctic Peninsula ice shelves will probably deplete their firn air
content under a high-emissions scenario by the end of the century®.
Lack of pore space within the firn layer of Antarctic Peninsula ice
shelves will heighten their sensitivity to further melt increases by
promoting meltwater pooling or runoff as opposed to percolation
and refreezing®. A simplistic interpretation of this comparison sug-
gests that bare ice zones, melt lakes and moulins will replace percola-
tion zones that proliferate across much of floating and grounded ice
of the Antarctic Peninsula today. This could trigger several meltwa-
ter impacts that are active in Greenland but are currently negligible
in Antarctica, including meltwater runoff and the injection of melt-
water to the bed. Given historical melt-rate and temperature-based
thresholds for ice-shelf viability®, the Larsen C Ice Shelf and others
on the Antarctic Peninsula can be expected to collapse under this
emissions scenario this century’>*. With high melt intensification
projected and increased snowfall already observed™, firn aquifers
and subsurface lakes may develop along the Antarctic Peninsula.

The impact of surface hydrology on ice-sheet mass balance in
other parts of Antarctica will grow as the extent and intensity of sur-
face melt increases. The ponding of meltwater on ice shelves could
contribute to their collapse. Whether water is exported by ice-shelf
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rivers will depend on surface slope, surface conditions and the ice-
shelf stress state. If predictions of increased melting are accurate,
by 2100 ice shelves in the Antarctic Peninsula will probably have
collapsed and all remaining ice shelves including the large Ross,
Filchner-Ronne and Amery ice sheets will undergo firn densifica-
tion due to the increased surface melt. Atmospherically driven sur-
face lowering due to firn compaction will be occurring in tandem
with the ocean-driven basal thinning of ice shelves that is already
acting on much of peripheral Antarctica”. Meltwater may collect
at the grounding lines of the large ice shelves similar to the ponding
and refreezing that is occurring at the grounding line of the Larsen
C Ice Shelf today. The elevated surface melt on the Abbott, Getz and
Shackleton ice shelves will lead to the collapse of these ice shelves
unless active surface drainage can mitigate the effect of surface
loading by exporting water to the ocean.

On the grounded portions of East and West Antarctica, surface
lowering due to runoff and connectivity to the bed (modes 1 and 2,
Fig. 3) could become significant by 2100 in certain regions. Regions
where 2100 melt rates similar to those observed in Greenland today
develop on grounded Antarctic ice include the Pine Island catch-
ment and portions of Wilkes Land, East Antarctica. We expect that
areas of englacial water storage — including firn aquifers and bur-
ied lakes — will expand as accumulation and precipitation increase
simultaneously this century®.

Increased snow accumulation, a result of a warming atmosphere,
is likely to moderate the impact of melt. Recent coupled climate
modelling indicates that owing to the enhanced moisture-holding
capacity of the atmosphere and increased open-ocean evapora-
tion, Antarctic surface mass balance may increase by 70 Gt yr!
per degree of warming even as surface melt and runoff increase”.
Evidence for ongoing warming-enhanced snowfall is preserved in
ice cores. Increased snowfall could also inhibit the melt-albedo
feedback, which is important for melt initiation and seasonal melt
evolution on East Antarctic ice shelves’. Enhanced snowfall may
also support the growth of the ice shelf/sheet firn layer and thus
enable enhanced meltwater infiltration and refreeze as opposed to
ponding* or promote future growth in meltwater storage in aqui-
fers'*. If the firn layer thickens, more meltwater will infiltrate and
refreeze or be stored in firn aquifers' rather than ponding on the ice
surface”. While increased accumulation may buffer the impact of
increased surface melt on runoff and ice-shelf collapse, if increased
accumulation leads to the formation of extensive firn aquifers in
crevassed regions, connectivity between the surface and basal
hydrologic systems may develop. Similarly, an increase in ice flux
could result from meltwater injected into ice shear margins or into
regions of Antarctica with cold frozen beds.

To move beyond simple projections of modern Greenland
hydrology to a warmer Antarctica requires an improved under-
standing of surface hydrology on ice shelves and ice sheets. There
are profound knowledge gaps in our understanding of the role
of firn densification, the roles of hydrofracture and meltwater-
loading-induced-flexure on ice-shelf fracture and calving, and how
effective surface rivers are in buffering ice shelves from collapse —
these must be addressed to inform our grasp of surface hydrology.
Similarly, for grounded ice, we do not have a clear understanding
of what happens when surface melt first reaches the base of an ice
sheet. Because of melt-temperature nonlinearity and the varied
local- and global-scale processes impacting melt, it is essential for
climate and ice-sheet models to realistically simulate present-day
Antarctic climate.

Accurate estimates of surface meltwater production today are
hampered by lack of continuity in satellite datasets, and the sparse
spatial and temporal in situ observations necessary to constrain the
surface energy balance. New satellite campaigns (such as Landsat
8 and the Sentinel constellation) and dedicated field campaigns in
melt-prone areas are beginning to address this observation void.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

PERSPECTIVE

The identification of new constraints on ice structure, the evolution
and drivers of melt through time and the vulnerability of ice shelves
to hydrofracture should include ice cores and geophysical map-
ping. Sustained and robust observations of Antarctic surface melt
and hydrological processes are needed, particularly to constrain
their varied drivers and impacts on ice properties and stability, to
then develop and refine parameterizations of these processes in
continental-scale ice-sheet models. These are critical knowledge
gaps that limit our understanding of future Antarctic mass change.
Addressing these uncertainties will require a sustained, coordi-
nated, international and interdisciplinary effort.

The impact of increased surface melting on the mass balance
of the Antarctic Ice Sheet will depend on the fate of the meltwater
as melt on vulnerable buttressing ice shelves increases and that on
the grounded ice begins to resemble the melt storage, transport and
export active today in Greenland. Whether future surface melt and
hydrology resembles that experienced by early Antarctic explorers,
or that found in Greenland today;, is tied in large part to the future
emissions of GHGs. In the near future, surface melt processes will
have the greatest impact on global sea level through susceptible ice
shelves buttressing large catchments. When and where each mode
of meltwater impact — direct thinning, injection of meltwater to
the bed and hydrofracture — are activated in a wetter, warmer
Antarctica will to some extent control to how much Antarctica con-
tributes to global sea-level rise.
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